SN74LVC1G07 Single Buffer/Driver With Open

Product
Folder
Sample &
Buy
Support &
Community
Tools &
Software
Technical
Documents
SN74LVC1G07
SCES296AC – FEBRUARY 2000 – REVISED APRIL 2014
SN74LVC1G07 Single Buffer/Driver With Open-Drain Output
1 Features
•
1
•
•
•
•
•
•
•
•
•
3 Description
2
Available in the Ultra Small 0.64-mm
Package (DPW) With 0.5-mm Pitch
Supports 5-V VCC Operation
Input and Open-Drain Output Accept
Voltages up to 5.5 V
Can Translate Up or Down
Max tpd of 4.2 ns at 3.3 V
Low Power Consumption, 10-µA Max ICC
±24-mA Output Drive at 3.3 V
Ioff Supports Live Insertion, Partial-Power-Down
Mode, and Back-Drive Protection
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
This single buffer/driver is designed for 1.65-V to
5.5-V VCC operation.
The output of the SN74LVC1G07 device is open
drain and can be connected to other open-drain
outputs to implement active-low wired-OR or activehigh wired-AND functions. The maximum sink current
is 32 mA.
The SN74LVC1G07 is available in a variety of
packages, including the ultra-small DPW package
with a body size of 0.8 mm × 0.8 mm.
white space
white space
Device Information(1)
DEVICE NAME
SN74LVC1G07
2 Applications
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
AV Receiver
Blu-ray Player and Home Theater
DVD Recorder and Player
Desktop or Notebook PC
Digital Radio or Internet Radio Player
Digital Video Camera (DVC)
Embedded PC
GPS: Personal Navigation Device
Mobile Internet Device
Network Projector Front End
Portable Media Player
Pro Audio Mixer
Smoke Detector
Solid State Drive (SSD): Enterprise
High-Definition (HDTV)
Tablet: Enterprise
Audio Dock: Portable
DLP Front Projection System
DVR and DVS
Digital Picture Frame (DPF)
Digital Still Camera
PACKAGE
BODY SIZE
SOT-23 (5)
2.9mm × 1.6mm
SC70 (5)
2.0mm × 1.25mm
X2SON (4)
0.8mm × 0.8mm
SON (6)
1.45mm × 1.0mm
SON (6)
1.0mm × 1.0mm
(1) For all available packages, see the orderable addendum at
the end of the datasheet.
A
Y
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
SN74LVC1G07
SCES296AC – FEBRUARY 2000 – REVISED APRIL 2014
www.ti.com
Table of Contents
1
2
3
4
5
6
7
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
1
1
1
2
4
4
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
4
4
5
5
6
6
6
6
7
Absolute Maximum Ratings ......................................
Handling Ratings.......................................................
Recommended Operating Conditions.......................
Thermal Information ..................................................
Electrical Characteristics...........................................
Switching Characteristics, –40°C to 85°C.................
Switching Characteristics, –40°C to 125°C...............
Operating Characteristics..........................................
Typical Characteristics ..............................................
Parameter Measurement Information .................. 8
7.1 (Open Drain) ............................................................. 8
8
Detailed Description .............................................. 9
8.1
8.2
8.3
8.4
9
Overview ...................................................................
Functional Block Diagram .........................................
Feature Description...................................................
Device Functional Modes..........................................
9
9
9
9
Application and Implementation ........................ 10
9.1 Application Information............................................ 10
9.2 Typical Application ................................................. 10
10 Power Supply Recommendations ..................... 11
11 Layout................................................................... 11
11.1 Layout Guidelines ................................................. 11
11.2 Layout Example .................................................... 11
12 Device and Documentation Support ................. 12
12.1 Trademarks ........................................................... 12
12.2 Electrostatic Discharge Caution ............................ 12
12.3 Glossary ................................................................ 12
13 Mechanical, Packaging, and Orderable
Information ........................................................... 12
4 Revision History
Changes from Revision AB (March 2014) to Revision AC
Page
•
Updated Handling Ratings table. ........................................................................................................................................... 4
•
Added Thermal Information table. ......................................................................................................................................... 5
•
Added Typical Characteristics. .............................................................................................................................................. 7
•
Added Detailed Description section. ...................................................................................................................................... 9
•
Added Application and Implementation section. ................................................................................................................. 10
•
Added Power Supply Recommendations section. .............................................................................................................. 11
•
Added Layout section. ......................................................................................................................................................... 11
Changes from Revision AA (July 2013) to Revision AB
Page
•
Updated Features. .................................................................................................................................................................. 1
•
Added Applications. ................................................................................................................................................................ 1
•
Added Device Information table. ............................................................................................................................................ 1
•
Added Pin Functions table. .................................................................................................................................................... 4
•
Moved Tstg to Handling Ratings table. .................................................................................................................................... 4
Changes from Revision Z (November 2012) to Revision AA
•
Extended maximum temperature operating range from 85°C to 125°C................................................................................. 5
Changes from Revision Y (June 2011) to Revision Z
•
2
Page
Page
Removed Ordering Information table. .................................................................................................................................... 4
Submit Documentation Feedback
Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: SN74LVC1G07
SN74LVC1G07
www.ti.com
SCES296AC – FEBRUARY 2000 – REVISED APRIL 2014
Changes from Revision W (June 2008) to Revision X
•
Page
Added DSF Package to data sheet. ....................................................................................................................................... 4
Submit Documentation Feedback
Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: SN74LVC1G07
3
SN74LVC1G07
SCES296AC – FEBRUARY 2000 – REVISED APRIL 2014
www.ti.com
5 Pin Configuration and Functions
DCK PACKAGE
(TOP VIEW)
DBV PACKAGE
(TOP VIEW)
N.C.
1
N.C.
VCC
5
A
A
2
GND
3
GND
5
1
DRL PACKAGE
(TOP VIEW)
VCC
N.C.
A
2
GND
3
2
3
4
Y
4
1
6
N.C.
A
GND
VCC
A
2
5
N.C.
GND
3
4
Y
1
6
2
5
3
4
VCC
N.C.
Y
Y
YZP PACKAGE
(TOP VIEW)
Y
4
VCC N.C.
5
1
DSF PACKAGE
(TOP VIEW)
DRY PACKAGE
(TOP VIEW)
DNU
A
GND
N.C. – No internal connection
See mechanical drawings for dimensions.
A1
A2
B1
B2
C1
C2
YZV PACKAGE
(TOP VIEW)
A
GND
VCC
A1
B1
A2
B2
DPW PACKAGE
(TOP VIEW)
VCC
Y
GND
N.C.
A
1
5
3
2
4
VCC
Y
Y
Pin Functions
PIN
DESCRIPTION
NAME
DBV,
DCK, DRL
DRY, DSF
DPW
YZP
NC
1
1, 5
1
A1, B2
–
A
2
2
2
B1
A1
Input
GND
3
3
3
C1
B1
Ground
Y
4
4
4
C2
B2
Output
VCC
5
6
5
A2
A2
Power pin
YZV
Not connected
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)
MIN
MAX
UNIT
VCC
Supply voltage range
–0.5
6.5
V
VI
Input voltage range (2)
–0.5
6.5
V
VO
Voltage range applied to any output in the high-impedance or power-off state (2)
–0.5
6.5
V
(2) (3)
VO
Voltage range applied to any output in the high or low state
6.5
V
IIK
Input clamp current
VI < 0
–0.5
–50
mA
IOK
Output clamp current
VO < 0
–50
mA
IO
Continuous output current
±50
mA
±100
mA
Continuous current through VCC or GND
(1)
(2)
(3)
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
The value of VCC is provided in the Recommended Operating Conditions table.
6.2 Handling Ratings
MIN
Tstg
Storage temperature range
V(ESD)
Electrostatic discharge
(1)
(2)
4
MAX
–65
150
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all
pins (1)
0
2000
Charged device model (CDM), per JEDEC specification
JESD22-C101, all pins (2)
0
1000
UNIT
°C
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
Submit Documentation Feedback
Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: SN74LVC1G07
SN74LVC1G07
www.ti.com
SCES296AC – FEBRUARY 2000 – REVISED APRIL 2014
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted) (1)
VCC
Operating
Supply voltage
Data retention only
1.65
5.5
VCC = 3 V to 3.6 V
V
2
0.7 × VCC
VCC = 1.65 V to 1.95 V
Low-level input voltage
V
1.7
VCC = 4.5 V to 5.5 V
VIL
UNIT
0.65 × VCC
VCC = 2.3 V to 2.7 V
High-level input voltage
MAX
1.5
VCC = 1.65 V to 1.95 V
VIH
MIN
0.35 × VCC
VCC = 2.3 V to 2.7 V
0.7
VCC = 3 V to 3.6 V
0.8
VCC = 4.5 V to 5.5 V
V
0.3 × VCC
VI
Input voltage
0
5.5
V
VO
Output voltage
0
5.5
V
IOL
Low-level output current
Δt/Δv
VCC = 1.65 V
4
VCC = 2.3 V
8
16
VCC = 3 V
Input transition rise or fall rate
VCC = 4.5 V
32
VCC = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V
20
VCC = 3.3 V ± 0.3 V
10
VCC = 5 V ± 0.5 V
TA
(1)
mA
24
ns/V
5
Operating free-air temperature
–40
125
°C
All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
6.4 Thermal Information
SN74LVC1G00
THERMAL METRIC (1)
DBV
DCK
DRL
DRY
YZP
DPW
5 PINS
5 PINS
5 PINS
6 PINS
5 PINS
4 PINS
RθJA
Junction-to-ambient thermal resistance
229
278
243
439
130
340
RθJC(top)
Junction-to-case (top) thermal resistance
164
93
78
277
54
215
RθJB
Junction-to-board thermal resistance
62
65
78
271
51
294
ψJT
Junction-to-top characterization parameter
44
2
10
84
1
41
ψJB
Junction-to-board characterization parameter
62
64
77
271
50
294
RθJC(bot)
Junction-to-case (bottom) thermal resistance
–
–
–
–
–
250
(1)
UNIT
°C/W
For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
Submit Documentation Feedback
Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: SN74LVC1G07
5
SN74LVC1G07
SCES296AC – FEBRUARY 2000 – REVISED APRIL 2014
www.ti.com
6.5 Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TYP (1)
IOL = 100 µA
VOL
TYP
0.1
0.1
1.65 V
0.45
0.45
IOL = 8 mA
2.3 V
0.3
0.3
0.4
0.4
0.55
0.55
0.55
0.55
3V
IOL = 32 mA
4.5 V
VI = 5.5 V or GND
UNIT
MAX
1.65 V to 5.5 V
IOL = 24 mA
A input
MAX
IOL = 4 mA
IOL = 16 mA
II
–40°C TO 125°C
RECOMMENDED
–40°C TO 85°C
VCC
V
0 to 5.5 V
±5
±5
µA
0
±10
±10
µA
1.65 V to 5.5 V
10
10
µA
500
µA
Ioff
VI or VO = 5.5 V
ICC
VI = 5.5 V or GND,
IO = 0
ΔICC
One input at VCC – 0.6 V,
Other inputs at VCC or GND
Ci
VI = VCC or GND
3.3 V
4
4
pF
Co
VO = VCC or GND
3.3 V
5
5
pF
(1)
3 V to 5.5 V
500
All typical values are at VCC = 3.3 V, TA = 25°C.
6.6 Switching Characteristics, –40°C to 85°C
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)
–40°C TO 85°C
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tpd
A
Y
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
VCC = 5 V
± 0.5 V
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
2.4
8.3
1
5.5
1.5
4.2
1
3.5
UNIT
ns
6.7 Switching Characteristics, –40°C to 125°C
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)
–40°C TO 125°C
RECOMMENDED
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tpd
A
Y
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
VCC = 5 V
± 0.5 V
MIN
MAX
MIN
2.4
8.6
1
UNIT
MAX
MIN
MAX
MIN
MAX
6
1.5
4.7
1
4
ns
6.8 Operating Characteristics
TA = 25°C
Cpd
6
PARAMETER
TEST CONDITIONS
Power dissipation capacitance
f = 10 MHz
VCC = 1.8 V
VCC = 2.5 V
VCC = 3.3 V
VCC = 5 V
TYP
TYP
TYP
TYP
3
3
4
6
Submit Documentation Feedback
UNIT
pF
Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: SN74LVC1G07
SN74LVC1G07
www.ti.com
SCES296AC – FEBRUARY 2000 – REVISED APRIL 2014
6.9 Typical Characteristics
2.5
6
TPD
TPD
5
2
TPD - ns
TPD - ns
4
1.5
1
3
2
0.5
0
-100
1
0
-50
0
50
Temperature - °C
100
150
0
1
D001
Figure 1. TPD Across Temperature at 3.3V Vcc
2
3
Vcc - V
4
5
Product Folder Links: SN74LVC1G07
D002
Figure 2. TPD Across Vcc at 25°C
Submit Documentation Feedback
Copyright © 2000–2014, Texas Instruments Incorporated
6
7
SN74LVC1G07
SCES296AC – FEBRUARY 2000 – REVISED APRIL 2014
www.ti.com
7 Parameter Measurement Information
7.1 (Open Drain)
VLOAD
S1
RL
From Output
Under Test
Open
TEST
GND
RL
CL
(see Note A)
S1
tPZL (see Notes E and F)
VLOAD
tPLZ (see Notes E and G)
VLOAD
tPHZ/tPZH
VLOAD
LOAD CIRCUIT
INPUT
VCC
VI
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
5 V ± 0.5 V
VM
tr/tf
≤ 2 ns
≤ 2 ns
≤ 2.5 ns
≤ 2.5 ns
VCC
VCC
3V
VCC
VLOAD
VCC/2
VCC/2
1.5 V
VCC/2
2 × VCC
2 × VCC
6V
2 × VCC
CL
RL
V∆
30 pF
30 pF
50 pF
50 pF
1 kΩ
500 Ω
500 Ω
500 Ω
0.15 V
0.15 V
0.3 V
0.3 V
VI
Timing Input
VM
0V
tw
tsu
th
VI
VM
Input
VM
VM
VM
Data Input
0V
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VOLTAGE WAVEFORMS
PULSE DURATION
VI
VM
Input
VM
0V
Output
VM
VOL
tPHL
VM
tPLZ
VLOAD/2
VM
tPZH
VM
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VM
0V
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPLH
VOH
Output
VM
tPZL
VOH
VM
VI
Output
Control
tPHL
tPLH
VI
VOL + V∆
VOL
tPHZ
Output
Waveform 2
S1 at VLOAD
(see Note B)
VM
VLOAD/2 − V∆
VLOAD/2
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. Since this device has open-drain outputs, tPLZ and tPZL are the same as tpd.
F. tPZL is measured at VM.
G. tPLZ is measured at VOL + V∆.
H. All parameters and waveforms are not applicable to all devices.
Figure 3. Load Circuit and Voltage Waveforms
8
Submit Documentation Feedback
Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: SN74LVC1G07
SN74LVC1G07
www.ti.com
SCES296AC – FEBRUARY 2000 – REVISED APRIL 2014
8 Detailed Description
8.1 Overview
The SN74LVC1G07 device contains one open drain buffer with a maximum sink current of 32 mA. This device is
fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing
damaging current backflow through the device when it is powered down.
The DPW package technology is a major breakthrough in IC packaging. Its tiny 0.64 mm square footprint saves
significant board space over other package options while still retaining the traditional manufacturing friendly lead
pitch of 0.5 mm.
8.2 Functional Block Diagram
A
Y
8.3 Feature Description
•
•
•
•
Wide operating voltage range.
– Operates from 1.65 V to 5.5 V.
Allows down voltage translation.
Inputs and outputs accept voltages to 5.5 V.
Ioff feature allows voltages on the inputs and outputs, when VCC is 0 V.
8.4 Device Functional Modes
Function Table
INPUT
A
OUTPUT
Y
L
L
H
H
Submit Documentation Feedback
Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: SN74LVC1G07
9
SN74LVC1G07
SCES296AC – FEBRUARY 2000 – REVISED APRIL 2014
www.ti.com
9 Application and Implementation
9.1 Application Information
The SN74LVC1G07 is a high drive CMOS device that can be used to implement a high output drive buffer, such
as an LED application. It can sink 32 mA of current at 4.5 V making it ideal for high drive and wired-OR/AND
functions. It is good for high speed applications up to 100 MHz. The inputs are 5.5 V tolerant allowing it to
translate up/down to VCC.
9.2 Typical Application
Basic LED Driver
Buffer Function
VPU
VPU
VCC
uC or Logic
LVC1G07
Wired OR
uC or Logic
uC or Logic
LVC1G07
uC or Logic
LVC1G07
9.2.1 Design Requirements
This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus
contention because it can drive currents that would exceed maximum limits. The high drive will also create fast
edges into light loads so routing and load conditions should be considered to prevent ringing.
9.2.2 Detailed Design Procedure
1. Recommended Input Conditions
– Rise time and fall time specs. See (Δt/ΔV) in the Recommended Operating Conditions table.
– Specified high and low levels. See (VIH and VIL) in the Recommended Operating Conditions table.
– Inputs are overvoltage tolerant allowing them to go as high as (VI max) in the Recommended Operating
Conditions table at any valid VCC.
2. Recommend Output Conditions
– Load currents should not exceed (IO max) per output and should not exceed (Continuous current through
VCC or GND) total current for the part. These limits are located in the Absolute Maximum Ratings table.
– Outputs should not be pulled above 5.5 V.
10
Submit Documentation Feedback
Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: SN74LVC1G07
SN74LVC1G07
www.ti.com
SCES296AC – FEBRUARY 2000 – REVISED APRIL 2014
Typical Application (continued)
9.2.3 Application Curves
1600
Icc
Icc
Icc
Icc
1400
1200
1.8V
2.5V
3.3V
5V
Icc - µA
1000
800
600
400
200
0
0
20
40
Frequency - MHz
60
80
D001
Figure 4. Icc vs Frequency
10 Power Supply Recommendations
The power supply can be any voltage between the min and max supply voltage rating located in the
Recommended Operating Conditions table.
Each Vcc pin should have a good bypass capacitor to prevent power disturbance. For devices with a single
supply a 0.1-μF capacitor is recommended and if there are multiple Vcc pins then a 0.01-μF or 0.022-μF
capacitor is recommended for each power pin. It is ok to parallel multiple bypass caps to reject different
frequencies of noise. 0.1-μF and 1-μF capacitors are commonly used in parallel. The bypass capacitor should be
installed as close to the power pin as possible for best results.
11 Layout
11.1 Layout Guidelines
When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions
of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only
3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages
at the outside connections result in undefined operational states. Specified below are the rules that must be
observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low
bias to prevent them from floating. The logic level that should be applied to any particular unused input depends
on the function of the device. Generally they will be tied to Gnd or Vcc whichever make more sense or is more
convenient.
11.2 Layout Example
VCC
Unused Input
Input
Output
Unused Input
Output
Input
Submit Documentation Feedback
Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: SN74LVC1G07
11
SN74LVC1G07
SCES296AC – FEBRUARY 2000 – REVISED APRIL 2014
www.ti.com
12 Device and Documentation Support
12.1 Trademarks
All trademarks are the property of their respective owners.
12.2 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
12.3 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms and definitions.
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical packaging and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
12
Submit Documentation Feedback
Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: SN74LVC1G07
PACKAGE OUTLINE
SN74LVC1GXX and SN74AUP1GXX
DPW0005A-C01
X2SON - 0.4 mm max height
SCALE 12.000
PLASTIC SMALL OUTLINE - NO LEAD
0.85
0.75
B
A
0.85
0.75
PIN 1 INDEX AREA
0.4 MAX
C
SEATING PLANE
NOTE 4
(0.1)
0.05
0.00
0.25 0.1
THERMAL PAD
2
4
2X
0.48
NOTE 4
3
5
1
4X
0.27
0.17
(0.06)
3X
0.32
0.23
0.27
0.17
0.1 C A
0.05 C
B
4221849/A 12/2014
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
4. The size and shape of this feature may vary.
www.ti.com
EXAMPLE BOARD LAYOUT
SN74LVC1GXX and SN74AUP1GXX
DPW0005A-C01
X2SON - 0.4 mm max height
PLASTIC SMALL OUTLINE - NO LEAD
(0.78)
SYMM
4X (0.42)
( 0.1)
VIA
0.05 MIN
ALL AROUND
TYP
1
5
4X (0.22)
SYMM
4X (0.26)
(0.48)
3
2
4
(R0.05) TYP
4X (0.06)
( 0.25)
LAND PATTERN EXAMPLE
SOLDER MASK
OPENING, TYP
METAL UNDER
SOLDER MASK
TYP
SOLDER MASK DEFINED
SCALE:60X
4221849/A 12/2014
NOTES: (continued)
5. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note
in literature No. SLUA271 (www.ti.com/lit/slua271).
www.ti.com
EXAMPLE STENCIL DESIGN
SN74LVC1GXX and SN74AUP1GXX
DPW0005A-C01
X2SON - 0.4 mm max height
PLASTIC SMALL OUTLINE - NO LEAD
4X (0.42)
4X (0.22)
4X (0.06)
5
1
( 0.24)
4X (0.26)
SYMM
(0.21)
TYP
SOLDER MASK
EDGE
3
2
(R0.05) TYP
(0.48)
4
SYMM
(0.78)
SOLDER PASTE EXAMPLE
BASED ON 0.1 mm THICK STENCIL
EXPOSED PAD
92% PRINTED SOLDER COVERAGE BY AREA
SCALE:100X
4221849/A 12/2014
NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
www.ti.com
PACKAGE OPTION ADDENDUM
www.ti.com
18-Sep-2015
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
SN74LVC1G07DBVR
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-40 to 125
(C075 ~ C07F ~
C07K ~ C07R ~
C07T)
(C07H ~ C07P ~
C07S)
SN74LVC1G07DBVRE4
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
C07F
SN74LVC1G07DBVRG4
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
C07F
SN74LVC1G07DBVT
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-40 to 125
(C075 ~ C07F ~
C07K ~ C07R)
(C07H ~ C07P ~
C07S)
SN74LVC1G07DBVTE4
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
C07F
SN74LVC1G07DBVTG4
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
C07F
SN74LVC1G07DCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
(CV5 ~ CVF ~ CVK ~
CVR ~ CVT)
(CVH ~ CVP ~ CVS)
SN74LVC1G07DCKRE4
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
(CV5 ~ CVF ~ CVK ~
CVR ~ CVT)
(CVH ~ CVP ~ CVS)
SN74LVC1G07DCKRG4
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
(CV5 ~ CVF ~ CVK ~
CVR ~ CVT)
(CVH ~ CVP ~ CVS)
SN74LVC1G07DCKT
ACTIVE
SC70
DCK
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
(CV5 ~ CVF ~ CVK ~
CVR ~ CVT)
CVH
SN74LVC1G07DCKTE4
ACTIVE
SC70
DCK
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
(CV5 ~ CVF ~ CVK ~
CVR ~ CVT)
CVH
SN74LVC1G07DCKTG4
ACTIVE
SC70
DCK
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
(CV5 ~ CVF ~ CVK ~
CVR ~ CVT)
CVH
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
18-Sep-2015
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
SN74LVC1G07DPWR
ACTIVE
X2SON
DPW
4
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L4
SN74LVC1G07DRLR
ACTIVE
SOT
DRL
5
4000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
(CV7 ~ CVR)
SN74LVC1G07DRLRG4
ACTIVE
SOT
DRL
5
4000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
(CV7 ~ CVR)
SN74LVC1G07DRY2
ACTIVE
SON
DRY
6
5000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
CV
SN74LVC1G07DRYR
ACTIVE
SON
DRY
6
5000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
CV
SN74LVC1G07DRYRG4
ACTIVE
SON
DRY
6
5000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
CV
SN74LVC1G07DSF2
ACTIVE
SON
DSF
6
5000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
CV
SN74LVC1G07DSFR
ACTIVE
SON
DSF
6
5000
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
-40 to 125
CV
SN74LVC1G07YZPR
ACTIVE
DSBGA
YZP
5
3000
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
(CV7 ~ CVN)
SN74LVC1G07YZVR
ACTIVE
DSBGA
YZV
4
3000
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
CV
(7 ~ N)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
Addendum-Page 2
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
18-Sep-2015
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN74LVC1G07 :
• Automotive: SN74LVC1G07-Q1
• Enhanced Product: SN74LVC1G07-EP
NOTE: Qualified Version Definitions:
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
Addendum-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com
18-Sep-2015
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
SN74LVC1G07DBVR
SOT-23
DBV
5
3000
178.0
9.0
3.23
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
3.17
1.37
4.0
8.0
Q3
SN74LVC1G07DBVR
SOT-23
DBV
5
3000
178.0
9.2
3.3
3.2
1.55
4.0
8.0
Q3
SN74LVC1G07DBVRG4
SOT-23
DBV
5
3000
178.0
9.0
3.23
3.17
1.37
4.0
8.0
Q3
SN74LVC1G07DBVT
SOT-23
DBV
5
250
180.0
9.2
3.17
3.23
1.37
4.0
8.0
Q3
SN74LVC1G07DBVT
SOT-23
DBV
5
250
178.0
9.2
3.3
3.2
1.55
4.0
8.0
Q3
SN74LVC1G07DBVT
SOT-23
DBV
5
250
178.0
9.0
3.23
3.17
1.37
4.0
8.0
Q3
SN74LVC1G07DBVTG4
SOT-23
DBV
5
250
178.0
9.0
3.23
3.17
1.37
4.0
8.0
Q3
SN74LVC1G07DCKR
SC70
DCK
5
3000
180.0
9.2
2.3
2.55
1.2
4.0
8.0
Q3
SN74LVC1G07DCKR
SC70
DCK
5
3000
178.0
9.2
2.4
2.4
1.22
4.0
8.0
Q3
SN74LVC1G07DCKT
SC70
DCK
5
250
178.0
9.0
2.4
2.5
1.2
4.0
8.0
Q3
SN74LVC1G07DCKT
SC70
DCK
5
250
180.0
9.2
2.3
2.55
1.2
4.0
8.0
Q3
SN74LVC1G07DCKT
SC70
DCK
5
250
178.0
9.2
2.4
2.4
1.22
4.0
8.0
Q3
SN74LVC1G07DRLR
SOT
DRL
5
4000
180.0
8.4
1.98
1.78
0.69
4.0
8.0
Q3
SN74LVC1G07DRLR
SOT
DRL
5
4000
180.0
9.5
1.78
1.78
0.69
4.0
8.0
Q3
SN74LVC1G07DRY2
SON
DRY
6
5000
180.0
9.5
1.6
1.15
0.75
4.0
8.0
Q3
SN74LVC1G07DRY2
SON
DRY
6
5000
180.0
8.4
1.65
1.2
0.7
4.0
8.0
Q3
SN74LVC1G07DRYR
SON
DRY
6
5000
179.0
8.4
1.2
1.65
0.7
4.0
8.0
Q1
SN74LVC1G07DSF2
SON
DSF
6
5000
180.0
8.4
1.16
1.16
0.63
4.0
8.0
Q3
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
18-Sep-2015
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SN74LVC1G07DSF2
SON
DSF
6
5000
180.0
9.5
1.16
1.16
0.5
4.0
8.0
Q3
SN74LVC1G07DSFR
SON
DSF
6
5000
180.0
9.5
1.16
1.16
0.5
4.0
8.0
Q2
SN74LVC1G07YZPR
DSBGA
YZP
5
3000
178.0
9.2
1.02
1.52
0.63
4.0
8.0
Q1
SN74LVC1G07YZVR
DSBGA
YZV
4
3000
178.0
9.2
1.0
1.0
0.63
4.0
8.0
Q1
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74LVC1G07DBVR
SOT-23
DBV
5
3000
180.0
180.0
18.0
SN74LVC1G07DBVR
SOT-23
DBV
5
3000
180.0
180.0
18.0
SN74LVC1G07DBVRG4
SOT-23
DBV
5
3000
180.0
180.0
18.0
SN74LVC1G07DBVT
SOT-23
DBV
5
250
205.0
200.0
33.0
SN74LVC1G07DBVT
SOT-23
DBV
5
250
180.0
180.0
18.0
SN74LVC1G07DBVT
SOT-23
DBV
5
250
180.0
180.0
18.0
SN74LVC1G07DBVTG4
SOT-23
DBV
5
250
180.0
180.0
18.0
SN74LVC1G07DCKR
SC70
DCK
5
3000
205.0
200.0
33.0
SN74LVC1G07DCKR
SC70
DCK
5
3000
180.0
180.0
18.0
SN74LVC1G07DCKT
SC70
DCK
5
250
180.0
180.0
18.0
SN74LVC1G07DCKT
SC70
DCK
5
250
205.0
200.0
33.0
SN74LVC1G07DCKT
SC70
DCK
5
250
180.0
180.0
18.0
SN74LVC1G07DRLR
SOT
DRL
5
4000
202.0
201.0
28.0
Pack Materials-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
18-Sep-2015
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74LVC1G07DRLR
SOT
DRL
5
4000
184.0
184.0
19.0
SN74LVC1G07DRY2
SON
DRY
6
5000
184.0
184.0
19.0
SN74LVC1G07DRY2
SON
DRY
6
5000
202.0
201.0
28.0
SN74LVC1G07DRYR
SON
DRY
6
5000
203.0
203.0
35.0
SN74LVC1G07DSF2
SON
DSF
6
5000
202.0
201.0
28.0
SN74LVC1G07DSF2
SON
DSF
6
5000
184.0
184.0
19.0
SN74LVC1G07DSFR
SON
DSF
6
5000
184.0
184.0
19.0
SN74LVC1G07YZPR
DSBGA
YZP
5
3000
220.0
220.0
35.0
SN74LVC1G07YZVR
DSBGA
YZV
4
3000
220.0
220.0
35.0
Pack Materials-Page 3
MECHANICAL DATA
PLASTIC SMALL OUTLINE NO-LEAD
DSF (S-PX2SON-N6)
1.05
0.95
A
B
PIN 1 INDEX AREA
1.05
0.95
0.4 MAX
C
SEATING PLANE
0.05
C
(0.11) TYP
SYMM
0.05
0.00
3
2X
0.7
4
SYMM
4X
0.35
6
1
(0.1)
PIN 1 ID
6X
6X
0.45
0.35
0.22
0.12
0.07
0.05
C A
C
B
4208186/F 10/2014
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Reference JEDEC registration MO-287, variation X2AAF.
www.ti.com
D: Max = 1.418 mm, Min =1.358 mm
E: Max = 0.918 mm, Min =0.858 mm
D: Max = 0.918 mm, Min =0.858 mm
E: Max = 0.918 mm, Min =0.858 mm
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated