PELTIER-HOCHLEISTUNGSMODULE

A-1130 Wien
Lilienberggasse 13
Tel.: +43-1-403 08 12
Fax: +43-1-408 72 13
e-mail: [email protected]
http://www.knap.at
Wolfgang Knap
Gesellschaft m.b.H. & Co.KG
PELTIER-HOCHLEISTUNGSMODULE
Die Hochleistungsmodule zeichnen sich durch einen von zwei besonderen Merkmalen
aus, die diese von Standardmodulen unterscheiden: Einige erreichen eine höhere
Temperaturdifferenz dTmax durch die Verwendung von höchstwertigen thermoelektrischem
Material, andere haben eine höhere Leistung (Qmax) pro Flächeneinheit durch die
Verwendung von kürzeren aktiven Einzelelementen oder höherer Packungsdichte.
Die höhere dTmax ermöglicht geringere elektrischen Leistungsaufnahme und erreicht
höchste Temperaturdifferenzen. Eine höhere Qmax reduziert den Bedarf an Modulen und
verbessert den Gesamtwirkungsgrad in Systemen geringerer Temperaturdifferenz.
Imax
(A)
Qmax
(W)
Vmax
(V)
dTmax
Th=300°K
A
(mm)
B
(mm)
H
(mm)
HP-127-1.0-1.3-71
3.6
36
16.1
71
30
30
3.6
HP-127-1.4-2.5-72
3.7
37
16.3
72
40
40
4.8
HP-127-1.4-1.5-72
6.2
62
16.3
72
40
40
3.9
HP-127-1.4-1.5-74
6.3
65
16.7
74
40
40
3.9
HP-127-1.4-1.15-71
8
80
16.1
71
40
40
3.4
HP-127-1.0-0.8
5.8
56
15.7
67
30
30
3.1
HP-199-1.4-1.5
6.1
94
24.9
70
40
40
4.1
HP-199-1.4-1.15
7.9
120
24.6
69
40
40
3.6
HP-199-1.4-1.05
8.6
131
24.6
69
40
40
3.5
HP-199-1.4-0.8
11.3
172
24.6
67
40
40
3.2
Type
Das Modul HP-199-1.4-0.8 führen wir als Lagertype.
Dokumentname: tetech_hpserie.doc
Seite 1 von 1
Ausgabedatum: 04-09-24
TE
TECHNOLOGY, INC.
1590 Keane Drive, Traverse City, MI, 49686-8257 USA
PH: 231-929-3966 FAX: 231-929-4163 email: [email protected]
70
60
Thot - Tcold (°C)
50
40
30
20
10
0
0.0
2.0
4.0
6.0
8.0
10.0
12.0
current (amps)
0W
17 W
34 W
51 W
68 W
85 W
102 W
119 W
137 W
154 W
30
25
voltage (volts)
20
15
10
5
0
0.0
2.0
4.0
6.0
8.0
10.0
current (amps)
Qcold = 0
DT = 0
Unpotted HP-199-1.4-0.8 at a hot-side temperature of 25 °C
12.0
TE
TECHNOLOGY, INC.
1590 Keane Drive, Traverse City, MI, 49686-8257 USA
PH: 231-929-3966 FAX: 231-929-4163 email: [email protected]
80
70
Thot - Tcold (°C)
60
50
40
30
20
10
0
0.0
2.0
4.0
6.0
8.0
10.0
12.0
current (amps)
0W
19 W
38 W
57 W
75 W
94 W
113 W
132 W
151 W
170 W
30
25
voltage (volts)
20
15
10
5
0
0.0
2.0
4.0
6.0
8.0
10.0
current (amps)
Qcold = 0
DT = 0
Unpotted HP-199-1.4-0.8 at a hot-side temperature of 50 °C
12.0
TE
TECHNOLOGY, INC.
1590 Keane Drive, Traverse City, MI, 49686-8257 USA
PH: 231-929-3966 FAX: 231-929-4163 email: [email protected]
70
60
Thot - Tcold (°C)
50
40
30
20
10
0
0.0
2.0
4.0
6.0
8.0
10.0
12.0
current (amps)
0W
17 W
34 W
51 W
68 W
85 W
102 W
119 W
137 W
154 W
30
25
voltage (volts)
20
15
10
5
0
0.0
2.0
4.0
6.0
8.0
current (amps)
Qcold = 0
DT = 0
Potted HP-199-1.4-0.8 at a hot-side temperature of 25 °C
10.0
12.0
TE
TECHNOLOGY, INC.
1590 Keane Drive, Traverse City, MI, 49686-8257 USA
PH: 231-929-3966 FAX: 231-929-4163 email: [email protected]
80
70
Thot - Tcold (°C)
60
50
40
30
20
10
0
0.0
2.0
4.0
6.0
8.0
10.0
12.0
current (amps)
0W
19 W
38 W
57 W
75 W
94 W
113 W
132 W
151 W
170 W
30
25
voltage (volts)
20
15
10
5
0
0.0
2.0
4.0
6.0
8.0
current (amps)
Qcold = 0
DT = 0
Potted HP-199-1.4-0.8 at a hot-side temperature of 50 °C
10.0
12.0
TETECHNOLOGY, INC.
PH: (231) 929-3966
FAX: (231) 929-4163
e-mail: [email protected]
1590 Keane Dr.
Traverse City, MI 49686-8257
http://www.tetech.com
Cooling Performance Tambient at 25 °C
There are four engineering parameters
which define the cooling performance of a
thermoelectric (TE) module.
The hot-side temperature (Thot)
minus the cold-side temperature
(Tcold) of the TE module.
∆T = Thot - Tcold
72
Qcold (watts)
0
Optimum
64
56
Thot - Tcold (°C)
1. ∆T:
Example
A
8
∆T line
48
16
40
24
32
B
Q curve
32
24
40
16
I line
8
48
C
0
0
1
2
3
4
5
6
7
6
7
current (amps)
3. I:
Total heat pumped by the TE
device at the surface defined by
Tcold.
Current drawn by the TE module.
16
14
E
12
voltage (volts)
2. Qc:
F
Qmax = 0
10
G
8
V line
6
∆Tmax = 0
4
2
4. V:
Voltage applied to the TE module.
I line
0
0
1
2
3
4
5
current (amps)
Method Description / General Principles:
The performance chart can be used to define all four engineering parameters providing that two
are known or defined by a given cooling requirement. Generally, Thot, Tcold, and Qc are known
and the I and V needed to produce this cooling is of interest. In other cases, you may use this to
analyze a test result when V, I, Thot, and Tcold were measured, and you want to know Qc. If the
latter is the case, try to measure I, and use this in the analysis rather than V. V can be
misleading since it can include effects of wiring, and other external resistances. In contrast, I is
truly flowing through the TE device.
Start with the known parameters and graph them as shown in the example. The parameters V
and ∆T are graphed by simple horizontal lines. The parameter I is graphed by a simple
horizontal line. The parameter Qc is graphed as a curve and must be sketched in. The
intersection of the lines that you can sketch in will determine the placement of the lines for the
parameters you don’t know.
Example 1: If you know the required ∆T and the required Qc, the required current can be
determined by drawing a vertical line downward from the intersection of the ∆T line and the Qc
curve on the upper graph. Then, on the lower graph, the placement of the V line can be
determined by making the ratio of AB/BC = EF/FG as shown on the graphs above.
Example 2: If you know the current that is flowing through the module and one additional
parameter such as ∆T or Qc, you can draw in these two lines/curves on the upper graph. The
intersection of these two lines/curves will determine the intersection point for the third, unknown
parameter.