A-1130 Wien Lilienberggasse 13 Tel.: +43-1-403 08 12 Fax: +43-1-408 72 13 e-mail: [email protected] http://www.knap.at Wolfgang Knap Gesellschaft m.b.H. & Co.KG PELTIER-HOCHLEISTUNGSMODULE Die Hochleistungsmodule zeichnen sich durch einen von zwei besonderen Merkmalen aus, die diese von Standardmodulen unterscheiden: Einige erreichen eine höhere Temperaturdifferenz dTmax durch die Verwendung von höchstwertigen thermoelektrischem Material, andere haben eine höhere Leistung (Qmax) pro Flächeneinheit durch die Verwendung von kürzeren aktiven Einzelelementen oder höherer Packungsdichte. Die höhere dTmax ermöglicht geringere elektrischen Leistungsaufnahme und erreicht höchste Temperaturdifferenzen. Eine höhere Qmax reduziert den Bedarf an Modulen und verbessert den Gesamtwirkungsgrad in Systemen geringerer Temperaturdifferenz. Imax (A) Qmax (W) Vmax (V) dTmax Th=300°K A (mm) B (mm) H (mm) HP-127-1.0-1.3-71 3.6 36 16.1 71 30 30 3.6 HP-127-1.4-2.5-72 3.7 37 16.3 72 40 40 4.8 HP-127-1.4-1.5-72 6.2 62 16.3 72 40 40 3.9 HP-127-1.4-1.5-74 6.3 65 16.7 74 40 40 3.9 HP-127-1.4-1.15-71 8 80 16.1 71 40 40 3.4 HP-127-1.0-0.8 5.8 56 15.7 67 30 30 3.1 HP-199-1.4-1.5 6.1 94 24.9 70 40 40 4.1 HP-199-1.4-1.15 7.9 120 24.6 69 40 40 3.6 HP-199-1.4-1.05 8.6 131 24.6 69 40 40 3.5 HP-199-1.4-0.8 11.3 172 24.6 67 40 40 3.2 Type Das Modul HP-199-1.4-0.8 führen wir als Lagertype. Dokumentname: tetech_hpserie.doc Seite 1 von 1 Ausgabedatum: 04-09-24 TE TECHNOLOGY, INC. 1590 Keane Drive, Traverse City, MI, 49686-8257 USA PH: 231-929-3966 FAX: 231-929-4163 email: [email protected] 70 60 Thot - Tcold (°C) 50 40 30 20 10 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 current (amps) 0W 17 W 34 W 51 W 68 W 85 W 102 W 119 W 137 W 154 W 30 25 voltage (volts) 20 15 10 5 0 0.0 2.0 4.0 6.0 8.0 10.0 current (amps) Qcold = 0 DT = 0 Unpotted HP-199-1.4-0.8 at a hot-side temperature of 25 °C 12.0 TE TECHNOLOGY, INC. 1590 Keane Drive, Traverse City, MI, 49686-8257 USA PH: 231-929-3966 FAX: 231-929-4163 email: [email protected] 80 70 Thot - Tcold (°C) 60 50 40 30 20 10 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 current (amps) 0W 19 W 38 W 57 W 75 W 94 W 113 W 132 W 151 W 170 W 30 25 voltage (volts) 20 15 10 5 0 0.0 2.0 4.0 6.0 8.0 10.0 current (amps) Qcold = 0 DT = 0 Unpotted HP-199-1.4-0.8 at a hot-side temperature of 50 °C 12.0 TE TECHNOLOGY, INC. 1590 Keane Drive, Traverse City, MI, 49686-8257 USA PH: 231-929-3966 FAX: 231-929-4163 email: [email protected] 70 60 Thot - Tcold (°C) 50 40 30 20 10 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 current (amps) 0W 17 W 34 W 51 W 68 W 85 W 102 W 119 W 137 W 154 W 30 25 voltage (volts) 20 15 10 5 0 0.0 2.0 4.0 6.0 8.0 current (amps) Qcold = 0 DT = 0 Potted HP-199-1.4-0.8 at a hot-side temperature of 25 °C 10.0 12.0 TE TECHNOLOGY, INC. 1590 Keane Drive, Traverse City, MI, 49686-8257 USA PH: 231-929-3966 FAX: 231-929-4163 email: [email protected] 80 70 Thot - Tcold (°C) 60 50 40 30 20 10 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 current (amps) 0W 19 W 38 W 57 W 75 W 94 W 113 W 132 W 151 W 170 W 30 25 voltage (volts) 20 15 10 5 0 0.0 2.0 4.0 6.0 8.0 current (amps) Qcold = 0 DT = 0 Potted HP-199-1.4-0.8 at a hot-side temperature of 50 °C 10.0 12.0 TETECHNOLOGY, INC. PH: (231) 929-3966 FAX: (231) 929-4163 e-mail: [email protected] 1590 Keane Dr. Traverse City, MI 49686-8257 http://www.tetech.com Cooling Performance Tambient at 25 °C There are four engineering parameters which define the cooling performance of a thermoelectric (TE) module. The hot-side temperature (Thot) minus the cold-side temperature (Tcold) of the TE module. ∆T = Thot - Tcold 72 Qcold (watts) 0 Optimum 64 56 Thot - Tcold (°C) 1. ∆T: Example A 8 ∆T line 48 16 40 24 32 B Q curve 32 24 40 16 I line 8 48 C 0 0 1 2 3 4 5 6 7 6 7 current (amps) 3. I: Total heat pumped by the TE device at the surface defined by Tcold. Current drawn by the TE module. 16 14 E 12 voltage (volts) 2. Qc: F Qmax = 0 10 G 8 V line 6 ∆Tmax = 0 4 2 4. V: Voltage applied to the TE module. I line 0 0 1 2 3 4 5 current (amps) Method Description / General Principles: The performance chart can be used to define all four engineering parameters providing that two are known or defined by a given cooling requirement. Generally, Thot, Tcold, and Qc are known and the I and V needed to produce this cooling is of interest. In other cases, you may use this to analyze a test result when V, I, Thot, and Tcold were measured, and you want to know Qc. If the latter is the case, try to measure I, and use this in the analysis rather than V. V can be misleading since it can include effects of wiring, and other external resistances. In contrast, I is truly flowing through the TE device. Start with the known parameters and graph them as shown in the example. The parameters V and ∆T are graphed by simple horizontal lines. The parameter I is graphed by a simple horizontal line. The parameter Qc is graphed as a curve and must be sketched in. The intersection of the lines that you can sketch in will determine the placement of the lines for the parameters you don’t know. Example 1: If you know the required ∆T and the required Qc, the required current can be determined by drawing a vertical line downward from the intersection of the ∆T line and the Qc curve on the upper graph. Then, on the lower graph, the placement of the V line can be determined by making the ratio of AB/BC = EF/FG as shown on the graphs above. Example 2: If you know the current that is flowing through the module and one additional parameter such as ∆T or Qc, you can draw in these two lines/curves on the upper graph. The intersection of these two lines/curves will determine the intersection point for the third, unknown parameter.