Easy Design a SRC Converter By CM6900G

CM6900 Application Note A-003A
Easy Design a SRC Converter
By CM6900G
Michael Lee
Introduction
近年來,共振式 DC/DC 轉換器已經為業界所接受,但是由於共振式轉換器的
設計,對大多數的電源工程師而言,仍屬陌生,如何做好設計成為重要的課題。在
此主要是針對電源工程師對於共振式轉換器設計的流程與方法,在加入簡易的數學
計算做說明,也希望幫助工程師能簡單快速的設計出客戶所需要的電源產品,簡化
設計的流程與時間,同時也解決了工程師對共振式轉換器的困惑,當然本文會結合
本公司的共振式控制 IC 做為轉換器設計的控制器,以方便說明共振轉換器的設計
概念與控制 IC 之間的關係。
SRC V.S LLC
用於直流輸出之共振式轉換器主要以串聯共振(Series resonant)為主架構,主
要分成兩種負載曲線的操作區域,SRC 操作在共振點之上(操作在電感性負載區),
LLC 操作在共振點之下與第二共振點之間(操作在電容性負載區間),以圖一 SRC;
圖二 LLC 為負載曲線圖來做說明。
2008/04/12
Champion Microelectronic Corporation
Page 1
CM6900 Application Note A-003A
Load Curve at Normal Vin
20
15
Vp in Transformer
Vs1 ( Fsw )
Vs2 ( Fsw )
Vs3 ( Fsw )
Vs4 ( Fsw )
10
Vs5 ( Fsw )
Vs6 ( Fsw )
5
2 .10
4
4 .10
4
6 .10
4
8 .10
4
1 .10
Fsw
Switch Frequency
5
5
1.2 .10
5
1.4 .10
Fr
5
1.6 .10
5
1.8 .10
2 .10
5
Fmax
Fmin>=Fr
圖一 SRC 負載曲線圖
從圖一的 SRC 負載曲線圖可以說明一個重點,共振式轉換器的操作區域頻率由
Fmin~Fmax,也就是說切換頻率 Fsw 操作在共振點以上 Fsw>=Fr。
2008/04/12
Champion Microelectronic Corporation
Page 2
CM6900 Application Note A-003A
Load Curve at Normal Vin
20
15
Vp in Transformer
Vs1( Fsw)
Vs2( Fsw)
Vs3( Fsw)
Vs4( Fsw)
10
Vs5( Fsw)
Vs6( Fsw)
5
2 .10
4
4 .10
4
6 .10
4
Fr2
8 .10
4
1 .10
1.2 .10
Fsw
Switch Frequency
5
5
1.4 .10
Fr1
5
1.6 .10
5
1.8 .10
5
2 .10
5
Fmax
Fmin>=Fr2
圖二 LLC 負載曲線圖
從圖一的 LLC 負載曲線圖可以說明一個重點,共振式轉換器的操作區域頻率由
Fmin~Fmax 也就是說操作在第二共振點以上 Fsw>=Fr2~Fr1 之間,在輕載時頻率會
Fsw>Fr1 所以比較 SRC 與 LLC 在設計上的優缺點,LLC 遠比 SRC 複雜難設計,如
果不做負載曲線模擬的話是很難設計,所以 SRC 的單共振點在設計上就簡單許多,
如果不做模擬負載曲線模擬也不容易有設計上的問題。
所以就串聯共振式轉換器而言,就是分兩種操作區域,SRC 就是切換頻率操作
在共振頻率之上,LLC 就是切換頻率操作在兩個共振點之間,所以 LLC 設計相對比
較難。
2008/04/12
Champion Microelectronic Corporation
Page 3
CM6900 Application Note A-003A
Design a SRC Converter
一、 設計流程與參數設定
a. 輸入規格(350Vdc~395Vdc)
b. 輸出規格(一般 5V 或 12V/24V)
c. 決定共振頻率(Fr:一般取 50Khz)
d. 決定控制 IC(CM6900G)最低工作頻率(Fmin 與 Fr 相同)/最高工作頻
率(Fmax 一般取 200Khz)
e. 決定共振頻率下的 Q 值:(一般取 0.3~0.5)
f. 架構選擇(500W 以下用半橋 CLASS D,500W 以上可用標準半橋或全
橋)
二、 計算範例(12V/25A 300W)
在此以 300W 12V/25A 作為範例,說明 SRC 共振式轉換器之設計與計
算,圖三為 SRC 半橋電路,圖四為 CM6900G 之電路與使用元件值
+VDC
D10 SS16
R43
47Ω
Q12
9A/500V
C30
100pF/1KV
DRVH
R44
47KΩ
C31
PQ-20/16 160uH
47nF/630V
2
6
5
DRVHGND
C32
47nF/630V
SYNDRVL
Lp(1.5mH)
75A/50V
T4
R45 47KΩ
T5
12V
L5
6
Q13
0.8uH/25A
D11 SS16
5
1
Q14
R46
47Ω
7
9A/500V
R49
47KΩ
8
C35
+ C33
+ C33
0.1uF/63V 3300uF/16V 3300uF/16V
75A/50V
C37
100pF/1KV
DRVL
SYNDRVH
Q15
+ C34
C47
3300uF/16V
0.1uF/63V
R47 47KΩ
ERL-35
圖三 SRC 半橋電路
2008/04/12
Champion Microelectronic Corporation
Page 4
CM6900 Application Note A-003A
+12V
R53
2KΩ
1
2
3
VREF
R58 430KΩ
C50
4
R37
2MΩ
5
R64
100KΩ
1nF/25V
R57
1KΩ
VREF
U6
R55
1.8KΩ
6
7
SD
C49
R70
1KΩ
1nF/25V
R63
150K
C58
R65
100KΩ
0.1uF/16V
RSET
47KΩ
8
R59
200KΩ
C52
47pF/25V
Css
0.22uF/25V
R71
R72
12KΩ
1KΩ
Rset
VREF
VFB
VCC
FEAO
D_IN-
PRIDRV
PRIDRVB
D_IN+
SRDRV
DEAO
SRDRVB
CSS
GND
Ilim
RT/CT
12VS
16
15
14
PRIDRVH
13
PRIDRVL
12
SECDRVH
11
RT
47KΩ
SECDRVL
10
9
CM6900
CT
C54
C51
C56
620pF/25V NPO0.1uF/25V0.1uF/25V
0.1uF/25V
IPLIMIT
圖四 CM6900G 電路與使用元件值
設計參數如下:
Subject : The Half-bridge power supply design (serise resonant
converter )
Design specifications.
3
k ≡ 10
−3
−6
m ≡ 10
μ ≡ 10
−9
− 12
n ≡ 10
p ≡ 10
Input Specifecation
Vin_max:= 400
Vin_min := 330
Vin_nor := 395
Output Specifecation
Vout1 := 12
Iout1min := 0.01
Iout1max := 12.5
Vripple := 100⋅ m
Vout2 := 12
Iout2min := 0.01
Iout2max := 12.5
Vripple := 100⋅ m
Pout := ( Vout1⋅ Iout1max) + ( Vout2⋅ Iout2max)
Pout = 300
η := 0.96
Watte
Power stage Specifecation
Fresonant := 50⋅ k
Lm := 6m
Bdelta := 2000
Rds := 3⋅ m
Gauss
Vmosfet := ( Iout1max + Iout2max) ⋅ Rds
Q := 0.3
2008/04/12
Champion Microelectronic Corporation
Page 5
CM6900 Application Note A-003A
Control Specification use CM6900G
Vref := 7.5
Dead_time := 500⋅ n
Fmin := 50⋅ k
Fmax:= 200⋅ k
CM6900 parameter design
fosc = 1 / (tRAMP + t DEADTIME)
tRAMP = RT * CT * ln((VREF + ICHG*RT -1.25)/(VREF + ICHG*RT -3)) where ICHG = 4*(FEAO-VBE)/RSET
tDEADTIME = 2.125V/2.5mA * CT = 850 * CT
1.Dead-time
Dead_time := 500⋅ n
Dead_time
Ct :=
850
− 10
Ct := 620⋅ p
Ct = 5.882 × 10
Ct 取 620pF 使用 NPO 材質
2.Minimum Frequency
Foscmin := Fmin⋅ 2
1
Tramp_max :=
Rt :=
Foscmin
Tramp_max
Ct⋅ ln⎡⎢
− Dead_time
−6
Tramp_max = 9.5 × 10
( Vref − 1.25) ⎤
⎥
⎣ ( Vref − 3) ⎦
4
Rt := 47k
Rt = 4.664 × 10
Rt 取 47Kohm
3.Maxmum Frequency
Foscmax := Fmax⋅ 2
1
Tramp_min :=
− Dead_time
Foscmax
−6
Tramp_min = 2 × 10
⎛ Tramp_min ⎞ ⎤
⎡
⎢ 20⋅ Rt − 20⋅ e⎜⎝ Rt ⋅Ct ⎟⎠ ⋅ Rt⎥
⎣
⎦
Rset :=
⎛⎜ Tramp_min ⎞⎟
Rt ⋅Ct
⎠ − 6.25
4.5⋅ e⎝
4
Rset = 4.669 × 10
2008/04/12
Rset := 47⋅ k
Rset 取 47Kohm
Champion Microelectronic Corporation
Page 6
CM6900 Application Note A-003A
4.Soft-start capacitor
Tsoft := 0.05
⎛ 7.5⋅ μ ⋅ Tsoft ⎞
⎟
2.5
⎝
⎠
−7
Css := ⎜
Css = 1.5 × 10
Css 取 0.22uF
Main transformer design
1.Select a core for power supply
PQ-32/30 Ae:1.61
ERL-35 Ae:1.07
Ae := 1.07
Trnum := 1
Topology := 2
Full Bridge=1
Half Bridge =2
2.Dertermine the turns ratio Np/Ns
Set normal output voltage is 110% to 120%
application
Vin_nor
Npmin :=
Topology ⋅ Trnum
of transformer secondary output in SRC
8
⋅ 10
4⋅ Fmin⋅ Bdelta⋅ Ae
Npmin = 46.145
Npmin := 43
一次側繞組
Vin_nor
Nratio1 :=
Ns1 :=
Topology ⋅Trnum
( Vout1 + Vmosfet) ⋅ 1.15
Nratio1 = 14.223
Npmin
Nratio1
Ns1 = 3.023
二次側繞組
Ns2 = 3.023
二次側繞組
Vin_nor
Nratio2 :=
Ns2 :=
Topology ⋅Trnum
( Vout2 + Vmosfet) ⋅ 1.15
Npmin
Nratio2
Vin_max
8⎞
⎛
⎜ Topology ⋅ Trnum ⋅ 10 ⎟
Bmax:= ⎜
⎟
⎝ 4⋅ Fmin⋅ Npmin⋅ Ae ⎠
2008/04/12
Nratio2 = 14.223
3
Bmax = 2.173 × 10
Champion Microelectronic Corporation
主變壓器磁通密度
Page 7
CM6900 Application Note A-003A
3.Dertermine resonant components
Set Q value does not over 1 @ full load at resonant point
2
Ro1 :=
Vout1⋅ Nratio1
Iout1max
Ro1 = 194.194
輸出反射至一次側之負載
Ro2 = 194.194
輸出反射至一次側之負載
Rot = 97.097
輸出反射至一次側之總負載
Zo = 29.129
計算 Lr,Cr 之特性阻抗
2
Ro2 :=
Vout2⋅ Nratio2
Iout2max
Rot := Ro1⋅
Ro2
( Ro1 + Ro2)
Zo := Q⋅ Rot
Calculation Cr
Lr=Zo*Cr
2
⎡ ⎛
1
⎞ ⎤⎥
⎢ ⎜
⎟
⎢ ⎝ 2⋅ πFresonant ⎠ ⎥
Cr :=
⎢
⎥
2
Zo
⎣
⎦
−7
Cr := 86⋅ n
共振電容
−5
Lr := 120⋅ μ
共振電感
Cr = 1.093 × 10
Calculation Lr
2
Lr := Zo ⋅ Cr
Fresonant :=
Lr = 7.297 × 10
1
2⋅ π⋅ Lr⋅ Cr
4
Fresonant = 4.954 × 10
共振頻率
Lr
Q :=
Cr
Q = 0.385
Rot
Q值
Calculation Lr voltage stress
VLr:= Q⋅
Vin_max
VLr = 76.942
Topology
2008/04/12
Champion Microelectronic Corporation
共振電感電壓
Page 8
CM6900 Application Note A-003A
PQ-20/16 Ae:0.64
Blr_max:= 2500
Aelr := 0.64
Nlr :=
VLr
8
Aelr⋅ Blr_max⋅ 4.44⋅ Fmin
⋅ 10
Nlr = 21.662
共振電感圈數
Calculation Cr voltage stress
VCr_ac := VLr
Vin_max
VCr :=
+ VCr_ac
2
VCr = 276.942
共振電容電壓
共振電容耐壓取兩倍以上
建議用 800V 高耐流 MPP 電容
Load Curve at Maxmun Vin
20
15
Vp in Transformer
Vs1 ( Fsw )
Vs2 ( Fsw )
Vs3 ( Fsw )
Vs4 ( Fsw )
10
Vs5 ( Fsw )
Vs6 ( Fsw )
5
2 .10
4
4 .10
4
6 .10
4
8 .10
4
5
5
1 .10
1.2 .10
Fsw
Switch Frequency
5
1.4 .10
5
1.6 .10
5
1.8 .10
2 .10
圖五 SRC 高壓輸入負載曲線圖
2008/04/12
Champion Microelectronic Corporation
Page 9
5
CM6900 Application Note A-003A
Load Curve at Normal Vin
20
15
Vp in Transformer
Vs1 ( Fsw )
Vs2 ( Fsw )
Vs3 ( Fsw )
Vs4 ( Fsw )
10
Vs5 ( Fsw )
Vs6 ( Fsw )
5
2 .10
4
4 .10
4
6 .10
4
8 .10
4
1 .10
Fsw
Switch Frequency
5
5
1.2 .10
5
1.4 .10
5
1.6 .10
5
1.8 .10
2 .10
圖六 SRC 正常輸入電壓時之負載曲線圖
2008/04/12
Champion Microelectronic Corporation
Page 10
5
CM6900 Application Note A-003A
Load Curve at Minmun Vin
20
15
Vp in Transformer
Vs1( Fsw)
Vs2( Fsw)
Vs3( Fsw)
Vs4( Fsw)
10
Vs5( Fsw)
Vs6( Fsw)
5
2 .10
4
4 .10
4
6 .10
4
8 .10
4
1 .10
1.2 .10
Fsw
Switch Frequency
5
5
1.4 .10
5
1.6 .10
5
1.8 .10
5
2 .10
5
圖七 SRC 低輸入電壓時之負載曲線圖
Calculation Ripple current of Cout
Iripple := 0.448⋅ ( Iout1max + Iout2max)
Iripple = 11.2
輸出電容之漣波電流
建議電容耐漣波電流需大於所需之 30%
2008/04/12
Champion Microelectronic Corporation
Page 11
CM6900 Application Note A-003A
4.Feedback loop compensation design
CM6900 GM Modeling
6
Ro := 1⋅ 10
−6
−6
Gm := 135⋅ 10
Iodrv_max := 13⋅ 10
CM6900 GM compensation network
A. Voltage Loop FM Compensation
R1 := 150⋅ k
1
Z1 :=
2⋅ π⋅ R1⋅ C1
1
P1 :=
2⋅ π⋅ Ro⋅ C1
1
P2 :=
2⋅ π⋅ R1⋅ C2
2008/04/12
C1 := 1⋅ n
C2 := 0.47⋅ n
3
Z1 = 1.061 × 10
P1 = 159.155
3
P2 = 2.258 × 10
Champion Microelectronic Corporation
Page 12
CM6900 Application Note A-003A
A ( Fsw) := Gm⋅ Ro⋅
(1 + R1⋅ C1⋅ 2⋅ π⋅ Fsw)
(1 + R1⋅ C2⋅ 2⋅ π⋅ Fsw)⋅ ( 1 + Ro⋅ C1⋅ 2⋅ π⋅ Fsw)
Bode Plot
1 .10
3
Loop Gain of Compensator
100
10
A( Fsw)
1
0.1
0.01
1
10
1 .10
3
100
1 .10
1 .10
4
5
Fsw
Frequency
B. Voltage Loop Duty Compensation
High Loop Gain for Duty Compensation
Middle Loop Gain for Duty Compensation
2008/04/12
Champion Microelectronic Corporation
Page 13
CM6900 Application Note A-003A
6
R1 := 100⋅ k
Ro := 1⋅ 10
−6
P1 :=
P2 :=
C2 := 0.001⋅ p
R2 := 240⋅ k
Gm := 135⋅ 10
Z1 :=
C1 := 1⋅ n
1
3
Z1 = 1.592 × 10
2⋅ π⋅ R1⋅ C1
1
P1 = 159.155
2⋅ π⋅ Ro⋅ C1
1
9
P2 = 1.592 × 10
2⋅ π⋅ R1⋅ C2
A ( Fsw) := Gm⋅ Ro⋅
R2
Ro + R2
⋅
( 1 + R1⋅ C1⋅ 2⋅ π⋅ Fsw)
( 1 + R1⋅ C2⋅ 2⋅ π⋅ Fsw) ⋅ (1 + Ro⋅ C1⋅ 2⋅ π⋅ Fsw)
Bode Plot
Loop Gain of Compensator
100
10
A( Fsw)
1
0.1
1
10
1 .10
3
100
1 .10
1 .10
4
5
Fsw
Frequency
2008/04/12
Champion Microelectronic Corporation
Page 14
CM6900 Application Note A-003A
Typical application Circuit
+VDC
D10 SS16
Q12
R43
47Ω
CMT08N50
C30
100pF/1KV
DRVH
R44
47KΩ
C31
PQ-20/16
2
6
5
DRVHGND
T5
47nF/630V
C32
47nF/630V
10
CMT08N50
C37
100pF/1KV
DRVL
R45 47KΩ
L5
13
0.8uH/10A
14
15
24VSYNDRVH
ERL-35
C35
0.1uF/63V
CMT60N06
16
Q15
+ C33
+ C34
C36
1000uF/35V
1000uF/35V
0.1uF/63V 0.1uF/63V
R47 47KΩ
9
R49
47KΩ
L6
12VI+
10
11
Q16
12
+12V
24VSYNDRVL
SI4386ADY
2uH/3A
C40
R48
+24V
Q13
1
Q14
CMT60N06
T4
11
D11 SS16
R46
47Ω
24VSYNDRVL
Lp(1.5mH)
0.1uF/63V
Q17
+ C38
+ C39
1000uF/16V
1000uF/16V
C41
0.1uF/63V
D12
IPLIMIT
SI4386ADY
1KΩ
C42
470nF/25V
R50
1KΩ
BAV99
24VSYNDRVH
D13
BAV99
2008/04/12
Champion Microelectronic Corporation
Page 15
C47
CM6900 Application Note A-003A
12VS
Q18
BC817
C44
+ C43
T6
100uF/25V
5
Q20
2.2uF/63V
DRVH
BC807
6
3
DRVHGND
12VS
+12V
+24V
+12V
12VS
2
R53
6.8KΩ
7
Q24
BC817
D14
R54
15K
DRVL
8
SCD12
R55
390Ω
U6
1
2
3
VREF
R58
430KΩ
4
R58
5
C50
R64
100KΩ
2MΩ
6
1nF/25V
7
SD
R57
910Ω
EE19
Q25
R56
620Ω
C49
R70
1KΩ
C51
8
R59
Rset
VREF
VFB
VCC
FEAO
PRIDRV
D_IN-
PRIDRVB
D_IN+
SRDRV
DEAO
SRDRVB
CSS
GND
Ilim
RT/CT
1nF/25V
R63
0.1uF/16V
150K
R65
100KΩ
R66
47KΩ
390KΩ
C52
47pF/25V
C53
0.1uF/25V
R58
100KΩ
D5
R71
BAV99
C29
12KΩ
0.1uF/25V
CM6900
R72
1KΩ
BC807
12VS
C54
16
VREF
15
12VS
14
Q19
BC817
13
12
R51
11
4.7Ω 1/4W
24VSYNDRVH
10
12VS
R73 47KΩ
9
Q22
VREF
BC807
C55
620pF/25VN
0.1uF/25V
C56
0.1uF/25V
12VS
Q21
BC817
R52
IPLIMIT
4.7Ω 1/4W
24VSYNDRVL
Q23
BC807
三、總結:
設計串聯共振式轉換器十分簡單,上述的設計皆可以虹冠所提供之
mathcad 檔案來設計,此檔案提供一快速簡單的設計流程與模擬結果,使用者可
以自行加入任何其他需要計算之方程式,使其更為完備。使用者可自行購買
mathcad 軟體載入虹冠所提供之檔案方便設計出更適合串聯共振式轉換器之計算
式,加速設計與簡化設計流程,針對串聯共振式轉換器的設計虹冠電子會不定期更
新 mathcad 檔案,提供使用 CM6900 系列 IC 應用於共振式轉換器之設計者,協助
加速設計與更多設計參數功能。
2008/04/12
Champion Microelectronic Corporation
Page 16
CM6900 Application Note A-003A
IMPORTANT NOTICE
Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any
integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant
information to verify, before placing orders, that the information being relied on is current.
A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or
environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable
for use in life-support applications, devices or systems or other critical applications.
Use of CMC products in such
applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer’s
applications, the customer should provide adequate design and operating safeguards.
HsinChu Headquarter
Sales & Marketing
5F, No. 11, Park Avenue II,
Science-Based Industrial Park,
HsinChu City, Taiwan
7F-6, No.32, Sec. 1, Chenggong Rd.,
Nangang District, Taipei City 115,
Taiwan R.O.C
T E L : +886-3-567 9979
F A X : +886-3-567 9909
http://www.champion-micro.com
T E L : +886-2-2788 0558
F A X : +886-2-2788 2985
2008/04/12
Champion Microelectronic Corporation
Page 17