General Description

General Description
Basic Construction – A multilayer ceramic (MLC)
capacitor is a monolithic block of ceramic containing two
sets of offset, interleaved planar electrodes that extend to
two opposite surfaces of the ceramic dielectric. This simple
Ceramic Layer
structure requires a considerable amount of sophistication,
both in material and manufacture, to produce it in the quality
and quantities needed in today’s electronic equipment.
Electrode
End Terminations
Terminated
Edge
Terminated
Edge
Margin
Electrodes
Multilayer Ceramic Capacitor
Figure 1
Formulations – Multilayer ceramic capacitors are available
in both Class 1 and Class 2 formulations. Temperature
compensating formulation are Class 1 and temperature
stable and general application formulations are classified
as Class 2.
Class 1 – Class 1 capacitors or temperature compensating
capacitors are usually made from mixtures of titanates
where barium titanate is normally not a major part of the
mix. They have predictable temperature coefficients and
in general, do not have an aging characteristic. Thus they
are the most stable capacitor available. The most popular
Class 1 multilayer ceramic capacitors are C0G (NP0)
temperature compensating capacitors (negative-positive
0 ppm/°C).
88
Class 2 – EIA Class 2 capacitors typically are based on the
chemistry of barium titanate and provide a wide range of
capacitance values and temperature stability. The most
commonly used Class 2 dielectrics are X7R and Y5V. The
X7R provides intermediate capacitance values which vary
only ±15% over the temperature range of -55°C to 125°C. It
finds applications where stability over a wide temperature
range is required.
The Y5V provides the highest capacitance values and is
used in applications where limited temperature changes are
expected. The capacitance value for Y5V can vary from
22% to -82% over the -30°C to 85°C temperature range.
All Class 2 capacitors vary in capacitance value under the
influence of temperature, operating voltage (both AC and
DC), and frequency. For additional information on
performance changes with operating conditions, consult
AVX’s software, SpiCap.
General Description
EIA CODE
Percent Capacity Change Over Temperature Range
RS198
Temperature Range
X7
X6
X5
Y5
Z5
-55°C to +125°C
-55°C to +105°C
-55°C to +85°C
-30°C to +85°C
+10°C to +85°C
Code
Percent Capacity Change
D
E
F
P
R
S
T
U
V
±3.3%
±4.7%
±7.5%
±10%
±15%
±22%
+22%, -33%
+22%, - 56%
+22%, -82%
Effects of Voltage – Variations in voltage have little effect
on Class 1 dielectric but does affect the capacitance and
dissipation factor of Class 2 dielectrics. The application of DC
voltage reduces both the capacitance and dissipation factor
while the application of an AC voltage within a reasonable
range tends to increase both capacitance and dissipation
|factor readings. If a high enough AC voltage is applied,
eventually it will reduce capacitance just as a DC voltage will.
Figure 2 shows the effects of AC voltage.
Cap. Change vs. A.C. Volts
X7R
Capacitance Change Percent
Table 1: EIA and MIL Temperature Stable and General
Application Codes
50
40
30
20
10
0
12.5
EXAMPLE – A capacitor is desired with the capacitance value at 25°C to
increase no more than 7.5% or decrease no more than 7.5% from
-30°C to +85°C. EIA Code will be Y5F.
Symbol
Temperature Range
A
B
C
-55°C to +85°C
-55°C to +125°C
-55°C to +150°C
Symbol
R
S
W
X
Y
Z
Cap. Change
Zero Volts
Cap. Change
Rated Volts
+15%, -15%
+22%, -22%
+22%, -56%
+15%, -15%
+30%, -70%
+20%, -20%
+15%, -40%
+22%, -56%
+22%, -66%
+15%, -25%
+30%, -80%
+20%, -30%
Temperature characteristic is specified by combining range and change
symbols, for example BR or AW. Specification slash sheets indicate the
characteristic applicable to a given style of capacitor.
50
Figure 2
Capacitor specifications specify the AC voltage at which to
measure (normally 0.5 or 1 VAC) and application of the wrong
voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at
1 kilohertz. Applications of different frequencies will affect the
percentage changes versus voltages.
D.F. vs. A.C. Measurement Volts
X7R
10.0
Dissipation Factor Percent
MIL CODE
25
37.5
Volts AC at 1.0 KHz
Curve 1 - 100 VDC Rated Capacitor
8.0 Curve 2 - 50 VDC Rated Capacitor
Curve 3 - 25 VDC Rated Capacitor
6.0
Curve 3
Curve 2
4.0
Curve 1
2.0
0
.5
In specifying capacitance change with temperature for Class
2 materials, EIA expresses the capacitance change over an
operating temperature range by a 3 symbol code. The first
symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the
operating temperature range and the third symbol represents
the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA
system.
1.0
1.5
2.0
2.5
AC Measurement Volts at 1.0 KHz
Figure 3
Typical effect of the application of DC voltage is shown in
Figure 4. The voltage coefficient is more pronounced for
higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as
voltage temperature limits which shows the effects of rated
voltage over the operating temperature range is shown in
Figure 5 for the military BX characteristic.
89
General Description
capacitors and is why re-reading of capacitance after 12 or
24 hours is allowed in military specifications after dielectric
strength tests have been performed.
5
Typical Curve of Aging Rate
X7R
0
+1.5
-5
-10
0
-15
-20
25%
50%
75%
Percent Rated Volts
100%
Figure 4
Capacitance Change Percent
Typical Cap. Change vs. Temperature
X7R
-1.5
-3.0
-4.5
-6.0
-7.5
+20
1
10
100
+10
0VDC
0
-10
-30
-55 -35
Characteristic
C0G (NP0)
X7R, X5R
Y5V
1000 10,000 100,000
Hours
Max. Aging Rate %/Decade
None
2
7
Figure 6
-20
-15
+5
+25 +45 +65 +85 +105 +125
Temperature Degrees Centigrade
Figure 5
Effects of Time – Class 2 ceramic capacitors change
capacitance and dissipation factor with time as well as
temperature, voltage and frequency. This change with time is
known as aging. Aging is caused by a gradual re-alignment
of the crystalline structure of the ceramic and produces an
exponential loss in capacitance and decrease in dissipation
factor versus time. A typical curve of aging rate for
semistable ceramics is shown in Figure 6.
If a Class 2 ceramic capacitor that has been sitting on the
shelf for a period of time, is heated above its curie point,
(125°C for 4 hours or 150°C for 1⁄2 hour will suffice) the part will
de-age and return to its initial capacitance and dissi-pation
factor readings. Because the capacitance changes
rapidly, immediately after de-aging, the basic capacitance
measurements are normally referred to a time period
sometime after the de-aging process. Various manufacturers
use different time bases but the most popular one is one day
or twenty-four hours after “last heat.” Change in the aging
curve can be caused by the application of voltage and
other stresses. The possible changes in capacitance due to
de-aging by heating the unit explain why capacitance changes
are allowed after test, such as temperature cycling, moisture
resistance, etc., in MIL specs. The application of high voltages
such as dielectric withstanding voltages also tends to de-age
90
Capacitance Change Percent
Capacitance Change Percent
Typical Cap. Change vs. D.C. Volts
X7R
Effects of Frequency – Frequency affects capacitance and
impedance characteristics of capacitors. This effect is much
more pronounced in high dielectric constant ceramic
formulation than in low K formulations. AVX’s SpiCap
software generates impedance, ESR, series inductance,
series resonant frequency and capacitance all as functions
of frequency, temperature and DC bias for standard chip
sizes and styles. It is available free from AVX and can be
downloaded for free from AVX website: www.avx.com.
General Description
Effects of Mechanical Stress – High “K” dielectric ceramic
capacitors exhibit some low level piezoelectric reactions
under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of
the ceramic. It is desirable to investigate this effect before
using high “K” dielectrics as coupling capacitors in extremely
low level applications.
Reliability – Historically ceramic capacitors have been one
of the most reliable types of capacitors in use today.
The approximate formula for the reliability of a ceramic
capacitor is:
Lo
=
Lt
共共共共
Vt
Vo
where
Lo = operating life
Lt = test life
Vt = test voltage
Vo = operating voltage
X
Tt
To
Y
Tt = test temperature and
To = operating temperature
in °C
X,Y = see text
Historically for ceramic capacitors exponent X has been
considered as 3. The exponent Y for temperature effects
typically tends to run about 8.
A capacitor is a component which is capable of storing
electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the
dielectric. A typical formula for determining capacitance is:
Energy Stored – The energy which can be stored in a
capacitor is given by the formula:
E = 1⁄2CV2
E = energy in joules (watts-sec)
V = applied voltage
C = capacitance in farads
Potential Change – A capacitor is a reactive component
which reacts against a change in potential across it. This is
shown by the equation for the linear charge of a capacitor:
I ideal = C dV
dt
where
I = Current
C = Capacitance
dV/dt = Slope of voltage transition across capacitor
Thus an infinite current would be required to instantly change
the potential across a capacitor. The amount of current a
capacitor can “sink” is determined by the above equation.
Equivalent Circuit – A capacitor, as a practical device,
exhibits not only capacitance but also resistance and
inductance. A simplified schematic for the equivalent circuit
is:
C = Capacitance
L = Inductance
Rp = Parallel Resistance
Rs = Series Resistance
C = .224 KA
t
C = capacitance (picofarads)
K = dielectric constant (Vacuum = 1)
A = area in square inches
t = separation between the plates in inches
(thickness of dielectric)
.224 = conversion constant
(.0884 for metric system in cm)
Capacitance – The standard unit of capacitance is the
farad. A capacitor has a capacitance of 1 farad when 1
coulomb charges it to 1 volt. One farad is a very large unit
and most capacitors have values in the micro (10-6), nano
(10-9) or pico (10-12) farad level.
Dielectric Constant – In the formula for capacitance given
above the dielectric constant of a vacuum is arbitrarily chosen
as the number 1. Dielectric constants of other materials are
then compared to the dielectric constant of a vacuum.
Dielectric Thickness – Capacitance is indirectly proportional
to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per
volume.
Area – Capacitance is directly proportional to the area of the
electrodes. Since the other variables in the equation are
usually set by the performance desired, area is the easiest
parameter to modify to obtain a specific capacitance within
a material group.
RP
L
RS
C
Reactance – Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is:
Z=
where
冑
RS2 + (XC - XL )2
Z = Total Impedance
Rs = Series Resistance
XC = Capacitive Reactance =
XL = Inductive Reactance
1
2 π fC
= 2 π fL
The variation of a capacitor’s impedance with frequency
determines its effectiveness in many applications.
Phase Angle – Power Factor and Dissipation Factor are
often confused since they are both measures of the loss in
a capacitor under AC application and are often almost
identical in value. In a “perfect” capacitor the current in the
capacitor will lead the voltage by 90°.
91
General Description
di
I (Ideal)
I (Actual)
Loss
Angle
Phase
Angle
␦
f
V
IR s
In practice the current leads the voltage by some other phase
angle due to the series resistance RS. The complement of this
angle is called the loss angle and:
Power Factor (P.F.) = Cos f or Sine ␦
Dissipation Factor (D.F.) = tan ␦
for small values of ␦ the tan and sine are essentially equal
which has led to the common interchangeability of the two
terms in the industry.
Equivalent Series Resistance – The term E.S.R. or
Equivalent Series Resistance combines all losses both
series and parallel in a capacitor at a given frequency so
that the equivalent circuit is reduced to a simple R-C series
connection.
E.S.R.
C
Dissipation Factor – The DF/PF of a capacitor tells what
percent of the apparent power input will turn to heat in the
capacitor.
Dissipation Factor = E.S.R. = (2 π fC) (E.S.R.)
XC
The watts loss are:
Watts loss = (2 π fCV2 ) (D.F.)
Very low values of dissipation factor are expressed as their
reciprocal for convenience. These are called the “Q” or
Quality factor of capacitors.
Parasitic Inductance – The parasitic inductance of
capacitors is becoming more and more important in the
decoupling of today’s high speed digital systems. The
relationship between the inductance and the ripple voltage
induced on the DC voltage line can be seen from the simple
inductance equation:
V = L di
dt
92
The dt seen in current microprocessors can be as high as
0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic
inductance can cause a voltage spike of 30mV. While this
does not sound very drastic, with the Vcc for
microprocessors decreasing at the current rate, this can be
a fairly large percentage.
Another important, often overlooked, reason for knowing the
parasitic inductance is the calculation of the resonant
frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most
signal attenuation. The resonant frequency is calculated
from the simple equation:
1
fres =
2␲冑 LC
Insulation Resistance – Insulation Resistance is the
resistance measured across the terminals of a capacitor and
consists principally of the parallel resistance R P shown in the
equivalent circuit. As capacitance values and hence the area
of dielectric increases, the I.R. decreases and hence the
product (C x IR or RC) is often specified in ohm farads or
more commonly megohm-microfarads. Leakage current is
determined by dividing the rated voltage by IR (Ohm’s Law).
Dielectric Strength – Dielectric Strength is an expression
of the ability of a material to withstand an electrical stress.
Although dielectric strength is ordinarily expressed in volts, it
is actually dependent on the thickness of the dielectric and
thus is also more generically a function of volts/mil.
Dielectric Absorption – A capacitor does not discharge
instantaneously upon application of a short circuit, but
drains gradually after the capacitance proper has been
discharged. It is common practice to measure the dielectric
absorption by determining the “reappearing voltage” which
appears across a capacitor at some point in time after it has
been fully discharged under short circuit conditions.
Corona – Corona is the ionization of air or other vapors
which causes them to conduct current. It is especially
prevalent in high voltage units but can occur with low voltages
as well where high voltage gradients occur. The energy
discharged degrades the performance of the capacitor and
can in time cause catastrophic failures.