Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Future Technology Devices International Ltd. FT81x (Advanced Embedded Video Engine) The FT81x is a series of easy to use graphic controllers targeted at embedded applications to generate high-quality Human Machine Interfaces (HMIs). It has the following features: Programmable timing to adjust HSYNC and VSYNC timing, enabling interface to numerous displays Support for LCD display with resolution up to SVGA (800x600) and formats with data enable (DE) mode or VSYNC/HSYNC mode Support landscape and portrait orientations Display enable control output to LCD panel Integrated 1MByte graphics RAM, no frame buffer RAM required Advanced Embedded Video Engine(EVE) with high resolution graphics and video playback FT81x functionality includes graphic control, audio control, and touch control interface. Support videos Mono audio channel output with PWM output Pinout backward compatible with FT800 (FT810) and FT801 (FT811). Built-in sound synthesizer Support multiple widgets for simplified design implementation Built-in graphics operations allow users with little expertise to create high-quality displays Audio wave playback for mono 8-bit linear PCM, 4bit ADPCM and µ-Law coding format at sampling frequencies from 8kHz to 48kHz. Built-in digital filter reduces the system design complexity of external filtering PWM output for display backlight dimming control resistive touch playback of motion-JPEG encoded AVI Support 4-wire (FT810/FT812) screen Advanced object oriented architecture enables low cost MPU/MCU as system host using SPI interfaces Support capacitive touch screen with up to 5 touches detection (FT811/FT813) Support SPI data lines in single, dual or quad mode; SPI clock up to 30MHz Hardware engine can recognize touch tags and track touch movement. Provides notification for up to 255 touch tags. Power mode control allows the chip to be put in power down, sleep and standby states Enhanced sketch processing Supports I/O voltage from 1.8V to 3.3V Programmable interrupt controller provides interrupts to host MCU Internal voltage regulator supplies 1.2V to the digital core Built-in 12MHz crystal oscillator with PLL providing programmable system clock up to 60MHz Build-in Power-on-reset circuit -40°C to 85°C extended operating temperature range Clock switch command for internal or external clock source. External 12MHz crystal or clock input can be used for higher accuracy. Available in a compact Pb-free, VQFN-48 and VQFN56 package, RoHS compliant Video RGB parallel output; configurable to support PCLK up to 60MHz and R/G/B output of 1 to 8 bits Copyright © 2015 Future Technology Devices International Limited 1 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Disclaimer: Neither the whole nor any part of the information contained in, or the product described in this manual, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any particular purpose is either made or implied. Future Technology Devices International Ltd will not accept any claim for damages howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This product or any variant of it is not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to result in personal injury. This document provides preliminary information that may be subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Future Technology Devices International Ltd Unit 1, 2 Seaward Place Centurion Business Park Glasgow G41 1HH United Kingdom Scotland Registered Company Number: SC136640 Copyright © 2015 Future Technology Devices International Limited 2 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 1 Typical Applications Point of Sales Machines Breathalyzers Multi-function Printers Gas chromatographs Instrumentation Power meter Home Security Systems Home appliance devices Graphic touch pad – remote, dial pad Set-top box Tele / Video Conference Systems Thermostats Phones and Switchboards Sprinkler system displays Medical Appliances Medical Appliances Blood Pressure displays GPS / Satnav Heart monitors Vending Machine Control Panels Glucose level displays Elevator Controls ……and many more 1.1 Part Numbers Part Number Description Package FT810Q-x EVE with 18 bit RGB, resistive touch 48 Pin VQFN, body 7 x 7 mm, pitch 0.5mm FT811Q-x EVE with 18 bit RGB, capacitive touch 48 Pin VQFN, body 7 x 7 mm, pitch 0.5mm FT812Q-x EVE with 24 bit RGB, resistive touch 56 Pin VQFN, body 8 x 8 mm, pitch 0.5mm FT813Q-x EVE with 24 bit RGB, capacitive touch 56 Pin VQFN, body 8 x 8 mm, pitch 0.5mm Table 1- FT81x Embedded Video Engine Part Numbers Note: Packaging codes for x is: -R: Taped and Reel (3000pcs per reel) -T: Tray packing (260 pcs per tray for VQFN-48, 348 pcs per tray for VQFN-56) For example: FT810Q-R is 3000 VQFN pieces in taped and reel packaging Copyright © 2015 Future Technology Devices International Limited 3 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 2 Block Diagram Figure 2-1 FT81x Block Diagram For a description of each function please refer to Section 4. Figure 2-2 FT81x System Design Diagram FT81x with EVE (Embedded Video Engine) technology simplifies the system architecture for advanced human machine interfaces (HMIs) by providing support for display, audio, and touch as well as an object oriented architecture approach that extends from display creation to the rendering of the graphics. Copyright © 2015 Future Technology Devices International Limited 4 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Contents 1 Typical Applications ...................................................................... 3 1.1 Part Numbers...................................................................................... 3 2 Block Diagram .............................................................................. 4 3 Device Pin Out and Signal Description .......................................... 7 3.1 FT810 VQFN-48 Package Pin Out ........................................................ 7 3.2 FT811 VQFN-48 Package Pin Out ........................................................ 7 3.3 FT812 VQFN-56 Package Pin Out ........................................................ 8 3.4 FT813 VQFN-56 Package Pin Out ........................................................ 8 3.5 Pin Description ................................................................................... 9 4 Function Description................................................................... 13 4.1 Quad SPI Host Interface ................................................................... 13 4.1.1 QSPI Interface........................................................................................................... 13 4.1.2 Serial Data Protocol ................................................................................................... 15 4.1.3 Host Memory Read ..................................................................................................... 15 4.1.4 Host Memory Write .................................................................................................... 16 4.1.5 Host Command .......................................................................................................... 16 4.1.6 Interrupts ................................................................................................................. 20 4.2 System Clock .................................................................................... 20 4.2.1 Clock Source ............................................................................................................. 20 4.2.2 Phase Locked Loop..................................................................................................... 21 4.2.3 Clock Enable ............................................................................................................. 21 4.2.4 Clock Frequency ........................................................................................................ 22 4.3 Graphics Engine ................................................................................ 22 4.3.1 Introduction .............................................................................................................. 22 4.3.2 ROM and RAM Fonts ................................................................................................... 22 4.4 Parallel RGB Interface ...................................................................... 26 4.5 Miscellaneous Control ....................................................................... 28 4.5.1 Backlight Control Pin .................................................................................................. 29 4.5.2 DISP Control Pin ........................................................................................................ 29 4.5.3 General Purpose IO pins ............................................................................................. 29 4.5.4 Pins Drive Current Control .......................................................................................... 29 4.6 Audio Engine..................................................................................... 30 4.6.1 Sound Synthesizer ..................................................................................................... 30 4.6.2 Audio Playback .......................................................................................................... 32 4.7 Touch-Screen Engine ........................................................................ 32 4.7.1 Resistive Touch Control .............................................................................................. 32 4.7.2 Capacitive Touch Control ............................................................................................ 33 4.7.3 Compatibility mode .................................................................................................... 34 Copyright © 2015 Future Technology Devices International Limited 5 4.7.4 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Extended mode ......................................................................................................... 34 4.7.5 Short-circuit protection ............................................................................................... 35 4.7.6 Capacitive touch configuration ..................................................................................... 35 4.7.7 Touch detection in none-ACTIVE state .......................................................................... 35 4.8 Power Management .......................................................................... 35 4.8.1 Power supply............................................................................................................. 35 4.8.2 Internal Regulator and POR ......................................................................................... 36 4.8.3 Power Modes ............................................................................................................. 37 4.8.4 Reset and boot-up sequence ....................................................................................... 38 4.8.5 Pin Status at Different Power States ............................................................................. 38 5 Memory Map ............................................................................... 40 5.1 Registers .......................................................................................... 40 5.2 Chip ID ............................................................................................. 45 6 Devices Characteristics and Ratings ........................................... 46 6.1 Absolute Maximum Ratings............................................................... 46 6.2 ESD and Latch-up Specifications ....................................................... 46 6.3 DC Characteristics............................................................................. 46 6.4 AC Characteristics ............................................................................. 49 6.4.1 System clock and reset............................................................................................... 49 6.4.2 SPI interface timing ................................................................................................... 49 6.4.3 RGB Interface Timing ................................................................................................. 50 7 Application Examples ................................................................. 52 8 Package Parameters ................................................................... 54 9 8.1 VQFN-48 Package Dimensions .......................................................... 54 8.2 VQFN-56 Package Dimensions .......................................................... 54 8.3 Solder Reflow Profile ........................................................................ 55 Contact Information ................................................................... 56 Appendix A – References ........................................................................... 57 Appendix B - List of Figures and Tables ..................................................... 58 Appendix C - Revision History .................................................................... 60 Copyright © 2015 Future Technology Devices International Limited 6 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 3 Device Pin Out and Signal Description 3.1 FT810 VQFN-48 Package Pin Out Figure 3-1 Pin Configuration FT810 VQFN-48 (top view) 3.2 FT811 VQFN-48 Package Pin Out Figure 3-1 Pin Configuration FT811 VQFN-48 (top view) Copyright © 2015 Future Technology Devices International Limited 7 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 3.3 FT812 VQFN-56 Package Pin Out Figure 3-1 Pin Configuration FT812 VQFN-56 (top view) 3.4 FT813 VQFN-56 Package Pin Out Figure 3-1 Pin Configuration FT813 VQFN-56 (top view) Copyright © 2015 Future Technology Devices International Limited 8 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 3.5 Pin Description Table 3-1 FT81x pin description Pin Number Pin Name Type FT810 FT811 FT812 FT813 - - 1 1 R1 O - - 2 2 R0 O 1 1 3 3 AUDIO_L O 2 2 4 4 GND P 3 3 5 5 SCK I 4 4 6 6 MISO/IO1 I/O Description Bit 1 of Red RGB signals Powered from pin VCCIO2 Bit 0 of Red RGB signals Powered from pin VCCIO2 Audio PWM out Powered from pin VCC Ground SPI clock input Powered from pin VCCIO1 SPI Single mode: SPI MISO output SPI Dual/Quad mode: SPI data line 1 Powered from pin VCCIO1 SPI Single mode: SPI MOSI input 5 5 7 7 MOSI/IO0 I/O SPI Dual/Quad mode: SPI data line 0 Powered from pin VCCIO1 SPI slave select input 6 6 8 8 CS_N I Powered from pin VCCIO1 SPI Single/Dual mode: General purpose IO 0 7 7 9 9 GPIO0/IO2 I/O SPI Quad mode: SPI data line 2 Powered from pin VCCIO1 SPI Single/Dual mode: General purpose IO 1 8 8 10 10 GPIO1/IO3 I/O SPI Quad mode: SPI data line 3 Powered from pin VCCIO1 9 9 11 11 VCCIO1 P 10 10 12 12 GPIO2 I/O 11 11 13 13 INT_N OD/ O I/O power supply for host interface pins. Support 1.8V, 2.5V or 3.3V. General purpose IO 2 12 12 14 14 PD_N I Powered from pin VCCIO1 Interrupt to host, open drain output(default) or push-pull output, active low Chip power down mode control input, active low. Connect to MCU GPIO for power management or hardware reset function, or pulled up to VCCIO1 through 47kΩ resistor and 100nF to ground. Powered from pin VCCIO1 General purpose IO 3 - - 15 15 GPIO3 I/O Powered from pin VCCIO1 Copyright © 2015 Future Technology Devices International Limited 9 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Pin Number Pin Name FT810 FT811 FT812 Type Description FT813 Crystal oscillator or clock input; Connect to GND if not used. 13 13 16 16 X1/CLK I 3.3V peak input allowed. Powered from pin VCC. 14 14 17 17 X2 O Crystal oscillator output; leave open if not used. Powered from pin VCC. 15 15 18 18 GND P Ground 16 16 19 19 VCC P 3.3V power supply input. 17 17 20 20 VOUT1V2 O 1.2V regulator output pin. Connect a 4.7uF decoupling capacitor to GND. 21 21 VCC P 3.3V power supply input. I/O power supply for RGB and touch pins. 18 For QFN-48 package, VCCIO2 is bonded together with VCC pin; 18 22 19 22 23 VCCIO2 XP P AI/O For QFN-56 package, VCCIO2 is separate from VCC pin. VCCIO2 supports 1.8V, 2.5V or 3.3V. VCCIO2 can be connected to different voltage with VCCIO1. Connect to X right electrode of 4-wire resistive touch-screen panel. Powered from pin VCCIO2. 20 24 YP AI/O Connect to Y top electrode of 4-wire resistive touch-screen panel. Powered from pin VCCIO2. 21 25 XM AI/O Connect to X left electrode of 4-wire resistive touch-screen panel. Powered from pin VCCIO2. 22 26 YM AI/O Connect to Y bottom electrode of 4-wire resistive touch-screen panel. Powered from pin VCCIO2. Connect to reset pin of the CTPM. - 19 - 23 CTP_RST_N O - 20 - 24 CTP_INT_N I - 21 - 25 CTP_SCL I/OD - 22 - 26 CTP_SDA I/OD 23 23 27 27 GND P Ground 24 24 28 28 BACKLIGHT O LED Backlight brightness PWM control signal. Powered from pin VCCIO2. Connect to interrupt pin of the CTPM. Powered from pin VCCIO2. Connect to I2C SCL pin of the CTPM. Powered from pin VCCIO2. Connect to I2C SDA pin of the CTPM. Powered from pin VCCIO2. Copyright © 2015 Future Technology Devices International Limited 10 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Pin Number Pin Name FT810 FT811 FT812 Type Description FT813 Powered from pin VCCIO2. LCD Data Enable. 25 25 29 29 DE O 26 26 30 30 VSYNC O 27 27 31 31 HSYNC O 28 28 32 32 DISP O 29 29 33 33 PCLK O 30 30 34 34 B7 O 31 31 35 35 B6 O 32 32 36 36 B5 O 33 33 37 37 B4 O 34 34 38 38 B3 O 35 35 39 39 B2 O - - 40 40 B1 O - - 41 41 B0 O 36 36 42 42 GND P 37 37 43 43 G7 O 38 38 44 44 G6 O 39 39 45 45 G5 O 40 40 46 46 G4 O 41 41 47 47 G3 O Powered from pin VCCIO2. LCD Vertical Sync. Powered from pin VCCIO2. LCD Horizontal Sync. Powered from pin VCCIO2. LCD Display Enable. Powered from pin VCCIO2. LCD Pixel Clock. Powered from pin VCCIO2. Bit 7 of Blue RGB signals. Powered from pin VCCIO2. Bit 6 of Blue RGB signals. Powered from pin VCCIO2. Bit 5 of Blue RGB signals. Powered from pin VCCIO2. Bit 4 of Blue RGB signals. Powered from pin VCCIO2. Bit 3 of Blue RGB signals. Powered from pin VCCIO2. Bit 2 of Blue RGB signals. Powered from pin VCCIO2. Bit 1 of Blue RGB signals. Powered from pin VCCIO2. Bit 0 of Blue RGB signals. Powered from pin VCCIO2. Ground Bit 7 of Green RGB signals. Powered from pin VCCIO2. Bit 6 of Green RGB signals. Powered from pin VCCIO2. Bit 5 of Green RGB signals. Powered from pin VCCIO2. Bit 4 of Green RGB signals. Powered from pin VCCIO2. Bit 3 of Green RGB signals. Powered from pin VCCIO2. Copyright © 2015 Future Technology Devices International Limited 11 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Pin Number Pin Name Type FT810 FT811 FT812 FT813 42 42 48 48 G2 O - - 49 49 G1 O - - 50 50 G0 O 43 43 51 51 R7 O 44 44 52 52 R6 O 45 45 53 53 R5 O 46 46 54 54 R4 O 47 47 55 55 R3 O 48 48 56 56 R2 O EP EP EP EP GND P Description Bit 2 of Green RGB signals. Powered from pin VCCIO2. Bit 1 of Green RGB signals. Powered from pin VCCIO2. Bit 0 of Green RGB signals. Powered from pin VCCIO2. Bit 7 of Red RGB signals. Powered from pin VCCIO2. Bit 6 of Red RGB signals. Powered from pin VCCIO2. Bit 5 of Red RGB signals. Powered from pin VCCIO2. Bit 4 of Red RGB signals. Powered from pin VCCIO2. Bit 3 of Red RGB signals. Powered from pin VCCIO2. Bit 2 of Red RGB signals. Powered from pin VCCIO2. Ground. Exposed thermal pad. Note: P : Power or ground I : Input O : Output OD : Open drain output I/O : Bi-direction Input and Output AI/O: Analog Input and Output Copyright © 2015 Future Technology Devices International Limited 12 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 4 Function Description The FT81x is a single chip, embedded video controller with the following function blocks: Quad SPI Host Interface System Clock Graphics Engine Parallel RGB video interface Audio Engine Touch-screen support and interface Power Management The functions for each block are briefly described in the following subsections. 4.1 Quad SPI Host Interface The FT81x uses a quad serial parallel interface (QSPI) to communicate with host microcontrollers and microprocessors. 4.1.1 QSPI Interface The QSPI slave interface operates up to 30MHz. Only SPI mode 0 is supported. Refer to section 6.4.2 for detailed timing specification. The QSPI can be configured as a SPI slave in SINGLE, DUAL or QUAD channel modes. By default the SPI slave operates in the SINGLE channel mode with MOSI as input from the master and MISO as output to the master. DUAL and QUAD channel modes can be configured through the SPI slave itself. To change the channel modes, write to register REG_SPI_WIDTH. The table below depicts the setting. Table 4-1 QSPI channel selection REG_SPI_WIDTH[1:0] Channel Mode Data pins Max bus speed 00 SINGLE – default mode MISO, MOSI 30 MHz 01 DUAL IO0, IO1 30 MHz 10 QUAD IO0, IO1, IO2, IO3 25 MHz 11 Reserved - - With DUAL/QUAD channel modes, the SPI data ports are now unidirectional. In these modes, each SPI transaction (signified by CS_N going active low) will begin with the data ports set as inputs. Hence, for writing to the FT81x, the protocol will operate as in FT800, with “WR-Command/Addr2, Addr1, Addr0, DataX, DataY, DataZ …” The write operation is considered complete when CS_N goes inactive high. For reading from the FT81x, the protocol will still operate as in FT800, with “RD-Command/Addr2, Addr1, Addr0, Dummy-Byte, DataX, DataY, DataZ”. However as the data ports are now unidirectional, a change of port direction will occur before DataX is clocked out of the FT81x. Therefore it is important that the firmware controlling the SPI master changes the SPI master data port direction to “input” after transmitting Addr0. The FT81x will not change the port direction till it starts to clock out DataX. Hence, the Dummy-Byte cycles will be used as a change-over period when neither the SPI master nor slave will be driving the bus; the data paths thus must have pull-ups/pull-downs. The SPI slave from the FT81x will reset all its data ports’ direction to input once CS_N goes inactive high (i.e. at the end of the current SPI master transaction). The diagram depicts the behaviour of both the SPI master and slave in the master read case. Copyright © 2015 Future Technology Devices International Limited 13 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 SS WR / Addr2 Addr 1 Addr 2 Dum my Data X Data 0 SPI Slave drives the data bus SPI Slave resets data ports into inputs SPI Master drives the data bus Bus not driven SPI Master changes data ports into inputs Data Y SPI Slave changes data ports into outputs Figure 4-1 SPI master and slave in the master read case In the DUAL channel mode, MISO (MSB) and MOSI are used while in the QUAD channel mode. IO3 (MSB), IO2, MISO and MOSI are used. Figure 4-2 illustrates a direct connection to a 1.8-3.3V IO MPU/MCU with single or dual SPI interface. Figure 4-3 illustrates a direct connection to a 1.8-3.3V IO MPU/MCU with Quad SPI interface. 1.8-3.3V MPU/MCU SCLK 3.3V VCCIO1 4.7k FT81x SCK MISO MISO/IO1 MOSI MOSI/IO0 SS# CS_N PD# PD_N INT# INT_N GND VCC GND Figure 4-2 Single/Dual SPI Interface connection Copyright © 2015 Future Technology Devices International Limited 14 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 1.8-3.3V 3.3V VCCIO1 MPU/MCU 4.7k VCC FT81x SCLK SCK MISO IO1 MOSI IO0 IO2 IO2 IO3 IO3 SS# CS_N PD# PD_N INT# INT_N GND GND Figure 4-3 Quad SPI Interface connection 4.1.2 Serial Data Protocol The FT81x appears to the host MPU/MCU as a memory-mapped SPI device. The host communicates with the FT81x using reads and writes to a large (4 megabyte) address space. Within this address space are dedicated areas for graphics, audio and touch control. Refer to section 5 for the detailed memory map. The host reads and writes the FT81x address space using SPI transactions. These transactions are memory read, memory write and command write. Serial data is sent by the most significant bit first. Each transaction starts with CS_N goes low, and ends when CS_N goes high. There’s no limit on data length within one transaction, as long as the memory address is continuous. 4.1.3 Host Memory Read For SPI memory read transactions, the host sends two zero bits, followed by the 22-bit address. This is followed by a dummy byte. After the dummy byte, the FT81x responds to each host byte with read data bytes. Table 4-2 Host memory read transaction 7 6 0 0 5 4 3 2 1 0 Address [21:16] Address [15:8] Write Address Address [7:0] Dummy byte Byte 0 Read Data Byte n Copyright © 2015 Future Technology Devices International Limited 15 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 4.1.4 Host Memory Write For SPI memory write transactions, the host sends a ‘1’ bit and ‘0’ bit, followed by the 22-bit address. This is followed by the write data. Table 4-3 Host memory write transaction 7 6 1 0 5 4 3 2 1 0 Address [21:16] Write Address Address [15:8] Address [7:0] Byte 0 Write Data Byte n 4.1.5 Host Command When sending a command, the host transmits a 3 byte command. Table 4-5 Host command lists all the host command functions. For SPI command transactions, the host sends a ‘0’ bit and ‘1’ bit, followed by the 6-bit command code. The 2nd byte can be either 00h, or the parameter of that command. The 3rd byte is fixed at 00h. All SPI commands except the system reset can only be executed when the SPI is in the Single channel mode. They will be ignored when the SPI is in either Dual or Quad channel mode. Some commands are used to configure the device and these configurations will be reset upon receiving the SPI PWRDOWN command, except those that configure the pin state during power down. These commands will be sticky unless reconfigured or power-on-reset (POR) occurs. Table 4-4 Host command transaction 7 6 0 1 5 4 3 2 1 0 Command [5:0] 1st Byte 2nd Byte Parameter for the command 0 0 0 0 0 0 0 0 3rd Byte Table 4-5 Host command list 1st Byte 2nd byte 3rd byte Command Description Power Modes 00000000b 00000000b 00000000b 00h ACTIVE Switch from Standby/Sleep/PWRDOWN modes to active mode. Dummy memory read from address 0(read twice) generates ACTIVE command. Copyright © 2015 Future Technology Devices International Limited 16 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 1st Byte 2nd byte 3rd byte Command Description 01000001b 00000000b 00000000b 41h STANDBY 01000010b 00000000b 00000000b 42h SLEEP Put FT81x core to standby mode. Clock gate off, PLL and Oscillator remain on (default). ACTIVE command to wake up. Put FT81x core to sleep mode. Clock gate off, PLL and Oscillator off. ACTIVE command to wake up. 00000000b 00000000b 43h/50h PWRDOWN 01000011b 01010000b Switch off 1.2V core voltage to the digital core circuits. Clock, PLL and Oscillator off. SPI is alive. ACTIVE command to wake up. Select power down individual ROMs; Byte2 determines which ROM to power down or up. A 1 on a bit powers down the corresponding block; a 0 on a bit powers up the corresponding block. As these are not readable, the host must remember the setting on its own. 01000100b xx 00000000b 49h PD_ROMS Byte2[7] ROM_MAIN Byte2[6] ROM_RCOSATAN Byte2[5] ROM_SAMPLE Byte2[4] ROM_JABOOT Byte2[3] ROM_J1BOOT Byte2[20] reserved Clock and Reset 01000100b 00000000b 00000000b 44h CLKEXT 01001000b 00000000b 00000000b 48h CLKINT Select PLL input from external crystal oscillator or external input clock. No effect if external clock is already selected, otherwise a system reset will be generated Select PLL input from internal relaxation oscillator (default). No effect if internal clock is already selected, otherwise a system reset will be generated This command will only be effective when the PLL is stopped (SLEEP mode). For compatibility to FT800/FT801, set Byte2 to 0x00. This will set the PLL clock back to default (60 MHz). 01100001b 01100010b xx 00000000b 61h/62h CLKSEL Byte2 [5:0] sets the clock frequency 0 Set to default clock speed 1 Reserved 2 to 5 2 to 5 times the osc frequency (i.e. 24 to 60MHz with 12MHz oscillator) Copyright © 2015 Future Technology Devices International Limited 17 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 1st Byte 01101000b 2nd byte 00000000b 3rd byte 00000000b Command 68h RST_PULSE Description Byte2 [7:6] sets the PLL range 0 When Byte2[5:0] = 0, 2, 3 1 When Byte2[5:0] = 4, 5 Send reset pulse to FT81x core. The behaviour is the same as POR except that settings done through SPI commands will not be affected Configuration This will set the drive strength for various pins. For FT800/FT801 compatibility, by default those settings are from the GPIO registers. FT81x supports setting the drive strength via SPI command instead. When PINDRIVE for a pin from the SPI command is not updated, the drive strength will be determined by its corresponding GPIO register bits, if they exist. If they don’t exist, a hard coded setting is used. Please refer to Table 4-20 for default values. When PINDRIVE for a pin from the SPI command is updated, it will override the corresponding setting in the GPIO register bits. Byte2 determines which pin and the setting are to be updated. Byte2[1:0] determine the drive strength: 01110000b xx 00000000b 70h PINDRIVE Byte2 [1:0] Drive Strength 0h 5mA 1h 10.0mA 2h 15.0mA 3h 20.0mA Byte[7:2] determine which pin/pin group to set: Byte2 [7:2] Pin / Pin Group 00h GPIO 0 01h GPIO 1 02h GPIO 2 03h GPIO 3 Copyright © 2015 Future Technology Devices International Limited 18 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 1st Byte 2nd byte 3rd byte Command Description 04-07h Reserved 08h DISP 09h DE 0Ah VSYNC / HSYNC 0Bh PCLK 0Ch BACKLIGHT 0Dh R[7:0], G[7:0], B[7:0] 0Eh AUDIO_L 0Fh INT_N 10h CTP_RST_N 11h CTP_SCL 12h CTP_SDA 13h SPI MISO/MOSI/IO2/IO3 Others Reserved Note: GPIO0 shares the same pin as SPI IO2 and GPIO1 with SPI IO3. When SPI is set in Quad mode, IO2 and IO3 will inherit the drive strength set in GROUP 13h; otherwise GPIO0 and GPIO1 will inherit the drive strength from GROUP 00h and 01h respectively. During power down, all output and in/out pins will not be driven. Please refer to Table 4-20 for their default power down state. 01110001b xx 00000000b 71h PIN_PD_STA TE These settings will only be effective during power down and will not affect normal operations. Also note that these configuration bits are sticky and, unlike other configuration bits, will not reset to default values upon exiting power down. Only POR will reset them. Byte2 determines which pin and the setting are to be updated. Byte2[1:0] determine the pin state. Byte2 [1:0] Pin Setting 0h Float 1h Pull-Down Copyright © 2015 Future Technology Devices International Limited 19 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 1st Byte 2nd byte 3rd byte Command Description 2h Pull-Up 3h Reserved Byte2[7:2] determine which pin/pin group to set. Please refer to the PINDRIVE entry. table in command NOTE: Any command code not specified is reserved and should not be used by the software 4.1.6 Interrupts The interrupt output pin is enabled by REG_INT_EN. When REG_INT_EN is 0, INT_N is tri-state (pulled to high by external pull-up resistor). When REG_INT_EN is 1, INT_N is driven low when any of the interrupt flags in REG_INT_FLAGS are high, after masking with REG_INT_MASK. Writing a ‘1’ in any bit of REG_INT_MASK will enable the corresponding interrupt. Each bit in REG_INT_FLAGS is set by a corresponding interrupt source. REG_INT_FLAGS is readable by the host at any time, and clears when read. The INT_N pin is open-drain (OD) output by default. It can be configured to push-pull output by register REG_GPIOX. Table 4-6 Interrupt Flags bit assignment Bit 7 6 5 4 Interrupt Sources CONVCOMPLETE CMDFLAG CMDEMPTY PLAYBACK Conditions Touch-screen conversions completed Command FIFO flag Command FIFO empty Audio playback ended Bit 3 2 1 0 Interrupt Sources SOUND TAG TOUCH SWAP Conditions Sound effect ended Touch-screen tag value change touch detected Display list swap occurred 4.2 System Clock 4.2.1 Clock Source The FT81x can be configured to use any of the three clock sources for system clock: Internal relaxation oscillator clock (default) External 12MHz crystal External 12MHz square wave clock Figure 4-4, Figure 4-5 and Figure 4-6 show the pin connections for these clock options. Copyright © 2015 Future Technology Devices International Limited 20 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Figure 4-4 Internal relaxation oscillator connection Figure 4-5 Crystal oscillator connection Figure 4-6 External clock input 4.2.2 Phase Locked Loop The internal PLL takes an input clock from the oscillator, and generates clocks to all internal circuits, including the graphics engine, audio engine and touch engine. 4.2.3 Clock Enable At power-on the FT81x enters sleep mode. The internal relaxation oscillator is selected for the PLL clock source. The system clock will be enabled when the following step is executed: Host sends an “ACTIVE” command If the application chooses to use the external clock source (12MHz crystal or clock), the following steps shall be executed: Host sends a “CLKEXT” command Host sends an “ACTIVE” command Copyright © 2015 Future Technology Devices International Limited 21 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 4.2.4 Clock Frequency By default the system clock is 60MHz when the input clock is 12MHz. The host is allowed to switch the system clock to other frequencies (48MHz, 36MHz, 24MHz) by the host command “CLKSEL”. The clock switching command shall be sent in SLEEP mode only. When using the internal relaxation oscillator, its clock frequency is trimmed to be 12MHz at factory. Software is allowed to change the frequency to a lower value by programming the register REG_TRIM. Note that software shall not change the internal oscillator frequency to be higher than 12MHz. 4.3 Graphics Engine 4.3.1 Introduction The graphics engine executes the display list once for every horizontal line. It executes the primitive objects in the display list and constructs the display line buffer. The horizontal pixel content in the line buffer is updated if the object is visible at the horizontal line. Main features of the graphics engine are: The primitive objects supported by the graphics processor are: lines, points, rectangles, bitmaps (comprehensive set of formats), text display, plotting bar graph, edge strips, and line strips, etc. Operations such as stencil test, alpha blending and masking are useful for creating a rich set of effects such as shadows, transitions, reveals, fades and wipes. Anti-aliasing of the primitive objects (except bitmaps) gives a smoothing effect to the viewer. Bitmap transformations enable operations such as translate, scale and rotate. Display pixels are plotted with 1/16th pixel precision. Four levels of graphics states Tag buffer detection The graphics engine also supports customized built-in widgets and functionalities such as jpeg decode, screen saver, calibration etc. The graphics engine interprets commands from the MPU host via a 4 Kbyte FIFO in the FT81x memory at RAM_CMD. The MPU/MCU writes commands into the FIFO, and the graphics engine reads and executes the commands. The MPU/MCU updates the register REG_CMD_WRITE to indicate that there are new commands in the FIFO, and the graphics engine updates REG_CMD_READ after commands have been executed. Main features supported are: Drawing of widgets such as buttons, clock, keys, gauges, text displays, progress bars, sliders, toggle switches, dials, gradients, etc. JPEG and motion-JPEG decode Inflate functionality (zlib inflate is supported) Timed interrupt (generate an interrupt to the host processor after a specified number of milliseconds) In-built animated functionalities such as displaying logo, calibration, spinner, screen saver and sketch Snapshot feature to capture the current graphics display For a complete list of graphics engine FT81x_Series_Programmer_Guide, Chapter 4. display commands and widgets refer to 4.3.2 ROM and RAM Fonts The FT81x has built in ROM character bitmaps as font metrics. The graphics engine can use these metrics when drawing text fonts. There are a total of 19 ROM fonts, numbered with font handle 16-34. The user can define and load customized font metrics into RAM_G, which can be used by display command with handle 0-15. Each font metric block has a 148 byte font table which defines the parameters of the font and the pointer of font image. The font table format is shown in Table 4-7. Copyright © 2015 Future Technology Devices International Limited 22 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Table 4-7 Font table format Address Offset 0 128 132 136 140 144 Size(byte) 128 4 4 4 4 4 Parameter Description width of each font character, in pixels font bitmap format, for example L1, L4 or L8 font line stride, in bytes font width, in pixels font height, in pixels pointer to font image data in memory The ROM fonts are stored in the memory space ROM_FONT. The ROM font table is also stored in the ROM. The starting address of the ROM font table for font index 16 is stored at ROM_FONT_ADDR, with other font tables following. The ROM font table and individual character width (in pixel) are listed in Table 4-8 through Table 4-10. Font index 16, 18 and 20-31 are for basic ASCII characters (code 0-127), while font index 17 and 19 are for Extended ASCII characters (code 128-255). The character width for font index 16 through 19 is fixed at 8 pixels for any of the ASCII characters. Table 4-8 ROM font table 2 6 L 4 2 7 L 4 2 8 L 4 Line stride 1 1 1 1 2 2 2 3 3 4 7 8 9 Font width (max) 8 8 8 8 1 1 1 3 1 7 1 8 2 5 3 4 1 3 1 5 Font height 8 8 1 6 1 6 1 3 1 7 2 0 2 2 2 9 3 8 1 6 Image pointer start address (hex) 2FE7FC 2FEFFC 2FDAFC 2FCD3C 2F3D1C 2F181C 2FA17C 3 2 L 4 2 3 4 9 3 3 L 4 3 0 6 3 2 0 2 5 2 8 3 6 4 9 6 3 8 3 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 L 4 3 9 8 2 1 0 8 1E1B5C 2 5 L 1 251E1C 2 4 L 1 2945FC 2 3 L 1 2BAC3C 2 2 L 1 2D263C 2 1 L 1 2FFBFC 3 1 L 4 1 8 3 7 2DFBBC 2 0 L 1 2FF7FC 1 9 3 0 L 4 1 4 2 8 2E799C 1 9 L 1 Font format 2 9 L 4 1 1 2 1 2ED61C 1 8 L 1 2F7E3C 1 7 L 1 2FBD7C 1 6 L 1 Font Index 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Table 4-9 ROM font ASCII character width in pixels ASCII Character width in pixels Font Index => 0 NULL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL 8 BS 9 HT 10 LF 11 VT 12 FF 13 CR 14 SO 15 SI 16 DLE 17 DC1 18 DC2 19 DC3 20 DC4 16/ 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Copyright © 2015 Future Technology Devices International Limited 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Font Index => 21 NAK 22 SYN 23 ETB 24 CAN 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US spac 32 e 33 ! 34 " 35 # 36 $ 37 % 38 & 39 ' 40 ( 41 ) 42 * 43 + 44 , 45 46 . 47 / 48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7 56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ? 64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G 72 H 73 I 74 J 75 K 16/ 18 8 8 8 8 8 8 8 8 8 8 8 2 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 2 5 0 0 0 0 0 0 0 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 2 7 0 0 0 0 0 0 0 0 0 0 0 2 8 0 0 0 0 0 0 0 0 0 0 0 2 9 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 3 3 4 6 6 9 8 2 4 4 4 6 3 4 3 3 6 6 6 6 6 6 6 6 6 6 3 3 6 5 6 6 11 7 7 8 8 7 6 8 8 3 5 7 4 4 5 8 8 12 10 3 5 5 7 9 3 4 3 4 8 8 8 8 8 8 8 8 8 8 3 4 8 9 8 8 13 9 9 10 10 9 8 11 10 4 7 9 5 5 6 9 9 14 11 3 6 6 6 10 4 5 4 5 9 9 9 9 9 9 9 9 9 9 4 4 10 10 10 9 17 11 11 12 12 11 10 13 12 4 8 11 5 6 5 10 10 16 13 3 6 6 7 10 5 6 5 5 10 10 10 10 10 10 10 10 10 10 5 5 10 11 10 10 18 13 13 14 14 13 12 15 14 6 10 13 6 6 8 14 13 22 17 6 8 8 10 14 6 8 6 7 13 13 13 13 13 13 13 13 13 13 6 6 15 15 15 12 25 17 17 18 18 16 14 19 18 8 13 18 9 9 12 19 18 29 22 6 11 11 13 19 9 11 9 9 18 18 18 18 18 18 18 18 18 18 9 9 19 19 19 18 34 22 22 24 24 22 20 25 24 9 16 22 3 3 5 10 8 11 9 3 5 5 7 9 3 6 3 6 8 8 8 8 8 8 8 8 8 8 3 3 8 8 8 7 13 9 9 9 9 7 7 9 9 4 8 9 4 4 6 11 10 13 11 4 6 6 8 10 4 7 4 7 10 10 10 10 10 10 10 10 10 10 4 4 9 9 9 9 15 11 10 11 11 9 9 11 11 5 9 11 5 6 7 14 11 16 14 4 7 8 10 12 4 10 6 9 12 12 12 12 12 12 12 12 12 12 6 6 11 13 11 10 19 13 14 13 14 12 12 14 15 6 12 14 6 6 8 15 15 17 15 5 9 8 11 14 5 11 7 10 14 14 14 14 14 14 14 14 14 14 6 6 12 14 13 12 21 15 15 15 17 13 13 16 17 7 13 16 8 9 12 19 18 23 19 7 11 10 14 17 7 15 8 13 17 17 17 17 17 17 17 17 17 17 7 8 16 18 16 15 28 20 19 20 22 16 17 22 23 9 17 19 10 11 15 26 25 31 26 10 15 14 18 24 9 18 11 17 24 24 24 24 24 24 24 24 24 24 10 10 21 23 22 20 37 27 27 26 28 23 22 28 29 12 23 26 13 15 19 33 31 40 34 11 18 18 24 30 12 24 14 22 30 30 30 30 30 30 30 30 30 30 13 14 28 30 29 26 49 34 34 34 36 29 29 37 37 15 30 34 18 19 25 44 41 52 44 15 24 24 31 41 16 32 19 29 40 40 40 40 40 40 40 40 40 40 18 18 36 40 37 34 63 45 45 45 48 39 39 48 50 20 40 45 23 25 33 57 54 68 57 20 31 31 40 52 20 41 24 38 52 52 52 52 52 52 52 52 52 52 23 23 46 52 48 44 82 58 58 58 63 50 50 62 65 26 50 58 Copyright © 2015 Future Technology Devices International Limited 24 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Font Index => 76 L 77 M 78 N 79 O 80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W 88 X 89 Y 90 Z 91 [ 92 \ 93 ] 94 ^ 95 _ 96 ` 97 a 98 b 99 c 100 d 101 e 102 f 103 g 104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o 112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w 120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 DEL 16/ 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 2 0 6 9 8 8 7 8 7 7 5 8 7 9 7 7 7 3 3 3 6 6 3 5 6 5 6 5 4 6 6 2 2 5 2 8 6 6 6 6 4 5 4 5 6 8 6 5 5 3 3 3 7 0 2 1 8 12 10 11 9 11 10 9 9 10 9 13 9 9 9 4 4 4 7 8 5 8 7 7 8 8 4 8 8 3 3 7 3 11 8 8 8 8 5 7 4 7 7 10 7 7 7 5 3 5 8 0 2 2 9 13 12 13 11 13 12 11 10 12 11 15 11 11 10 5 5 5 8 9 6 9 9 8 9 9 5 9 9 3 4 8 3 14 9 9 9 9 5 8 5 9 8 12 8 8 8 6 4 6 10 0 2 3 11 16 14 15 13 15 14 13 12 14 13 18 13 13 12 5 5 5 9 11 4 11 11 10 11 10 6 11 10 4 4 9 4 16 10 11 11 11 6 9 6 10 10 14 10 10 9 6 5 6 10 0 2 4 14 21 18 18 16 18 17 16 16 18 17 22 17 16 15 7 7 7 12 14 7 13 14 12 14 13 8 14 13 6 6 12 6 20 14 13 14 14 9 12 8 14 13 18 12 13 12 8 6 8 14 0 2 5 18 27 24 25 22 26 24 22 20 24 22 31 22 22 20 9 9 9 16 18 11 18 18 16 18 18 9 18 18 7 7 16 7 27 18 18 18 18 11 16 9 18 16 23 16 16 16 11 9 11 19 0 2 6 7 11 9 10 9 10 9 9 10 9 9 12 9 9 9 4 6 4 6 8 4 8 8 8 8 8 6 8 8 3 3 7 3 11 8 8 8 8 5 7 6 8 7 11 7 7 8 5 3 5 10 3 2 7 9 14 11 12 10 12 11 11 12 11 11 15 11 10 11 5 7 5 7 10 5 9 9 9 10 9 7 10 9 4 4 9 4 15 9 10 9 10 6 9 7 9 9 13 9 9 9 6 4 6 11 4 2 8 12 19 15 14 14 14 13 12 14 13 14 18 13 14 13 6 9 7 9 11 7 11 11 11 12 11 8 11 11 6 6 11 6 18 11 12 11 12 7 11 8 12 11 16 11 11 11 8 5 7 14 5 2 9 13 21 17 16 15 17 15 14 15 17 15 21 15 15 14 7 10 7 10 13 8 13 14 12 14 12 10 14 14 6 6 13 6 21 14 13 14 13 9 12 9 14 12 18 12 12 12 8 6 9 15 6 3 0 17 26 23 22 19 22 19 20 19 21 20 27 20 19 18 9 13 9 13 16 10 17 17 16 17 16 12 18 17 7 8 16 7 27 17 17 17 17 11 17 11 17 16 23 16 16 15 11 7 10 21 5 3 1 22 35 29 28 26 29 27 26 26 28 27 36 27 26 25 12 18 12 18 21 13 23 24 22 24 22 15 24 24 10 11 22 10 36 24 24 24 24 15 22 14 24 21 32 21 21 22 15 10 15 29 10 3 2 29 46 37 37 34 38 33 33 32 37 34 46 34 34 32 15 22 15 23 26 17 30 31 28 31 29 19 31 31 13 14 28 13 47 31 31 31 31 19 29 17 31 27 41 27 27 27 18 14 18 36 13 3 3 39 62 50 49 45 50 45 43 42 48 45 61 45 45 42 19 29 19 30 34 22 39 40 37 40 37 25 41 41 18 18 36 18 63 41 40 40 40 25 38 23 41 36 54 36 36 36 24 18 24 47 18 3 4 51 79 65 63 58 64 58 56 56 62 58 79 58 58 55 25 38 25 38 43 29 50 52 48 52 48 31 52 52 23 23 47 23 80 52 52 51 52 32 48 29 52 46 70 46 46 46 31 23 31 63 23 Table 4-10 ROM font Extended ASCII characters Copyright © 2015 Future Technology Devices International Limited 25 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 î ì ░ 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 └ 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 Æ ô ö ò û ù ÿ Ö Ü ø £ Ø ó ú ñ Ñ ª º ¿ ® ¬ ½ ¼ ¡ ▒ ▓ │ ┤ Á Â À © ╣ ║ ╗ ╝ ¢ ┴ ┬ ├ ─ ┼ ã Ã ╚ ╔ ╩ ╦ ╠ ═ ð 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 Ó 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 Ð Ê Ë È ı Í Î Ï ┘ ┌ █ ▄ ¦ ß Ô Ò õ Õ µ þ Þ Ú Û Ù ý Ý Symbol ï 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 í Decimal è á Symbol ë 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 Decimal ê É æ Symbol ç Decimal å Symbol à Decimal ä Symbol â Decimal é Symbol Decimal 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 ü Decimal Symbol Ç Symbol Decimal 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 ± ‗ ¾ ¶ § ÷ ¸ ° ¨ · ¹ ³ ² × « ¥ Ì ¯ ╬ ■ Å ƒ » ┐ ¤ ´ nbsp ▀ Note: Font 17 and 19 are extended ASCII characters, with width fixed at 8 pixels for all characters. Ä Note: All fonts included in the FT81x ROM are widely available to the market-place for general usage. See section nine for specific copyright data and links to the corresponding license agreements. 4.4 Parallel RGB Interface The RGB parallel interface consists of 23 or 29 signals - DISP, PCLK, VSYNC, HSYNC, DE, 6 or 8 signals each for R, G and B. A set of RGB registers configure the LCD operation and timing parameters. REG_PCLK is the PCLK divisor. The default value is 0, which means the PCLK output is disabled. When REG_PCLK is none 0 (1-1023), the PCLK frequency can be calculated as: PCLK frequency = System Clock frequency / REG_PCLK The FT81x system clock frequency is programmable. Some of the possible PCLK frequencies that FT81x supports are listed in Table 4-11. Table 4-11 RGB PCLK frequency System Clock Frequency (MHz) REG_PCLK 60(default) 48 36 24 1 60 48 36 24 2 30 24 18 12 3 20 16 12 8.0 4 15 12 9.0 6.0 5 12 9.6 7.2 4.8 6 10 8.0 6.0 4.0 7 8.6 6.9 5.1 3.4 Copyright © 2015 Future Technology Devices International Limited 26 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 System Clock Frequency (MHz) REG_PCLK 60(default) 48 36 24 8 7.5 6.0 4.5 3.0 9 6.7 5.3 4.0 2.7 10 6.0 4.8 3.6 2.4 REG_PCLK_POL defines the clock polarity, with 0 for positive active clock edge, and 1 for negative clock edge. REG_CSPREAD controls the transition of RGB signals with respect to the PCLK active clock edge. When REG_CSPREAD=0, R[7:0], G[7:0] and B[7:0] signals change following the active edge of PCLK. When REG_CSPREAD=1, R[7:0] changes a PCLK clock early and B[7:0] a PCLK clock later, which helps reduce the switching noise. REG_DITHER enables colour dither. This option improves the half-tone appearance on displays. Internally, the graphics engine computes the colour values at an 8 bit precision; however, the LCD colour at a lower precision is sufficient. The FT810/FT811 output is only 6 bits per colour in 6:6:6 formats and a 2X2 dither matrix allow the truncated bits to contribute to the final colour values. REG_OUTBITS gives the bit width of each colour channel, the default is 6/6/6(for FT810/FT811) or 8/8/8(for FT812/FT813) bits for each R/G/B colour. A lower value means fewer bits are output for each channel allowing dithering on lower precision LCD displays. REG_SWIZZLE controls the arrangement of the output colour pins, to help the PCB route different LCD panel arrangements. Bit 0 of the register causes the order of bits in each colour channel to be reversed. Bits 1-3 control the RGB order. Setting Bit 1 causes R and B channels to be swapped. Setting Bit 3 allows rotation to be enabled. If Bit 3 is set, then (R,G,B) is rotated right if bit 2 is one, or left if bit 2 is zero. Table 4-12 REG_SWIZZLE RGB Pins Mapping REG_SWIZZLE b3 b2 b1 b0 PINS (FT810/FT811, 6 bits) R7, R6, R5, G7, G6, G5, B7, B6, B5, R4, R3, R2 G4, G3, G2 B4, B3, B2 0 0 0 0 1 1 1 1 1 1 1 1 R[7:2] R[2:7] B[7:2] B[2:7] B[7:2] B[2:7] G[7:2] G[2:7] G[7:2] G[2:7] R[7:2] R[2:7] X X X X 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 G[7:2] G[2:7] G[7:2] G[2:7] R[7:2] R[2:7] R[7:2] R[2:7] B[7:2] B[2:7] B[7:2] B[2:7] B[7:2] B[2:7] R[7:2] R[2:7] G[7:2] G[2:7] B[7:2] B[2:7] R[7:2] R[2:7] G[7:2] G[2:7] PINS (FT812/FT813, 8 bits) R7, R6, G7, G6, B7, B6, R5, R4, G5, G4, B5, B4, R3, R2, G3, G2, B3, B2, R1, R0 G1, G0 B1, B0 R[7:0] G[7:0] B[7:0] R[0:7] G[0:7] B[0:7] B[7:0] G[7:0] R[7:0] B[0:7] G[0:7] R[0:7] B[7:0] R[7:0] G[7:0] B[0:7] R[0:7] G[0:7] G[7:0] R[7:0] B[7:0] G[0:7] R[0:7] B[0:7] G[7:0] B[7:0] R[7:0] G[0:7] B[0:7] R[0:7] R[7:0] B[7:0] G[7:0] R[0:7] B[0:7] G[0:7] REG_HCYCLE, REG_HSIZE, REG_HOFFSET, REG_HSYNC0 and REG_HSYNC1 define the LCD horizontal timings. Each register has 12 bits to allow programmable range of 0-4095 PCLK cycles. REG_VCYCLE, REG_VSIZE, REG_VOFFSET, REG_VSYNC0 and REG_VSYNC1 define the LCD vertical timings. Each register has 12 bits to allow programmable range of 0-4095 lines. Table 4-13 Registers for RGB horizontal and vertical timings Copyright © 2015 Future Technology Devices International Limited 27 Vertical Horizontal Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Register Display Parameter Description REG_HCYCLE TH Total length of line (visible and non-visible) (in PCLKs) REG_HSIZE THD Length of visible part of line (in PCLKs) REG_HOFFSET THF + THP + THB Length of non-visible part of line (in PCLK cycles) REG_HSYNC0 THF Horizontal Front Porch (in PCLK cycles) REG_HSYNC1 THF + THP Horizontal Front Porch plus Hsync Pulse width (in PCLK cycles) REG_VCYCLE TV Total number of lines (visible and non-visible) (in lines) REG_VSIZE TVD Number of visible lines (in lines) REG_VOFFSET TVF + TVP + TVB Number of non-visible lines (in lines) REG_VSYNC0 TVF Vertical Front Porch (in lines) REG_VSYNC1 TVF + TVP Vertical Front Porch plus Vsync Pulse width (in lines) Figure 4-7 RGB timing waveforms 4.5 Miscellaneous Control Copyright © 2015 Future Technology Devices International Limited 28 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 4.5.1 Backlight Control Pin The backlight dimming control pin (BACKLIGHT) is a pulse width modulated (PWM) signal controlled by two registers: REG_PWM_HZ and REG_PWM_DUTY. REG_PWM_HZ specifies the PWM output frequency, the range is 250-10000 Hz. REG_PWM_DUTY specifies the duty cycle; the range is 0-128. A value of 0 means that the PWM is completely off and 128 means completely on. The BACKLIGHT pin will output low when the DISP pin is not enabled (i.e. logic 0). 4.5.2 DISP Control Pin The DISP pin is a general purpose output that can be used to enable, or reset the LCD display panel. The pin is controlled by writing to Bit 7 of the REG_GPIO register, or bit 15 of REG_GPIOX. 4.5.3 General Purpose IO pins Depending on the package, the FT81x can be configured to use up to 4 GPIO pins. These GPIO pins are controlled by the REG_GPIOX_DIR and REG_GPIOX registers. Alternatively the GPIO0 and GPIO1 pins can also be controlled by REG_GPIO_DIR and REG_GPIO to maintain backward compatibility with the FT800/FT801. When the QSPI is enabled in Quad mode, GPIO0/IO2 and GPIO1/IO3 pins are used as data lines of the QSPI. 4.5.4 Pins Drive Current Control The output drive current of output pins can be changed as per the following table by writing to bit[6:2] of REG_GPIO register or bit[14:10] of REG_GPIOX register. Alternatively, use the SPI command PINDRIVE to change the individual pin drive strength. Table 4-14 Output drive current selection REG_GPIO Bit[6:5] Bit[4] Bit[3:2] REG_GPIOX Bit[14:13] Bit[12] Bit[11:10] Value 00b # 01b 10b 11b 0b# 1b 00b# 01b 10b 11b Drive Current 5m A 10mA 15mA 20mA 5mA 10mA 5mA 10mA 15mA 20mA Pins GPIO0 PCLK MISO GPIO1 DISP MOSI GPIO2 VSYNC IO2 GPIO3 HSYNC IO3 CTP_RST_N DE INT_N R7..R0 G7..G0 B7..B0 BACKLIGHT Note: #Default value Copyright © 2015 Future Technology Devices International Limited 29 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 4.6 Audio Engine FT81x provides mono audio output through a PWM output pin, AUDIO_L. It outputs two audio sources, the sound synthesizer and audio file playback. 4.6.1 Sound Synthesizer A sound processor, AUDIO ENGINE, generates the sound effects from a small ROM library of waves table. To play a sound effect listed in Table 4.3, load the REG_SOUND register with a code value and write 1 to the REG_PLAY register. The REG_PLAY register reads 1 while the effect is playing and returns a ‘0’ when the effect ends. Some sound effects play continuously until interrupted or instructed to play the next sound effect. To interrupt an effect, write a new value to REG_SOUND and REG_PLAY registers; e.g. write 0 (Silence) to REG_SOUND and 1 to PEG_PLAY to stop the sound effect. The sound volume is controlled by register REG_VOL_SOUND. The 16-bit REG_SOUND register takes an 8-bit sound in the low byte. For some sounds, marked "pitch adjust" in the table below, the high 8 bits contain a MIDI note value. For these sounds, a note value of zero indicates middle C. For other sounds the high byte of REG_SOUND is ignored. Table 4-15 Sound Effect Value Effect Conti nuous Y 00h Silence Y 01h square wave Y 02h sine wave Y 03h sawtooth wave Y 04h triangle wave Y 05h Beeping Y 06h Alarm Y 07h Warble Y 08h Carousel N 10h 1 short pip N 11h 2 short pips N 12h 3 short pips N 13h 4 short pips N 14h 5 short pips 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 6 short pips 7 short pips 8 short pips 9 short pips 10 short pips 11 short pips 12 short pips 13 short pips 14 short pips 15 short pips 16 short pips 23h 2Ch 30h 31h DTMF # DTMF * DTMF 0 DTMF 1 N N N N N N N N N N N Y Y Y Y Pitch adjust N Y Y Y Y Y Y Y Y Y Y Y Y Value Effect 32h 33h 34h 35h 36h 37h 38h 39h 40h 41h 42h 43h 44h DTMF 2 DTMF 3 DTMF 4 DTMF 5 DTMF 6 DTMF 7 DTMF 8 DTMF 9 harp xylophone tuba glockenspiel organ Y 45h trumpet Y Y Y Y Y Y Y Y Y Y Y 46h 47h 48h 49h 50h 51h 52h 53h 54h 55h 56h piano chimes music box bell click switch cowbell notch hihat kickdrum pop N N N N 57h 58h 60h 61h clack chack mute unmute Conti nuous Y Y Y Y Y Y Y Y N N N N N N Pitch adjust N N N N N N N N Y Y Y Y Y N N N N N N N N N N N N Y Y Y Y N N N N N N N N N N N N N N Copyright © 2015 Future Technology Devices International Limited Y 30 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Table 4-16 MIDI MIDI ANSI note note 21 A0 22 A#0 23 B0 24 C1 25 C#1 26 D1 27 D#1 28 E1 29 F1 30 F#1 31 G1 32 G#1 33 A1 34 A#1 35 B1 36 C2 37 C#2 38 D2 39 D#2 40 E2 41 F2 42 F#2 43 G2 44 G#2 45 A2 46 A#2 47 B2 48 C3 49 C#3 50 D3 51 D#3 52 E3 53 F3 54 F#3 55 G3 56 G#3 57 A3 58 A#3 59 B3 60 C4 61 C#4 62 D4 63 D#4 64 E4 Note Effect Freq (Hz) 27.5 29.1 30.9 32.7 34.6 36.7 38.9 41.2 43.7 46.2 49.0 51.9 55.0 58.3 61.7 65.4 69.3 73.4 77.8 82.4 87.3 92.5 98.0 103.8 110.0 116.5 123.5 130.8 138.6 146.8 155.6 164.8 174.6 185.0 196.0 207.7 220.0 233.1 246.9 261.6 277.2 293.7 311.1 329.6 MIDI note 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 ANSI note F4 F#4 G4 G#4 A4 A#4 B4 C5 C#5 D5 D#5 E5 F5 F#5 G5 G#5 A5 A#5 B5 C6 C#6 D6 D#6 E6 F6 F#6 G6 G#6 A6 A#6 B6 C7 C#7 D7 D#7 E7 F7 F#7 G7 G#7 A7 A#7 B7 C8 Freq (Hz) 349.2 370.0 392.0 415.3 440.0 466.2 493.9 523.3 554.4 587.3 622.3 659.3 698.5 740.0 784.0 830.6 880.0 932.3 987.8 1046.5 1108.7 1174.7 1244.5 1318.5 1396.9 1480.0 1568.0 1661.2 1760.0 1864.7 1975.5 2093.0 2217.5 2349.3 2489.0 2637.0 2793.8 2960.0 3136.0 3322.4 3520.0 3729.3 3951.1 4186.0 Copyright © 2015 Future Technology Devices International Limited 31 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 4.6.2 Audio Playback The FT81x can play back recorded sound through its audio output. To do this, load the original sound data into the FT81x’s RAM, and set registers to start the playback. The registers controlling audio playback are: REG_PLAYBACK_START: the start address of the audio data REG_PLAYBACK_LENGTH: the length of the audio data, in bytes REG_PLAYBACK_FREQ: the playback sampling frequency, in Hz REG_PLAYBACK_FORMAT: the playback format, one of LINEAR SAMPLES, uLAW SAMPLES, or ADPCM SAMPLES REG_PLAYBACK_LOOP: if zero, the sample is played once. If one, the sample is repeated indefinitely REG_PLAYBACK_PLAY: a write to this location triggers the start of audio playback, regardless of writing ‘0’ or ‘1’. Read back ‘1’ when playback is ongoing, and ‘0’ when playback finishes REG_VOL_PB: playback volume, 0-255 The mono audio formats supported are 8-bits PCM, 8-bits uLAW and 4-bits IMA-ADPCM. For ADPCM_SAMPLES, each sample is 4 bits, so two samples are packed per byte, the first sample is in bits 0-3 and the second is in bits 4-7. The current audio playback read pointer can be queried by reading the REG_PLAYBACK_READPTR. Using a large sample buffer, looping, and this read pointer, the host MPU/MCU can supply a continuous stream of audio. 4.7 Touch-Screen Engine The FT81x touch-screen engine supports both resistive and capacitive touch panels. FT810 and FT812 support resistive touch, while FT811 and FT813 support capacitive touch. 4.7.1 Resistive Touch Control The resistive touch-screen consists of a touch screen engine, ADC, Axis-switches, and ADC input multiplexer. The touch screen engine reads commands from the memory map register and generates the required control signals to the axis-switches and inputs mux and ADC. The ADC data are acquired, processed and updated in the respective register for the MPU/MCU to read. FT810/ Y+ FT812 XP YP XM YM X- Resistive Touch Screen X+ Y- Figure 4-8 Resistive Touch screen connection Copyright © 2015 Future Technology Devices International Limited 32 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 The host controls the TOUCH SCREEN ENGINE operation mode by writing the REG_TOUCH_MODE. Table 4-17 Resistive Touch Controller Operating Mode REG_TOUCH_MODE Mode Description 0 OFF Acquisition stopped, only touch detection interrupt is still valid. 1 ONE-SHOT Perform acquisition once every time the MPU writes '1' to REG_TOUCH_MODE. 2 FRAME-SYNC Perform acquisition for every frame sync (~60 data acquisition/second. 3 CONTINUOUS Perform acquisition continuously at approximately 1000 data acquisition / second. The Touch Screen Engine captures the raw X and Y coordinate and writes to register REG_TOUCH_RAW XY. The range of these values is 0-1023. If the touch screen is not being pressed, both registers read 65535 (FFFFh). These touch values are transformed into screen coordinates using the matrix in registers REG_TOUCH_TRANSFORM_A-F. The post-transform coordinates are available in register REG_TOUCH_SCREEN_XY. If the touch screen is not being pressed, both registers read -32768 (8000h). The values for REG TOUCH TRANSFORM A-F may be computed using an on-screen calibration process. If the screen is being touched, the screen coordinates are looked up in the screen's tag buffer, delivering a final 8-bit tag value, in REG TOUCH TAG. Because the tag lookup takes a full frame, and touch coordinates change continuously, the original (x; y) used for the tag lookup is also available in REG_TOUCH_TAG_XY. Screen touch pressure is available in REG_TOUCH_RZ. The value is relative to the resistance of the touch contact, a lower value indicates more pressure. The register defaults to 32767 when touch is not detected. The REG_TOUCH_THRESHOLD can be set to accept a touch only when the force threshold is exceeded. 4.7.2 Capacitive Touch Control The Capacitive Touch Screen Engine (CTSE) of the FT81x communicates with the external capacitive touch panel module (CTPM) through an I2C interface. The CTPM will assert its interrupt line when there is a touch detected. Upon detecting CTP_INT_N line active, the FT81x will read the touch data through I2C. Up to 5 touches can be reported and stored in FT81x registers. For a supported CTPM list please consult FTDI website. Copyright © 2015 Future Technology Devices International Limited 33 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 VCCIO2 (1.8-3.3V) FT811/ 1K FT813 1K CTP_SCL SCL CTP_SDA SDA CTP_INT_N INTN CTP_RST_N RSTN Capacitive Touch Panel Module Figure 4-9 Touch screen connection The host controls the CTSE operation mode by writing the REG_CTOUCH_MODE. Table 4-18 Capacitive Touch Controller Operating Mode REG_CTOUCH_MODE Mode Description 0 OFF Acquisition stopped 1-2 Reserved Reserved 3 CONTINUOUS Perform acquisition continuously at the reporting rate of the connected CTPM. The FT81x CTSE supports compatibility mode and extended mode. By default the CTSE runs in compatibility mode where the touch system provides an interface very similar to the resistive touch engine. In this mode the same application code can run on FT810/FT812 and FT811/FT813 without alteration. In extended mode, the touch register meanings are modified, and a second set of registers are exposed. These allow multi-touch detection (up to 5 touches). 4.7.3 Compatibility mode The CTSE reads the X and Y coordinates from the CTPM and writes to register REG_CTOUCH_RAW_XY. If the touch screen is not being pressed, both registers read 65535 (FFFFh). These touch values are transformed into screen coordinates using the matrix in REG_CTOUCH_TRANSFORM_A-F. The post-transform coordinates are available in REG_CTOUCH_SCREEN_XY. If the touch screen is not being pressed, both registers read -32768 The values for REG_CTOUCH_TRANSFORM_A-F may be computed using an on-screen calibration registers register (8000h). process. If the screen is being touched, the screen coordinates are looked up in the screen's tag buffer, delivering a final 8-bit tag value, in REG_TOUCH_TAG. Because the tag lookup takes a full frame, and touch coordinates change continuously, the original (x; y) used for the tag lookup is also available in REG_TOUCH_TAG_XY. 4.7.4 Extended mode Setting REG_CTOUCH_EXTENDED to 1b’0 enables extended mode. In extended mode a new set of readout registers are available, allowing gestures and up to five touches to be read. There are two classes of registers: control registers and status registers. Control registers are written by the MCU. Status registers can be read out by the MCU and the FT81x’s hardware tag system. Copyright © 2015 Future Technology Devices International Limited 34 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 The five touch coordinates are packed in REG_CTOUCH_TOUCH0_XY, REG_CTOUCH_TOUCH1_XY, REG_CTOUCH_TOUCH2_XY, REG_CTOUCH_TOUCH3_XY, REG_CTOUCH4_X and REG_CTOUCH4_Y. Coordinates stored in these registers are signed 16-bit values, so have range -32768 to 32767. The notouch condition is indicated by x=y= -32768. These coordinates are already transformed into screen coordinates based on the raw data read from the CTPM, using the matrix in registers REG_CTOUCH_TRANSFORM_A-F. To obtain raw (x,y) coordinates read from CTPM, the user sets the REG_CTOUCH_TRANSFORM_A-F registers to the identity matrix. The FT81x tag mechanism is implemented by hardware, where up to 5 tags can be looked up. 4.7.5 Short-circuit protection For resistive touch it is useful to protect the chip from permanent damage due to potential short-circuits on the 4 XY lines. When a short circuit on the touch screen happens, the FT81x can detect it and stop the touch detection operation, leaving the 4 XY pins in the high impedance state. The short-circuit protection can be enabled/disabled by the REG_TOUCH_CONFIG. 4.7.6 Capacitive touch configuration On capacitive touch system some users may need to adjust the CTPM default values, such as the registers affecting touch sensitivity. To do this the following sequence shall be executed once after chip reset: - Hold the touch engine in reset (set REG_CPURESET = 2) Write the CTPM configure register address and value to FT81x designated memory location Up to 10 register address/value can be added Release the touch engine reset (set REG_CPURESET = 0) The CTPM can be enabled in low power state when the touch function is not required by the application. Setting the low-power bit in REG_TOUCH_CONFIG will enable the low power mode of the CTPM. When the low-power bit is cleared, the FT81x touch engine will send a reset to the CTPM, thus re-enabling the touch detection function. 4.7.7 Touch detection in none-ACTIVE state When FT81x is in none-ACTIVE state, a touch event can still be detected and reported to the host through the INT_N pin. In other words, a touch event can wake-up the host if needed. For resistive touch, the INT_N pin will be asserted low when the screen is touched, regardless of the setting of the interrupt registers. This will happen when the FT81x is in STANDBY or SLEEP state, but not in POWERDOWN state. For capacitive touch, the INT_N pin will follow CTP_INT_N pin when the FT81x is in STANDBY, SLEEP or POWERDOWN state. 4.8 Power Management 4.8.1 Power supply The FT81x may be operated with a single supply of 3.3V applied to VCC and VCCIO pins. For operation with a host MPU/MCU at a lower supply, connect the VCCIO1 to the MPU IO supply to match the interface voltage. For operation with LCD/touch panels at lower voltages, connect the VCCIO2 to the LCD/touch IO supply. Copyright © 2015 Future Technology Devices International Limited 35 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Table 4-19 Power supply Symbol Typical Description VCCIO1 1.8V, or 2.5V, or 3.3V Supply for Host interface digital I/O pins VCCIO2 1.8V, or 2.5V, or 3.3V Supply for RGB and touch interface I/O pins VCC 3.3V Supply for 3.3V circuits and internal regulator VOUT1V2 1.2V Supply for digital core. Generated by internal regulator 4.8.2 Internal Regulator and POR The internal regulator provides power to the core circuit. A 47kΩ resistor is recommended to pull the PD_N pin up to VCCIO1, together with a 100nF capacitor to ground in order to delay the internal regulator powering up after the VCC and VCCIO are stable. The internal regulator requires a compensation capacitor to be stable. A typical design requires a 4.7uF capacitor between the VOUT1V2 and GND pins. Do not connect any other load to the VOUT1V2 pin. The internal regulator will generate a Power-On-Reset (POR) pulse when the output voltage rises above the POR threshold. The POR will reset all the core digital circuits. It is possible to use PD_N pin as an asynchronous hardware reset input. Drive PD_N low for at least 5ms and then drive it high will reset the FT81x chip. VCCIO1 VCC R1 47k C2 C1 10uF GND VOUT1V2 FT81x C3 4.7uF GND GND PD_N GND 100nF VCC GND Figure 4-10 Internal regulator Copyright © 2015 Future Technology Devices International Limited 36 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 4.8.3 Power Modes When the supply to VCCIO and VCC is applied, the internal regulator is powered by VCC. An internal POR pulse will be generated during the regulator power up until it is stable. After the initial power up, the FT81x will stay in the SLEEP state. When needed, the host can set the FT81x to the ACTIVE state by performing a SPI ACTIVE command. The graphics engine, the audio engine and the touch engine are only functional in the ACTIVE state. To save power the host can send a command to put the FT81x into any of the low power modes: STANDBY, SLEEP and POWERDOWN. In addition, the host is allowed to put the FT81x in POWERDOWN mode by driving the PD_N pin to low, regardless of what state it is currently in. Refer to Figure 4-11 for the power state transitions. Toggle PD_N from high to low VCC/VCCIO Power ON Toggle PD_N from low to high POWERDOWN SLEEP Write command “ACTIVE” Toggle PD_N from high to low or Write command “POWERDOWN” Toggle PD_N from high to low Write command “SLEEP” Write command “ACTIVE” STANDBY ACTIVE Write command “STANDBY” Figure 4-11 Power State Transition 4.8.3.1 ACTIVE state In ACTIVE state, the FT81x is in normal operation. The clock oscillator and PLL are functioning. The system clock applied to the FT81x core engines is enabled. 4.8.3.2 STANDBY state In STANDBY state, the clock oscillator and PLL remain functioning; the system clock applied to the FT81x core engines is disabled. All register contents are retained. 4.8.3.3 SLEEP state In SLEEP state, the clock oscillator, PLL and system clock applied to the FT81x core engines are disabled. All register contents are retained. 4.8.3.4 POWERDOWN state In POWERDOWN state, the clock oscillator, the PLL and the system clock applied to the FT81x core is disabled. The core engines are powered down while the SPI interface for host commands remains functional. All register contents are lost and reset to default when the chip is next switched on. The internal regulator remains on. Copyright © 2015 Future Technology Devices International Limited 37 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 4.8.3.5 Wake up to ACTIVE from other power states When in the POWER DOWN state, if the device enters this state via an SPI command, then only the SPI ACTIVE command will bring the device back to the ACTIVE state, provided PD_N pin is also high. However, if PD_N is used instead, then making PD_N high followed by a SPI ACTIVE command will wake up the device. Upon exiting this state, the device will perform a global reset, and will go through the same power up sequence. All settings from SPI commands will be reset except those that pertain to pin states during power down. The clock enable sequence mentioned in section 4.2.3 shall be executed to properly select and enable the system clock. From the SLEEP state, the host MPU sends an SPI ACTIVE command to wake the FT81x into the ACTIVE state. The host needs to wait for at least 20ms before accessing any registers or commands. This is to guarantee the clock oscillator and PLL are up and stable. From the STANDBY state, the host MPU sends SPI ACTIVE command to wake the FT81x into the ACTIVE state. The host can immediately access any register or command. 4.8.4 Reset and boot-up sequence There are a few hardware and software reset events which can be triggered to reset the FT81x. Hardware reset events: Power-on-Reset(POR) Toggle the PD_N pin Software reset events: SPI command RST_PULSE SPI command to switch between the internal clock and the external clock SPI command to enter POWERDOWN then wakeup After reset the FT81x will be in the SLEEP state. Upon receiving an SPI ACTIVE command, the internal oscillator and PLL will start up. Once the clock is stable, the chip will check and repair its internal RAM, running the configuration and release the clock to the system. The chip will exit the reset and boot-up state and enter into normal operations. The boot-up may take up to 300ms to complete. 4.8.5 Pin Status at Different Power States The FT81x pin status depends on the power state of the chip. See the following table for more details. At the power transition from ACTIVE to STANDBY or ACTIVE to SLEEP, all pins retain their previous status. The software needs to set AUDIO_L, BACKLIGHT to a known state before issuing power transition commands. The pin status in the power down state can be changed by SPI command PIN_PD_STATE. Table 4-20 Pin Status Pin Name Default Drive Reset Normal Power Down (Default) AUDIO_L 20mA Out, Float Out Pull Low SCK - In In In MISO 5mA IO Out, Float MOSI 5mA In IO In CS_N - In In In Out, Float (CS_N = 1) Copyright © 2015 Future Technology Devices International Limited 38 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Pin Name Default Drive Reset Normal Power Down (Default) IO2 5mA In IO Float GPIO0 5mA In IO Float IO3 5mA In IO Float GPIO1 5mA In IO Float GPIO2 5mA In IO Float INT_N 5mA OD, Float OD / Out Float PD_N - In In In GPIO3 5mA In IO Float X1/CLK - In In In XP - IO, Float IO Float YP - IO, Float IO Float XM - IO, Float IO Float YM - IO, Float IO Float CTP_RST_N 5mA Out Out Pull Low CTP_INT_N - In (internal pull-up) In (internal pull-up) In (internal pull-up) CTP_SCL 20mA OD IO Float CTP_SDA 20mA OD IO Float BACKLIGHT 5mA Out Out Pull Low DE 5mA Out Out Pull Low VSYNC 5mA Out Out Pull Low HSYNC 5mA Out Out Pull Low DISP 5mA Out Out Pull Low PCLK 5mA Out Out Pull Low R/G/B 5mA Out Out Pull Low Copyright © 2015 Future Technology Devices International Limited 39 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 5 Memory Map All memory and registers in the FT81x core are memory mapped in 22-bit address space with a 2-bit SPI command prefix. Prefix 0'b00 for read and 0'b10 for write to the address space, 0'b01 is reserved for Host Commands and 0'b11 undefined. The following are the memory space definition. Table 5-1 FT81x Memory Map Start Address End Address Size NAME Description 00 0000h 0F FFFFh 1024 kB RAM_G General purpose graphics RAM 1E 0000h 2F FFFBh 1152 kB ROM_FONT Font table and bitmap 2F FFFCh 2F FFFFh 4B ROM_FONT_ADDR Font table pointer address 30 0000h 30 1FFFh 8 kB RAM_DL Display List RAM 30 2000h 30 2FFFh 4 kB RAM_REG Registers 30 8000h 30 8FFFh 4 kB RAM_CMD Command buffer Note 1: The addresses beyond this table are reserved and shall not be read or written unless otherwise specified. 5.1 Registers Table 5-2 shows the complete list of the FT81x registers. Refer to FT81x_Series_Programmers_Guide, Chapter 2 for details of the register function. Table 5-2 Overview of FT81x Registers Address (hex) 302000h Register Name REG_ID Bit s r/ w Reset value 8 r/o 7Ch Description Identification register, always reads as 7Ch 302004h REG_FRAMES 32 r/o 0 Frame counter, since reset 302008h REG_CLOCK 32 r/o 0 Clock cycles, since reset 30200Ch REG_FREQUENCY 28 r/w 60000000 302010h REG_RENDERMODE 1 r/w 0 Rendering mode: 0 = normal, 1 = single-line 302014h REG_SNAPY 11 r/w 0 Scanline select for RENDERMODE 1 302018h REG_SNAPSHOT 1 r/w - Trigger for RENDERMODE 1 30201Ch REG_SNAPFORMAT 6 r/w 20h 302020h REG_CPURESET 3 r/w 2 Graphics, audio and touch engines reset control. Bit2: audio, bit1: touch, bit0: graphics 302024h REG_TAP_CRC 32 r/o - Live video tap crc. Frame CRC is Main clock frequency (Hz) Pixel format for scanline readout Copyright © 2015 Future Technology Devices International Limited 40 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Address (hex) Register Name Bit s r/ w Reset value Description computed every DL SWAP. 302028h REG_TAP_MASK 32 r/w FFFFFFFFh Live video tap mask 30202Ch REG_HCYCLE 12 r/w 224h Horizontal total cycle count 302030h REG_HOFFSET 12 r/w 02Bh Horizontal display start offset 302034h REG_HSIZE 12 r/w 1E0h Horizontal display pixel count 302038h REG_HSYNC0 12 r/w 000h Horizontal sync fall offset 30203Ch REG_HSYNC1 12 r/w 029h Horizontal sync rise offset 302040h REG_VCYCLE 12 r/w 124h Vertical total cycle count 302044h REG_VOFFSET 12 r/w 00Ch Vertical display start offset 302048h REG_VSIZE 12 r/w 110h Vertical display line count 30204Ch REG_VSYNC0 10 r/w 000h Vertical sync fall offset 302050h REG_VSYNC1 10 r/w 00Ah Vertical sync rise offset 302054h REG_DLSWAP 2 r/w 0 Display list swap control 302058h REG_ROTATE 3 r/w 0 Screen rotation control. Allow normal/mirrored/inverted for landscape or portrait orientation. 30205Ch REG_OUTBITS 9 r/w 1B6h/000h 302060h REG_DITHER 1 r/w 1 Output dither enable 302064h REG_SWIZZLE 4 r/w 0 Output RGB signal swizzle 302068h REG_CSPREAD 1 r/w 1 Output clock spreading enable 30206Ch REG_PCLK_POL 1 r/w 0 PCLK polarity: Output bit resolution, 3 bits each for R/G/B. Default is 6/6/6 bits for FT810/FT811, and 8/8/8 bits for FT812/FT813 (0b’000 means 8 bits) 0 = output on PCLK rising edge, 1 = output on PCLK falling edge 302070h REG_PCLK 8 r/w 0 PCLK frequency divider, 0 = disable 302074h REG_TAG_X 11 r/w 0 Tag query X coordinate 302078h REG_TAG_Y 11 r/w 0 Tag query Y coordinate 30207Ch REG_TAG 8 r/o 0 Tag query result 302080h REG_VOL_PB 8 r/w FFh Volume for playback 302084h REG_VOL_SOUND 8 r/w FFh Volume for synthesizer sound Copyright © 2015 Future Technology Devices International Limited 41 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Address (hex) Register Name 302088h REG_SOUND 30208Ch 302090h Bit s r/ w Reset value 16 r/w 0 REG_PLAY 1 r/w 0h REG_GPIO_DIR 8 r/w 80h Description Sound effect select Start effect playback Legacy GPIO pin direction, 0 = input , 1 = output 302094h REG_GPIO 302098h REG_GPIOX_DIR 8 r/w 00h 16 r/w 8000h Legacy GPIO read/write Extended GPIO pin direction, 0 = input , 1 = output 30209Ch REG_GPIOX 16 3020A0h 3020A4h Reserved - - 3020A8h REG_INT_FLAGS 8 r/o 00h 3020Ach REG_INT_EN 1 r/w 0 3020B0h REG_INT_MASK 8 r/w FFh 3020B4h REG_PLAYBACK_START 20 r/w 0 Audio playback RAM start address 3020B8h REG_PLAYBACK_LENGTH 20 r/w 0 Audio playback sample length (bytes) 3020BCh REG_PLAYBACK_READPTR 20 r/o - Audio playback current read pointer 3020C0h REG_PLAYBACK_FREQ 16 r/w 8000 3020C4h REG_PLAYBACK_FORMAT 2 r/w 0 Audio playback format 3020C8h REG_PLAYBACK_LOOP 1 r/w 0 Audio playback loop enable 3020CCh REG_PLAYBACK_PLAY 1 r/w 0 Start audio playback 3020D0h REG_PWM_HZ 14 r/w 250 BACKLIGHT PWM output frequency (Hz) 3020D4h REG_PWM_DUTY 8 r/w 128 BACKLIGHT PWM output duty cycle 0=0%, 128=100% 3020D8h REG_MACRO_0 32 r/w 0 Display list macro command 0 3020DCh REG_MACRO_1 32 r/w 0 Display list macro command 1 3020E0h – 3020F4h Reserved - - Reserved 3020F8h REG_CMD_READ r/w 0 Command buffer read pointer - 12 r/w 0080h - Extended GPIO read/write Reserved Interrupt flags, clear by read Global interrupt enable, 1=enable Individual interrupt enable, 1=enable Audio playback sampling frequency (Hz) Copyright © 2015 Future Technology Devices International Limited 42 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Address (hex) Register Name Bit s r/ w Reset value 3020FCh REG_CMD_WRITE 12 r/o 0 Command buffer write pointer 302100h REG_CMD_DL 13 r/w 0 Command display list offset 302104h REG_TOUCH_MODE 2 r/w 3 Touch-screen sampling mode 302108h REG_TOUCH_ADC_MODE 1 r/w 1 Set Touch ADC mode REG_CTOUCH_EXTENDED Description Set capacitive touch operation mode: 0: extended mode (multi-touch) 1: FT800 compatibility mode (single touch). 30210Ch REG_TOUCH_CHARGE 16 r/w 9000 302110h REG_TOUCH_SETTLE 4 r/w 3 Touch settle time, units of 6 clocks 302114h REG_TOUCH_OVERSAMPL E 4 r/w 7 Touch oversample factor 302118h REG_TOUCH_RZTHRESH 16 r/w FFFFh 30211Ch REG_TOUCH_ 32 r/o - RAW_XY REG_TOUCH_RZ Touch resistance threshold Compatibility mode: touch-screen raw (x-MSB16; y-LSB16) Extended mode: touch-screen screen data for touch 1 (x-MSB16; y-LSB16) REG_CTOUCH_TOUCH1_X Y 302120h Touch charge time, units of 6 clocks 16 r/o - REG_CTOUCH_TOUCH4_Y Compatibility mode: touch-screen resistance Extended mode: touch-screen screen Y data for touch 4 302124h REG_TOUCH_ 32 r/o - SCREEN_XY Extended mode: touch-screen screen data for touch 0 (x-MSB16; y-LSB16) REG_CTOUCH_TOUCH0_X Y 302128h REG_TOUCH_ 32 r/o - Touch-screen screen (x-MSB16; yLSB16) used for tag 0 lookup 8 r/o - Touch-screen tag result 0 32 r/o - Touch-screen screen (x-MSB16; yLSB16) used for tag 1 lookup 8 r/o - Touch-screen tag result 1 32 r/o - Touch-screen screen (x-MSB16; yLSB16) used for tag 2 lookup 8 r/o - Touch-screen tag result 2 TAG_XY 30212Ch REG_TOUCH_TAG 302130h REG_TOUCH_ TAG1_XY 302134h REG_TOUCH_TAG1 302138h REG_TOUCH_ TAG2_XY 30213Ch REG_TOUCH_TAG2 Compatibility mode: touch-screen screen (x-MSB16; y-LSB16) Copyright © 2015 Future Technology Devices International Limited 43 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Address (hex) Register Name 302140h REG_TOUCH_ Bit s r/ w Reset value 32 r/o - Touch-screen screen (x-MSB16; yLSB16) used for tag 3 lookup 8 r/o - Touch-screen tag result 3 32 r/o - Touch-screen screen (x-MSB16; yLSB16) used for tag 4 lookup 8 r/o - Touch-screen tag result 4 TAG3_XY 302144h REG_TOUCH_TAG3 302148h REG_TOUCH_ Description TAG4_XY 30214Ch REG_TOUCH_TAG4 302150h REG_TOUCH_TRANSFORM _A 32 r/w 00010000h Touch-screen transform coefficient (s15.16) 302154h REG_TOUCH_TRANSFORM _B 32 r/w 00000000h Touch-screen transform coefficient (s15.16) 302158h REG_TOUCH_TRANSFORM _C 32 r/w 00000000h Touch-screen transform coefficient (s15.16) 30215Ch REG_TOUCH_TRANSFORM _D 32 r/w 00000000h Touch-screen transform coefficient (s15.16) 302160h REG_TOUCH_TRANSFORM _E 32 r/w 00010000h Touch-screen transform coefficient (s15.16) 302164h REG_TOUCH_TRANSFORM _F 32 r/w 00000000h Touch-screen transform coefficient (s15.16) 302168h REG_TOUCH_CONFIG 16 r/w 8381h(FT8 10/FT812) Touch configuration. 0381h(FT8 11/FT813) RTP/CTP select RTP: short-circuit, sample clocks CTP: I2C address, CTPM type, lowpower mode 30216Ch REG_CTOUCH_TOUCH4_X 302170h Reserved 302174h REG_BIST_EN 16 r/o - Extended mode: touch-screen screen X data for touch 4 - - - Reserved 1 r/w 0 BIST memory mapping enable Copyright © 2015 Future Technology Devices International Limited 44 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Address (hex) Register Name Bit s r/ w Reset value Description 302178h Reserved - - - Reserved 30217Ch Reserved - - - Reserved 302180h REG_TRIM 8 r/w 0 Internal relaxation clock trimming 302184h REG_ANA_COMP 8 r/w 0 Analogue control register 302188h REG_SPI_WIDTH 3 r/w 0 QSPI bus width setting Bit [2]: extra dummy cycle on read Bit [1:0]: bus width (0=1-bit, 1=2bit, 2=4-bit) 30218Ch REG_TOUCH_DIRECT_XY 32 r/o - REG_CTOUCH_TOUCH2_X Y 302190h REG_TOUCH_DIRECT_Z1Z 2 Extended mode: touch-screen screen data for touch 2 (x-MSB16; y-LSB16) 32 r/o - Reserved 302564h REG_DATESTAMP 302574h 302578h Compatibility mode: Touch screen direct (z1-MSB16; z2-LSB16) conversions Extended mode: touch-screen screen data for touch 3 (x-MSB16; y-LSB16) REG_CTOUCH_TOUCH3_X Y 302194h 302560h Compatibility mode: Touch screen direct (x-MSB16; y-LSB16) conversions - - - Reserved 128 r/o - Stamp date code REG_CMDB_SPACE 12 r/w FFCh REG_CMDB_WRITE 32 w/o 0 Command DL (bulk) space available Command DL (bulk) write Note: All register addresses are 4-byte aligned. The value in the “Bits” column refers to the number of valid bits from bit 0 unless otherwise specified; other bits are reserved. 5.2 Chip ID The FT81x Chip ID can be read at memory location 0C0000h – 0C0003h. The reset values of these bytes are: - 0C0000h: 0C0001h: 0C0002h: 0C0003h: 08h 10h (FT810), 11h(FT811), 12h(FT812), 13h(FT813) 01h 00h Note that the Chip ID location can be over-written by software. Copyright © 2015 Future Technology Devices International Limited 45 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 6 Devices Characteristics and Ratings 6.1 Absolute Maximum Ratings The absolute maximum ratings for the FT81x device are as follows. These are in accordance with the Absolute Maximum Rating System (IEC 60134). Exceeding these may cause permanent damage to the device. Table 6-1 Absolute Maximum Ratings Parameter Value Unit Storage Temperature -65 to +150 °C Floor Life (Out of Bag) At Factory Ambient 168 (IPC/JEDEC J-STD-033A MSL Level 3 Compliant)* Hours Ambient Temperature (Power Applied) -40 to +85 °C VCC Supply Voltage 0 to +4 V VCCIO Supply Voltage 0 to +4 V DC Input Voltage -0.5 to + (VCCIO + 0.3) V (30°C / 60% Relative Humidity) * If the devices are stored out of the packaging, beyond this time limit, the devices should be baked before use. The devices should be ramped up to a temperature of +125°C and baked for up to 17 hours. 6.2 ESD and Latch-up Specifications Table 6-2 ESD and Latch-Up Specifications Description Specification Human Body Mode (HBM) > ± 2kV Machine mode (MM) > ± 200V Charged Device Mode (CDM) > ± 500V Latch-up > ± 200mA 6.3 DC Characteristics Table 6-3 Operating Voltage and Current Parameter Description VCCIO1/ VCCIO operating supply voltage VCCIO2 VCC VCC operating supply voltage Minimum Typical Maximum Units 1.62 1.80 1.98 V 2.25 2.50 2.75 V 2.97 3.30 3.63 V 2.97 3.30 3.63 V Copyright © 2015 Future Technology Devices International Limited Conditions Normal Operation Normal Operation 46 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Parameter Description Minimum Typical Maximum Units Icc1 Conditions Power Down current - 0.17 - mA Power down mode Icc2 Sleep current - 0.76 - mA Sleep Mode Icc3 Standby current - 1.8 - mA Standby Mode Icc4 Operating current - 22 - mA Normal Operation Table 6-4 Digital I/O Pin Characteristics (VCCIO = +3.3V) Parameter Description Minimum Typical Maximum Units Conditions Voh Output Voltage High VCCIO0.4 - - V Ioh=5mA Vol Output Voltage Low - - 0.4 V Iol=5mA Vih Input High Voltage 2.0 - - V Vil Input Low Voltage - - 0.8 V Vth Schmitt Hysteresis Voltage 0.22 - 0.3 V Iin Input leakage current -10 - 10 uA Ioz -10 - 10 uA Rpu Tri-state output leakage current Pull-up resistor - 42 - kΩ Rpd Pull-down resistor - 44 - kΩ Vin = VCCIO or 0 Vin = VCCIO or 0 Table 6-5 Digital I/O Pin Characteristics (VCCIO = +2.5V) Parameter Description Voh Output Voltage High VCCIO0.4 - - V Ioh=5mA Vol Output Voltage Low - - 0.4 V Iol=5mA Vih Input High Voltage 1.7 - - V - Vil Input Low Voltage - - 0.7 V - Vth Schmitt Hysteresis Voltage 0.2 - 0.3 V - Iin Input leakage current -10 - 10 uA Ioz Tri-state output leakage current Pull-up resistor -10 - 10 uA - 57 - kΩ Rpu Minimum Typical Maximum Units Copyright © 2015 Future Technology Devices International Limited Conditions Vin = VCCIO or 0 Vin = VCCIO or 0 47 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Rpd Pull-down resistor - 59 - kΩ Table 6-6 Digital I/O Pin Characteristics (VCCIO = +1.8V) Parameter Description Minimum Typical Maximum Units Conditions Voh Output Voltage High VCCIO0.4 - - V Ioh=5mA Vol Output Voltage Low - - 0.4 V Iol=5mA Vih Input High Voltage 1.2 - - V - Vil Input Low Voltage - - 0.6 V - Vth Schmitt Hysteresis Voltage Input leakage current 0.17 - 0.3 V -10 - 10 uA -10 - 10 uA - 90 - kΩ - 97 - kΩ Iin Ioz Rpu Tri-state output leakage current Pull-up resistor Rpd Pull-down resistor Vin = VCCIO or 0 Vin = VCCIO or 0 Table 6-7 Touch Sense Characteristics Parameter Description Rsw-on X-,X+,Y- and Y+ Drive On resistance Minimum Typical Maximum Units Conditions - 6 10 Ω VCCIO=3.3V - 9 16 Ω VCCIO=1.8V Rsw-off X-,X+,Y- and Y+ Drive Off resistance 10 - - MΩ Rpu Touch sense pull up resistance 78 100 125 kΩ Vth+ Touch Detection rising-edge threshold on XP pin 1.59 - 2.04 V VCCIO=3.3V 0.58 - 0.68 V VCCIO=1.8V Touch Detection falling-edge threshold on XP pin 1.23 - 1.55 V VCCIO=3.3V 0.51 - 0.56 V VCCIO=1.8V X-axis and Y-axis drive load resistance 200 - - Ω Vth- Rl Copyright © 2015 Future Technology Devices International Limited 48 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 6.4 AC Characteristics 6.4.1 System clock and reset Table 6-8 System clock characteristics Value Parameter Units Minimum Typical Maximum Trimmed frequency - 12 - MHz Frequency variation -5.5 - +5.5 % - 12.000 - MHz - - 10 pF Frequency - 12.000 - MHz Duty cycle 45 50 55 % - 3.3 - V Internal Relaxation Clock Crystal Frequency X1/X2 Capacitance External clock input Input voltage on X1/CLK Reset Reset pulse on PD_N 5 ms 6.4.2 SPI interface timing Figure 6-1 SPI Interface Timing Copyright © 2015 Future Technology Devices International Limited 49 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Table 6-9 SPI Interface Timing Specification VCCIO=1.8V VCCIO=2.5V VCCIO=3.3V Min Min Min Units Parameter Description Tsclk SPI clock period (SINGLE/DUAL mode) 33.3 33.3 33.3 ns Tsclk SPI clock period (QUAD mode) 40 40 40 ns Tsclkl SPI clock low duration 13 13 13 ns Tsclkh SPI clock high duration 13 13 13 ns Tsac SPI access time 4 3.5 3 ns Tisu Input Setup 4 3.5 3 ns Tih Input Hold 0 0 0 ns Tzo Output enable delay 16 13 11 ns Toz Output disable delay 13 11 10 ns Tod Output data delay 15 12 11 ns Tcsnh CSN hold time Max 0 Max 0 Max 0 ns 6.4.3 RGB Interface Timing Table 6-10 RGB interface timing characteristics Value Parameter Description Tpclk Pixel Clock period 15.7 Tpclkdc Pixel Clock duty cycle 40 Td Output delay relative to PCLK rising edge (REG_PCLK_POL=0) or falling edge (REG_PCLK_POL=1). Applied for all the RGB output pins. Th Output hold time relative to PCLK rising edge (REG_PCLK_POL=0) or falling edge (REG_PCLK_POL=1). Applied for all the RGB output pins. Min Typ Max Units ns 50 60 % 4 ns 0.5 Copyright © 2015 Future Technology Devices International Limited ns 50 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Figure 6-2 RGB Interface Timing Copyright © 2015 Future Technology Devices International Limited 51 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Application Examples J1 R2 R3 R4 R5 R6 R7 G0 G1 G2 G3 G4 G5 G6 G7 D3V3 EP 56 55 54 53 52 51 50 49 48 47 46 45 44 43 D3V3 LEDK LEDA GND R2 R3 R4 R5 R6 R7 G0 G1 G2 G3 G4 G5 G6 G7 U1 IC_FT812Q QSPI master 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SPI_SCK SPI_MISO SPI_MOSI SPI_CS# SPI_IO2 SPI_IO3 GND B0 B1 B2 B3 B4 B5 B6 B7 PCLK DISP HSYNC VSYNC DE 42 41 40 39 38 37 36 35 34 33 32 31 30 29 B0 B1 B2 B3 B4 B5 B6 B7 PCLK DISP HSYNC VSYNC DE D3V3 C2 C4 C5 0.1uF 0.1uF 0.1uF 0.1uF GND 12MHz C8 18pF GND R0 R1 R2 R3 R4 R5 R6 R7 G0 G1 G2 G3 G4 G5 G6 G7 B0 B1 B2 B3 B4 B5 B6 B7 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R PCLK DISP HSYNC VSYNC DE R25 R26 R27 R28 R29 33R 33R 33R 33R 33R VOUT1V2 Y1 C3 BL_PWM XP YP XM YM 15 16 17 18 19 20 21 22 23 24 25 26 27 28 AUD_PD# SPI_INT# SPI_PD# R1 R0 AUDIO_L GND SCK MISO/IO1 MOSI/IO0 CS_N GPIO0/IO2 GPIO1/IO3 VCCIO1 GPIO2 INT_N PD_N GPIO3 X1/CLK X2 GND VCC VOUT1V2 VCC VCCIO2 XP YP XM YM GND BACKLIGHT R1 R0 AUD_PWM MCU GND C1 C7 18pF GND XP YM XM YP C6 4.7uF 0.1uF 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 0 GND GND LCD1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 VLEDVLED+ GND VDD R0 R1 R2 R3 R4 R5 R6 R7 G0 G1 G2 G3 G4 G5 G6 G7 B0 B1 B2 B3 B4 B5 B6 B7 GND PCLK DISP HSYNC VSYNC DE NC GND X1[Right] Y1[Bottom] X2[Left] Y2[Top] 0.5B-40PBS Figure 7-1 FT812 application circuit J1 EP 56 55 54 53 52 51 50 49 48 47 46 45 44 43 R2 R3 R4 R5 R6 R7 G0 G1 G2 G3 G4 G5 G6 G7 D3V3 GND R2 R3 R4 R5 R6 R7 G0 G1 G2 G3 G4 G5 G6 G7 U1 FT813Q QSPI master SPI_SCK SPI_MISO SPI_MOSI SPI_CS# SPI_IO2 SPI_IO3 AUD_PD# SPI_INT# SPI_PD# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 R1 R0 AUDIO_L GND SCK MISO/IO1 MOSI/IO0 CS_N GPIO0/IO2 GPIO1/IO3 VCCIO1 GPIO2 INT_N PD_N GPIO3 X1/CLK X2 GND VCC VOUT1V2 VCC VCCIO2 CTP_RST_N CTP_INT_N CTP_SCL CTP_SDA GND BACKLIGHT R1 R0 AUD_PWM MCU GND B0 B1 B2 B3 B4 B5 B6 B7 PCLK DISP HSYNC VSYNC DE 42 41 40 39 38 37 36 35 34 33 32 31 30 29 B0 B1 B2 B3 B4 B5 B6 B7 PCLK DISP HSYNC VSYNC DE D3V3 C2 C4 0.1uF 0.1uF 0.1uF GND C5 0.1uF GND D3V3 LEDK LEDA R0 R1 R2 R3 R4 R5 R6 R7 G0 G1 G2 G3 G4 G5 G6 G7 B0 B1 B2 B3 B4 B5 B6 B7 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R PCLK DISP HSYNC VSYNC DE R25 R26 R27 R28 R29 33R 33R 33R 33R 33R J2 12MHz C8 18pF GND D3V3 VOUT1V2 Y1 C3 BL_PWM CTP_RST# CTP_INT# CTP_SCL CTP_SDA 15 16 17 18 19 20 21 22 23 24 25 26 27 28 7 C1 C7 18pF GND 4.7uF C6 0.1uF GND R30 4.7k R31 1k R32 1k CTP_SCL CTP_SDA CTP_INT# CTP_RST# 0 1 2 3 4 5 6 0 0 1 2 3 4 5 6 0 GND 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 0 LCD1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 VLEDVLED+ GND VDD R0 R1 R2 R3 R4 R5 R6 R7 G0 G1 G2 G3 G4 G5 G6 G7 B0 B1 B2 B3 B4 B5 B6 B7 GND PCLK DISP HSYNC VSYNC DE NC GND X1[Right] Y1[Bottom] X2[Left] Y2[Top] 0.5B-40PBS GND CN_6Pin_FPC Bottom Figure 7-2 FT813 application circuit Copyright © 2015 Future Technology Devices International Limited 52 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 D5V L1 NR3015T220M U3 2 LED Current Sense R45 ILED=95/1.6 = 60mA VIN AGND PGND EP 3 1N4148 6 FB R40 4.7k LEDK D1 4 8 9 EN C16 2.2nF 1 VOUT BL_PWM LEDA 7 SW C17 C18 10uF 0.1uF GND MIC2289 R44 10k GND GND R45 1R6 GND C22 0.22uF GND GND Figure 7-3 Backlight drive circuit D3V3 VDD_AUD FB1 600R/1A C9 100uF FB2 C10 0.1uF 600R/1A GND AUD_PWM R33 R34 AGND R35 1k 1k C12 4.7nF AGND C11 10nF 1k C13 4.7nF AGND C14 4.7nF AGND C15 0.47uF R36 10k/1% VDD_AUD R37 20k/1% U2 4 3 AUD_PD# 1 2 ININ+ VDD VO+ VOSHDN GND BYPASS GND 6 5 8 7 9 SP1 SP+ SP1W/8Ohm TPA6205A1 R42 20k/1% R41 10k/1% R43 47k AGND C20 0.47uF AGND C21 0.22uF AGND C19 1uF AGND AGND Figure 7-4 Audio filter and amplifier circuit Copyright © 2015 Future Technology Devices International Limited 53 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 8 Package Parameters The FT81x is available in VQFN-48 and VQFN-56 packages. The package dimensions, markings and solder reflow profile for all packages are described in following sections. 8.1 VQFN-48 Package Dimensions A A1 A3 b MIN. 0.80 0.00 0.20 NOM. 0.85 0.02 0.20 0.25 MAX. 0.90 0.05 0.30 All dimensions are in millimetres (mm) D E 7.00 7.00 D2 5.15 5.20 5.25 E2 5.15 5.20 5.25 e 0.50 L 0.35 0.40 0.45 K 0.20 L 0.30 0.40 0.50 K 0.20 Figure 8-1 VQFN-48 Package Dimensions 8.2 VQFN-56 Package Dimensions A A1 A3 b MIN. 0.80 0.00 0.20 NOM. 0.85 0.02 0.20 0.25 MAX. 0.90 0.05 0.30 All dimensions are in millimetres (mm) D E 8.00 8.00 D2 5.85 5.90 5.95 E2 5.85 5.90 5.95 e 0.50 Figure 8-2 VQFN-56 Package Dimensions Copyright © 2015 Future Technology Devices International Limited 54 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 8.3 Solder Reflow Profile The FT81x is supplied in a Pb free VQFN-48 or VQFN-56 package. The recommended solder reflow profile for the package is shown in Figure 8-3. Temperature, T (Degrees C) tp Tp Critical Zone: when T is in the range TL to Tp Ramp Up TL tL TS Max Ramp Down TS Min tS Preheat 25 T = 25º C to TP Time, t (seconds) Figure 8-3 FT81x Solder Reflow Profile The recommended values for the solder reflow profile are detailed in Table 8-1. Values are shown for both a completely Pb free solder process (i.e. the FT81x is used with Pb free solder), and for a non-Pb free solder process (i.e. the FT81x is used with non-Pb free solder). Table 8-1 Reflow Profile Parameter Values Profile Feature Average Ramp Up Rate (Ts to Tp) Pb Free Solder Process Non-Pb Free Solder Process 3°C / second Max. 3°C / Second Max. Preheat - Temperature Min (Ts Min.) - Temperature Max (Ts Max.) - Time (ts Min to ts Max) 150°C 100°C 200°C 150°C 60 to 120 seconds 60 to 120 seconds 217°C 183°C 60 to 150 seconds Time Maintained Above Critical Temperature TL: - Temperature (TL) 60 to 150 seconds - Time (tL) Peak Temperature (Tp) 260°C 240°C Time within 5°C of actual Peak Temperature 20 to 40 seconds 20 to 40 seconds 6°C / second Max. 6°C / second Max. 8 minutes Max. 6 minutes Max. (tp) Ramp Down Rate Time for T= 25°C to Peak Temperature, Tp Copyright © 2015 Future Technology Devices International Limited 55 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 9 Contact Information Head Office – Glasgow, UK Unit 1, 2 Seaward Place, Centurion Business Park Glasgow G41 1HH United Kingdom Tel: +44 (0) 141 429 2777 Fax: +44 (0) 141 429 2758 E-mail (Sales) E-mail (Support) E-mail (General Enquiries) [email protected] [email protected] [email protected] Branch Office – Tigard, Oregon, USA 7130 SW Fir Loop Tigard, OR 97223 USA Tel: +1 (503) 547 0988 Fax: +1 (503) 547 0987 E-Mail (Sales) E-Mail (Support) E-Mail (General Enquiries) [email protected] [email protected] [email protected] Branch Office – Shanghai, China Branch Office – Taipei, Taiwan 2F, No. 516, Sec. 1, NeiHu Road Taipei 114 Taiwan, R.O.C. Tel: +886 (0) 2 8797 1330 Fax: +886 (0) 2 8751 9737 E-mail (Sales) E-mail (Support) E-mail (General Enquiries) [email protected] [email protected] [email protected] Room 1103, No. 666 West Huaihai Road, Changning District Shanghai, 200052 China Tel: +86 21 62351596 Fax: +86 21 62351595 E-mail (Sales) E-mail (Support) E-mail (General Enquiries) [email protected] [email protected] [email protected] Web Site http://www.ftdichip.com Distributor and Sales Representatives Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and sales representative(s) in your country. System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640 Copyright © 2015 Future Technology Devices International Limited 56 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Appendix A – References Useful Application Notes FT81x_Series_Programmer_Guide AN_252 FT800 Audio Primer AN_254 FT800 Designs with Visual TFT AN_259 FT800 Example with 8-bit MCU AN_275 FT800 Example with Arduino AN_276 Audio File Conversion AN_277 FT800 Create User Defined Font AN_291 FT800 Create Multi-Language Font AN_299 FT800 FT801 Internal Clock Trimming AN_303 - FT800 Image File Conversion AN_308 FT800 Example with an 8-bit MCU AN_312 FT800 Example with ARM AN_314 FT800 Advanced Techniques - Working with Bitmaps AN_318 Arduino Library for FT800 Series AN_320 FT800 Example with PIC AN_327 EVE Screen Editor Installation Guide AN_281 FT800 Emulator Library User Guide AN_333 FT800 and FT801 Touch Capabilities AN_336 FT800 - Selecting an LCD Display FT800 Series Sample Application EVE Frequently Asked Questions Copyright © 2015 Future Technology Devices International Limited 57 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Appendix B - List of Figures and Tables List of Figures Figure 2-1 FT81x Block Diagram ..................................................................................................... 4 Figure 2-2 FT81x System Design Diagram ....................................................................................... 4 Figure 4-1 SPI master and slave in the master read case ................................................................. 14 Figure 4-2 Single/Dual SPI Interface connection ............................................................................. 14 Figure 4-3 Quad SPI Interface connection ...................................................................................... 15 Figure 4-4 Internal relaxation oscillator connection ......................................................................... 21 Figure 4-5 Crystal oscillator connection ......................................................................................... 21 Figure 4-6 External clock input ..................................................................................................... 21 Figure 4-7 RGB timing waveforms ................................................................................................. 28 Figure 4-8 Resistive Touch screen connection ................................................................................. 32 Figure 4-9 Touch screen connection .............................................................................................. 34 Figure 4-10 Internal regulator ...................................................................................................... 36 Figure 4-11 Power State Transition ............................................................................................... 37 Figure 6-1 SPI Interface Timing .................................................................................................... 49 Figure 6-2 RGB Interface Timing ................................................................................................... 51 Figure 7-1 FT812 application circuit............................................................................................... 52 Figure 7-2 FT813 application circuit............................................................................................... 52 Figure 7-3 Backlight drive circuit .................................................................................................. 53 Figure 7-4 Audio filter and amplifier circuit ..................................................................................... 53 Figure 8-1 VQFN-48 Package Dimensions ...................................................................................... 54 Figure 8-2 VQFN-56 Package Dimensions ...................................................................................... 54 Figure 8-3 FT81x Solder Reflow Profile .......................................................................................... 55 List of Tables Table 3-1 FT81x pin description ...................................................................................................... 9 Table 4-1 QSPI channel selection .................................................................................................. 13 Table 4-2 Host memory read transaction ....................................................................................... 15 Table 4-3 Host memory write transaction ...................................................................................... 16 Table 4-4 Host command transaction ............................................................................................ 16 Table 4-5 Host command list ........................................................................................................ 16 Table 4-6 Interrupt Flags bit assignment ....................................................................................... 20 Table 4-7 Font table format ......................................................................................................... 23 Table 4-8 ROM font table ............................................................................................................. 23 Table 4-9 ROM font ASCII character width in pixels ......................................................................... 23 Table 4-10 ROM font Extended ASCII characters ............................................................................ 25 Table 4-11 RGB PCLK frequency ................................................................................................... 26 Table 4-12 REG_SWIZZLE RGB Pins Mapping ................................................................................. 27 Table 4-13 Registers for RGB horizontal and vertical timings ............................................................ 27 Table 4-14 Output drive current selection ...................................................................................... 29 Copyright © 2015 Future Technology Devices International Limited 58 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Table 4-15 Sound Effect .............................................................................................................. 30 Table 4-16 MIDI Note Effect ......................................................................................................... 31 Table 4-17 Resistive Touch Controller Operating Mode .................................................................... 33 Table 4-18 Capacitive Touch Controller Operating Mode .................................................................. 34 Table 4-19 Power supply ............................................................................................................. 36 Table 4-20 Pin Status .................................................................................................................. 38 Table 5-1 FT81x Memory Map ...................................................................................................... 40 Table 5-2 Overview of FT81x Registers .......................................................................................... 40 Table 6-1 Absolute Maximum Ratings ............................................................................................ 46 Table 6-2 ESD and Latch-Up Specifications .................................................................................... 46 Table 6-3 Operating Voltage and Current ....................................................................................... 46 Table 6-4 Digital I/O Pin Characteristics (VCCIO = +3.3V) ............................................................... 47 Table 6-5 Digital I/O Pin Characteristics (VCCIO = +2.5V) ............................................................... 47 Table 6-6 Digital I/O Pin Characteristics (VCCIO = +1.8V) ............................................................... 48 Table 6-7 Touch Sense Characteristics .......................................................................................... 48 Table 6-8 System clock characteristics .......................................................................................... 49 Table 6-9 SPI Interface Timing Specification .................................................................................. 50 Table 6-10 RGB interface timing characteristics .............................................................................. 50 Table 8-1 Reflow Profile Parameter Values ..................................................................................... 55 Copyright © 2015 Future Technology Devices International Limited 59 Document No.: FT_001165 FT81X Embedded Video Engine Datasheet Version 1.2 Clearance No.: FTDI#440 Appendix C - Revision History Document Title: FT81X Embedded Video Engine Datasheet Document Reference No.: FT_001165 Clearance No.: FTDI#440 Product Page: http://www.ftdichip.com/EVE.htm Document Feedback: DS_FT81x Revision Changes Date Draft Initial Release 2015-02-15 1.0 Revised Release 2015-07-07 1.1 Revised Release 2015-09-14 1.2 Revised Release 2015-09-29 Copyright © 2015 Future Technology Devices International Limited 60