L6474 Fully integrated microstepping motor driver Datasheet - production data Applications Bipolar stepper motor Description POWERSO36 The L6474 device, realized in analog mixed signal technology, integrates a dual low RDS(on) DMOS full bridge with all power switches equipped with an accurate on-chip current sensing circuitry suitable for non-dissipative current control and overcurrent protections. Thanks to a new current control, a 1/16 microstepping is achieved through an adaptive decay mode which outperforms traditional implementations. HTSSOP28 Features Operating voltage: 8 - 45 V 7.0 A output peak current (3.0 A r.m.s.) Low RDS(on) power MOSFETs Programmable power MOS slew rate All data registers, including those used to set analogue values (i.e.: current control value, current protection trip point, deadtime, etc.) are sent through a standard 5 Mbit/s SPI. Up to 1/16 microstepping Current control with adaptive decay Non-dissipative current sensing SPI interface Low quiescent and standby currents Programmable non-dissipative overcurrent protection on all power MOS A very rich set of protections (thermal, low bus voltage, overcurrent) makes the L6474 device “bullet proof” as required by the most demanding motor control applications. Two-level overtemperature protection Table 1. Device summary Order code Package Packing L6474H HTSSOP28 Tube L6474HTR HTSSOP28 Tape and reel L6474PD POWERSO36 Tube L6474PDTR POWERSO36 Tape and reel March 2015 This is information on a product in full production. DocID022529 Rev 4 1/53 www.st.com Contents L6474 Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2/53 6.1 Device power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.2 Logic I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.3 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.4 Microstepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.5 Absolute position counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.6 Step sequence control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.7 Enable and disable commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.8 Internal oscillator and oscillator driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.8.1 Internal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.8.2 External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.9 Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.10 Undervoltage lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.11 Thermal warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.12 Reset and standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.13 Programmable DMOS slew rate, deadtime and blanking-time . . . . . . . . 25 6.14 Integrated analog to digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.15 Internal voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 DocID022529 Rev 4 L6474 7 Contents 6.16 SYNC pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.17 FLAG pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Phase current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.1 Peak current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.2 Auto-adjusted decay mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.3 Auto-adjusted fast decay during the falling steps . . . . . . . . . . . . . . . . . . . 29 7.4 Torque regulation (output current amplitude regulation) . . . . . . . . . . . . . . 30 8 Serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 9 Programming manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9.1 9.2 Registers and flags description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9.1.1 ABS_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9.1.2 EL_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9.1.3 MARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9.1.4 TVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9.1.5 T_FAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 9.1.6 TON_MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 9.1.7 TOFF_MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.1.8 ADC_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.1.9 OCD_TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.1.10 STEP_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9.1.11 ALARM_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.1.12 CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.1.13 STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 9.2.1 Command management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.2.2 NOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 9.2.3 SetParam (PARAM, VALUE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 9.2.4 GetParam (PARAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.2.5 Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.2.6 Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.2.7 GetStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 DocID022529 Rev 4 3/53 53 Contents 10 11 4/53 L6474 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 10.1 HTSSOP28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 10.2 POWERSO36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 DocID022529 Rev 4 L6474 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Typical application values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 CL values according to external oscillator frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 EL_POS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Torque regulation register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 T_FAST register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Maximum fast decay times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Minimum ON time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Minimum OFF time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ADC_OUT value and torque regulation feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Overcurrent detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 STEP_MODE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Step mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 SYNC signal source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ALARM_EN register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 CONFIG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Oscillator management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Overcurrent event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Programmable power bridge output slew rate values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 External torque regulation enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 OFF time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 STATUS register DIR bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 NOP command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 SetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 GetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 HardStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Disable command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 GetStatus command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 HTSSOP28 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 POWERSO36 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 DocID022529 Rev 4 5/53 53 List of figures L6474 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. 6/53 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 HTSSOP28 pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 POWERSO36 pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Bipolar stepper motor control application using L6474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Charge pump circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Normal mode and microstepping (16 microsteps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 OSCIN and OSCOUT pin configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Internal 3 V linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Peak current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Adaptive decay - fast decay tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Adaptive decay - switch from normal to slow + fast decay mode and vice versa . . . . . . . . 29 Fast decay tuning during the falling steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SPI timings diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Daisy chain configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Command with three-byte argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Command with three-byte response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Command response aborted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 HTSSOP28 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 POWERSO36 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 DocID022529 Rev 4 L6474 1 Block diagram Block diagram Figure 1. Block diagram 9'' 26&,1 0+] 2VFLOODWRU 26&287 $'&,1 95(* 9%227 &KDUJH SXPS ([W2VFGULYHU &ORFNJHQ $'& 67%<5(6 &3 96$ 9 9ROWDJH5HJ )/$* 9 ERRW 9 ERRW +6 $ 96$ +6 $ 5HJLVWHUV 287$ 9'' +6 $ 287$ /6 $ +6 $ /6 $ /6 $ /6 $ &RQWURO /RJLF 3*1' 96% +6 % /6 % &6 9 ERRW 9 ERRW 96% +6 % 63, &. 6'2 /6 % +6 % +6 % 287% 6', 287% 6<1& 67&. 7HPSHUDWXUH VHQVLQJ &XUUHQW'$&V &RPSDUDWRUV /6 % /6 % 3*1' 9 '' &XUUHQW VHQVLQJ ',5 '*1' $*1' $0Y DocID022529 Rev 4 7/53 53 Electrical data L6474 2 Electrical data 2.1 Absolute maximum ratings Table 2. Absolute maximum ratings Symbol VDD Parameter Test condition Logic interface supply voltage Motor supply voltage VS VGND, diff VSA = VSB = VS Differential voltage between AGND, PGND and DGND Value Unit 5.5 V 48 V ±0.3 V Vboot Bootstrap peak voltage 55 V VREG Internal voltage regulator output pin and logic supply voltage 3.6 V Integrated ADC input voltage range (ADCIN pin) -0.3 to +3.6 V OSCIN and OSCOUT pin voltage range -0.3 to +3.6 V 48 V -0.3 to +5.5 V 3 A 7 A -40 to 150 °C -55 to 150 °C 5 W VADCIN VOSC Vout_diff Differential voltage between VSA, OUT1A, OUT2A, PGND and VSB, OUT1B, OUT2B, PGND pins VLOGIC Logic inputs voltage range Iout (1) Iout_peak TOP Ts Ptot VSA = VSB = VS R.m.s. output current (1) Pulsed output current TPULSE < 1 ms Operating junction temperature Storage temperature range Total power dissipation (TA = 25 ºC) (2) 1. Maximum output current limit is related to metal connection and bonding characteristics. Actual limit must satisfy maximum thermal dissipation constraints. 2. HTSSOP28 mounted on EVAL6474H. 8/53 DocID022529 Rev 4 L6474 2.2 Electrical data Recommended operating conditions Table 3. Recommended operating conditions Symbol VDD VS Test condition Logic interface supply voltage Value 3.3 V logic outputs 3.3 5 V logic outputs 5 Motor supply voltage VSA = VSB = VS Vout_diff Differential voltage between VSA, OUT1A, OUT2A, PGND and VSB, OUT1B, OUT2B, PGND pins VSA = VSB = VS VREG,in Logic supply voltage VADC 2.3 Parameter VREG voltage imposed by external source 8 3.2 Integrated ADC input voltage (ADCIN pin) 0 Unit V 45 V 45 V 3.3 V VREG V Thermal data Table 4. Thermal data Symbol RthJA Parameter Thermal resistance junction-ambient Package Typ. HTSSOP28(1) 22 POWERSO36(2) 12 Unit °C/W 1. HTSSOP28 mounted on EVAL6474H Rev 1.0 board: four-layer FR4 PCB with a dissipating copper surface of about 40 cm2 on each layer and 15 via holes below the IC. 2. POWERSO36 mounted on EVAL6474PD Rev 1.0 board: four-layer FR4 PCB with a dissipating copper surface of about 40 cm2 on each layer and 22 via holes below the IC. DocID022529 Rev 4 9/53 53 Electrical characteristics 3 L6474 Electrical characteristics VSA = VSB = 36 V; VDD = 3.3 V; internal 3 V regulator; TJ = 25 °C, unless otherwise specified. Table 5. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit General VSthOn VS UVLO turn-on threshold 7.5 8.2 8.9 V VSthOff VS UVLO turn-off threshold 6.6 7.2 7.8 V VSthHyst VS UVLO threshold hysteresis 0.7 1 1.3 V Iq Quiescent motor supply current 0.5 0.65 mA Tj(WRN) Tj(SD) Internal oscillator selected; VREG = 3.3 V ext; CP floating Thermal warning temperature 130 °C Thermal shutdown temperature 160 °C Charge pump Vpump fpump,min Voltage swing for charge pump oscillator Minimum charge pump oscillator 10 V frequency(1) 660 kHz frequency(1) 800 kHz fpump,max Maximum charge pump oscillator Iboot Average boot current fsw,A = fsw,B = 15.6 kHz POW_SR = ‘10’ 1.1 Tj = 25 °C, Iout = 3 A 0.37 1.4 mA Output DMOS transistor High-side switch ON resistance RDS(on) Low-side switch ON resistance IDSS tr 10/53 Leakage current Rise time(3) Tj = 125 °C, (2) Iout = 3 A 0.51 Tj = 25 °C, Iout = 3A 0.18 Tj = 125 °C, (2) Iout = 3 A 0.23 OUT = VS OUT = GND 3.1 -0.3 POW_SR = '00', Iout = +1 A 100 POW_SR = '00', Iout = -1 A 80 POW_SR = ‘11’, Iout = ±1 A 100 POW_SR = ‘10’, Iout = ±1 A 200 POW_SR = ‘01’, Iout = ±1 A 300 DocID022529 Rev 4 mA ns L6474 Electrical characteristics Table 5. Electrical characteristics (continued) Symbol tf SRout_r SRout_f Parameter Test condition (3) Fall time Output rising slew rate Output falling slew rate Min. Typ. POW_SR = '00'; Iout = +1 A 90 POW_SR = '00'; Iout = -1 A 110 POW_SR = ‘11’, Iout = ±1 A 110 POW_SR = ‘10’, Iout = ±1 A 260 POW_SR = ‘01’, Iload = ±1 A 375 POW_SR = '00', Iout = +1 A 285 POW_SR = '00', Iout = -1 A 360 POW_SR = ‘11’, Iout = ±1 A 285 POW_SR = ‘10’, Iout = ±1 A 150 POW_SR = ‘01’, Iout = ±1 A 95 POW_SR = '00', Iout = +1 A 320 POW_SR = '00', Iout = -1 A 260 POW_SR = ‘11’, Iout = ±1 A 260 POW_SR = ‘10’, Iout = ±1 A 110 POW_SR = ‘01’, Iout = ±1 A 75 POW_SR = '00' 250 POW_SR = ‘11’, fOSC = 16 MHz 375 POW_SR = ‘10’, fOSC = 16 MHz 625 POW_SR = ‘01’, fOSC = 16 MHz 875 POW_SR = '00' 250 POW_SR = ‘11’, fOSC = 16 MHz 375 POW_SR = ‘10’, fOSC = 16 MHz 625 POW_SR = ‘01’, fOSC = 16 MHz 875 Max. Unit ns V/µs V/µs Deadtime and blanking tDT tblank Deadtime(1) Blanking time(1) ns ns Source-drain diodes VSD,HS High-side diode forward ON voltage Iout = 1 A 1 1.1 V VSD,LS Low-side diode forward ON voltage Iout = 1 A 1 1.1 V trrHS High-side diode reverse recovery time Iout = 1 A 30 ns trrLS Low-side diode reverse recovery time Iout = 1 A 100 ns DocID022529 Rev 4 11/53 53 Electrical characteristics L6474 Table 5. Electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit Logic inputs and outputs VIL Low logic level input voltage VIH High logic level input voltage IIH IIL 0.8 2 (4) VIN = 5 V (5) VIN = 0 V High logic level input current Low logic level input current VOL Low logic level output voltage(6) VOH High logic level output voltage RPU RPD V V 1 -1 µA µA VDD = 3.3 V, IOL = 4 mA 0.3 VDD = 5 V, IOL = 4 mA 0.3 V VDD = 3.3 V, IOH = 4 mA 2.4 VDD = 5 V, IOH = 4 mA 4.7 CS pull-up and STBY pull-down resistors CS = GND; STBY/RST = 5 V 335 430 565 k RPUDIR DIR input pull-up resistance DIR = GND 60 85 110 k Ilogic Internal logic supply current 3.3 V VREG externally supplied, internal oscillator 3.7 4.3 mA 2 2.5 µA 2 MHz Ilogic,STBY Standby mode internal logic supply current fSTCK 3.3 V VREG externally supplied V Step clock input frequency Internal oscillator and external oscillator driver fosc,i Internal oscillator frequency Tj = 25 °C, VREG = 3.3 V fosc,e Programmable external oscillator frequency -3% 16 8 +3% MHz 32 MHz VOSCOUTH OSCOUT clock source high level voltage Internal oscillator 3.3 V VREG externally supplied; IOSCOUT = 4 mA VOSCOUTL OSCOUT clock source low level voltage Internal oscillator 3.3 V VREG externally supplied; IOSCOUT = 4 mA 0.3 V trOSCOUT tfOSCOUT Internal oscillator 20 ns OSCOUT clock source rise and fall time 2.4 V textosc Internal to external oscillator switching delay 3 ms tintosc External to internal oscillator switching delay 1.5 µs SPI fCK,MAX Maximum SPI clock frequency(7) 5 MHz trCK tfCK SPI clock rise and fall time(7) thCK tlCK SPI clock high and low time(7) 75 ns tsetCS Chip select setup time(7) 350 ns tholCS Chip select hold time(7) 10 ns 12/53 CL = 30 pF DocID022529 Rev 4 25 ns L6474 Electrical characteristics Table 5. Electrical characteristics (continued) Symbol Parameter tdisCS Deselect time tsetSDI Data input setup time(7) tholSDI tenSDO (7) Data input hold time Data output enable time Min. Typ. Max. Unit 800 ns 25 ns 20 ns (7) 38 ns (7) 47 ns 57 ns tdisSDO Data output disable time tvSDO Data output valid time(7) tholSDO Test condition (7) (7) Data output hold time 37 ns Current control ISTEP,max Max. programmable reference current 4 A ISTEP,min Min. programmable reference current 31 mA 6 A Overcurrent protection IOCD,MAX Maximum programmable overcurrent detection threshold IOCD,MIN Minimum programmable overcurrent detection OCD_TH = ‘0000’ threshold 0.375 A IOCD,RES Programmable overcurrent detection threshold resolution 0.375 A tOCD,Flag OCD to flag signal delay time dIout/dt = 350A/µs 650 tOCD,SD OCD to shut down delay time dIout/dt = 350A/µs POW_SR = '10' 600 VS = 8 V 26 34 VS = 36 V 30 36 OCD_TH = ‘1111’ 1000 ns µs Standby IqSTBY tSTBY,min tlogicwu tcpwu Quiescent motor supply current in standby conditions Minimum standby time 10 Logic power-on and wake-up time 38 Charge pump power-on and wake-up time Power bridges disabled, Cp = 10 nF, Cboot = 220 nF µA µs 45 650 µs µs Internal voltage regulator VREG Voltage regulator output voltage IREG Voltage regulator output current 2.9 VREG, drop Voltage regulator output voltage drop IREG = 40 mA 3 3.2 V 40 mA 50 IREG,STBY Voltage regulator standby output current mV 10 mA Integrated analog to digital converter NADC Analog to digital converter resolution DocID022529 Rev 4 5 bit 13/53 53 Electrical characteristics L6474 Table 5. Electrical characteristics (continued) Symbol VADC,ref fS Parameter Test condition Min. Typ. Max. Unit Analog to digital converter reference voltage VREG V Analog to digital converter sampling frequency fOSC/ 512 kHz 1. Accuracy depends on oscillator frequency accuracy. 2. Tested at 25 °C in a restricted range and guaranteed by characterization. 3. Rise and fall time depends on motor supply voltage value. Refer to SRout values (Table 5) in order to evaluate the actual rise and fall time. 4. Not valid for STBY/RST pins which have internal pull-down resistor. 5. Not valid for SW and CS pins which have internal pull-up resistor. 6. FLAG and SYNC open drain outputs included. 7. See Figure 13: SPI timings diagram for details. 14/53 DocID022529 Rev 4 L6474 4 Pin connection Pin connection Figure 2. HTSSOP28 pin connection (top view) RST DIR SYNC Figure 3. POWERSO36 pin connection (top view) 1(/% 065" 065" 74" 74" 45#:345 DIR 48 "%$*/ 73&( 04$*/ 04$065 "(/% $1 7#005 74# 74# 065# 065# &1"% DocID022529 Rev 4 065" 065" 74" 74" 45$, '-"( $4 SYNC #64:=4:/$ %(/% 4%* $, 4%0 7%% 74# 74# 065# 065# 1(/% 15/53 53 Pin connection L6474 Pin list Table 6. Pin description Number Name Type 17 VDD Power Logic outputs supply voltage (pull-up reference) 9 6 VREG Power Internal 3 V voltage regulator output and 3.3 V external logic supply 10 7 OSCIN Analog input Oscillator pin 1. To connect an external oscillator or clock source. If this pin is unused, it should be left floating. Oscillator pin 2. To connect an external oscillator. When the internal oscillator is used this pin can supply 2/4/8/16 MHz. If this pin is unused, it should be left floating. POWERSO HTSSOP 24 Function 11 8 OSCOUT Analog output 13 10 CP Output 14 11 VBOOT Supply voltage 8 5 ADCIN Analog input Internal analog to digital converter input 4, 5 2 33, 34 26 VSA Power supply Full bridge A power supply pin. It must be connected to VSB 15, 16 12 22, 23 16 VSB Power supply Full bridge B power supply pin. It must be connected to VSA 1 27 19 13 PGND Ground 2, 3 1 OUT1A Power output Full bridge A output 1 35, 36 28 OUT2A Power output Full bridge A output 2 17, 18 14 OUT1B Power output Full bridge B output 1 20, 21 15 OUT2B Power output Full bridge B output 2 12 9 AGND Ground Analog ground 7 4 DIR Logical input Direction input 28 21 DGND Ground Digital ground 29 22 SYNC 25 18 SDO Logic output 27 20 SDI Logic input Data input pin for serial interface 26 19 CK Logic input Serial interface clock 30 23 CS Logic input Chip select input pin for serial interface 16/53 Charge pump oscillator output Bootstrap voltage needed for driving the high-side power DMOS of both bridges (A and B) Power ground pin Open drain output Synchronization signal. Data output pin for serial interface DocID022529 Rev 4 L6474 Pin connection Table 6. Pin description (continued) Number Name POWERSO Type Function HTSSOP Status flag pin. An internal open drain transistor can pull the pin to GND when a programmed alarm Open drain output condition occurs (step loss, OCD, thermal pre-warning or shutdown, UVLO, wrong command, non performable command) 31 24 FLAG 6 3 STBY\RST Logic input Standby and reset pin. LOW logic level resets the logic and puts the device into standby mode. If not used, should be connected to VDD 32 25 STCK Logic input Step clock input EPAD Exposed pad Ground Internally connected to PGND, AGND and DGND pins DocID022529 Rev 4 17/53 53 Typical applications 5 L6474 Typical applications Table 7. Typical application values Name Value CVS 220 nF CVSPOL 100 µF CREG 100 nF CREGPOL 47 µF CDD 100 nF CDDPOL 10 µF D1 Charge pump diodes CBOOT 220 nF CFLY 10 nF RPU 39 k RSW 100 CSW 10 nF Figure 4. Bipolar stepper motor control application using L6474 $#005 74 % $%%10- $%% $74 77 $7410- $'-: 316 316 73&( 7%% 7#005 )045 $1 74# 74" (1*0 41* "%$*/ '-"( 4:/$ 45$, 45#: %*3 $4 $, 4%0 4%* 065" 065" - .PUPS 065# 065# 04$*/ 04$065 %(/% "(/% 18/53 DocID022529 Rev 4 1(/% L6474 Functional description 6 Functional description 6.1 Device power-up At power-up end, the device state is the following: Registers are set to default Internal logic is driven by internal oscillator and a 2 MHz clock is provided by the OSCOUT pin Bridges are disabled (High Z) UVLO bit in STATUS register is forced low (fail condition) FLAG output is forced low. During power-up the device is under reset (all logic IO disabled and power bridges in high impedance state) until the following conditions are satisfied: 6.2 VS is greater than VSthOn VREG is greater than VREGth = 2.8 V typical Internal oscillator is operative. Logic I/O Pins CS, CK, SDI, STCK, DIR and STBY\RST are TTL/CMOS 3.3 V - 5 V compatible logic inputs. Pin SDO is a TTL/CMOS compatible logic output. VDD pin voltage sets the logic output pin voltage range; when it is connected to VREG or 3.3 V external supply voltage, the output is 3.3 V compatible. When VDD is connected to a 5 V supply voltage, SDO is 5 V compatible. VDD is not internally connected to VREG, an external connection is always needed. A 10 µF capacitor should be connected to the VDD pin in order to obtain a proper operation. Pins FLAG and SYNC are open drain outputs. 6.3 Charge pump To ensure the correct driving of the high-side integrated MOSFETs, a voltage higher than the motor power supply voltage needs to be applied to the VBOOT pin. The high-side gate driver supply voltage VBOOT is obtained through an oscillator and a few external components realizing a charge pump (see Figure 5). DocID022529 Rev 4 19/53 53 Functional description L6474 Figure 5. Charge pump circuitry 6.4 Microstepping The driver is able to divide the single step into up to 16 microsteps. Stepping mode can be programmed by STEP_SEL parameter in STEP_MODE register (see Table 19 on page 38). Step mode can only be changed when bridges are disabled. Every time the step mode is changed, the electrical position (i.e. the point of microstepping sinewave that is generated) is reset to the first microstep and the absolute position counter value (see Section 6.5) becomes meaningless. Figure 6. Normal mode and microstepping (16 microsteps) 20/53 DocID022529 Rev 4 L6474 6.5 Functional description Absolute position counter An internal 22 bit register (ABS_POS) takes memory of motor motion according to the selected step mode; the stored value unit is equal to the selected step mode (full, half, quarter, etc.). The position range is from -221 to +221-1 (µ) steps (see Section 9.1.1 on page 34). 6.6 Step sequence control The motor movement is defined by the step clock signal applied to the STCK pin. At each step clock rising edge, the motor is moved by one microstep in the direction selected by DIR input (high for forward direction and low for reverse direction) and absolute position is consequently updated. 6.7 Enable and disable commands The power stage of the device can be enabled and disabled through the respective SPI commands. The enable command turns on the power outputs and starts the current control algorithm. The phase currents are controlled according to present EL_POS value. If a fault condition requires the power stage to be disabled, the command is ignored. The disable command immediately forces the power outputs in a high impedance condition. DocID022529 Rev 4 21/53 53 Functional description 6.8 L6474 Internal oscillator and oscillator driver The control logic clock can be supplied by the internal 16 MHz oscillator, an external oscillator (crystal or ceramic resonator) or a direct clock signal. These working modes can be selected by EXT_CLK and OSC_SEL parameters in the CONFIG register (see Table 23 on page 40). At power-up the device starts using the internal oscillator and provides a 2 MHz clock signal on the OSCOUT pin. Attention: In any case, before changing clock source configuration, a hardware reset is mandatory. Switching to different clock configurations during operation could cause unexpected behavior. 6.8.1 Internal oscillator In this mode the internal oscillator is activated and OSCIN is unused. If OSCOUT clock source is enabled, the OSCOUT pin provides a 2, 4, 8 or 16 MHz clock signal (according to OSC_SEL value); otherwise it is unused (see Figure 7). 6.8.2 External clock source Two types of external clock source can be selected: crystal/ceramic resonator or direct clock source. Four programmable clock frequencies are available for each external clock source: 8, 16, 24 and 32 MHz. When an external crystal/resonator is selected, the OSCIN and OSCOUT pins are used to drive the crystal/resonator (see Figure 7). The crystal/resonator and load capacitors (CL) must be placed as close as possible to the pins. Refer to Table 8 for the choice of the load capacitor value according to the external oscillator frequency. Table 8. CL values according to external oscillator frequency Crystal/resonator freq. (1) CL(2) 8 MHz 25 pF (ESRmax = 80 ) 16 MHz 18 pF (ESRmax = 50 ) 24 MHz 15 pF (ESRmax = 40 ) 32 MHz 10 pF (ESRmax = 40 ) 1. First harmonic resonance frequency. 2. Lower ESR value allows driving greater load capacitors. If a direct clock source is used, it must be connected to the OSCIN pin and the OSCOUT pin supplies the inverted OSCIN signal (see Figure 7). 22/53 DocID022529 Rev 4 L6474 Functional description Figure 7. OSCIN and OSCOUT pin configurations Note: When OSCIN is UNUSED, it should be left floating. When OSCOUT is UNUSED it should be left floating. 6.9 Overcurrent detection When the current in any of the power MOSFETs exceeds a programmed overcurrent threshold, the STATUS register OCD flag is forced low until the overcurrent event has expired and a GetStatus command is sent to the IC (see Section 9.1.13 on page 41 and Section 9.1.9 on page 37). Overcurrent event expires when all the power MOSFET currents fall below the programmed overcurrent threshold. The overcurrent threshold can be programmed through the OCD_TH register in one of 16 available values ranging from 375 mA to 6 A with steps of 375 mA (see Section 9.1.9 on page 37). It is possible to set whether or not an overcurrent event causes the MOSFET turn-off (bridges in high impedance status) acting on the OC_SD bit in the CONFIG register (see Section 9.1.12 on page 39). The OCD flag in the STATUS register is raised anyway (see Table 28 on page 41, Section 9.1.13). When the IC outputs are turned off by an OCD event, they cannot be turned on until the OCD flag is released by a GetStatus command. DocID022529 Rev 4 23/53 53 Functional description L6474 Attention: The overcurrent shutdown is a critical protection feature. It is not recommended to disable it. 6.10 Undervoltage lockout (UVLO) The L6474 provides a motor supply UVLO protection. When the motor supply voltage falls below the VSthOff threshold voltage, the STATUS register UVLO flag is forced low. When a GetStatus command is sent to the IC, and the undervoltage condition has expired, the UVLO flag is released (see Section 9.1.13 on page 41 and Section 9.2.7 on page 46). Undervoltage condition expires when the motor supply voltage goes over the VSthOn threshold voltage. When the device is in undervoltage condition no motion can be performed. The UVLO flag is forced low by logic reset (power-up included) even if no UVLO condition is present. 6.11 Thermal warning and thermal shutdown An internal sensor allows the L6474 to detect when the device internal temperature exceeds a thermal warning or an overtemperature threshold. When the thermal warning threshold (Tj(WRN)) is reached, the TH_WRN bit in the STATUS register is forced low (see Section 9.1.13) until the temperature decreases below Tj(WRN) and a GetStatus command is sent to the IC (see Section 9.1.13 and Section 9.2.7). When the thermal shutdown threshold (Tj(OFF)) is reached, the device goes into thermal shutdown condition: the TH_SD bit in the STATUS register is forced low, the power bridges are disabled, bridges in high impedance state and the HiZ bit in the STATUS register are raised (see Section 9.1.13). Thermal shutdown condition only expires when the temperature goes below the thermal warning threshold (Tj(WRN)). On exiting thermal shutdown condition, the bridges are still disabled (HiZ flag high). 6.12 Reset and standby The device can be reset and put into standby mode through a dedicated pin. When the STBY\RST pin is driven low, the bridges are left open (High Z state), the internal charge pump is stopped, the SPI interface and control logic are disabled, and the internal 3 V voltage regulator maximum output current is reduced to IREG,STBY; as a result the L6474 heavily reduces the power consumption. At the same time the register values are reset to default and all protection functions are disabled. STBY\RST input must be forced low at least for tSTBY, min. in order to ensure the complete switch to standby mode. On exiting standby mode, as well as for IC power-up, a delay of up to tlogicwu must be given before applying a new command to allow proper oscillator and logic startup and a delay of up to tcpwu must be given to allow the charge pump startup. On exiting standby mode the bridges are disabled (HiZ flag high). 24/53 DocID022529 Rev 4 L6474 Functional description Attention: It is not recommended to reset the device when outputs are active. The device should be switched to high impedance state before being reset. 6.13 Programmable DMOS slew rate, deadtime and blanking-time Using the POW_SR parameter in the CONFIG register, it is possible to set the commutation speed of the power bridges output (see Table 25 on page 41). 6.14 Integrated analog to digital converter The L6474 integrates a NADC bit ramp-compare analog to digital converter with a reference voltage equal to VREG. The analog to digital converter input is available through the ADCIN pin and the conversion result is available in the ADC_OUT register (see Section 9.1.13 on page 41). Sampling frequency is equal to the clock frequency divided by 512. The ADC_OUT value can be used for the torque regulation or is at the user’s disposal. 6.15 Internal voltage regulator The L6474 integrates a voltage regulator which generates a 3 V voltage starting from the motor power supply (VSA and VSB). In order to make the voltage regulator stable, at least 22 µF should be connected between the VREG pin and ground (suggested value is 47 µF). The internal voltage regulator can be used to supply the VDD pin in order to make the device digital output range 3.3 V compatible (Figure 8). A digital output range 5 V compatible can be obtained connecting the VDD pin to an external 5 V voltage source. In both cases, a 10 µF capacitance should be connected to the VDD pin in order to obtain a correct operation. The internal voltage regulator is able to supply a current up to IREG,MAX, internal logic consumption included (Ilogic). When the device is in standby mode the maximum current that can be supplied is IREG, STBY, internal consumption included (Ilogic, STBY). If an external 3.3 V regulated voltage is available, it can be applied to the VREG pin in order to supply all the internal logic and avoid power dissipation of the internal 3 V voltage regulator (Figure 8). The external voltage regulator should never sink current from the VREG pin. DocID022529 Rev 4 25/53 53 Functional description L6474 Figure 8. Internal 3 V linear regulator 7#"5 7T 7T 7 73&( 7%% P$ 7 3&( 7%% 74" 74# *$ %(/% 7%% 74" 74# *$ "(/% -PHJHTVQQMJFECZ */5&3/"-WPMUBHFSFHVMBUPS 6.16 73&( %(/% "(/% -PHJHTVQQMJFECZ &95&3/"-WPMUBHFSFHVMBUPS SYNC pin This pin works as a synchronization signal: the output status is an echo of one of the bits of the EL_POS register according to a SYNC_SEL and STEP_SEL parameter combination (see Section 9.1.10 on page 38). 6.17 FLAG pin By default, an internal open drain transistor pulls the FLAG pin to ground when at least one of the following conditions occurs: Power-up or standby/reset exit Overcurrent detection Thermal warning Thermal shutdown UVLO Switch turn-on event Wrong command Non performable command. It is possible to mask one or more alarm conditions by programming the ALARM_EN register (see Section 9.1.11 on page 39, Table 21). If the corresponding bit of the ALARM_EN register is low, the alarm condition is masked and it does not cause a FLAG pin transition; all other actions imposed by alarm conditions are performed anyway. In case of daisy chain configuration, FLAG pins of different ICs can be or-wired to save host controller GPIOs. 26/53 DocID022529 Rev 4 L6474 7 Phase current control Phase current control The L6474 performs a peak current control technique described in detail in Section 7.1. Furthermore, the L6474 automatically selects the best decay mode in order to follow the current profile. Current control algorithm parameters can be programmed by T_FAST, TON_MIN, TOFF_MIN and CONFIG registers (see Section 9.1.5 on page 35, Section 9.1.6 on page 35, Section 9.1.7 on page 36 and Section 9.1.12 on page 39 for details). The current amplitude can be set through the TVAL register (see Section 9.1.4 on page 34). The output current amplitude can also be regulated by ADCIN voltage value (see Section 6.14). Each bridge is driven by an independent control system that shares with the other bridge the control parameters only. 7.1 Peak current control The L6474 implements a peak current control algorithm with fixed OFF time. The control cycle begins in the ON state: the opposite high-side DMOS low-side DMOS of the power bridges are turned on according to the required current direction. In this way, the phase current is increased according to the electrical model of the motor. When the target current value is reached (this value is internally generated according to the present value of the EL_POS register), the device switches to the OFF state in order to make the phase current decay. During the OFF state both slow and fast decay can be performed; the better decay combination is automatically selected by L6472 as described in Section 7.2. The tOFF value sets through the TOFF parameter of the CONFIG register and the value of the TOFF_MIN register. If TOFF is greater than TOFF_MIN, it defines the OFF time of the system. Otherwise the TOFF_MIN value is used. Figure 9. Peak current control DocID022529 Rev 4 27/53 53 Phase current control 7.2 L6474 Auto-adjusted decay mode During the current control, the device automatically selects the best decay mode in order to follow the current profile reducing the current ripple. At reset, the OFF time is performed by turning on both the low-side MOS of the power stage and the current recirculates in the lower half of the bridge (slow decay). If, during a PWM cycle, the target current threshold is reached in a time shorter than the TON_MIN value, a fast decay of TOFF_FAST/8 (T_FAST register) is immediately performed, turning on the opposite MOS of both half bridges and the current recirculates back to the supply bus. After this time, the bridge returns to the ON state: if the time needed to reach the target current value is still less than TON_MIN, a new fast decay is performed with a period twice the previous one. Otherwise, the normal control sequence is followed as described in Section 7.1. The maximum fast decay duration is set by TOFF_FAST value. Figure 10. Adaptive decay - fast decay tuning TUGBTUEFDBZ 5GBTU50''@'"45 SEGBTUEFDBZ 5GBTU50''@'"45 5PO50/@.*/ 5GBTU50''@'"45 OEGBTUEFDBZ 5GBTU50''@'"45 SFGFSFODFDVSSFOU /PUFTUBSUJOHGSPNOEGBTUEFDBZUIFTZTUFNXJMMDPNCJOF GBTUBOETMPXEFDBZEVSJOHUIF0''QIBTF 5JNF When two or more fast decays are performed with present target current, the control system adds a fast decay at the end of every OFF time, keeping the OFF state duration constant (tOFF is split into tOFF,SLOW and tOFF,FAST). When the current threshold is increased by a microstep change (rising step), the system returns to normal decay mode (slow decay only) and the tFAST value is halved. Reaching the current sinewave zero crossing causes the current control system to return to the reset state. 28/53 DocID022529 Rev 4 L6474 Phase current control Figure 11. Adaptive decay - switch from normal to slow + fast decay mode and vice versa nd fast decay switch to fast + slow decay mode 1st fast decay 2 reference current Time tOFF tOFF tFAST tOFF,SLOW tOFF,FAST Target current is increased (raising step) system returns to slow decay mode and tFAST value is halved reference current Time 7.3 Auto-adjusted fast decay during the falling steps When the target current is decreased by a microstep change (falling step), the device performs a fast decay in order to reach the new value as fast as possible. Anyway, exceeding the fast duration could cause a strong ripple on the step change. The L6474 automatically adjusts these fast decays reducing the current ripple. At reset, the fast decay value (tFALL) is set to FALL_STEP/4 (T_FAST register). The tFALL value is doubled every time, within the same falling step, an extra fast decay is necessary to obtain an ON time greater than TON_MIN. The maximum tFALL value is equal to FALL_STEP. At the next falling step, the system uses the last tFALL value of the previous falling step. Stopping the motor or reaching the current sinewave zero crossing causes the current control system to return to the reset state. DocID022529 Rev 4 29/53 53 Phase current control L6474 Figure 12. Fast decay tuning during the falling steps 'BMMJOHTUFQ TUGBTUEFDBZ U'"--'"--@45&1 'BMMJOHTUFQ TUGBTUEFDBZ U'"--'"--@45&1 SFGFSFODFDVSSFOU OEGBTUEFDBZ U'"--'"--@45&1 5JNF 7.4 Torque regulation (output current amplitude regulation) The output current amplitude can be regulated in two ways: writing the TVAL register or varying the ADCIN voltage value. The EN_TQREG bit (CONFIG register) sets the torque regulation method. If this bit is high, ADC_OUT prevalue is used to regulate output current amplitude (see Section 9.1.8 on page 37). Otherwise the internal analog to digital converter is at the user’s disposal and the output current amplitude is managed by the TVAL register (see Section 9.1.4 on page 34). The voltage applied to the ADCIN pin is sampled at fS frequency and converted in an NADC bit digital signal. The analog to digital conversion result is available in the ADC_OUT register. 30/53 DocID022529 Rev 4 L6474 8 Serial interface Serial interface The integrated 8-bit serial peripheral interface (SPI) is used for a synchronous serial communication between the host microprocessor (always master) and the L6474 (always slave). The SPI uses chip select (CS), serial clock (CK), serial data input (SDI) and serial data output (SDO) pins. When CS is high, the device is unselected and the SDO line is inactive (high-impedance). The communication starts when CS is forced low. The CK line is used for synchronization of data communication. All commands and data bytes are shifted into the device through the SDI input, most significant bit first. The SDI is sampled on the rising edges of the CK. All output data bytes are shifted out of the device through the SDO output, most significant bit first. The SDO is latched on the falling edges of the CK. When a return value from the device is not available, an all zero byte is sent. After each byte transmission, the CS input must be raised and be kept high for at least tdisCS in order to allow the device to decode the received command and put the return value into the shift register. All timing requirements are shown in Figure 13 (see respective Section 3: Electrical characteristics on page 10 for values). Multiple devices can be connected in a daisy chain configuration, as shown in Figure 14. Figure 13. SPI timings diagram DocID022529 Rev 4 31/53 53 Serial interface L6474 Figure 14. Daisy chain configuration 32/53 DocID022529 Rev 4 L6474 Programming manual 9 Programming manual 9.1 Registers and flags description Table 9 is a map of the user registers available (detailed description in respective paragraphs): Table 9. Register map Address [Hex] Register name Register function Len. [bit] Reset Hex Reset value Remarks(1) h01 ABS_POS Current position 22 000000 0 R, WR h02 EL_POS Electrical position 9 000 0 R, WR h03 MARK Mark position 22 000000 0 R, WR h04 RESERVED Reserved address 24 h05 RESERVED Reserved address 16 h06 RESERVED Reserved address 16 h07 RESERVED Reserved address 16 h08 RESERVED Reserved address 16 h15 RESERVED Reserved address 16 h09 TVAL Reference current 7 h0A RESERVED Reserved address 8 h0B RESERVED Reserved address 8 h0C RESERVED Reserved address 8 h0D RESERVED Reserved address 16 h0E T_FAST Fast decay/fall step time h0F TON_MIN h10 R, WR 29 1.3125 A R, WR 8 19 1 µs / 5 µs R, WH Minimum ON time 7 29 20.5 µs R, WH TOFF_MIN Minimum OFF time 7 29 20.5 µs R, WH h11 RESERVED Reserved address 8 h12 ADC_OUT ADC output 5 XX (2) h13 OCD_TH OCD threshold 4 8 3.38A R, WR h14 RESERVED Reserved address 8 h16 STEP_MODE Step mode 8 7 16 microsteps, no synch R, WH h17 ALARM_EN Alarms enables 8 FF All alarms enabled R, WR 2E88 Internal oscillator, 2 MHz OSCOUT clock, supply voltage compensation disabled, overcurrent shutdown enabled, slew rate = 290 V/µs TOFF = 40 µs R, WH h18 CONFIG IC configuration 16 R DocID022529 Rev 4 33/53 53 Programming manual L6474 Table 9. Register map (continued) Address [Hex] Register name Register function Len. [bit] h19 STATUS Status 16 h1A RESERVED Reserved address h1B RESERVED Reserved address Reset Hex XXXX (2) Reset value Remarks(1) High impedance state, UVLO/reset flag set. R 1. R: Readable, WH: writable only when outputs are in high impedance, WR: always writable. 2. According to startup conditions. 9.1.1 ABS_POS The ABS_POS register contains the current motor absolute position in agreement to the selected step mode; the stored value unit is equal to the selected step mode (full, half, quarter, etc.). The value is in 2's complement format and it ranges from -221 to +221-1. At power-on the register is initialized to “0” (HOME position). 9.1.2 EL_POS The EL_POS register contains the current electrical position of the motor. The two MSbits indicate the current step and the other bits indicate the current microstep (expressed in step/128) within the step. Table 10. EL_POS register Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 STEP Bit 3 Bit 2 Bit 1 Bit 0 MICROSTEP When the EL_POS register is written by the user the new electrical position is instantly imposed. When the EL_POS register is written its value must be masked in order to match with the step mode selected in the STEP_MODE register in order to avoid a wrong microstep value generation (see Section 9.1.10 on page 38); otherwise the resulting microstep sequence is incorrect. Any attempt to write the register when the outputs are enabled causes the command to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.13 on page 41). 9.1.3 MARK The MARK register contains an absolute position called MARK, according to the selected step mode; the stored value unit is equal to the selected step mode (full, half, quarter, etc.). It is in 2's complement format and it ranges from -221 to +221-1. 9.1.4 TVAL The TVAL register contains the current value that is assigned to the torque regulation DAC. The available range is from 31.25 mA to 4 A with a resolution of 31.25 mA, as shown in Table 2 on page 8. 34/53 DocID022529 Rev 4 L6474 Programming manual Table 11. Torque regulation register TVAL [60] 0 0 0 0 0 0 0 31.25 mA 0 0 0 0 0 0 1 62.5 mA … … … … … … … … 9.1.5 Output current amplitude 1 1 1 1 1 1 0 3.969 A 1 1 1 1 1 1 1 4A T_FAST The T_FAST register contains the maximum fast decay time (TOFF_FAST) and the maximum fall step time (FALL_STEP) used by the current control system (see Section 7.2 on page 28 and Section 7.3 on page 29 for details): Table 12. T_FAST register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 TOFF_FAST Bit 2 Bit 1 Bit 0 FAST_STEP The available range for both parameters is from 2 µs to 32 µs. Table 13. Maximum fast decay times TOFF_FAST [30] FAST_STEP[30] Fast decay time 0 0 0 0 2 µs 0 0 0 1 4 µs … … … … … 1 1 1 0 28 µs 1 1 1 1 32 µs Any attempt to write to the register when the outputs are enabled causes the command to be ignored and the NOTPERF_CMD to rise (see Section 9.1.13 on page 41). 9.1.6 TON_MIN The TON_MIN register contains the minimum ON time value used by the current control system (see Section 7.2). The available range for both parameters is from 0.5 µs to 64 µs. DocID022529 Rev 4 35/53 53 Programming manual L6474 Table 14. Minimum ON time Time 0 0 0 0 0 0 0 0.5 µs 0 0 0 0 0 0 1 1 µs … … … … … … … … 1 1 1 1 1 1 0 63.5 µs 1 1 1 1 1 1 1 64 µs Any attempt to write to the register when the outputs are enabled causes the command to be ignored and the NOTPERF_CMD to rise (see Section 9.1.13 on page 41). 9.1.7 TOFF_MIN The TOFF_MIN register contains the minimum OFF time value used by the current control system (see Section 7.1 on page 27 for details).This parameter imposes the OFF time of the current control system only if its value is greater than the TSW one. The available range for both parameters is from 0.5 µs to 64 µs. Table 15. Minimum OFF time Time 0 0 0 0 0 0 0 0.5 µs 0 0 0 0 0 0 1 1 µs … … … … … … … … 1 1 1 1 1 1 0 63.5 µs 1 1 1 1 1 1 1 64 µs Any attempt to write to the register when the outputs are enabled causes the command to be ignored and the NOTPERF_CMD to rise (see Section 9.1.13). 36/53 DocID022529 Rev 4 L6474 9.1.8 Programming manual ADC_OUT The ADC_OUT register contains the result of the analog to digital conversion of the ADCIN pin voltage. Any attempt to write to the register causes the command to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.13 on page 41). Table 16. ADC_OUT value and torque regulation feature VADCIN/ VREG Output current amplitude 0 0 0 0 0 0 125 mA 1/32 0 0 0 0 1 250 mA … … … … … … … 9.1.9 ADC_OUT [40] 30/32 1 1 1 1 0 3.875 A 31/32 1 1 1 1 1 4A OCD_TH The OCD_TH register contains the overcurrent threshold value (see Section 6.9 on page 23 for details). The available range is from 375 mA to 6 A, steps of 375 mA as shown in Table 17. Table 17. Overcurrent detection threshold OCD_TH [30] Overcurrent detection threshold 0 0 0 0 375 mA 0 0 0 1 750 mA … … … … … 1 1 1 0 5.625 A 1 1 1 1 6A DocID022529 Rev 4 37/53 53 Programming manual 9.1.10 L6474 STEP_MODE The STEP_MODE register has the following structure: Table 18. STEP_MODE register Bit 7 Bit 6 1 Bit 5 Bit 4 Bit 3 1 (1) SYNC_SEL Bit 2 Bit 1 Bit 0 STEP_SEL 1. When the register is written this bit should be set to 1. The STEP_SEL parameter selects one of five possible stepping modes: Table 19. Step mode selection STEP_SEL[20] Step mode 0 0 0 Full step 0 0 1 Half step 0 1 0 1/4 microstep 0 1 1 1/8 microstep 1 X X 1/16 microstep Every time the step mode is changed, the electrical position (i.e. the point of microstepping sinewave that is generated) is reset to the first microstep. Warning: Every time STEP_SEL is changed the value in ABS_POS register loses meaning and should be reset. Any attempt to write the register when the outputs are enabled causes the command to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.13 on page 41). The SYNC output provides a synchronization signal according to SYNC_SEL parameter. 38/53 DocID022529 Rev 4 L6474 Programming manual The synchronization signal is obtained starting from electrical position information (EL_POS register) according to Table 10 on page 34: Table 20. SYNC signal source SYNC_SEL[20] Source 0 0 0 EL_POS [7] 0 0 1 EL_POS [6] 0 1 0 EL_POS [5] 0 1 1 EL_POS [4] 1 0 0 EL_POS [3] 1 0 1 UNUSED(1) 1 1 0 UNUSED(1) 1 1 1 UNUSED(1) 1. When this value is selected the BUSY output is forced low. 9.1.11 ALARM_EN The ALARM_EN register allows to select which alarm signals are used to generate the FLAG output. If the respective bit of the ALARM_EN register is set high, the alarm condition forces the FLAG pin output down. Table 21. ALARM_EN register 9.1.12 ALARM_EN bit Alarm condition 0 (LSB) Overcurrent 1 Thermal shutdown 2 Thermal warning 3 Undervoltage 4 RESERVED 5 RESERVED 6 Switch turn-on event 7 (MSB) Wrong or not performable command CONFIG The CONFIG register has the following structure: Table 22. CONFIG register Bit 15 Bit 14 Bit 13 0 Bit 12 Bit 11 Bit 10 TOFF Bit 8 POW_SR Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 OC_SD RESERVED EN_TQREG 0 EXT_CLK DocID022529 Rev 4 Bit 9 Bit 2 Bit 1 Bit 0 OSC_SEL 39/53 53 Programming manual L6474 The OSC_SEL and EXT_CLK bits set the system clock source: Table 23. Oscillator management EXT_CLK OSC_SEL[20] Clock source OSCIN OSCOUT Internal oscillator: 16 MHz Unused Unused 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 Internal oscillator: 16 MHz Unused Supplies a 2 MHz clock 1 0 0 1 Internal oscillator: 16 MHz Unused Supplies a 4 MHz clock 1 0 1 0 Internal oscillator: 16 MHz Unused Supplies a 8 MHz clock 1 0 1 1 Internal oscillator: 16 MHz Unused Supplies a 16 MHz clock 0 1 0 0 External crystal or resonator: 8 MHz Crystal/resonator driving Crystal/resonator driving 0 1 0 1 External crystal or resonator: 16 MHz Crystal/resonator driving Crystal/resonator driving 0 1 1 0 External crystal or resonator: 24 MHz Crystal/resonator driving Crystal/resonator driving 0 1 1 1 External crystal or resonator: 32 MHz Crystal/resonator driving Crystal/resonator driving 1 1 0 0 Ext. clock source: 8 MHz (Crystal/resonator driver disabled) Clock source Supplies inverted OSCIN signal 1 1 0 1 Ext. clock source: 16 MHz (Crystal/resonator driver disabled) Clock source Supplies inverted OSCIN signal 1 1 1 0 Ext. clock source: 24 MHz (Crystal/resonator driver disabled) Clock source Supplies inverted OSCIN signal 1 1 1 1 Ext. clock source: 32 MHz (Crystal/resonator driver disabled) Clock source Supplies inverted OSCIN signal The OC_SD bit sets whether or not an overcurrent event causes the bridges to turn off; the OCD flag in the status register is forced low anyway: Table 24. Overcurrent event OC_SD Overcurrent event 1 Bridges shut down 0 Bridges do not shut down The POW_SR bits set the slew rate value of power bridge output: 40/53 DocID022529 Rev 4 L6474 Programming manual Table 25. Programmable power bridge output slew rate values Output slew rate (1) [V/s] (1) POW_SR [10] 0 0 320 0 1 75 1 0 110 1 1 260 1. See SRout_r and SRout_f parameters in Table 5: Electrical characteristics on page 10 for details. The TQREG bit sets if the torque regulation (see Section 7.4 on page 30) is performed through the ADCIN voltage (external) or TVAL register (internal): Table 26. External torque regulation enable TQREG External torque regulation enable 0 Internal registers 1 ADC input The TOFF time is used by current control system. If its value is lower than the TOFF_MIN one, the OFF time is equal to TOFF_MIN. Table 27. OFF time TOFF [40] OFF time 0 0 0 0 0 4 µs 0 0 0 0 1 4 µs 0 0 0 1 0 8 µs … … … … … … 1 1 1 1 1 124 µs Any attempt to write the CONFIG register when the outputs are enabled causes the command to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.13). 9.1.13 STATUS Table 28. STATUS register Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 1 1 1 OCD TH_SD TH_WRN UVLO WRONG_CMD Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 NOTPERF_CMD 0 0 DIR 0 0 1 HiZ When HiZ flag is high, it indicates that the bridges are in high impedance state. Enable command makes the device exit from High Z state unless error flags forcing a High Z state are active. DocID022529 Rev 4 41/53 53 Programming manual L6474 The UVLO flag is active low and is set by an undervoltage lockout or reset events (power-up included). The TH_WRN, TH_SD, OCD flags are active low and indicate, respectively, thermal warning, thermal shutdown and overcurrent detection events. The NOTPERF_CMD and WRONG_CMD flags are active high and indicate, respectively, that the command received by SPI can't be performed or does not exist at all. The UVLO, TH_WRN, TH_SD, OCD, NOTPERF_CMD and WRONG_CMD flags are latched: when the respective conditions make them active (low or high), they remain in that state until a GetStatus command is sent to the IC. The DIR bit indicates the current motor direction: Table 29. STATUS register DIR bit DIR Motor direction 1 Forward 0 Reverse Any attempt to write to the register causes the command to be ignored and the NOTPERF_CMD to rise (see Section 9.1.13). 9.2 Application commands The commands summary is given in Table 30. Table 30. Application commands Command Mnemonic Command binary code Action [75] [4] [3] [21] [0] NOP 000 0 0 00 0 SetParam(PARAM,VALUE) 000 Enable 101 1 1 00 0 Enable the power stage Disable 101 0 1 00 0 Puts the bridges in High Impedance status immediately GetStatus 110 1 0 00 0 Returns the status register value RESERVED 111 0 1 01 1 RESERVED COMMAND RESERVED 111 1 1 00 0 RESERVED COMMAND 42/53 [PARAM] Nothing Writes VALUE in PARAM register DocID022529 Rev 4 L6474 9.2.1 Programming manual Command management The host microcontroller can control motor motion and configure the L6474 through a complete set of commands. All commands are composed of a single byte. After the command byte, some bytes of arguments should be needed (see Figure 15). Argument length can vary from 1 to 3 bytes. Figure 15. Command with three-byte argument By default, the device returns an all zeroes response for any received byte, the only exceptions are GetParam and GetStatus commands. When one of these commands is received, the following response bytes represent the related register value (see Figure 16). Response length can vary from 1 to 3 bytes. Figure 16. Command with three-byte response During response transmission, new commands can be sent. If a command requiring a response is sent before the previous response is completed, the response transmission is aborted and the new response is loaded into the output communication buffer (see Figure 17). Figure 17. Command response aborted When a byte that does not correspond to a command is sent to the IC it is ignored and the WRONG_CMD flag in the STATUS register is raised (see Section 9.1.13). DocID022529 Rev 4 43/53 53 Programming manual 9.2.2 L6474 NOP Table 31. NOP command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 From host Nothing is performed. 9.2.3 SetParam (PARAM, VALUE) Table 32. SetParam command structure Bit 7 Bit 6 Bit 5 0 0 0 Bit 4 Bit 3 Bit 2 PARAM Bit 1 Bit 0 From host VALUE Byte 2 (if needed) VALUE Byte 1 (if needed) VALUE Byte 0 The SetParam command sets the PARAM register value equal to VALUE; PARAM is the respective register address listed in Table 16 on page 37. The command should be followed by the new register VALUE (most significant byte first). The number of bytes composing the VALUE argument depends on the length of the target register (see Table 16). Some registers cannot be written (see Table 16); any attempt to write one of those registers causes the command to be ignored and the WRONG_CMD flag to rise at the end of command byte, the same is true when an unknown command code is sent (see Section 9.1.13 on page 41). Some registers can only be written in particular conditions (see Table 16); any attempt to write one of those registers when the conditions are not satisfied causes the command to be ignored and the NOTPERF_CMD flag to rise at the end of last argument byte (see Section 9.1.13). Any attempt to set an inexistent register (wrong address value) causes the command to be ignored and the WRONG_CMD flag to rise at the end of command byte, the same is true when an unknown command code is sent. 44/53 DocID022529 Rev 4 L6474 9.2.4 Programming manual GetParam (PARAM) Table 33. GetParam command structure Bit 7 Bit 6 Bit 5 0 0 1 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PARAM From host ANS Byte 2 (if needed) To host ANS Byte 1 (if needed) To host ANS Byte 0 To host This command reads the current PARAM register value; PARAM is the respective register address listed in Table 16 on page 37. The command response is the current value of the register (most significant byte first). The number of bytes composing the command response depends on the length of the target register (see Table 16). The returned value is the register one at the moment of GetParam command decoding. If register values change after this moment the response is not accordingly updated. All registers can be read anytime. Any attempt to read an inexistent register (wrong address value) causes the command to be ignored and the WRONG_CMD flag to rise at the end of command byte, the same is true when an unknown command code is sent. 9.2.5 Enable Table 34. HardStop command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 0 1 1 1 0 0 0 From host The Enable command turns on the power stage of the device. When the motor is in high-impedance state, an Enable command forces the bridges to exit from high impedance state. This command can be given anytime and is immediately executed. 9.2.6 Disable Table 35. Disable command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 0 1 0 1 0 0 0 From host The Disable command immediately disables the power bridges (high-impedance state) and raises the HiZ flag. This command can be given anytime and is immediately executed. DocID022529 Rev 4 45/53 53 Programming manual 9.2.7 L6474 GetStatus Table 36. GetStatus command structure Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 1 0 1 0 0 0 0 From host STATUS MSByte To host STATUS LSByte To host The GetStatus command returns the Status register value. The GetStatus command resets the STATUS register warning flags. The command forces the system to exit from any error state. The GetStatus command DOES NOT reset the HiZ flag. 46/53 DocID022529 Rev 4 L6474 10 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DocID022529 Rev 4 47/53 53 Package information 10.1 L6474 HTSSOP28 package information Figure 18. HTSSOP28 package outline 48/53 DocID022529 Rev 4 L6474 Package information Table 37. HTSSOP28 package mechanical data Dimensions (mm) Symbol Min. Typ. Max. A 1.2 A1 0.15 A2 0.8 b 0.19 0.3 c 0.09 0.2 D (1) 9.6 D1 E (2) E1 1.0 9.7 6.2 6.4 6.6 4.3 4.4 4.5 2.8 e 0.65 0.45 L1 K 9.8 5.5 E2 L 1.05 0.6 0.75 1.0 0° aaa 8° 0.1 1. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs do not exceed 0.15 mm per side. 2. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions do not exceed 0.25 mm per side. DocID022529 Rev 4 49/53 53 Package information 10.2 L6474 POWERSO36 package information Figure 19. POWERSO36 package outline 1 1 D H $ '(7$,/$ $ F D '(7$,/% ( H + '(7$,/$ OHDG ' VOXJ D %277209,(: ( % ( ( ' '(7$,/% *DJH3ODQH & 6 K[Û E / 6($7,1*3/$1( * 0 $% 3620(& & &23/$1$5,7< 50/53 DocID022529 Rev 4 L6474 Package information Table 38. POWERSO36 package mechanical data Dimensions (mm) Dimensions (inch) Symbol Min. Typ. A a1 Max. Min. Typ. 3.60 0.10 0.30 a2 Max. 0.1417 0.003 0.0118 3.30 0.1299 a3 0 0.10 0 0.0039 b 0.22 0.38 0.008 0.0150 c 0.23 0.32 0.009 0.0126 D 15.80 16.00 0.622 0.6299 D1 9.40 9.80 0.370 0.3858 E 13.90 14.50 0.547 0.5709 E1 10.90 11.10 0.429 0.4370 E2 E3 2.90 5.8 6.2 0.1142 0.228 0.2441 e 0.65 0.025 e3 11.05 0.435 G 0 0.10 0.000 0.0039 H 15.50 15.90 0.610 0.6260 h L 1.10 0.80 N S 1.10 0.0433 0.031 10° 0° 8° DocID022529 Rev 4 0.0433 10° 0° 8° 51/53 53 Revision history 11 L6474 Revision history Table 39. Document revision history Date Revision 02-Dec-2011 1 Initial release. 22-Dec-2011 2 Deleted previous chapter 6.4.1 Automatic full-step mode. Minor text changes. 3 Changed TOP value and Ptot value in Table 2. Removed Tj parameter in Table 3. Added typical values to Table 4. Updated HTSSOP28 mechanical data. Minor text changes. 5 Removed “easySPIN” from the main title on page 1. Updated Figure 2 on page 15 (renamed pin label 22). Updated Figure 3 on page 15 (renamed pin labels 7 and 29). Updated Table 6 on page 16 (added label HTSSOP and POWERSO column). Reformatted Section 10 on page 47 (updated/added titles and headers, reformatted order of Figure 18 and Table 37, Figure 19 and Table 38). Minor modifications throughout document. 20-Dec-2012 18-Mar-2015 52/53 Changes DocID022529 Rev 4 L6474 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID022529 Rev 4 53/53 53