Datasheet - STMicroelectronics

TS556
Low-power dual CMOS timer
Datasheet - production data
Description
The TS556 is a dual CMOS timer which offers a
very low consumption:
(Icc(TYP) TS556 = 220 µA at VCC = 5 V versus
Icc(TYP) NE556(a) = 6 mA),
SO14
(plastic micropackage)
and high frequency:
(f(max.) TS556 = 2.7 MHz versus
f(max.) NE556(a) = 0.1 MHz)
Pin connections
(top view)
In both monostable and astable modes, timing
remains very accurate.
Discharge
1
14
+VS
Threshold
Control
Voltage
Reset
2
13
Discharge
3
12
4
11
Threshold
Control
Voltage
Reset
Output
5
10
Trigger
6
9
Output
GND
7
8
Trigger
The TS556 provides reduced supply current
spikes during output transitions, which enables
the use of lower decoupling capacitors compared
to those required by bipolar NE556(a).
Due to the high input impedance (1012 Ω), timing
capacitors can also be minimized.
Features
• Very low power consumption:
– 220 µA typ at VCC = 5 V
– 180 µA typ at VCC = 3 V
• High maximum astable frequency 2.7 MHz
• Pin-to-pin and functionally compatible with
bipolar NE556(a)
• Wide voltage range: 2 V to 16 V
• Supply current spikes reduced during output
transitions
• High input impedance: 1012 Ω
• Output compatible with TTL, CMOS and logic
MOS
a. Terminated product
June 2015
This is information on a product in full production.
DocID4078 Rev 3
1/19
www.st.com
Contents
TS556
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2
Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
4.1
Monostable operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2
Astable operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1
SO14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2/19
DocID4078 Rev 3
TS556
1
Absolute maximum ratings and operating conditions
Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings
Symbol
Parameter
VCC
Supply voltage
IOUT
Output current
(1)
Value
Unit
18
V
± 100
mA
Rthja
Thermal resistance junction to ambient
Rthjc
Thermal resistance junction to case (1)
31
Junction Temperature
150
Tj
Tstg
ESD
105
Storage Temperature Range
-65 to 150
Human body model (HBM) (2)
1200
Machine model (MM) (3)
Charged device model (CDM)
°C/W
°C
V
200
(4)
1000
1. Short-circuits can cause excessive heating. These values are typical and specified for a four layers PCB.
2. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
3. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins remain floating.
4. Charged device model: all pins plus package are charged together to the specified voltage and then
discharged directly to the ground.
Table 2. Operating conditions
Symbol
Parameter
VCC
Supply voltage
IOUT
Output sink current
Output source current
Toper
Operating free air temperature range
DocID4078 Rev 3
Value
Unit
2 to 16
V
10
50
mA
-40 to 125
°C
3/19
19
R1
4/19
R2
DocID4078 Rev 3
50k Ω
R6
50k Ω
R5
50k Ω
R4
50k Ω
R3
C ontrol Volta ge
50k Ω
Τ1
Τ5
Τ4
Τ2
Τ6
Thres hold
Τ7
Τ8 Τ9
R7
Τ11
Τ10
Τ14
Τ15
Τ12
Τ18
Τ13
GND
Τ16
Τ20
CC
R ESET
Τ17
Τ19
T rigger
Τ21
Τ22
Τ23
Τ25
Τ24
Τ26
Τ28
Τ27
Τ29
Τ30
Τ32
Τ31
Τ33
Τ35
Dis charge
Τ34
Output
2
50k Ω
V
Schematic diagram
TS556
Schematic diagram
Figure 1. Schematic diagram (1/2 TS556)
TS556
Schematic diagram
Figure 2. Block diagram
VCC
Reset
TS556
4 / 10
14
R
R1
2 / 12
Threshold
Control
Voltage
Q
+
Output
5/9
R
-
A
3 / 11
S
R
+
Trigger
6/8
-
B
R
1 / 13
Discharge
7
Ground
Table 3. Functions table
Reset
Trigger
Low
x
Low
High
Note:
High
Threshold
x
Output
Low
High
High
Low
Low
Previous state
Low: level voltage ≤ minimum voltage specified
High: level voltage ≥ maximum voltage specified
x: irrelevant
DocID4078 Rev 3
5/19
19
Electrical characteristics
3
TS556
Electrical characteristics
Table 4. Static electrical characteristics
VCC = 2 V, Tamb = 25 °C, reset to VCC (unless otherwise specified)
Symbol
6/19
Parameter
Min.
Typ.
Max.
Unit
130
400
400
µA
1.3
1.4
1.5
0.05
0.2
0.25
1
100
0.1
0.3
0.35
ICC
Supply current (no load, high and low states)
Tmin ≤Tamb ≤Tmax
VCL
Control voltage level
Tmin ≤Tamb ≤Tmax
VDIS
Discharge saturation voltage (Idis = 1 mA)
Tmin ≤Tamb ≤Tmax
IDIS
Discharge pin leakage current
VOL
Low level output voltage (Isink = 1 mA)
Tmin ≤Tamb ≤Tmax
VOH
High level output voltage (Isource = -0.3 mA)
Tmin ≤Tamb ≤Tmax
1.5
1.5
1.9
VTRIG
Trigger voltage
Tmin ≤Tamb ≤Tmax
0.4
0.3
0.67
ITRIG
Trigger current
10
ITH
Threshold current
10
VRESET
Reset voltage
Tmin ≤Tamb ≤Tmax
IRESET
Reset current
1.2
1.1
0.4
0.3
1.1
10
DocID4078 Rev 3
V
nA
V
0.95
1.05
pA
1.5
2.0
V
pA
TS556
Electrical characteristics
Table 5. Static electrical characteristics
VCC = 3 V, Tamb = 25 °C, reset to VCC (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
180
460
460
µA
2
2.2
2.3
0.05
0.2
0.25
1
100
0.1
0.3
0.35
ICC
Supply current (no load, high and low states)
Tmin ≤Tamb ≤Tmax
VCL
Control voltage level
Tmin ≤Tamb ≤Tmax
VDIS
Discharge saturation voltage (Idis = 1 mA)
Tmin ≤Tamb ≤Tmax
IDIS
Discharge pin leakage current
VOL
Low level output voltage (Isink = 1 mA)
Tmin ≤Tamb ≤Tmax
VOH
High level output voltage (Isource = -0.3 mA)
Tmin ≤Tamb ≤Tmax
2.5
2.5
2.9
VTRIG
Trigger voltage
Tmin ≤Tamb ≤Tmax
0.9
0.8
1
ITRIG
Trigger current
10
ITH
Threshold current
10
VRESET
Reset voltage
Tmin ≤Tamb ≤Tmax
IRESET
Reset current
1.8
1.7
0.4
0.3
1.1
10
DocID4078 Rev 3
V
nA
V
1.1
1.2
pA
1.5
2.0
V
pA
7/19
19
Electrical characteristics
TS556
Table 6. Dynamic electrical characteristics
VCC = 3 V, Tamb = 25 °C, reset to VCC (unless otherwise specified)
Symbol
Parameter
Min.
Timing accuracy (monostable) (1)
R = 10 kΩ, C = 0.1 µF, VCC= 2 V
R = 10 kΩ, C = 0.1 µF, VCC = 3 V
fmax
0.5
Timing shift with temperature (1)
Tmin ≤Tamb ≤Tmax
75
Maximum astable frequency (2)
RA = 470 Ω, RB = 200 Ω, C = 200 pF
2
—
5
0.5
tR
Output rise time (Cload = 10 pF)
25
tF
Output fall time (Cload = 10 pF)
20
Trigger propagation delay
100
Minimum reset pulse width (Vtrig = 3 V)
350
tRPW
1. See Figure 4
2. See Figure 6
DocID4078 Rev 3
Unit
%
%/V
Timing shift with supply voltage variations
(astable mode) (2)
RA = RB = 10 kΩ, C = 0.1 µF, VCC = 3 to 5 V
tPD
Max.
1
1
Timing shift with supply voltage variations
(monostable) (1)
R = 10 kΩ, C = 0.1 µF, VCC = 3 V ± 0.3 V
Astable frequency accuracy (2)
RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF
8/19
Typ.
ppm/°C
MHz
—
%
%/V
ns
TS556
Electrical characteristics
Table 7. Static electrical characteristics
VCC = 5 V, Tamb = 25 °C, reset to VCC (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
220
500
500
µA
3.3
3.8
3.9
0.2
0.3
0.35
1
100
0.3
0.6
0.8
ICC
Supply current (no load, high and low states)
Tmin ≤Tamb ≤Tmax
VCL
Control voltage level
Tmin ≤Tamb ≤Tmax
VDIS
Discharge saturation voltage (Idis = 10 mA)
Tmin ≤Tamb ≤Tmax
IDIS
Discharge pin leakage current
VOL
Low level output voltage (Isink = 8 mA)
Tmin ≤Tamb ≤Tmax
VOH
High level output voltage (Isource = -2 mA)
Tmin ≤Tamb ≤Tmax
4.4
4.4
4.6
VTRIG
Trigger voltage
Tmin ≤Tamb ≤Tmax
1.36
1.26
1.67
ITRIG
Trigger current
10
ITH
Threshold current
10
VRESET
Reset voltage
Tmin ≤Tamb ≤Tmax
IRESET
Reset current
2.9
2.8
0.4
0.3
1.1
10
DocID4078 Rev 3
V
nA
V
1.96
2.06
pA
1.5
2.0
V
pA
9/19
19
Electrical characteristics
TS556
Table 8. Dynamic electrical characteristics
VCC = 5 V, Tamb = 25 °C, reset to VCC (unless otherwise specified)
Symbol
Parameter
Min.
Timing accuracy (monostable) (1)
R = 10 kΩ, C = 0.1 µF
Maximum astable frequency (2)
RA = 470 Ω, RB = 200 Ω, C = 200 pF
2.7
Output fall time (Cload = 10 pF)
20
Trigger propagation delay
100
Minimum reset pulse width (Vtrig = 5 V)
350
DocID4078 Rev 3
%
0.1
tF
2. See Figure 6
MHz
%/V
25
1. See Figure 4
ppm/°C
—
3
Output rise time (Cload = 10 pF)
tRPW
10/19
—
tR
tPD
%
%/V
75
Timing shift with supply voltage variations
(astable mode) (2)
RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF,
VCC = 5 to 12 V
Unit
0.38
Timing shift with temperature (1)
Tmin. ≤Tamb ≤Tmax
Astable frequency accuracy (2)
RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF
Max.
2
Timing shift with supply voltage variations
(monostable) (1)
R = 10 kΩ, C = 0.1 µF, VCC = 5 V ± 1 V
fmax
Typ.
ns
TS556
Electrical characteristics
Table 9. Static electrical characteristics
VCC = 12 V, Tamb = 25 °C, reset to VCC (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
340
800
800
µA
8
8.6
8.7
0.09
1.6
2.0
1
100
1.2
2
2.8
ICC
Supply current (no load, high and low states)
Tmin ≤Tamb ≤Tmax
VCL
Control voltage level
Tmin ≤Tamb ≤Tmax
VDIS
Discharge saturation voltage (Idis = 80 mA)
Tmin ≤Tamb ≤Tmax
IDIS
Discharge pin leakage current
VOL
Low level output voltage (Isink = 50 mA)
Tmin ≤Tamb ≤Tmax
VOH
High level output voltage (Isource = -10 mA)
Tmin ≤Tamb ≤Tmax
10.5
10.5
11
VTRIG
Trigger voltage
Tmin ≤Tamb ≤Tmax
3.2
3.1
4
ITRIG
Trigger current
10
ITH
Threshold current
10
VRESET
Reset voltage
Tmin ≤Tamb ≤Tmax
IRESET
Reset current
7.4
7.3
0.4
0.3
1.1
V
nA
V
4.8
4.9
pA
1.5
2.0
10
V
pA
Table 10. Dynamic electrical characteristics
VCC = 12 V, Tamb = 25 °C, reset to VCC (unless otherwise specified)
Symbol
Parameter
Min.
Timing accuracy (monostable) (1)
R = 10 kΩ, C = 0.1 µF
Astable frequency accuracy (2)
RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF
Timing shift with supply voltage variations
(astable mode)
RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF,
VCC = 5 to 12 V
Unit
%
%/V
0.38
Timing shift with temperature
Tmin ≤Tamb ≤Tmax, VCC = 5 V
Maximum astable frequency
RA = 470 Ω, RB = 200 Ω, C = 200 pF, VCC = 5 V
Max.
4
Timing shift with supply voltage variations
(monostable)
R = 10 kΩ, C = 0.1 µF, VCC = 5 V ± 1 V
fmax
Typ.
ppm/°C
75
—
—
2.7
3
0.1
MHz
%
%/V
1. See Figure 4
2. See Figure 6
DocID4078 Rev 3
11/19
19
Electrical characteristics
TS556
Figure 3. Supply current (per timer) versus supply voltage
S U P P L Y C U R R E NT , I CC ( A)
300
200
100
0
4
8
12
SUPPLY VOLTAGE, V C C (V)
12/19
DocID4078 Rev 3
16
TS556
Application information
4
Application information
4.1
Monostable operation
In monostable mode, the timer operates like a one-shot generator. Referring to Figure 2, the
external capacitor is initially held discharged by a transistor inside the timer, as shown in
Figure 4.
Figure 4. Application schematic
VC C
Reset
R
Trigger
1/2
TS556
C
Out
Control Voltage
0.01 F
The circuit triggers on a negative-going input signal when the level reaches 1/3 VCC. Once
triggered, the circuit remains in this state until the set time has elapsed, even if it is triggered
again during this interval. The duration of the output HIGH state is given by t = 1.1 R x C.
It can be noticed that since the charge rate and the threshold level of the comparator are
both directly proportional to the supply voltage, the timing interval is independent of the
supply. Applying a negative pulse simultaneously to the reset terminal (pin 4) and the trigger
terminal (pin 2) during the timing cycle, discharges the external capacitor and causes the
cycle to start over. The timing cycle now starts on the positive edge of the reset pulse. While
the reset pulse is applied, the output is driven to the LOW state.
When a negative trigger pulse is applied to pin 2, the flip-flop is set, releasing the short
circuit across the external capacitor and driving the output HIGH. The voltage across the
capacitor increases exponentially with the time constant τ = R x C.
When the voltage across the capacitor equals 2/3 VCC, the comparator resets the flip-flop
which then discharges the capacitor rapidly and drives the output to its LOW state.
Figure 5 shows the actual waveforms generated in this mode of operation. When reset is
not used, it should be tied high to avoid any possible or false triggering.
Figure 5. Timing diagram
t = 0.1 ms / div
INPUT = 2.0V/div
OUTPUT VOLTAGE = 5.0V/div
CAPACITOR VOLTAGE = 2.0V/div
R = 9.1k , C = 0.01 F , R L = 1.0k
DocID4078 Rev 3
13/19
19
Application information
4.2
TS556
Astable operation
When the circuit is connected as shown in Figure 6 (pins 2 and 6 connected) it triggers itself
and runs as a multivibrator. The external capacitor charges through RA and RB and
discharges through RB only. Thus the duty cycle may be precisely set by the ratio of these
two resistors.
In the astable mode of operation, C charges and discharges between 1/3 VCC and 2/3 VCC.
As in the triggered mode, the charge and discharge times and therefore frequency, are
independent of the supply voltage.
Figure 6. Application schematic
VC C
Reset
RA
Out
1/2
TS556
Control
Voltage
0.01 F
RB
C
Figure 7 shows the actual waveforms generated in this mode of operation.
The charge time (output HIGH) is given by:
t1 = 0.693 (RA + RB) C
and the discharge time (output LOW) by:
t2 = 0.693 x RB x C
Thus the total period, T, is given by:
T = t1 + t2 = 0.693 (RA + 2RB) C
The frequency of oscillation is then:
1
1.44
f = --- = -------------------------------------T (RA + 2RB )C
The duty cycle is given by:
RB
D = --------------------------RA + 2RB
Figure 7. Timing diagram
t = 0.5 ms / div
OUTPUT VOLTAGE = 5.0V/div
CAPACITOR VOLTAGE = 1.0V/div
R = R = 4.8 k , C = 0.1 F , R L = 1.0k
A
B
14/19
DocID4078 Rev 3
TS556
5
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
DocID4078 Rev 3
15/19
19
Package information
5.1
TS556
SO14 package information
Figure 8. SO14 package outline
Table 11. SO14 mechanical data
Dimensions
Millimeters
Inches
Ref.
Min.
Typ.
Max.
Min.
1.35
1.75
0.05
0.068
A1
0.10
0.25
0.004
0.009
A2
1.10
1.65
0.04
0.06
B
0.33
0.51
0.01
0.02
C
0.19
0.25
0.007
0.009
D
8.55
8.75
0.33
0.34
E
3.80
4.0
0.15
0.15
1.27
0.05
H
5.80
6.20
0.22
0.24
h
0.25
0.50
0.009
0.02
L
0.40
1.27
0.015
0.05
k
ddd
16/19
Max.
A
e
Note:
Typ.
8° (max.)
0.10
0.004
D and F dimensions do not include mold flash or protrusions. Mold flash or protrusions must
not exceed 0.15 mm.
DocID4078 Rev 3
TS556
6
Ordering information
Ordering information
Table 12. Order code table
Order code
TS556IDTTR
Temperature range
Package
Packaging
Marking
-40 °C to 125 °C
SO14
Tape and reel
556I
DocID4078 Rev 3
17/19
19
Revision history
7
TS556
Revision history
Table 13. Document revision history
Date
Revision
01-Feb-2003
1
Initial release.
2
Document reformatted.
Added output current, ESD and thermal resistance values in
Table 1: Absolute maximum ratings.
Added output current values in Table 2: Operating conditions.
Updated Section 5.1: DIP14 package information and
Section 5.1: SO14 package information.
3
Features and Description: added footnote to NE556 product to
explain it is terminated.
Removed all references to DIP14 package
Removed all temperature ranges except -40 to 125 °C
Table 12: Order code table: removed all order codes of revision 2
and added new order code TS556IDTTR.
28-Oct-2008
30-Jun-2015
18/19
Changes
DocID4078 Rev 3
TS556
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID4078 Rev 3
19/19
19