M95M02-A125 - STMicroelectronics

M95M02-A125
Automotive 2 Mbit serial SPI bus EEPROM
Datasheet - production data
Features
• Compatible with the Serial Peripheral Interface
(SPI) bus
SO8 (MN)
150 mil width
• Memory array
– 2 Mbit (256 Kbyte) of EEPROM
– Page size: 256 byte
– Write protection by block: 1/4, 1/2 or whole
memory
– Additional Write lockable Page
(Identification page)
• Extended temperature and voltage ranges
– Up to 125 °C (VCC from 2.5 V to 5.5 V)
• Clock frequency
– 10 MHz for VCC ≥ 4.5 V @ 105°C
– 5 MHz for VCC ≥ 2.5 V @ 125°C
• Schmitt trigger inputs for noise filtering
• Short Write cycle time
– Byte Write within 5 ms
– Page Write within 5 ms
• Write cycle endurance
– 4 million Write cycles at 25 °C
– 1.2 million Write cycles at 85 °C
– 100 k Write cycles at 125 °C
• Data retention
– 100 years at 25 °C
• ESD Protection (Human Body Model)
– 3000 V
• Packages
– RoHS-compliant and halogen-free
(ECOPACK2®)
July 2015
This is information on a product in full production.
DocID026881 Rev 5
1/39
www.st.com
Contents
M95M02-A125
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
2.1
Serial Data output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Serial Data input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6
Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7
VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.8
VCC supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1
Active power and Standby power modes . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2
SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3
Hold mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.4
Protocol control and data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.5
4
2/39
3.4.1
Protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.2
Status Register and data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Identification page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2
Write Disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3
Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6
Write to Memory Array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.7
Read Identification Page (RDID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.8
Write Identification Page (WRID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.9
Read Lock Status (RDLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.10
Lock Identification Page (LID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DocID026881 Rev 5
M95M02-A125
5
Contents
Application design recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.1
Operating supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2
Implementing devices on SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3
Cycling with Error Correction Code (ECC) . . . . . . . . . . . . . . . . . . . . . . . . 28
6
Delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.1
SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DocID026881 Rev 5
3/39
3
List of tables
M95M02-A125
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
4/39
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Status Register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Write-protected block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Protection modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Device identification bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Significant bits within the address bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Cycling performance by groups of 4 byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Operating conditions (voltage range W, temperature range 3). . . . . . . . . . . . . . . . . . . . . . 30
Operating conditions (voltage range W, temperature range 3)
for high-speed communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DC characteristics (voltage range W, temperature range 3). . . . . . . . . . . . . . . . . . . . . . . . 31
AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
SO8N – 8-lead plastic small outline, 150 mils body width,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DocID026881 Rev 5
M95M02-A125
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
8-pin package connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SPI modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Hold mode activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Write Enable (WREN) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Write Disable (WRDI) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Read Status Register (RDSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Write Status Register (WRSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Read from Memory Array (READ) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Byte Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Page Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Read Identification Page sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Write Identification Page sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Read Lock Status sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Lock ID sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Bus master and memory devices on the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Serial output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
SO8N – 8-lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . . 35
SO8N – 8-lead plastic small outline, 150 mils body width,
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
DocID026881 Rev 5
5/39
5
Description
1
M95M02-A125
Description
The M95M02-A125 is 2-Mbit serial EEPROM Automotive grade device operating up to
125°C. The M95M02-A125 is compliant with the very high level of reliability defined by the
Automotive standard AEC-Q100 grade 0.
The device is accessed by a simple serial SPI compatible interface running up to 10 MHz.
The memory array is based on advanced true EEPROM technology (Electrically Erasable
PROgrammable Memory). The M95M02-A125 is byte-alterable memories (262144 × 8 bits)
organized as 1024 pages of 256 byte in which the data integrity is significantly improved
with an embedded Error Correction Code logic.
The M95M02-A125 offers an additional Identification Page (256 byte) in which the ST
device identification can be read. This page can also be used to store sensitive application
parameters which can be later permanently locked in read-only mode.
Figure 1. Logic diagram
,K>
t
^
,ŝŐŚǀŽůƚĂŐĞ
ŐĞŶĞƌĂƚŽƌ
ŽŶƚƌŽůůŽŐŝĐ
Y
/ͬKƐŚŝĨƚƌĞŐŝƐƚĞƌ
ĂƚĂ
ƌĞŐŝƐƚĞƌ
ĚĚƌĞƐƐƌĞŐŝƐƚĞƌ
ĂŶĚĐŽƵŶƚĞƌ
^ƚĂƚƵƐ
ƌĞŐŝƐƚĞƌ
zĚĞĐŽĚĞƌ
ϭͬϰ
ϭͬϮ
^ŝnjĞŽĨƚŚĞ
ZĞĂĚŽŶůLJ
WZKD
ĂƌĞĂ
ϭƉĂŐĞ
/ĚĞŶƚŝĨŝĐĂƚŝŽŶƉĂŐĞ
yĚĞĐŽĚĞƌ
069
6/39
DocID026881 Rev 5
M95M02-A125
Description
Figure 2. 8-pin package connections
-XXX
3 1 7 633 6##
(/,$
#
$
!)$
1. See Package mechanical data section for package dimensions and how to identify pin-1.
Table 1. Signal names
Signal name
Description
C
Serial Clock
D
Serial data input
Q
Serial data output
S
Chip Select
W
Write Protect
HOLD
Hold
VCC
Supply voltage
VSS
Ground
DocID026881 Rev 5
7/39
38
Signal description
2
M95M02-A125
Signal description
All input signals must be held high or low (according to voltages of VIH or VIL, as specified in
Table 12). These signals are described below.
2.1
Serial Data output (Q)
This output signal is used to transfer data serially out of the device during a Read operation.
Data is shifted out on the falling edge of Serial Clock (C), most significant bit (MSB) first. In
all other cases, the Serial Data output is in high impedance.
2.2
Serial Data input (D)
This input signal is used to transfer data serially into the device. D input receives
instructions, addresses, and the data to be written. Values are latched on the rising edge of
Serial Clock (C), most significant bit (MSB) first.
2.3
Serial Clock (C)
This input signal allows to synchronize the timing of the serial interface. Instructions,
addresses, or data present at Serial Data Input (D) are latched on the rising edge of Serial
Clock (C). Data on Serial Data Output (Q) changes after the falling edge of Serial Clock (C).
2.4
Chip Select (S)
Driving Chip Select (S) low selects the device in order to start communication. Driving Chip
Select (S) high deselects the device and Serial Data output (Q) enters the high impedance
state.
2.5
Hold (HOLD)
The Hold (HOLD) signal is used to pause any serial communications with the device without
deselecting the device.
2.6
Write Protect (W)
This pin is used to write-protect the Status Register.
2.7
VSS ground
VSS is the reference for all signals, including the VCC supply voltage.
8/39
DocID026881 Rev 5
M95M02-A125
2.8
Signal description
VCC supply voltage
VCC is the supply voltage pin. Refer to Section 3.1: Active power and Standby power modes
and to Section 5.1: Supply voltage (VCC).
DocID026881 Rev 5
9/39
38
Operating features
M95M02-A125
3
Operating features
3.1
Active power and Standby power modes
When Chip Select (S) is low, the device is selected and in the Active power mode.
When Chip Select (S) is high, the device is deselected. If a Write cycle is not currently in
progress, the device then goes in to the Standby power mode, and the device consumption
drops to ICC1, as specified in Table 12.
3.2
SPI modes
The device can be driven by a microcontroller with its SPI peripheral running in either of the
two following modes:
•
CPOL=0, CPHA=0
•
CPOL=1, CPHA=1
For these two modes, input data is latched in on the rising edge of Serial Clock (C), and
output data is available from the falling edge of Serial Clock (C).
The difference between the two modes, as shown in Figure 3, is the clock polarity when the
bus master is in Stand-by mode and not transferring data:
•
C remains at 0 for (CPOL=0, CPHA=0)
•
C remains at 1 for (CPOL=1, CPHA=1)
Figure 3. SPI modes supported
#0/, #0(!
#
#
$
-3"
1
-3"
!)"
10/39
DocID026881 Rev 5
M95M02-A125
3.3
Operating features
Hold mode
The Hold (HOLD) signal is used to pause any serial communications with the device without
resetting the clocking sequence.
The Hold mode starts when the Hold (HOLD) signal is driven low and the Serial Clock (C) is
low (as shown in Figure 4). During the Hold mode, the Serial Data output (Q) is high
impedance, and the signals present on Serial Data input (D) and Serial Clock (C) are not
decoded. The Hold mode ends when the Hold (HOLD) signal is driven high and the Serial
Clock (C) is or becomes low.
Figure 4. Hold mode activation
#
(/,$
(OLD
CONDITION
(OLD
#ONDITION
CONDITION
-36
Deselecting the device while it is in Hold mode resets the paused communication.
3.4
Protocol control and data protection
3.4.1
Protocol control
The Chip Select (S) input offers a built-in safety feature, as the S input is edge-sensitive as
well as level-sensitive: after power-up, the device is not selected until a falling edge has first
been detected on Chip Select (S). This ensures that Chip Select (S) must have been high
prior to going low, in order to start the first operation.
For Write commands (WRITE, WRSR, WRID, LID) to be accepted and executed:
•
the Write Enable Latch (WEL) bit must be set by a Write Enable (WREN) instruction
•
a falling edge and a low state on Chip Select (S) during the whole command must be
decoded
•
instruction, address and input data must be sent as multiple of eight bits
•
the command must include at least one data byte
•
Chip Select (S) must be driven high exactly after a data byte boundary
Write command can be discarded at any time by a rising edge on Chip Select (S) outside of
a byte boundary.
To execute Read commands (READ, RDSR, RDID, RDLS), the device must decode:
•
a falling edge and a low level on Chip Select (S) during the whole command
•
instruction and address as multiples of eight bits (byte)
From this step, data bits are shifted out until the rising edge on Chip Select (S).
DocID026881 Rev 5
11/39
38
Operating features
3.4.2
M95M02-A125
Status Register and data protection
The Status Register format is shown in Table 2 and the status and control bits of the Status
Register are as follows:
Table 2. Status Register format
b7
b6
b5
b4
b3
b2
b1
b0
SRWD
0
0
0
BP1
BP0
WEL
WIP
Status Register Write Protect
Block Protect bits
Write Enable Latch bit
Write In Progress bit
Note:
Bits b6, b5 b4 are always read as 0.
WIP bit
The WIP bit (Write In Progress) is a read-only flag that indicates the Ready/Busy state of the
device. When a Write command (WRITE, WRSR, WRID, LID) has been decoded and a
Write cycle (tW) is in progress, the device is busy and the WIP bit is set to 1. When WIP=0,
the device is ready to decode a new command.
During a Write cycle, reading continuously the WIP bit allows to detect when the device
becomes ready (WIP=0) to decode a new command.
WEL bit
The WEL bit (Write Enable Latch) bit is a flag that indicates the status of the internal Write
Enable Latch. When WEL is set to 1, the Write instructions (WRITE, WRSR, WRID, LID) are
executed; when WEL is set to 0, any decoded Write instruction is not executed.
The WEL bit is set to 1 with the WREN instruction. The WEL bit is reset to 0 after the
following events:
•
Write Disable (WRDI) instruction completion
•
Write instructions (WRITE, WRSR, WRID, LID) completion including the write cycle
time tW
•
Power-up
BP1, BP0 bits
The Block Protect bits (BP1, BP0) are non-volatile. BP1,BP0 bits define the size of the
memory block to be protected against write instructions, as defined in Table 2. These bits
are written with the Write Status Register (WRSR) instruction, provided that the Status
Register is not protected (refer to “SRWD bit and W input signal”, on page 13).
12/39
DocID026881 Rev 5
M95M02-A125
Operating features
Table 3. Write-protected block size
Status Register bits
Protected block
Protected array addresses
0
None
None
0
1
Upper quarter
3000h - 3FFFFh
1
0
Upper half
2000h - 3FFFFh
1
1
Whole memory
0000h - 3FFFFh plus Identification page
BP1
BP0
0
SRWD bit and W input signal
The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write
Protect pin (W) signal. When the SRWD bit is written to 0, it is possible to write the Status
Register, regardless of whether the pin Write Protect (W) is driven high or low.
When the SRWD bit is written to 1, two cases have to be considered, depending on the
state of the W input pin:
•
Case 1: if pin W is driven high, it is possible to write the Status Register.
•
Case 2: if pin W is driven low, it is not possible to write the Status Register (WRSR is
discarded) and therefore SRWD,BP1,BP0 bits cannot be changed (the size of the
protected memory block defined by BP1,BP0 bits is frozen).
Case 2 can be entered in either sequence:
•
Writing SRWD bit to 1 after driving pin W low, or
•
Driving pin W low after writing SRWD bit to 1.
The only way to exit Case 2 is to pull pin W high.
Note: if pin W is permanently tied high, the Status Register cannot be write-protected.
The protection features of the device are summarized in Table 4.
Table 4. Protection modes
3.5
SRWD bit
W signal
0
X
1
1
1
0
Status
Status Register is writable.
Status Register is write-protected.
Identification page
The M95M02-A125 offers an Identification page (256 byte) in addition to the 2 Mbit memory.
The Identification page contains two fields:
•
Device identification: the three first byte are programmed by STMicroelectronics with
the Device identification code, as shown in Table 5.
•
Application parameters: the bytes after the Device identification code are available for
application specific data.
DocID026881 Rev 5
13/39
38
Operating features
Note:
M95M02-A125
If the end application does not need to read the Device identification code, this field can be
overwritten and used to store application-specific data. Once the application-specific data
are written in the Identification page, the whole Identification page should be permanently
locked in Read-only mode.
The Read, Write, Lock Identification Page instructions are detailed in Section 4: Instructions.
Table 5. Device identification bytes
14/39
Address in
Identification page
Content
Value
00h
ST Manufacturer code
20h
01h
SPI Family code
00h
02h
Memory Density code
12h (2 Mbit)
DocID026881 Rev 5
M95M02-A125
4
Instructions
Instructions
Each command is composed of bytes (MSBit transmitted first), initiated with the instruction
byte, as summarized in Table 6.
If an invalid instruction is sent (one not contained in Table 6), the device automatically enters
a Wait state until deselected.
Table 6. Instruction set
Instruction
Instruction
format
Description
WREN
Write Enable
0000 0110
WRDI
Write Disable
0000 0100
RDSR
Read Status Register
0000 0101
WRSR
Write Status Register
0000 0001
READ
Read from Memory Array
0000 0011
WRITE
Write to Memory Array
0000 0010
RDID
Read Identification Page
1000 0011
WRID
Write Identification Page
1000 0010
RDLS
Reads the Identification Page lock status.
1000 0011
LID
Locks the Identification page in read-only mode.
1000 0010
For read and write commands to memory array and Identification Page, the address is
defined by three bytes as explained in Table 7.
Table 7. Significant bits within the address bytes(1) (2)
Instruction
READ or WRITE
Upper address byte
Middle address byte
Lower address byte
b23 b22 ... b17 b16
b15 b14 ... b10 b9 b8
b7 b6 ... b2 b1 b0
x x ... A17 A16
A15 A14 ... A10 A9 A8
A7 A6 ... A1 A0
RDID or WRID
0 0 ... 0 0
0
0 ...
0
0
0
RDLS or LID
0 0 ... 0 0
0 0 0 0 . 0 1 0 0
A7 A6 ... A1 A0
0
0 ... 0 0
1. A: Significant address bit.
2. x: bit is Don’t Care.
DocID026881 Rev 5
15/39
38
Instructions
4.1
M95M02-A125
Write Enable (WREN)
The WREN instruction must be decoded by the device before a write instruction (WRITE,
WRSR, WRID or LID).
As shown in Figure 5, to send this instruction to the device, Chip Select (S) is driven low, the
bits of the instruction byte are shifted in (MSB first) on Serial Data Input (D) after what the
Chip Select (S) input is driven high and the WEL bit is set (Status Register bit).
Figure 5. Write Enable (WREN) sequence
^
Ϭ ϭ Ϯ ϯ ϰ ϱ ϲ ϳ
/ŶƐƚƌƵĐƚŝŽŶ
,ŝŐŚ/ŵƉĞĚĂŶĐĞ
Y
DLYJ
4.2
Write Disable (WRDI)
One way of resetting the WEL bit (in the Status Register) is to send a Write Disable
instruction to the device.
As shown in Figure 6, to send this instruction to the device, Chip Select (S) is driven low,
and the bits of the instruction byte are shifted in (MSB first), on Serial Data Input (D), after
what the Chip Select (S) input is driven high and the WEL bit is reset (Status Register bit).
If a Write cycle is currently in progress, the WRDI instruction is decoded and executed and
the WEL bit is reset to 0 with no effect on the ongoing Write cycle.
Figure 6. Write Disable (WRDI) sequence
3
#
)NSTRUCTION
$
(IGH)MPEDANCE
1
!)D
16/39
DocID026881 Rev 5
M95M02-A125
4.3
Instructions
Read Status Register (RDSR)
The Read Status Register (RDSR) instruction is used to read the content of the Status
Register.
As shown in Figure 7, to send this instruction to the device, Chip Select (S) is first driven
low. The bits of the instruction byte are shifted in (MSB first) on Serial Data Input (D), the
Status Register content is then shifted out (MSB first) on Serial Data Output (Q).
If Chip Select (S) continues to be driven low, the Status Register content is continuously
shifted out.
The Status Register can always be read, even if a Write cycle (tW) is in progress. The Status
Register functionality is detailed in Section 3.4.2: Status Register and data protection.
Figure 7. Read Status Register (RDSR) sequence
3
#
)NSTRUCTION
$
3TATUS2EGISTER/UT
3TATUS2EGISTER/UT
(IGH)MPEDANCE
1
-3"
-3"
!)%
DocID026881 Rev 5
17/39
38
Instructions
4.4
M95M02-A125
Write Status Register (WRSR)
The Write Status Register (WRSR) instruction allows new values to be written to the Status
Register. Before it can be accepted, a Write Enable (WREN) instruction must previously
have been executed.
The Write Status Register (WRSR) instruction is entered (MSB first) by driving Chip Select
(S) low, sending the instruction code followed by the data byte on Serial Data input (D), and
driving the Chip Select (S) signal high.
The contents of the SRWD and BP1, BP0 bits are updated after the completion of the
WRSR instruction, including the Write cycle (tW).
The Write Status Register (WRSR) instruction has no effect on the b6, b5, b4, b1 and b0 bits
in the Status Register (see Table 2: Status Register format).
The Status Register functionality is detailed in Section 3.4.2: Status Register and data
protection.
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.
Figure 8. Write Status Register (WRSR) sequence
3
#
)NSTRUCTION
3TATUS
2EGISTER)N
$
(IGH)MPEDANCE
-3"
1
!)D
18/39
DocID026881 Rev 5
M95M02-A125
4.5
Instructions
Read from Memory Array (READ)
The READ instruction is used to read the content of the memory.
As shown in Figure 9, to send this instruction to the device, Chip Select (S) is first driven
low.
The bits of the instruction byte and address bytes are shifted in (MSB first) on Serial Data
Input (D) and the addressed data byte is then shifted out (MSB first) on Serial Data Output
(Q). The first addressed byte can be any byte within any page.
If Chip Select (S) continues to be driven low, the internal address register is automatically
incremented, and the next byte of data is shifted out. The whole memory can therefore be
read with a single READ instruction.
When the highest address is reached, the address counter rolls over to zero, allowing the
Read cycle to be continued indefinitely.
The Read cycle is terminated by driving Chip Select (S) high at any time when the data bits
are shifted out on Serial Data Output (Q).
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.
Figure 9. Read from Memory Array (READ) sequence
S
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
C
Instruction
24-bit address
23 22 21
D
3
2
1
0
MSB
Data Out 1
High Impedance
7
Q
6
5
4
3
2
Data Out 2
1
0
7
MSB
AI13878
1. Depending on the memory size, as shown in Table 7, the most significant address bits are Don’t Care.
DocID026881 Rev 5
19/39
38
Instructions
4.6
M95M02-A125
Write to Memory Array (WRITE)
The WRITE instruction is used to write new data in the memory.
As shown in Figure 10, to send this instruction to the device, Chip Select (S) is first driven
low. The bits of the instruction byte, address bytes, and at least one data byte are then
shifted in (MSB first), on Serial Data Input (D). The instruction is terminated by driving Chip
Select (S) high at a data byte boundary. Figure 10 shows a single byte write.
Figure 10. Byte Write (WRITE) sequence
3
#
)NSTRUCTION
BITADDRESS
$
$ATABYTE
(IGHIMPEDANCE
1
-36
1. Depending on the memory size, as shown in Table 7, the most significant address bits are Don’t Care.
A Page write is used to write several bytes inside a page, with a single internal Write cycle.
For a Page write, Chip Select (S) has to remain low, as shown in Figure 11, so that the next
data bytes are shifted in. Each time a new data byte is shifted in, the least significant bits of
the internal address counter are incremented. If the address counter exceeds the page
boundary (the page size is 256 byte), the internal address pointer rolls over to the beginning
of the same page where next data bytes will be written. If more than 256 byte are received,
only the last 256 byte are written.
For both Byte write and Page write, the self-timed Write cycle starts from the rising edge of
Chip Select (S), and continues for a period tW (as specified in Table 13).
The instruction is discarded, and is not executed, under the following conditions:
Note:
20/39
•
if a Write cycle is already in progress
•
if the addressed page is in the region protected by the Block Protect (BP1 and BP0)
bits
•
if one of the conditions defined in Section 3.4.1 is not satisfied
The self-timed Write cycle tW is internally executed as a sequence of two consecutive
events: [Erase addressed byte(s)], followed by [Program addressed byte(s)]. An erased bit
is read as “0” and a programmed bit is read as “1”.
DocID026881 Rev 5
M95M02-A125
Instructions
Figure 11. Page Write (WRITE) sequence
6
&
,QVWUXFWLRQ
ELWDGGUHVV
'
'DWDE\WH
6
&
'DWDE\WH
'
'DWDE\WH
'DWDE\WH1
-36
1. Depending on the memory size, as shown in Table 7, the most significant address bits are Don’t Care.
DocID026881 Rev 5
21/39
38
Instructions
4.7
M95M02-A125
Read Identification Page (RDID)
The Read Identification Page instruction is used to read the Identification Page (additional
page of 256 byte which can be written and later permanently locked in Read-only mode).
The Chip Select (S) signal is first driven low, the bits of the instruction byte and address
bytes are then shifted in (MSB first) on Serial Data input (D). Address bit A10 must be 0 and
the other upper address bits are Don't Care (it might be easier to define these bits as 0, as
shown in Table 7). The data byte pointed to by the lower address bits [A7:A0] is shifted out
(MSB first) on Serial Data output (Q).
The first byte addressed can be any byte within the identification page.
If Chip Select (S) continues to be driven low, the internal address register is automatically
incremented and the byte of data at the new address is shifted out.
Note that there is no roll over feature in the Identification Page. The address of bytes to read
must not exceed the page boundary.
The read cycle is terminated by driving Chip Select (S) high. The rising edge of the Chip
Select (S) signal can occur at any time when the data bits are shifted out.
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.
Figure 12. Read Identification Page sequence
3
#
)NSTRUCTION
BITADDRESS
$
-3"
$ATA/UT
(IGHIMPEDANCE
1
$ATA/UT
-3"
-36
The first three bytes of the Identification page offer information about the device itself.
Please refer to Section 3.5: Identification page for more information.
22/39
DocID026881 Rev 5
M95M02-A125
4.8
Instructions
Write Identification Page (WRID)
The Write Identification Page instruction is used to write the Identification Page (additional
page of 256 byte which can also be permanently locked in Read-only mode).
The Chip Select signal (S) is first driven low, and then the bits of the instruction byte,
address bytes, and at least one data byte are shifted in (MSB first) on Serial Data input (D).
Address bit A10 must be 0 and the other upper address bits are Don't Care (it might be
easier to define these bits as 0, as shown in Table 7). The lower address bits [A7:A0] define
the byte address inside the identification page.
The self-timed Write cycle starts from the rising edge of Chip Select (S), and continues for a
period tW (as specified in Table 13).
Figure 13. Write Identification Page sequence
3
#
)NSTRUCTION
$
BITADDRESS
$ATABYTE
(IGHIMPEDANCE
1
-36
Note:
The first three bytes of the Identification page offer the Device Identification code (Please
refer to Section 3.5: Identification page for more information). Using the WRID command on
these first three bytes overwrites the Device Identification code.
The instruction is discarded, and is not executed, under the following conditions:
4.9
•
If a Write cycle is already in progress
•
If the Block Protect bits (BP1,BP0) = (1,1)
•
If one of the conditions defined in Section 3.4.1: Protocol control is not satisfied.
Read Lock Status (RDLS)
The Read Lock Status instruction is used to read the lock status.
To send this instruction to the device, Chip Select (S) first has to be driven low. The bits of
the instruction byte and address bytes are then shifted in (MSB first) on Serial Data input
(D). Address bit A10 must be 1; all other address bits are Don't Care (it might be easier to
define these bits as 0, as shown in Table 7). The Lock bit is the LSB (Least Significant Bit) of
the byte read on Serial Data output (Q). It is at ‘1’ when the lock is active and at ‘0’ when the
lock is not active. If Chip Select (S) continues to be driven low, the same data byte is shifted
out.
The read cycle is terminated by driving Chip Select (S) high. The instruction sequence is
shown in Figure 14.
DocID026881 Rev 5
23/39
38
Instructions
M95M02-A125
The Read Lock Status instruction is not accepted and not executed if a Write cycle is
currently in progress.
Figure 14. Read Lock Status sequence
3
#
)NSTRUCTION
BITADDRESS
$
-3"
$ATA/UT
(IGHIMPEDANCE
1
$ATA/UT
-3"
-36
4.10
Lock Identification Page (LID)
The Lock Identification Page (LID) command is used to permanently lock the Identification
Page in Read-only mode.
The LID instruction is issued by driving Chip Select (S) low, sending (MSB first) the
instruction code, the address and a data byte on Serial Data input (D), and driving Chip
Select (S) high. In the address sent, A10 must be equal to 1. All other address bits are
Don't Care (it might be easier to define these bits as 0, as shown in Table 7). The data byte
sent must be equal to the binary value xxxx xx1x, where x = Don't Care. The LID instruction
is terminated by driving Chip Select (S) high at a data byte boundary, otherwise, the
instruction is not executed.
Figure 15. Lock ID sequence
3
#
)NSTRUCTION
$
BITADDRESS
$ATABYTE
(IGHIMPEDANCE
1
-36
Driving Chip Select (S) high at a byte boundary of the input data triggers the self-timed Write
cycle which duration is tW (specified in Table 13). The instruction sequence is shown in
Figure 15.
24/39
DocID026881 Rev 5
M95M02-A125
Instructions
The instruction is discarded, and is not executed, under the following conditions:
•
If a Write cycle is already in progress
•
If the Block Protect bits (BP1,BP0) = (1,1)
•
If one of the conditions defined in Section 3.4.1: Protocol control is not satisfied.
DocID026881 Rev 5
25/39
38
Application design recommendations
M95M02-A125
5
Application design recommendations
5.1
Supply voltage (VCC)
5.1.1
Operating supply voltage (VCC)
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage
within the specified [VCC(min), VCC(max)] range must be applied (see Table 10).
This voltage must remain stable and valid until the end of the transmission of the instruction
and, for a Write instruction, until the completion of the internal Write cycle (tW). In order to
secure a stable DC supply voltage, it is recommended to decouple the VCC line with a
suitable capacitor (usually of the order of 10 nF to 100 nF) close to the VCC/VSS package
pins.
5.1.2
Power-up conditions
When the power supply is turned on, VCC continuously rises from VSS to VCC. During this
time, the Chip Select (S) line is not allowed to float but should follow the VCC voltage. It is
therefore recommended to connect the S line to VCC via a suitable pull-up resistor (see
Figure 16).
The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage
defined in Table 12.
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR)
circuit is included.
At power-up, the device does not respond to any instruction until VCC reaches the internal
threshold voltage (this threshold is defined in the DC characteristics tables 12 as VRES).
When VCC passes over the POR threshold, the device is reset and in the following state:
•
in the Standby power mode
•
deselected
•
Status register values:
•
–
Write Enable Latch (WEL) bit is reset to 0.
–
Write In Progress (WIP) bit is reset to 0.
–
SRWD, BP1 and BP0 bits remain unchanged (non-volatile bits).
not in the Hold condition
As soon as the VCC voltage has reached a stable value within [VCC(min), VCC(max)] range,
the device is ready for operation.
26/39
DocID026881 Rev 5
M95M02-A125
5.1.3
Application design recommendations
Power-down
During power-down (continuous decrease in the VCC supply voltage below the minimum
VCC operating voltage defined in Table 12), the device must be:
5.2
•
deselected (Chip Select (S) should be allowed to follow the voltage applied on VCC),
•
in Standby power mode (there should not be any internal Write cycle in progress).
Implementing devices on SPI bus
Figure 16 shows an example of three devices, connected to the SPI bus master. Only one
device is selected at a time, so that only the selected device drives the Serial Data output
(Q) line. All the other devices outputs are then in high impedance.
Figure 16. Bus master and memory devices on the SPI bus
6##
3$/
30)INTERFACEWITH
#0/,#0(!
OR
3$)
3#+
# 1 $
6##
# 1 $
6##
# 1 $
6##
30)BUSMASTER
2
#3 #3 #3
30)MEMORY
DEVICE
3
2
7 (/,$
30)MEMORY
DEVICE
3
7 (/,$
2
30)MEMORY
DEVICE
3
7 (/,$
633
-36
1. The Write Protect (W) and Hold (HOLD) signals must be driven high or low as appropriate.
A pull-up resistor connected on each /S input (represented in Figure 16) ensures that each
device is not selected if the bus master leaves the /S line in the high impedance state.
DocID026881 Rev 5
27/39
38
Application design recommendations
5.3
M95M02-A125
Cycling with Error Correction Code (ECC)
The Error Correction Code (ECC) is an internal logic function which is transparent for the
SPI communication protocol.
The ECC logic is implemented on each group of four EEPROM bytes(a). Inside a group, if a
single bit out of the four bytes happens to be erroneous during a Read operation, the ECC
detects this bit and replaces it with the correct value. The read reliability is therefore much
improved.
Even if the ECC function is performed on groups of four bytes, a single byte can be
written/cycled independently. In this case, the ECC function also writes/cycles the three
other bytes located in the same group(a). As a consequence, the maximum cycling budget is
defined at group level and the cycling can be distributed over the 4 bytes of the group: the
sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain
below the maximum value defined in Table 9: Cycling performance by groups of 4 byte.
Example1: maximum cycling limit reached with 1 million cycles per byte
Each byte of a group can be equally cycled 1 million times (at 25 °C) so that the group
cycling budget is 4 million cycles.
Example2: maximum cycling limit reached with unequal byte cycling
Inside a group, byte0 can be cycled 2 million times, byte1 can be cycled 1 million times,
byte2 and byte3 can be cycled 500,000 times, so that the group cycling budget is 4 million
cycles.
a. A group of four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer.
28/39
DocID026881 Rev 5
M95M02-A125
6
Delivery state
Delivery state
The device is delivered with:
7
•
the memory array set to all 1s (each byte = FFh),
•
Status register: bit SRWD =0, BP1 =0 and BP0 =0,
•
Identification page: the first three bytes define the Device identification code (value
defined in Table 5). The content of the following bytes is Don’t Care.
Absolute maximum ratings
Stressing the device outside the ratings listed in Table 8 may cause permanent damage to
the device. These are stress ratings only, and operation of the device at these, or any other
conditions outside those indicated in the operating sections of this specification, is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Table 8. Absolute maximum ratings
Symbol
Parameter
Min.
Max.
Unit
TSTG
Storage temperature
–65
150
°C
TAMR
Ambient operating temperature
–40
130
°C
TLEAD
Lead temperature during soldering
See
note (1)
°C
VO
Voltage on Q pin
–0.50
VCC+0.6
V
VI
Input voltage
–0.50
6.5
V
IOL
DC output current (Q = 0)
-
5
mA
IOH
DC output current (Q = 1)
-
5
mA
VCC
Supply voltage
–0.50
6.5
V
VESD
Electrostatic pulse (Human Body Model)(2)
-
3000
V
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb-free assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions of Hazardous Substances (RoHS
directive 2011/65/EU of July 2011).
2. Positive and negative pulses applied on pin pairs, in accordance with AEC-Q100-002 (compliant with
ANSI/ESDA/JEDEC JS-001-2012, C1=100 pF, R1=1500 Ω, R2=500 Ω)
DocID026881 Rev 5
29/39
38
DC and AC parameters
8
M95M02-A125
DC and AC parameters
This section summarizes the operating conditions and the DC/AC characteristics of the
device.
Table 9. Cycling performance by groups of 4 byte
Symbol
Ncycle
Parameter
Write cycle endurance(1)
Test condition
Min.
Max.
TA ≤ 25 °C, V < VCC < 5.5 V
-
4,000,000
TA = 85 °C, V < VCC < 5.5 V
-
1,200,000
TA = 105 °C, 2.5 V < VCC < 5.5 V
-
300,000
TA = 125 °C, 2.5 V < VCC < 5.5 V
-
100,000
Unit
Write
cycle(2)
1. The Write cycle endurance is defined for groups of four data bytes located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3] where
N is an integer, or for the status register byte (refer also to Section 5.3: Cycling with Error Correction Code (ECC)). The
Write cycle endurance is defined by characterization and qualification.
2. A Write cycle is executed when either a Page Write, a Byte Write, a WRSR, a WRID or an LID instruction is decoded.
When using the Byte Write, the Page Write or the WRID, refer also to Section 5.3: Cycling with Error Correction Code
(ECC)
Table 10. Operating conditions (voltage range W, temperature range 3)
Symbol
Conditions
Min.
Max.
Unit
Supply voltage
-
2.5
5.5
V
TA
Ambient operating temperature
-
–40
125
°C
fC
Operating clock frequency
-
5
MHz
VCC
Parameter
VCC ≥ 2.5 V, capacitive load on Q pin ≤100pF
Table 11. Operating conditions (voltage range W, temperature range 3)
for high-speed communications
Symbol
Conditions
Min.
Max.
Unit
Supply voltage
-
4.5
5.5
V
TA
Ambient operating temperature
-
–40
105
°C
fC
Operating clock frequency
VCC ≥ 4.5 V, capacitive load on Q pin ≤ 100 pF
-
10
MHz
VCC
30/39
Parameter
DocID026881 Rev 5
M95M02-A125
DC and AC parameters
Table 12. DC characteristics (voltage range W, temperature range 3)
Test conditions
Symbol
COUT(3)
Parameter
(in addition to conditions specified
in Table 10)
Min.
Max.
Output capacitance (Q)
VOUT = 0 V
-
8
Input capacitance
VIN = 0 V
-
6
ILI
Input leakage current
VIN = VSS or VCC
-
2
ILO
Output leakage current
S = VCC, VOUT = VSS or VCC
-
3
VCC = 2.5 V, C = 0.1VCC/0.9 VCC,
Q = open fC = 5 MHz
-
3
VCC = 5.5 V, 10 MHz(1)
C = 0.1 VCC/0.9 VCC, Q = open
-
5
2.5 V ≤ VCC < 5.5 V during tW,
S = VCC
-
2(3)
t° = 85 °C, VCC = 2.5 V, S = VCC, VIN
= VSS or VCC(3)
-
5
t° = 85 °C, VCC = 5.5 V, S = VCC, VIN
= VSS or VCC(3)
-
5
t° = 105 °C, VCC = 2.5 V, S = VCC,
VIN = VSS or VCC
-
15
t° = 105 °C, VCC = 5.5 V, S = VCC,
VIN = VSS or VCC
-
15
t° = 125 °C, VCC = 2.5 V, S = VCC, VIN
= VSS or VCC
-
20
t° = 125 °C, VCC = 5.5 V, S = VCC,
VIN = VSS or VCC
-
40
CIN
(3)
ICC
ICC0(2)
ICC1
Supply current (Read)
Supply current (Write)
Supply current (Standby mode)
Unit
pF
µA
mA
mA
µA
VIL
Input low voltage
2.5 V ≤ VCC < 5.5 V
–0.45
0.3 VCC
V
VIH
Input high voltage
2.5 V ≤ VCC < 5.5 V
0.7 VCC
VCC+ 1
V
VOL
Output low voltage
VCC ≥ 2.5 V, IOL = 2 mA
-
0.4
V
VOH
Output high voltage
VCC ≥ 2.5 V, IOH = -2 mA
0.8 VCC
-
V
Internal reset threshold voltage
-
0.5
1.5
V
VRES(3)
1. When –40 °C < t° < 105 °C.
2. Average value during the Write cycle (tW)
3. Characterized only, not 100% tested
DocID026881 Rev 5
31/39
38
DC and AC parameters
M95M02-A125
Table 13. AC characteristics
Min.
Symbol
Alt.
fC
fSCK
Parameter
Clock frequency
Max.
Min.
Max.
Test
Test
conditions conditions
specified in specified in
Table 10
Table 11
-
5
-
10
tSLCH
tCSS1 S active setup time
60
-
30
-
tSHCH
tCSS2 S not active setup time
60
-
30
-
tSHSL
tCS
S deselect time
90
-
40
-
tCHSH
tCSH
S active hold time
60
-
30
-
S not active hold time
60
-
30
-
tCHSL
tCH(1)
tCLH
Clock high time
90
-
40
-
tCL(1)
tCLL
Clock low time
90
-
40
-
(2)
tRC
Clock rise time
-
2
-
2
tCHCL(2)
tFC
Clock fall time
-
2
-
2
tDVCH
tDSU
Data in setup time
20
-
10
-
tCHDX
tDH
Data in hold time
20
-
10
-
tHHCH
-
Clock low hold time after HOLD not active
60
-
30
-
tHLCH
-
Clock low hold time after HOLD active
60
-
30
-
tCLHL
-
Clock low set-up time before HOLD active
0
-
0
-
tCLHH
-
Clock low set-up time before HOLD not
active
0
-
0
-
tSHQZ(2)
tDIS
Output disable time
-
80
-
40
tCLQV(3)
tV
Clock low to output valid
-
80
-
40
tCLQX
tHO
Output hold time
0
-
0
-
tQLQH(2)
tRO
Output rise time
-
80
-
20
tQHQL(2)
tFO
Output fall time
-
80
-
20
tHHQV
tLZ
HOLD high to output valid
-
80
-
40
tHLQZ(2)
tHZ
HOLD low to output high-Z
-
80
-
40
tW
tWC
Write time
-
5
-
5
tCLCH
Unit
MHz
ns
µs
ns
ms
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max).
2. Value guaranteed by characterization, not 100% tested in production.
3. tCLQV must be compatible with tCL (clock low time): if tSU is the Read setup time of the SPI bus master, tCL
must be equal to (or greater than) tCLQV+tSU.
32/39
DocID026881 Rev 5
M95M02-A125
DC and AC parameters
Figure 17. AC measurement I/O waveform
,QSXWDQG2XWSXW
7LPLQJ5HIHUHQFH/HYHOV
,QSXW/HYHOV
ೌ9&&
ೌ9&&
ೌ9&&
ೌ9&&
$,&
Figure 18. Serial input timing
T3(3,
3
T#(3,
T#(
T3,#(
T#(3(
T3(#(
#
T$6#(
T#(#,
T#,
T#,#(
T#($8
$
1
,3").
-3").
(IGHIMPEDANCE
!)D
Figure 19. Hold timing
3
T(,#(
T#,(,
T((#(
#
T#,((
T(,1:
T((16
1
!)C
DocID026881 Rev 5
33/39
38
DC and AC parameters
M95M02-A125
Figure 20. Serial output timing
3
T#(
T3(3,
#
T#,16
T#,#(
T#(#,
T#,
T3(1:
T#,18
1
T1,1(
T1(1,
!$$2
$ ,3").
!)F
34/39
DocID026881 Rev 5
M95M02-A125
9
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
9.1
SO8N package information
Figure 21. SO8N – 8-lead plastic small outline, 150 mils body width, package outline
K[Û
$
$
F
FFF
E
H
PP
*$8*(3/$1(
'
N
(
(
$
/
/
62$B9
1. Drawing is not to scale.
Table 14. SO8N – 8-lead plastic small outline, 150 mils body width,
package mechanical data
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.750
-
-
0.0689
A1
0.100
-
0.250
0.0039
-
0.0098
A2
1.250
-
-
0.0492
-
-
b
0.280
-
0.480
0.0110
-
0.0189
c
0.170
-
0.230
0.0067
-
0.0091
D
4.800
4.900
5.000
0.1890
0.1929
0.1969
E
5.800
6.000
6.200
0.2283
0.2362
0.2441
E1
3.800
3.900
4.000
0.1496
0.1535
0.1575
e
-
1.270
-
-
0.0500
-
h
0.250
-
0.500
0.0098
-
0.0197
k
0°
-
8°
0°
-
8°
L
0.400
-
1.270
0.0157
-
0.0500
DocID026881 Rev 5
35/39
38
Package mechanical data
M95M02-A125
Table 14. SO8N – 8-lead plastic small outline, 150 mils body width,
package mechanical data (continued)
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
L1
-
1.040
-
-
0.0409
-
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
Figure 22. SO8N – 8-lead plastic small outline, 150 mils body width,
package recommended footprint
[
2B621B)3B9
1. Dimensions are expressed in millimeters.
36/39
DocID026881 Rev 5
M95M02-A125
10
Part numbering
Part numbering
Table 15. Ordering information scheme
Example:
M95M02-D
W
MN 3
T
P /K
Device type
M95 = SPI serial access EEPROM
Device function
M02-D = 2 Mbit (256 byte) plus Identification Page
Operating voltage
W = VCC = 2.5 to 5.5 V
Package(1)
MN = SO8 (150 mils width)
Device grade
3 = –40 to 125 °C. Device tested with high reliability certified flow(2)
Option
blank = Tube packing
T = Tape and reel packing
Plating technology
P or G = ECOPACK2®
Process letter
/K = Manufacturing technology code
1. All packages are ECOPACK2® (RoHS compliant and free of brominated, chlorinated and antimony-oxide
flame retardants).
2. The high reliability certified flow (HRCF) is described in quality note QNEE9801. Please ask your nearest
ST sales office for a copy.
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Engineering samples
Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are
not yet qualified and therefore not yet ready to be used in production and any consequences
deriving from such usage will not be at ST charge. In no event, ST will be liable for any
customer usage of these engineering samples in production. ST Quality has to be contacted
prior to any decision to use these Engineering samples to run qualification activity.
DocID026881 Rev 5
37/39
38
Revision history
11
M95M02-A125
Revision history
Table 16. Document revision history
38/39
Date
Revision
Changes
25-Sep-2014
1
Initial release.
11-Dec-2014
2
Updated Table 9: Cycling performance by groups of 4 byte
Updated Table 13: AC characteristics
Updated Table 15: Ordering information scheme
Updated Figure 17: AC measurement I/O waveform
Updated Figure 21: SO8N – 8-lead plastic small outline, 150 mils
body width, package outline
Added Engineering samples paragraph.
19-Dec-2014
3
Updated Features
Updated Table 9: Cycling performance by groups of 4 byte
14-Apr-2015
4
Changed datasheet status from Preliminary to Production
17-Jul-2015
5
Updated Table 3: Write-protected block size
Added Figure 22: SO8N – 8-lead plastic small outline, 150 mils body
width, package recommended footprint
DocID026881 Rev 5
M95M02-A125
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID026881 Rev 5
39/39
39