M95160-145 Automotive 16-Kbit serial SPI bus EEPROM with high-speed clock Features ■ Compatible with SPI bus serial interface (positive clock SPI modes) ■ Extended operating temperature range: – Device grade 4: –40 °C to +145 °C ■ Single supply voltage: – 2.5 V to 5.5 V ■ High speed: 5 MHz ■ Status Register ■ Hardware protection of the Status Register ■ Byte and page write (up to 32 bytes) ■ Self-timed programming cycle ■ Adjustable size read-only EEPROM area ■ Enhanced ESD protection ■ More than 1 million write cycles ■ More than 40-year data retention ■ Package – RoHS compliant and halogen-free (ECOPACK2®) November 2011 TSSOP8 (DW) 169 mil width Doc ID 022470 Rev 1 1/35 www.st.com 1 Contents M95160-145 Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 2.1 Serial Data output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Serial Data input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.6 Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.7 VCC supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.8 VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Implementing devices on the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 4 SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1 Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1.1 4.1.2 Operating supply voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1.3 Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1.4 Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Active Power and Standby Power modes . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 Hold condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.4 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.5 Data protection and protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.1 Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.2 Write Disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.3 Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.3.1 2/35 WIP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Doc ID 022470 Rev 1 M95160-145 7 Contents 6.3.2 WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.3.3 BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.3.4 SRWD bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.4 Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.5 Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.6 Write to Memory Array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.1 Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 9 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 10 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 11 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Doc ID 022470 Rev 1 3/35 List of tables M95160-145 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. 4/35 Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Write-protected block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Status Register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Protection modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Address range bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 32 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Doc ID 022470 Rev 1 M95160-145 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 TSSOP8-lead package connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Bus master and memory devices on the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 SPI modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Hold mode activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Write Enable (WREN) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Write Disable (WRDI) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Read Status Register (RDSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Write Status Register (WRSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Read from Memory Array (READ) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Byte Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Page Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Serial output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 32 Doc ID 022470 Rev 1 5/35 Description 1 M95160-145 Description The M95160-145 is an EEPROM (Electrically Erasable PROgrammable Memory) accessed by a high-speed SPI bus. The memory array is organized as 2048 × 8 bits. The M95160-145 is the first EEPROM device in a TSSOP package qualified at 145 °C. The M95160-145 device is designed to be compliant with the very high level of reliability defined by the Automotive standard AEC-Q100 grade 0. Figure 1. Logic diagram VCC D Q C S M95xxx W HOLD VSS AI01789C Table 1. Signal names Signal name 6/35 Function Direction C Serial Clock Input D Serial Data input Input Q Serial Data output Output S Chip Select Input W Write Protect Input HOLD Hold Input VCC Supply voltage VSS Ground Doc ID 022470 Rev 1 M95160-145 Description Figure 2. TSSOP8-lead package connections (top view) M95xxx S Q W VSS 1 2 3 4 8 7 6 5 VCC HOLD C D AI01790D 1. See Package mechanical data section for package dimensions, and how to identify pin-1. Doc ID 022470 Rev 1 7/35 Signal description 2 M95160-145 Signal description During all operations, VCC must be held stable and within the specified valid range: VCC(min) to VCC(max). All of the input and output signals must be held high or low (according to voltages of VIH, VOH, VIL or VOL, as specified in Table 10. These signals are described next. 2.1 Serial Data output (Q) This output signal is used to transfer data serially out of the device. Data is shifted out on the falling edge of Serial Clock (C). 2.2 Serial Data input (D) This input signal is used to transfer data serially into the device. It receives instructions, addresses, and the data to be written. Values are latched on the rising edge of Serial Clock (C). 2.3 Serial Clock (C) This input signal provides the timing of the serial interface. Instructions, addresses, or data present at Serial Data Input (D) are latched on the rising edge of Serial Clock (C). Data on Serial Data Output (Q) changes after the falling edge of Serial Clock (C). 2.4 Chip Select (S) When this input signal is high, the device is deselected and Serial Data Output (Q) is at high impedance. Unless an internal Write cycle is in progress, the device will be in the Standby Power mode. Driving Chip Select (S) low selects the device, placing it in the Active Power mode. After Power-up, a falling edge on Chip Select (S) is required prior to the start of any instruction. 2.5 Hold (HOLD) The Hold (HOLD) signal is used to pause any serial communications with the device without deselecting the device. 2.6 Write Protect (W) The main purpose of this input signal is to freeze the size of the area of memory that is protected against Write instructions (as specified by the values in the BP1 and BP0 bits of the Status Register). This pin must be driven either high or low, and must be stable during all write instructions. 8/35 Doc ID 022470 Rev 1 M95160-145 2.7 Signal description VCC supply voltage VCC is the supply voltage. 2.8 VSS ground VSS is the reference for the VCC supply voltage. Doc ID 022470 Rev 1 9/35 Implementing devices on the SPI bus 3 M95160-145 Implementing devices on the SPI bus Figure 3 shows an example of three devices, connected to the SPI bus master. Only one device is selected at a time, so that only the selected device drives the Serial Data output (Q) line. All the other devices outputs are then in high impedance. Figure 3. Bus master and memory devices on the SPI bus 6## 3$/ 30)INTERFACEWITH #0/,#0(! OR 3$) 3#+ # 1 $ 6## # 1 $ 6## # 1 $ 6## 30)BUSMASTER 2 #3 #3 #3 30)MEMORY DEVICE 3 2 7 (/,$ 30)MEMORY DEVICE 3 7 (/,$ 2 30)MEMORY DEVICE 3 7 (/,$ 633 -36 1. The Write Protect (W) and Hold (HOLD) signals must be driven high or low as appropriate. A pull-up resistor connected on each S input (represented in Figure 3) ensures that each device is not selected if the bus master leaves the S line in the high impedance state. 3.1 SPI modes These devices can be driven by a microcontroller with its SPI peripheral running in either of the two following modes: ● CPOL=0, CPHA=0 ● CPOL=1, CPHA=1 For these two modes, input data is latched in on the rising edge of Serial Clock (C), and output data is available from the falling edge of Serial Clock (C). The difference between the two modes, as shown in Figure 4, is the clock polarity when the bus master is in Stand-by mode and not transferring data: 10/35 ● C remains at 0 for (CPOL=0, CPHA=0) ● C remains at 1 for (CPOL=1, CPHA=1) Doc ID 022470 Rev 1 M95160-145 Implementing devices on the SPI bus Figure 4. SPI modes supported CPOL CPHA 0 0 C 1 1 C D MSB Q MSB AI01438B Doc ID 022470 Rev 1 11/35 Operating features M95160-145 4 Operating features 4.1 Supply voltage (VCC) 4.1.1 Operating supply voltage VCC Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage within the specified [VCC(min), VCC(max)] range must be applied (see Table 8). This voltage must remain stable and valid until the end of the transmission of the instruction and, for a Write instruction, until the completion of the internal write cycle (tW). In order to secure a stable DC supply voltage, it is recommended to decouple the VCC line with a suitable capacitor (usually of the order of 10 nF to 100 nF) close to the VCC/VSS package pins. 4.1.2 Device reset In order to prevent inadvertent write operations during power-up, a power on reset (POR) circuit is included. At power-up, the device does not respond to any instruction until VCC reaches the internal reset threshold voltage (this threshold is lower than the minimum VCC operating voltage defined in Table 8). When VCC passes over the POR threshold, the device is reset and in the following state: ● in Standby Power mode ● deselected (note that, to be executed, an instruction must be preceded by a falling edge on Chip Select (S)) ● Status Register value: – the Write Enable Latch (WEL) is reset to 0 – Write In Progress (WIP) is reset to 0 – The SRWD, BP1 and BP0 bits remain unchanged (non-volatile bits) When VCC passes over the POR threshold, the device is reset and enters the Standby Power mode. The device must not be accessed until VCC reaches a valid and stable VCC voltage within the specified [VCC(min), VCC(max)] range defined in Table 8. 4.1.3 Power-up conditions When the power supply is turned on, VCC rises continuously from VSS to VCC. During this time, the Chip Select (S) line is not allowed to float but should follow the VCC voltage, it is therefore recommended to connect the S line to VCC via a suitable pull-up resistor (see Figure 3). In addition, the Chip Select (S) input offers a built-in safety feature, as the S input is edgesensitive as well as level-sensitive: after power-up, the device does not become selected until a falling edge has first been detected on Chip Select (S). This ensures that Chip Select (S) must have been high, prior to going low to start the first operation. The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage defined in Table 8 and the rise time must not vary faster than 1 V/µs. 12/35 Doc ID 022470 Rev 1 M95160-145 4.1.4 Operating features Power-down During power-down (continuous decrease of VCC below the minimum VCC operating voltage defined in Table 8), the device must be: 4.2 ● deselected (Chip Select S should be allowed to follow the voltage applied on VCC) ● in Standby Power mode (there should not be any internal write cycle in progress). Active Power and Standby Power modes When Chip Select (S) is low, the device is selected, and in the Active Power mode. The device consumes ICC, as specified in Table 10. When Chip Select (S) is high, the device is deselected. If a Write cycle is not currently in progress, the device then goes into the Standby Power mode, and the device consumption drops to ICC1. 4.3 Hold condition The Hold (HOLD) signal is used to pause any serial communications with the device without resetting the clocking sequence. The Hold mode starts when the Hold (HOLD) signal is driven low and the Serial Clock (C) is low (as shown in Figure 5). During the Hold mode, the Serial Data output (Q) is high impedance, and Serial Data input (D) and Serial Clock (C) are Don’t Care. The Hold mode ends when the Hold (HOLD) signal is driven high and the Serial Clock (C) is or becomes low. Figure 5. Hold mode activation # (/,$ (OLD CONDITION (OLD CONDITION #ONDITION -36 Deselecting the device while it is in Hold mode resets the paused communication. 4.4 Status Register Figure 6. shows the position of the Status Register in the control logic of the device. The Status Register contains a number of status and control bits that can be read or set (as appropriate) by specific instructions. See Section 6.3: Read Status Register (RDSR) for a detailed description of the Status Register bits Doc ID 022470 Rev 1 13/35 Operating features 4.5 M95160-145 Data protection and protocol control Non-volatile memory devices can be used in environments that are particularly noisy, and within applications that could experience problems if memory bytes are corrupted. Consequently, the device features the following data protection mechanisms: ● Write and Write Status Register instructions are checked that they consist of a number of clock pulses that is a multiple of eight, before they are accepted for execution. ● All instructions that modify data must be preceded by a Write Enable (WREN) instruction to set the Write Enable Latch (WEL) bit. This bit is returned to its reset state by the following events: – Power-up – Write Disable (WRDI) instruction completion – Write Status Register (WRSR) instruction completion – Write (WRITE) instruction completion ● The Block Protect (BP1, BP0) bits in the Status Register allow part of the memory to be configured as read-only. ● The Write Protect (W) signal allows the Block Protect (BP1, BP0) bits of the Status Register to be protected. For any instruction to be accepted, and executed, Chip Select (S) must be driven high after the rising edge of Serial Clock (C) for the last bit of the instruction, and before the next rising edge of Serial Clock (C). Two points need to be noted in the previous sentence: ● The “last bit of the instruction” can be the eighth bit of the instruction code, or the eighth bit of a data byte, depending on the instruction (except for Read Status Register (RDSR) and Read (READ) instructions). ● The “next rising edge of Serial Clock (C)” might (or might not) be the next bus transaction for some other device on the SPI bus. Table 2. Write-protected block size Status Register bits Protected block 14/35 Protected array addresses BP1 BP0 0 0 none 0 1 Upper quarter 0600h - 07FFh 1 0 Upper half 0400h - 07FFh 1 1 Whole memory 0000h - 07FFh Doc ID 022470 Rev 1 none M95160-145 Memory organization The memory is organized as shown in Figure 6. Figure 6. Block diagram HOLD W High voltage generator Control logic S C D I/O shift register Q Address register and counter Data register Status Register Size of the read-only EEPROM area Y decoder 5 Memory organization 1 page X decoder AI01272d Doc ID 022470 Rev 1 15/35 Instructions 6 M95160-145 Instructions Each instruction starts with a single-byte code, as summarized in Table 3. If an invalid instruction is sent (one not contained in Table 3.), the device automatically deselects itself. Table 3. Instruction set Instruction 6.1 Description Instruction format WREN Write Enable 0000 0110 WRDI Write Disable 0000 0100 RDSR Read Status Register 0000 0101 WRSR Write Status Register 0000 0001 READ Read from Memory Array 0000 0011 WRITE Write to Memory Array 0000 0010 Write Enable (WREN) The Write Enable Latch (WEL) bit must be set prior to each WRITE and WRSR instruction. The only way to do this is to send a Write Enable instruction to the device. As shown in Figure 7., to send this instruction to the device, Chip Select (S) is driven low, and the bits of the instruction byte are shifted in, on Serial Data Input (D). The device then enters a wait state. It waits for the device to be deselected, by Chip Select (S) being driven high. Figure 7. Write Enable (WREN) sequence S 0 1 2 3 4 5 6 7 C Instruction D High Impedance Q AI02281E 16/35 Doc ID 022470 Rev 1 M95160-145 6.2 Instructions Write Disable (WRDI) One way of resetting the Write Enable Latch (WEL) bit is to send a Write Disable instruction to the device. As shown in Figure 8., to send this instruction to the device, Chip Select (S) is driven low, and the bits of the instruction byte are shifted in, on Serial Data Input (D). The device then enters a wait state. It waits for a the device to be deselected, by Chip Select (S) being driven high. The Write Enable Latch (WEL) bit, in fact, becomes reset by any of the following events: ● Power-up ● WRDI instruction execution ● WRSR instruction completion ● WRITE instruction completion. Figure 8. Write Disable (WRDI) sequence S 0 1 2 3 4 5 6 7 C Instruction D High Impedance Q AI03750D Doc ID 022470 Rev 1 17/35 Instructions 6.3 M95160-145 Read Status Register (RDSR) The Read Status Register (RDSR) instruction allows the Status Register to be read. The Status Register may be read at any time, even while a Write or Write Status Register cycle is in progress. When one of these cycles is in progress, it is recommended to check the Write In Progress (WIP) bit before sending a new instruction to the device. It is also possible to read the Status Register continuously, as shown in Figure 9. The status and control bits of the Status Register are as follows: 6.3.1 WIP bit The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write Status Register cycle. When set to 1, such a cycle is in progress, when reset to 0 no such cycle is in progress. 6.3.2 WEL bit The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch. When set to 1 the internal Write Enable Latch is set, when set to 0 the internal Write Enable Latch is reset and no Write or Write Status Register instruction is accepted. 6.3.3 BP1, BP0 bits The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be software protected against Write instructions. These bits are written with the Write Status Register (WRSR) instruction. When one or both of the Block Protect (BP1, BP0) bits is set to 1, the relevant memory area (as defined in Table 4.) becomes protected against Write (WRITE) instructions. The Block Protect (BP1, BP0) bits can be written provided that the Hardware Protected mode has not been set. 6.3.4 SRWD bit The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write Protect (W) signal. The Status Register Write Disable (SRWD) bit and Write Protect (W) signal allow the device to be put in the Hardware Protected mode (when the Status Register Write Disable (SRWD) bit is set to 1, and Write Protect (W) is driven low). In this mode, the non-volatile bits of the Status Register (SRWD, BP1, BP0) become read-only bits and the Write Status Register (WRSR) instruction is no longer accepted for execution. Table 4. Status Register format b7 SRWD b0 0 0 0 BP1 BP0 WEL WIP Status register write protect Block protect bits Write enable latch bit Write in progress bit 18/35 Doc ID 022470 Rev 1 M95160-145 Instructions Figure 9. Read Status Register (RDSR) sequence S 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 C Instruction D Status Register Out Status Register Out High Impedance Q 7 6 5 4 3 MSB 2 1 0 7 6 5 4 3 2 1 0 7 MSB AI02031E Doc ID 022470 Rev 1 19/35 Instructions 6.4 M95160-145 Write Status Register (WRSR) The Write Status Register (WRSR) instruction allows new values to be written to the Status Register. Before it can be accepted, a Write Enable (WREN) instruction must have been previously executed. The Write Status Register (WRSR) instruction is entered by driving Chip Select (S) low, followed by the instruction code, the data byte on Serial Data input (D) and the Chip Select (S) driven high. Chip Select (S) must be driven high after the rising edge of Serial Clock (C) that latches in the eighth bit of the data byte, and before the next rising edge of Serial Clock (C). Otherwise, the Write Status Register (WRSR) instruction is not executed. Driving the Chip Select (S) signal high at a byte boundary of the input data triggers the selftimed write cycle that takes tW to complete (as specified in Table 12). The instruction sequence is shown in Figure 10. While the Write Status Register cycle is in progress, the Status Register may still be read to check the value of the Write In Progress (WIP) bit: the WIP bit is 1 during the self-timed write cycle tW, and is 0 when the write cycle is complete. The WEL bit (Write Enable Latch) is also reset at the end of the write cycle tW. The Write Status Register (WRSR) instruction allows the user to change the values of the BP1, BP0 bits and the SRWD bit: ● The Block Protect (BP1, BP0) bits define the size of the area that is to be treated as read only, as defined in Table 5. ● The SRWD bit (Status Register Write Disable bit), in accordance with the signal read on the Write Protect pin (W), allows the user to set or reset the write protection mode of the Status Register itself. When in Write-protected mode, the Write Status Register (WRSR) instruction is not executed. The contents of the SRWD and BP1, BP0 bits are updated after the completion of the WRSR instruction, including the tW Write cycle. The Write Status Register (WRSR) instruction has no effect on bits b6, b5, b4, b1, b0 of the Status Register. Bits b6, b5, b4 are always read as 0. Table 5. Protection modes W SRWD signal bit 1 0 0 0 1 0 1 1 Mode Write protection of the Status Register Memory content Protected area(1) Unprotected area(1) Status Register is Writable (if the WREN Software- instruction has set the protected WEL bit) (SPM) The values in the BP1 and BP0 bits can be changed Write-protected Ready to accept Write instructions Status Register is Hardware- Hardware write protected protected The values in the BP1 (HPM) and BP0 bits cannot be changed Write-protected Ready to accept Write instructions 1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 4. 20/35 Doc ID 022470 Rev 1 M95160-145 Instructions The protection features of the device are summarized in Table 2. When the Status Register Write Disable (SRWD) bit of the Status Register is 0 (its initial delivery state), it is possible to write to the Status Register provided that the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN) instruction, regardless of whether Write Protect (W) is driven high or low. When the Status Register Write Disable (SRWD) bit of the Status Register is set to 1, two cases need to be considered, depending on the state of Write Protect (W): ● If Write Protect (W) is driven high, it is possible to write to the Status Register provided that the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN) instruction. ● If Write Protect (W) is driven low, it is not possible to write to the Status Register even if the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN) instruction. (Attempts to write to the Status Register are rejected, and are not accepted for execution). As a consequence, all the data bytes in the memory area that are software protected (SPM) by the Block Protect (BP1, BP0) bits of the Status Register, are also hardware protected against data modification. Regardless of the order of the two events, the Hardware Protected Mode (HPM) can be entered: ● by setting the Status Register Write Disable (SRWD) bit after driving Write Protect (W) low ● or by driving Write Protect (W) low after setting the Status Register Write Disable (SRWD) bit. The only way to exit the Hardware Protected Mode (HPM) once entered is to pull Write Protect (W) high. If Write Protect (W) is permanently tied high, the Hardware Protected Mode (HPM) can never be activated, and only the Software Protected Mode (SPM), using the Block Protect (BP1, BP0) bits of the Status Register, can be used. Table 6. Address range bits(1) Device M95160-145 Address bits A10-A0 1. b15 to b11 are Don’t Care. Doc ID 022470 Rev 1 21/35 Instructions M95160-145 Figure 10. Write Status Register (WRSR) sequence S 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 C Instruction Status Register In 7 D High Impedance 6 5 4 3 2 1 0 MSB Q AI02282D 22/35 Doc ID 022470 Rev 1 M95160-145 6.5 Instructions Read from Memory Array (READ) As shown in Figure 11., to send this instruction to the device, Chip Select (S) is first driven low. The bits of the instruction byte and address bytes are then shifted in, on Serial Data Input (D). The address is loaded into an internal address register, and the byte of data at that address is shifted out, on Serial Data Output (Q). If Chip Select (S) continues to be driven low, the internal address register is automatically incremented, and the byte of data at the new address is shifted out. When the highest address is reached, the address counter rolls over to zero, allowing the Read cycle to be continued indefinitely. The whole memory can, therefore, be read with a single READ instruction. The Read cycle is terminated by driving Chip Select (S) high. The rising edge of the Chip Select (S) signal can occur at any time during the cycle. The first byte addressed can be any byte within any page. The instruction is not accepted, and is not executed, if a Write cycle is currently in progress. Figure 11. Read from Memory Array (READ) sequence S 0 1 2 3 4 5 6 7 8 9 10 20 21 22 23 24 25 26 27 28 29 30 31 C Instruction 16-Bit Address 15 14 13 D 3 2 1 0 MSB Data Out 1 High Impedance 7 Q 6 5 4 3 2 Data Out 2 1 0 7 MSB AI01793D 1. Depending on the memory size, as shown in Table 6., the most significant address bits are Don’t Care. Doc ID 022470 Rev 1 23/35 Instructions 6.6 M95160-145 Write to Memory Array (WRITE) As shown in Figure 12., to send this instruction to the device, Chip Select (S) is first driven low. The bits of the instruction byte, address byte, and at least one data byte are then shifted in, on Serial Data Input (D). The instruction is terminated by driving Chip Select (S) high at a byte boundary of the input data. The self-timed Write cycle, triggered by the Chip Select (S) rising edge, continues for a period tW (as specified in Table 12), at the end of which the Write in Progress (WIP) bit is reset to 0. In the case of Figure 12., Chip Select (S) is driven high after the eighth bit of the data byte has been latched in, indicating that the instruction is being used to write a single byte. If, though, Chip Select (S) continues to be driven low, as shown in Figure 13., the next byte of input data is shifted in, so that more than a single byte, starting from the given address towards the end of the same page, can be written in a single internal Write cycle. Each time a new data byte is shifted in, the least significant bits of the internal address counter are incremented. If the number of data bytes sent to the device exceeds the page boundary, the internal address counter rolls over to the beginning of the page, and the previous data there are overwritten with the incoming data. (The page size of these devices is 32 bytes). The instruction is not accepted, and is not executed, under the following conditions: ● if the Write Enable Latch (WEL) bit has not been set to 1 (by executing a Write Enable instruction just before) ● if a Write cycle is already in progress ● if the device has not been deselected, by Chip Select (S) being driven high, at a byte boundary (after the eighth bit, b0, of the last data byte that has been latched in) ● if the addressed page is in the region protected by the Block Protect (BP1 and BP0) bits. Figure 12. Byte Write (WRITE) sequence S 0 1 2 3 4 5 6 7 8 9 10 20 21 22 23 24 25 26 27 28 29 30 31 C Instruction 16-Bit Address 15 14 13 D 3 2 Data Byte 1 0 7 6 5 4 3 2 1 0 High Impedance Q AI01795D 1. Depending on the memory size, as shown in Table 6., the most significant address bits are Don’t Care. 24/35 Doc ID 022470 Rev 1 M95160-145 Instructions Figure 13. Page Write (WRITE) sequence S 0 1 2 3 4 5 6 7 8 9 10 20 21 22 23 24 25 26 27 28 29 30 31 C Instruction 16-Bit Address 15 14 13 D 3 2 Data Byte 1 1 0 7 6 5 4 3 2 0 1 S 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 C Data Byte 2 D 7 6 5 4 3 2 Data Byte 3 1 0 7 6 5 4 3 2 Data Byte N 1 0 6 5 4 3 2 1 0 AI01796D 1. Depending on the memory size, as shown in Table 6., the most significant address bits are Don’t Care. Doc ID 022470 Rev 1 25/35 Delivery state M95160-145 7 Delivery state 7.1 Initial delivery state The device is delivered with the memory array set at all 1s (FFh). The Status Register Write Disable (SRWD) and Block Protect (BP1 and BP0) bits are initialized to 0. 8 Absolute maximum ratings Stressing the device outside the ratings listed in Table 7 may cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the operating sections of this specification, is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 7. Absolute maximum ratings Symbol Parameter Min. Max. Unit TSTG Storage temperature –65 150 °C TAMR Ambient operating temperature –40 150 °C TLEAD Lead temperature during soldering See note (1) VO Voltage on Q pin –0.50 VCC+0.6 V VI Input voltage –0.50 6.5 V IOL DC output current (Q = 0) 5 mA IOH DC output current (Q = 1) –5 mA VCC Supply voltage 6.5 V 4000 V VESD –0.50 Electrostatic pulse (Human Body Model) (2) 1. Compliant with JEDEC Std J-STD-020 (for small body, Sn-Pb or Pb assembly), the ST ECOPACK® 7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU 2. Positive and negative pulses applied on pin pairs, in accordance with AEC-Q100-002 (compliant with JEDEC Std JESD22-A114, C1=100 pF, R1=1500 Ω, R2=500 Ω) 26/35 °C Doc ID 022470 Rev 1 M95160-145 9 DC and AC parameters DC and AC parameters This section summarizes the operating and measurement conditions, and the dc and ac characteristics of the device. The parameters in the dc and ac characteristic tables that follow are derived from tests performed under the measurement conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Table 8. Operating conditions Symbol VCC TA Table 9. Parameter Min. Max. Unit Supply voltage 2.5 5.5 V Ambient operating temperature (device grade 4) –40 145 °C AC measurement conditions Symbol CL Parameter Min. Load capacitance Typ. Max. Unit 30 or 100 pF Input rise and fall times 50 ns Input pulse voltages 0.2VCC to 0.8VCC V Input and output(1) timing reference voltages 0.3VCC to 0.7VCC V 1. Output Hi-Z is defined as the point where data out is no longer driven. Figure 14. AC measurement I/O waveform )NPUTVOLTAGELEVELS )NPUTANDOUTPUT TIMINGREFERENCELEVELS 6## 6## 6## 6## !)# Table 10. Symbol COUT CIN Capacitance(1) Parameter Output capacitance (Q) Test condition Min. Max. Unit VOUT = 0 V 8 pF Input capacitance (D) VIN = 0 V 8 pF Input capacitance (other pins) VIN = 0 V 6 pF 1. Sampled only, not 100% tested, at TA = 25 °C and a frequency of 5 MHz. Doc ID 022470 Rev 1 27/35 DC and AC parameters Table 11. Symbol M95160-145 DC characteristics(1) Parameter Test conditions (in addition to those specified in Table 8, Table 9 and Table 10) Max. Unit ILI Input leakage current VIN = VSS or VCC ±2 µA ILO Output leakage current S = VCC, VOUT = VSS or VCC ±2 µA ICC Supply current C = 0.1VCC/0.9VCC at 5 MHz, VCC = 2.5 V, Q = open 2 mA Supply current (Standby) S = VCC, VCC = 2.5 V, VIN = VSS or VCC 10 µA ICC1 S = VCC, VCC = 5.5 V, VIN = VSS or VCC 10 µA VIL Input low voltage –0.45 0.3 VCC V VIH Input high voltage 0.7 VCC VCC+1 V VOL Output low voltage 0.4 V VOH Output high voltage IOH = –0.4 mA, VCC = 2.5 V IOL = 1.5 mA, VCC = 2.5 V 1. Preliminary data. 28/35 Min. Doc ID 022470 Rev 1 0.8 VCC V M95160-145 DC and AC parameters Table 12. AC characteristics Test conditions specified in Table 8, Table 9 and Table 10 Symbol Alt. fC fSCK Clock frequency tSLCH tCSS1 S active setup time 60 ns tSHCH tCSS2 S not active setup time 60 ns tSHSL tCS S deselect time 90 ns tCHSH tCSH S active hold time 60 ns S not active hold time 60 ns tCHSL Parameter Min. Max. Unit D.C. 5 MHz tCH(1) tCLH Clock high time 75 ns tCL(1) 75 ns tCLL Clock low time tCLCH (2) tRC Clock rise time 1 µs tCHCL (2) tFC Clock fall time 1 µs tDVCH tDSU Data in setup time 20 ns tCHDX tDH Data in hold time 20 ns tHHCH Clock low hold time after HOLD not active 60 ns tHLCH Clock low hold time after HOLD active 60 ns tCLHL Clock low setup time before HOLD active 0 ns tCLHH Clock low setup time before HOLD not active 0 ns tSHQZ(2) tDIS tCLQV(3) tV tCLQX tHO Output hold time tQLQH(2) tRO Output rise time 80 ns tQHQL(2) tFO Output fall time 80 ns tHHQV tLZ HOLD high to output valid 80 ns tHLQZ(2) tHZ HOLD low to output high-Z 80 ns tW tWC Write time 5 ms Output disable time 80 ns Clock low to output valid (CL = 30 pF) 55 ns Clock low to output valid (CL = 100 pF) 80 ns 0 ns 1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max). See also Note 3. 2. Value guaranteed by characterization, not 100% tested in production. 3. tCLQV must be compatible with tCL (clock low time): if the SPI bus master offers a Read setup time tSU = 0 ns, tCL can be equal to (or greater than) tCLQV; in all other cases, tCL must be equal to (or greater than) tCLQV+tSU. Doc ID 022470 Rev 1 29/35 DC and AC parameters M95160-145 Figure 15. Serial input timing tSHSL S tCHSL tCH tSLCH tCHSH tSHCH C tDVCH tCHCL tCL tCLCH tCHDX D Q LSB IN MSB IN High impedance AI01447d Figure 16. Hold timing S tHLCH tCLHL tHHCH C tCLHH tHLQZ tHHQV Q HOLD AI01448c 30/35 Doc ID 022470 Rev 1 M95160-145 DC and AC parameters Figure 17. Serial output timing S tCH tSHSL C tCLQV tCLCH tCHCL tCL tSHQZ tCLQX Q tQLQH tQHQL ADDR D LSB IN AI01449f Doc ID 022470 Rev 1 31/35 Package mechanical data 10 M95160-145 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 18. TSSOP8 – 8-lead thin shrink small outline, package outline D 8 5 c E1 1 E 4 α L A1 A A2 L1 CP b e TSSOP8AM 1. Drawing is not to scale. Table 13. TSSOP8 – 8-lead thin shrink small outline, package mechanical data inches(1) millimeters Symbol Typ Min A Max 0.05 0.15 0.8 1.05 b 0.19 c 0.09 1 CP Max 0.0472 0.002 0.0059 0.0315 0.0413 0.3 0.0075 0.0118 0.2 0.0035 0.0079 0.0394 0.1 0.0039 D 3 2.9 3.1 0.1181 0.1142 0.122 e 0.65 - - 0.0256 - - E 6.4 6.2 6.6 0.252 0.2441 0.2598 E1 4.4 4.3 4.5 0.1732 0.1693 0.1772 L 0.6 0.45 0.75 0.0236 0.0177 0.0295 L1 1 0° 8° 0.0394 α 0° N (number of leads) 8 8° 1. Values in inches are converted from mm and rounded to 4 decimal digits. 32/35 Min 1.2 A1 A2 Typ Doc ID 022470 Rev 1 8 M95160-145 11 Part numbering Part numbering Table 14. Ordering information scheme Example: M95160 – W DW 4 T P /SC Device type M95 = SPI serial access EEPROM Device function 160 = 16 Kbit (2048 × 8) Operating voltage W = VCC = 2.5 to 5.5 V Package DW = TSSOP8 Device grade 4 = Device tested with high reliability certified flow(1). Automotive temperature range (–40 to 145 °C) Option blank = Standard packing T = Tape and reel packing Plating technology G or P = ECOPACK2® (RoHS compliant and halogen-free) Process /SC = F6SP36% 1. The high reliability certified flow (HRCF) is described in quality note QNEE9801. Please ask your nearest ST sales office for a copy. For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. Doc ID 022470 Rev 1 33/35 Revision history 12 Revision history Table 15. 34/35 M95160-145 Document revision history Date Revision 28-Nov-2011 1 Changes Initial release. Doc ID 022470 Rev 1 M95160-145 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 022470 Rev 1 35/35