STK525 - Farnell

STK525
.............................................................................................
Hardware User Guide
Section 1
Introduction ........................................................................................... 1-3
1.1
1.2
Overview ...................................................................................................1-3
STK525 Starter Kit Features .....................................................................1-4
Section 2
Using the STK525................................................................................. 2-6
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.10
2.11
2.12
Overview ...................................................................................................2-6
Power Supply ............................................................................................2-7
RESET ....................................................................................................2-10
AT90USBxxx AVR Microcontroller..........................................................2-11
Serial Links .............................................................................................2-11
On-board Resources...............................................................................2-14
STK500 Resources .................................................................................2-19
In-System Programming .........................................................................2-20
Test Points ..............................................................................................2-23
Configuration Pads .................................................................................2-24
Solder Pads ............................................................................................2-25
Section 3
Troubleshooting Guide ....................................................................... 3-26
Section 4
Technical Specifications ..................................................................... 4-27
Section 5
Technical Support ............................................................................... 5-28
Section 6
Complete Schematics ......................................................................... 6-29
STK525 Hardware User Guide User Guide
1
7608A–AVR–04/06
Section 1
Introduction
Congratulation for acquiring the AVR® STK525 Starter Kit. This kit is designed to give
designers a quick start to develop code on the AT90USBxxx and for prototyping and
testing of new designs.
1.1
Overview
This document describes the STK525 dedicated to the AT90USBxxx AVR
microcontroller. This board is designed to allow an easy evaluation of the product using
demonstration software.
To complement the evaluation and enable additional development capability, the
STK525 can be plugged into the Atmel STK500 Starter Kit Board in order to use the
AT90USBxxx with advanced features such as variable VCC, variable VRef, variable
XTAL, etc. and supports all AVR development tools.
To increase its demonstrative capabilities, this stand alone board has numerous onboard resources (USB, RS232, joystick, data-flash, microphone and temperature
sensor).
This user guide acts as a general getting started guide as well as a complete technical
reference for advanced users.
STK525 Hardware User Guide
1-3
7608A–AVR–04/06
Introduction
Figure 1-1 . STK525 Board
1.2
STK525 Starter Kit Features
The STK525 provides the following features:
AT90USBxxx TQFP device (2.7V<Vcc<5.5V),
AVR Studio® software interface (1),
USB software interface for Device Firmware Upgrade (DFU bootloader) (2)
STK500 compatible
Power supply flagged by “VCC-ON” LED:
–
–
–
–
regulated 3 or 5V,
from an external power connector,
from the USB interface (USB device bus powered application),
from STK500 (2),
ISP connector for on-chip ISP,
JTAG connector:
– for on-chip ISP,
– for on-chip debugging using JTAG ICE,
Serial interfaces:
– 1 USB full/low speed device/host interface
– RS-232C ports with RTS/CTS handshake lines,
On-board resources:
–
–
–
–
–
1-4
7608A–AVR–04/06
4+1-ways joystick,
4 LEDs,
temperature sensor,
microphone,
serial dataflash memory,
STK525 Hardware User Guide
Introduction
On-board RESET button,
On-board HWB button for force bootloader section execution at reset.
System clock:
– external clock from STK500 expand connectors
– 8 MHz crystal,
Numerous access points for test.
Notes:
STK525 Hardware User Guide
1. The STK525 is supported by AVR Studio®, version 4.12SP2 or higher. For up-to-date
information on this and other AVR tool products, please consult our web site. The
newest version of AVR Studio®, AVR tools and this User Guide can be found in the
AVR section of the Atmel web site, http://www.atmel.com.
2. ATMEL Flip®, In System Programming Version 3 or Higher shall be used for Device
Firmware Upgrade. Please consult Atmel web site to retrieve the latest version of Flip
and the DFU bootloader Hex file if needed.
1-5
7608A–AVR–04/06
Section 2
Using the STK525
This chapter describes the board and all its features.
2.1
Overview
Figure 2-1 . STK525 Overview
USB MiniAB
RS232
JTAG
ISP
External Power
Vbus Gen.
Setting
Pin1
Vcc Src.
Setting
STK500 Expand1
STK500 Expand0
C Sensor
Data Flash
LEDS
TQFP64 Socket
Crystal
STK525 Hardware User Guide
Microphone Joystick
Potentiometer
Reset
Bootloader
Activation
2-6
7608A–AVR–04/06
Using the STK525
2.2
Power Supply
The on-board power supply circuitry allows various power supply configurations.
2.2.1
Power Supply Sources
The power supply source can come from three different (3) and exclusive sources:
USB connector,
JACK PWR connector (J6, See Figure 2-2),
STK500
USB powered: When used as a USB device bus powered application, the STK525 can be powered via
the USB VBUS power supply line.
JACK PWR connector:
– Need of a male JACK outlet,
– Input supply from 9 up to 15V (1) DC,
– No specific polarization (2) is required.
Figure 2-2 . JACK PWR Connector (J6)
Figure 2-3 . Male JACK Outlet and Wires
+
-
STK500 Powered: (c.f. “STK500 Resources” on page 19).
Notes:
STK525 Hardware User Guide
1. 15V is the maximum level limitation of an unidirectional transit diode.
2. There is a diode (bridge) voltage level between the negative output of the power
supply and the STK525 “GND”. This could introduce some gap of voltage during
measurement and instrumentation.
3. Caution: Do not mount more than one power supply source on STK525.
2-7
7608A–AVR–04/06
Using the STK525
2.2.2
Power Supply Setting
Table 2-1 . Power Supply (1) Setting
Vcc Source
Jumper position
VBUS 5
VCC power
supply value
Comments
VBUS
(4,7V to 5.0V)
This is the default configuration.
This should be used for a typical USB
device “bus powered” application.
In this mode, the STK525 is powered
directly from the USB bus, and no
other external power supply is
required.
View
VCC
Source
Reg 5
Reg 3.3
VBUS 5
STK
REG 5
This configuration can be used for a
USB “self powered” device
application” or when operating has a
USB host.
To use this configuration an external
power supply must be connected to
J6 connector.
5V
VCC
Source
Reg 5
Reg 3.3
VBUS 5
STK
REG 3.3
This configuration allows the STK525
to be used in a 3V range application.
This configuration can be used with
both device or host mode USB
applications.
To use this configuration an external
power supply must be connected to
J6 connector.
3.3V
VCC
Source
Reg 5
Reg 3.3
VBUS 5
STK
STK
Depends on
STK500 VTG
setting
This configuration allows the STK525
to be used with an STK500 board.
In this mode, the STK525 power
supply is generated and configured
according to the “VTG” parameter of
the STK500 (1).
VCC
Source
Reg 5
Reg 3.3
VBUS 5
STK
Notes:
2-8
7608A–AVR–04/06
1. Caution: The STK500 has its own “ON/OFF” switch
STK525 Hardware User Guide
Using the STK525
2.2.3
VBUS Generator Setting
When using the AT90USBxxx microcontroller in USB host mode. The STK525 should
provide a 5V power supply over the VBUS pin of its USB mini AB connector.
A couple of transistors on the STK525 allows the UVCON pin of the AT90USBxxx to
control the VBUS generation (See Figure 2-4). In this mode the STK525 is powered by
external power supply source (J6 or STK500 expand0/1 connectors). JP7 allows to
select the 5V source used by the VBUS generator.
Figure 2-4 . VBUS generator schematic
JP7
VTG
1
STK
3
Ext
FDV304P/FAI
2
VBUS
R32
10k
VBUS gen
M1
R33
Q2
BC847B
UVCON
-
C34
4.7uF
100k
Table 2-2 . VBUS Generator Setting
External power supply from J6
Comments
View
Vbus
Gen
This is the default configuration.
The VBUS generator source is the
on-board 5V regulator.
External power supply from
Expand0/1 (connected to a STK500)
STK525 Hardware User Guide
Vbus
Gen
Ext
“Stk”
The VBUS generator source is the
STK500.
Note:
The “Vtarget” setting of STK500
should be set to “5V”.
Stk
Ext
“Ext”
STK525 power supply
Stk
“Vbus Gen”
Jumper position
2-9
7608A–AVR–04/06
Using the STK525
2.2.4
“POWER-ON“ LED
The POWER-ON LED is always lit when power is applied to STK525 regardless of
power supply source and the regulation.
Figure 2-5 . “VCC-ON” LED
2.3
RESET
Although the AT90USBxxx has its on-chip RESET circuitry (c.f. AT90USBxxx
Datasheet, section “System Control and Reset), the STK525 provides the AT90USBxxx
a RESET signal which can come from 3 different sources:
2.3.1
Power-on RESET
The on-board RC network acts as power-on RESET.
2.3.2
RESET Push Button
By pressing the RESET push button on the STK525, a warm RESET of the
AT90USBxxx is performed.
Figure 2-6 . RESET Push Button (RST) Implementation
2-10
7608A–AVR–04/06
STK525 Hardware User Guide
Using the STK525
2.3.3
STK500 RESET
(c.f. “RESET from STK500” on page 20 )
2.4
AT90USBxxx AVR Microcontroller
2.4.1
Main Clock XTAL
To use the USB interface of the AT90USBxxx, the clock source should always be a
crystal or external clock oscillator (the internal 8MHz RC oscillator cannot be used to
operate with the USB interface). Only the following crystal frequency allows proper USB
operations: 2MHz, 4MHz, 6MHz, 8MHz, 12MHz, 16MHz. The STK525 comes with a
default 8MHz crystal oscillator.
When closing STKX1 and STKX2 switches, and STK525 is connected to an STK500,
the STK525 can operate with the “STK500 Osc” frequency parameter.
2.4.2
Analog Power Supply
AVCC By default, AVCC is equivalent to VCC.
ANA REF By default, AREF is an output of AT90USBxxx.
An external AREF source can be chosen (c.f. “STK500 Resources” on page 19).
2.5
Serial Links
2.5.1
USB
The STK525 is supplied with a standard USB mini A-B receptacle. The mini AB
receptacle allows to connect both a mini A plug or a mini B plug connectors.
Figure 2-7 . USB mini A-B Receptacle
When connected to a mini B plug, the AT90USBxxx operates as an “USB device” (the
ID pin of the plug is unconnected) and when connected to a mini A plug, the
AT90USBxxx operates as a “USB host” (the ID pin of the plug is tied to ground).
STK525 Hardware User Guide
2-11
7608A–AVR–04/06
Using the STK525
2.5.2
RS-232C
The AT90USBxxx is a microcontroller with an on-chip USART peripheral (USART1).
Only the asynchronous mode is supported by the STK525.
The STK525 is supplied with a RS-232 driver/receiver. One female DB9 connector
assumes the RS-232 connections.
Figure 2-8 . RS-232 DB9 Connector
Figure 2-9 . RS-232 DB9 Connections
RS-232 DB9 front view
pin 2
RS-TxD
pin 3
RS-RxD
pin 4
pin 6
5 4 3 2 1
9 8 7 6
pin 5
GND
pin 7
RS-CTS
pin 8
RS-RTS
Figure 2-10 . Typical PC Connection Layout
PC / DB9 serial port
(COM1 or COMx)
STK525 / RS-232 DB9
Function
Pin No
Pin No
Function
TxD (AT90USBxxx)
2
2
RxD (PC)
RxD (AT90USBxxx)
3
3
TxD (PC)
GND
5
5
GND
If Hardware Data Flow Control
2-12
7608A–AVR–04/06
CTS (AT90USBxxx)
7
7
RTS (PC)
RTS (AT90USBxxx)
8
8
CTS (PC)
STK525 Hardware User Guide
Using the STK525
The STK525 USART implementation allows an optional hardware flow control that can
be enabled thanks to SP4, SP5, SP7, SP8 solder pads (See Figure 2-11).
Figure 2-11 . USART Schematic
VCC
16
RS232 Interface
U3
C16
100nF
3
4
C17
5
PD[7..0]
VCC
.
1
C1+
V+
C1C2+
V-
TTL
RxD
12
PD3
T XD
11
6
RS 232
.
.
.
.
.
.
.
.
P1
13
CT S
10
PD0
RT S
9
RS-RxD
14
RS-T xD
RS-CT S
SP4
PD1
C18
100nF
C19
100nF
C2-
100nF
PD2
2
SP7
7
RS-RT S
8
SP8
11
10
.
SP5
1
6
2
7
3
8
4
9
5
15
GND
MAX3232
RS232 BUFFER
SUB-D9 FEMALE
RS232
Table 2-3 . UART Settings
Note:
STK525 Hardware User Guide
Mode
Solder Pads
Configuration
Software Data Flow
Control
(default configuration)
SP4: open
SP5: open
SP7: open
SP8: open
Optional
Hardware Flow Control
SP4: close
SP5: close
SP7: close
SP8: close
DB9
Connection (1)
Tx Pin 2
Rx Pin 3
Tx
Rx
CTS
RTS
Pin 2
Pin 3
Pin 7
Pin 8
1. Tx reference: STK525 source, Rx reference: STK525 destination
2-13
7608A–AVR–04/06
Using the STK525
2.6
On-board Resources
2.6.1
Joystick
The 4+1 way joystick offers an easy user interface implementation for a USB application
(it can emulate mouse movements, keyboard inputs, etc.).
Pushing a push-button causes the corresponding signal to be pulled low, while releasing
(not pressed) causes an H.Z state on the signal. The user must enable internal pull-ups
on the input pins, removing the need for an external pull-up resistors on the push-button.
Figure 2-12 . Joystick Schematic
PB[7..0]
SW3
1
2
Select
Lef t
Up
Right
Down
Com1
Com2
5
7
3
6
4
PB5
PB6
PB7
PE4
PE5
PE[7..0]
TPA511G
Figure 2-13 . Joystick Implementation
2.6.2
LEDs
The STK525 includes 4 green LEDs implemented on one line. They are connected to
the high nibble of “Port D” of AT90USBxxx (PORTD[4..7]).
To light On a LED, the corresponding port pin must drive to high level. To light Off a
LED, the corresponding port pin must drive a low level. It is the opposite method used in
STK500.
2-14
7608A–AVR–04/06
STK525 Hardware User Guide
Using the STK525
Figure 2-14 . LEDs Implementation Schematic
In-line Grouped LEDs
1k
R12
PD[7..0]
LED 0 (green)
PD4
TOPLED LP M676
1k
R13
D2
LED 1 (green)
PD5
TOPLED LP M676
1k
R14
D3
LED 2 (green)
PD6
TOPLED LP M676
1k
R15
D4
LED 3 (green)
PD7
TOPLED LP M676
STK525 Hardware User Guide
D5
2-15
7608A–AVR–04/06
Using the STK525
2.6.3
Temperature Sensor
The temperature sensor uses a thermistor (R18), or temperature-sensitive resistor. This
thermistor has a negative temperature coefficient (NTC), meaning the resistance goes
up as temperature goes down. Of all passive temperature measurement sensors,
thermistors have the highest sensitivity (resistance change per degree of temperature
change). Thermistors do not have a linear temperature/resistance curve.
The voltage over the NTC can be found using the A/D converter (connected to channel
0). See the AT90USBxxx datasheet for how to use the ADC. The thermistor value (RT)
is calculated with the following expression:
R T = ( R H ⋅ V ADC 0 ) ⁄ ( V CC – V ADC 0 )
Where:
R T = Thermistor value (Ω) at T temperature (°Kelvin)
R H = Second resistor of the bridge -100 KΩ ±10% at 25°C
VADC0 = Voltage value on ADC-0 input (V)
VCC = Board power supply
The NTC thermistor used in STK525 has a resistance of 100 KΩ ±5% at 25°C (T0) and a
beta-value of 4250 ±3%. By the use of the following equation, the temperature (T) can
be calculated:
β
T = ------------------------------R
β
T
⎛ ln
------- ⎞ + -----⎝ R ⎠
T
0
0
Where:
R T = Thermistor value (Ω) at T temperature (°Kelvin)
ß = 4250 ±3%
R 0 = 100 KΩ ±5% at 25°C
T0 = 298 °K (273 °K + 25°K)
The following cross table also can be used. It is based on the above equation.
Table 2-4 . Thermistor Values versus Temperature
2-16
7608A–AVR–04/06
Temp.
(°C)
RT
(KΩ)
Temp.
(°C)
RT
(KΩ)
Temp.
(°C)
RT
(KΩ)
Temp.
(°C)
RT
(KΩ)
-20
1263,757
10
212,958
40
50,486
70
15,396
-19
1182,881
11
201,989
41
48,350
71
14,851
-18
1107,756
12
191,657
42
46,316
72
14,329
-17
1037,934
13
181,920
43
44,380
73
13,828
-16
973,006
14
172,740
44
42,537
74
13,347
-15
912,596
15
164,083
45
40,781
75
12,885
-14
856,361
16
155,914
46
39,107
76
12,442
-13
803,984
17
148,205
47
37,513
77
12,017
-12
755,175
18
140,926
48
35,992
78
11,608
-11
709,669
19
134,051
49
34,542
79
11,215
-10
667,221
20
127,555
50
33,159
80
10,838
STK525 Hardware User Guide
Using the STK525
Temp.
(°C)
RT
(KΩ)
Temp.
(°C)
RT
(KΩ)
Temp.
(°C)
RT
(KΩ)
Temp.
(°C)
RT
(KΩ)
-9
627,604
21
121,414
51
31,840
81
10,476
-8
590,613
22
115,608
52
30,580
82
10,128
-7
556,056
23
110,116
53
29,378
83
9,793
-6
523,757
24
104,919
54
28,229
84
9,471
-5
493,555
25
100,000
55
27,133
85
9,161
-4
465,300
26
95,342
56
26,085
86
8,863
-3
438,854
27
90,930
57
25,084
87
8,576
-2
414,089
28
86,750
58
24,126
88
8,300
-1
390,890
29
82,787
59
23,211
89
8,035
0
369,145
30
79,030
60
22,336
90
7,779
1
348,757
31
75,466
61
21,498
91
7,533
2
329,630
32
72,085
62
20,697
92
7,296
3
311,680
33
68,876
63
19,930
93
7,067
4
294,826
34
65,830
64
19,196
94
6,847
5
278,995
35
62,937
65
18,493
95
6,635
6
264,119
36
60,188
66
17,820
96
6,430
7
250,134
37
57,576
67
17,174
97
6,233
8
236,981
38
55,093
68
16,556
98
6,043
9
224,606
39
52,732
69
15,964
99
5,860
Figure 2-15 . Thermistor Schematic
PF0
VCC
R16
100k
CP1
R18
Temperature
Sensor
2.6.4
Microphone
The STK525 provides an electret microphone associated with its required preamplifier
(See Figure 2-16), the interface is connected to ADC channel 2 of the AT90USBxxx
microcontroller.
STK525 Hardware User Guide
2-17
7608A–AVR–04/06
Using the STK525
Figure 2-16 . Microphone interface schematic
3.3V
R23 100k
TP4
1
R24 100k
R20
2.2k
R21
C22
220pF
R22
100k
Mic
4
+
2
U4A
LMV358
R26 22k
1
6
R27 0
7
+
3
U4B
LMV358
8
5
+
10k
-
R25
-
C24 4.7uF
4
100k
C25
+
MIC1
8
R28
100k
3.3V
3.3V
1uF
MICROPHONE
2.6.5
Data Flash Memory
For mass-storage class demonstration purposes, the STK525 provides an on-chip serial
Flash memory (AT45DB321x) connected to the AT90USBxxx Serial Port Interface
(SPI).
The data-flash chip select signal is connected to PortB bit 4 of the AT90USBxxx (See
Figure 2-17).
Figure 2-17 . On-board data flash schematic
PB[7..0]
3.3V
R10
100k
R11
100k
RESET
PB4
PB1
PB2
PB3
U2
1
2
3
11
12
13
14
BUSY
RESET
WP
CS
SCK
SI
SO
3.3V
VCC
GND
6
7
C15
100nF
AT45DB321C TSOP28
2.6.6
Potentiometer
The cursor of a potentiometer is connected to ADC channel 1 of the AT90USBxxx.
2-18
7608A–AVR–04/06
STK525 Hardware User Guide
Using the STK525
2.7
STK500 Resources
Figure 2-18 . Connecting STK525 to the STK500 Board
Note:
2.7.1
Caution: Do not mount an AVR microcontroller on the STK500 board when STK525 is
plugged on STK500.
Supply Voltage from STK500
The AVR supply voltage coming from STK500 (VTG) can also be controlled from AVR
Studio®.
The supply voltage coming from STK500 is controlled by power supply circuitry of
the STK525. Refer to Table 2-1 on page 8 to configure “Vcc Source” jumper.
2.7.2
Analog Reference Voltage from STK500
The AVR Analog Reference Voltage coming from STK500 (REF) can also be controlled
from AVR Studio®.
JP3 should be closed
STK525 Hardware User Guide
2-19
7608A–AVR–04/06
Using the STK525
2.7.3
EXP.CON 0 & EXP.CON 1 Connectors
Figure 2-19 . EXP.CON 0 and EXP.CON 1 Connectors
GND
n.c. (AUXI0)
n.c. (CT7)
n.c. (CT5)
n.c. (CT3)
n.c. (CT1)
n.c.
NRST
PG1
GND
VTG
PC7
PC5
PC3
PC1
PA7
PA5
PA3
PA1
GND
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
GND
n.c. (AUXO0)
n.c. (CT6)
n.c. (CT4)
n.c. (CT2)
n.c. (BSEL2)
REF
PG2
PG0
GND
VTG
PC6
PC4
PC2
PC0
PA6
PA4
PA2
PA0
GND
GND
n.c. (AUXI1)
n.c. (DATA7)
n.c. (DATA5)
n.c. (DATA3)
n.c. (DATA1)
n.c. (SI)
n.c. (SCK)
XT1
VTG
GND
PB7
PB5
PB3
PB1
PD7
PD5
PD3
PD1
GND
EXP. CON 0
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
GND
n.c. (AUXO1)
n.c. (DATA6)
n.c. (DATA4)
n.c. (DATA2)
n.c. (DATA0)
n.c. (SO)
n.c. (CS)
XT2
VTG
GND
PB6
PB4
PB2
PB0
PD6
PD4
PD2
PD0
GND
EXP. CON 1
Top View
2.7.4
Main Clock from STK500
The AVR clock frequency (external) coming from STK500 (XT1/XT2) can also be
controlled from AVR Studio®.
“STKX1” and ”STKX2” jumpers should be closed
2.7.5
RESET from STK500
The AVR RESET coming from STK500 (NRST - EXP.CON 0) can also control the
STK525. STK525 is protected against +12V RESET pulse (parallel programing not
allowed for AT90USBxxx on STK525) coming from STK500.
2.8
In-System Programming
2.8.1
Programming with USB bootloader: DFU (Device Firmware Upgrade)
AT90USBxxx part comes with a default factory pre-programmed USB bootloader
located in the on-chip boot section of the AT90USBxxx. This is the easiest and fastest
way to reprogram the device directly over the USB interface. The “Flip” PC side
application available for free on Atmel website offers a flexible and user friendly
interface to reprogram the application over the USB bus.
2-20
7608A–AVR–04/06
STK525 Hardware User Guide
Using the STK525
The HWB pin of the AT90USBxxx allows to force the bootloader section execution after
reset. (Refer to AT90USBxxx datasheet section “boot loader support”). To force
bootloader execution, operate as follows:
Press both “RST” and “HWB” push buttons
First release the “RST” push button
Release the “HWB” push button
For more information about the USB bootloader and FLIP software, please refer to the
‘USB bootloader datasheet’ document and ‘FLIP User Manual’.
2.8.2
Programming with AVR ISP mkII Programmer
The AT90USBxxx can be programmed using specific SPI serial links. This sub section
will explain how to connect the programmer.
The Flash, EEPROM and all Fuses and Lock Bits options ISP-programmable can be
programmed individually or with the sequential automatic programming option.
The AVR ISP mkII programmer is a compact and easy-to-use In-System Programming
tool for developing applications with AT90USBxxx. Due to the small size, it is also an
excellent tool for field upgrades of existing applications.
The AVR ISP programming interface is integrated in AVR Studio®.
To program the device using AVR ISP programmer, connect the 6-wire cable on the ISP
connector of the STK525 as shown in Figure 2-20.
Note:
See AVR Studio® on-line Help for information.
Figure 2-20 . Programming from AVR ISP mkII programmer
2.8.3
Programming with STK500
The AT90USBxxx can be programmed using the serial programming mode in the AVR
Studio STK500 software. The software interface (In-System Programming of an external
target system) is integrated in AVR Studio®.
STK525 Hardware User Guide
2-21
7608A–AVR–04/06
Using the STK525
To program the device using ISP from STK500, connect the 6-wire cable between the
ISP6PIN connector of the STK500 board and the ISP connector of the STK525 as
shown in Figure 2-18.
2.8.4
Note:
See AVR Studio® on-line Help for information.
Note:
The high voltage parallel programming mode with STK500 is not available for an
STK525. To reprogram an AT90USBxxx part in parallel mode, use an STK501 extension
board (AT90USBxxx product pinout is compatible with the STK501 parallel programing
mode).
Programming with AVR JTAG ICE
The AT90USBxxx can be programmed using specific JTAG link. This sub-section will
explain how to connect and use the AVR JTAG ICE.
Note:
When the JTAGEN Fuse is unprogrammed, the four TAP pins are normal port pins, and
the TAP controller is in reset. When programmed, the input TAP signals are internally
pulled high and the JTAG is enabled for Boundary-scan and programming. The
AT90USBxxx device is shipped with this fuse programmed.
Figure 2-21 . Connecting AVR JTAG ICE to STK525
The Flash, EEPROM and all Fuse and Lock Bit options ISP-programmable can be
programmed individually or with the sequential automatic programming option.
Note:
2-22
7608A–AVR–04/06
See AVR Studio® on-line Help for information.
STK525 Hardware User Guide
Using the STK525
2.9
Debugging
2.9.1
Debugging with AVR JTAG ICE mkII
Every STK525 can be used for debugging with JTAG ICE MK II.
Connect the JTAG ICE mkII as shown in Figure 2-21, for debugging help, please refer to
AVR Studio® Help information.
When using JTAG ICE MK II for debugging, and as AT90USBxxx parts are factory
configured with the higher security level set, a chip erase operation will be performed on
the part before debugging. Thus the on-chip flash bootloader will be erased. It can be
restored after the debug session using the bootloader hex file available from ATMEL
website.
2.10
Test Points
There are 8 test points implemented, these test points are referred in the full schematics
section.
STK525 Hardware User Guide
Config.
Pads
Reference
Related Signals
T1
D+
USB D+ data line
T2
D-
USB D- data line
T3
Aref
Analog reference
T4
Mic
Microphone preamplifier output
T5
3.3V
3.3V internal power supply
T6
5V
T7
Gnd
Ground
T8
Vbus
USB Vbus power supply
Function
5V internal power supply
2-23
7608A–AVR–04/06
Using the STK525
2.11
Configuration Pads
Configuration pads are used to disconnect/connect on-board peripherals or elements, their
default configuration is: connect.
2.11.1
Configuration Pads Listing
Table 2-5 . Configuration Pads
2.11.2
Config.
Pads
Reference
Related
Signals
CP1
°c sensor (PF0)
This configuration pad is used to disconnect/connect the
CTN sensor from STK525.
CP2
pot. (PF1)
This configuration pad is used to disconnect/connect the
potentiometer from STK525.
CP3
Mic.(PF2)
This configuration pad is used to disconnect/connect the
microphone preamplifier output from STK525.
Function
Configuration Pads - Disconnection
Figure 1. Configuration Pad - Disconnection
Cut Connection
2.11.3
Configuration Pads - Connection
Figure 2. Configuration Pad - Re-connection
Droplet of Solder
2-24
7608A–AVR–04/06
Wire
STK525 Hardware User Guide
Using the STK525
2.12
Solder Pads
Solder pads are used to disconnect/connect on-board peripherals or elements, their default
configuration is: disconnect.
2.12.1
Solder Pads Listing
Table 2-6 . Solder Pads
STK525 Hardware User Guide
Solder.
Pads
Reference
Related
Signals
SP1
AVCC/VCC
This solder pad can be used to bypass L1.
SP2
NRST/RESET
This solder pad can be used to bypass D1.
SP3
3.3V
SP4
PD1/CTS
This solder pad allows to enable the logical CTS signal for
hardware control flow on RS232 interface.
SP5
PD0/RTS
This solder pad allows to enable the logical RTS signal for
hardware control flow on RS232 interface.
SP6
VBUS
This solder pad allows to bypass U5 VBUS current limiter.
SP7
RS-CTS
This solder pad allows to enable the physical CTS signal for
hardware control flow on RS232 interface.
SP8
RS-RTS
This solder pad allows to enable the physical RTS signal for
hardware control flow on RS232 interface.
Function
This solder pad is reserved to connect 3.3V power supply to
the N.C pin of Expand0/1
2-25
7608A–AVR–04/06
Section 3
Troubleshooting Guide
Figure 3-1 . Troubleshooting Guide
Problem
Reason
Verify the power supply source
The Green “VCC-ON”
LED is not on
No power supply
The
STK500 ISP header
is not connected.
Connect a 6-pin flexible cable from
STK500 ISP 6-PIN header to the correct
STK525 ISP header (page 21)
The AVR ISP probe is
not connected
Connect the AVR ISP 6-PIN header to
the correct STK525 ISP header (page
21)
The AVR JTAG ICE
probe is not
connected
Connect the JTAG ICE 10-PIN header to
the correct STK525 JTAG header (page
22)
The memory lock bits
are programmed
Erase the memory before programming
The fuse bits are
wrongly programmed
Check the fuse bits
Programming too fast
with ISP SPI
Check oscillator settings and make sure
it is not set higher than SPI clock
Serial/USB cable is
not connected, or
power is off
AVR Studio does not
detect the AVR tool used
Verify the power supply source
Connect the DC power supply source, or
USB interface or STK500.
STK525 does not work
The AT90USBxxx cannot
be programmed
Solution
PC COM port is in
use
Connect serial cable to RS232 (STK500 AVR ISP) and check power connections
Connect serial cable to USB (JATG ICE
MKII, AVR ISPmkIIl) and check power
connections
Disable other programs that are using
PC COM port.
Change PC COM port
AVR Studio does not
detect COM port.
STK525 Hardware User Guide
Disable COM port auto-detection in AVR
Studio file menu. Force COM port to
correct COM port
3-26
7608A–AVR–04/06
Troubleshooting Guide
STK525 Hardware User Guide
3-27
7608A–AVR–04/06
Section 4
Technical Specifications
System Unit
– Physical Dimensions ................................................. L=119 x W=56 x H=27 mm
– Weight ...........................................................................................................70 g
Operating Conditions
– Internal Voltage Supply .....................................................................2.7V - 5.5V
– External Voltage Supply ..........................................................9V -15V (100mA)
Connections
– USB Connector ......................................................................Mini AB receptacle
– USB Communications .......................................................Full speed/low speed
– RS 232C Connector .............................................................9-pin D-SUB female
– RS 232C Communications Maximum Speed ........................................ 250 kbps
STK525 Hardware User Guide
4-28
7608A–AVR–04/06
Section 5
Technical Support
For Technical support, please contact [email protected]. When requesting technical
support, please include the following information:
Which target AVR device is used (complete part number)
Target voltage and speed
Clock source and fuse setting of the AVR
Programming method (ISP, JTAG or specific Boot-Loader)
Hardware revisions of the AVR tools, found on the PCB
Version number of AVR Studio. This can be found in the AVR Studio help menu.
PC operating system and version/build
PC processor type and speed
A detailed description of the problem
STK525 Hardware User Guide
5-29
7608A–AVR–04/06
Section 6
Complete Schematics
On the next pages, the following documents of STK525 revision 4381A are shown:
Complete schematics,
Assembly drawing,
Bill of materials.
Default configuration summary
STK525 Hardware User Guide
6-30
7608A–AVR–04/06
R7 0
R6 0
UCAP
C7
1uF
PE[7..0]
PB[7..0]
UCAP Capacitor
Closed to the MCU
R4 0
PGB0010603
CR2
R2 22
VCC
VBUS
UVCON
PB[7..0]
PB7
UVCON PE7
UVCC
DD+
UGND
UCAP
VBUS
UID PE3
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PF[7..0]
AREF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
100nF
C4
D+
TP1
D+
D-
TP2
D-
TP3
AREF
AVCC
AGND
AREF
PE6
PE7
UVcc
DD+
UGND
UCAP
VBUS
PE3
PB0
PB1
PB2
PB3
PB4
PB5
PB6
AREF
Important Note:
U1 is mounted through a TQFP64 ZIF socket
PGB0010603
CR1
RESISTORS
CLOSED TO THE DEVICE
UGND
AGND
USB_MiniABF
4-ID
SHIELD
UGND
VBUS
R1 22
1
1-V_BUS
2-D3-D+
5-GND
VBUS
C3
100nF
1
J1
D+ D- RESISTORS
Closed to the MCU
100nF
C2
SP1
B LM -21A 102S
AVCC
UGND
L1
PE0
PE1
PE2
PE3
1
PF0
PF1
PF2
PF3
PF4
PF5
PF6
PF7
C10
15pF
XTAL2
PE4
PE5
RESET
VCC
PE7
VCC
PA0
PA1
PA2
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
AT90USB128
AVCC
GND
AREF
PF0
PF1
PF2
PF3
PF4
PF5
PF6
PF7
GND
VCC
PA0
PA1
PA2
PB7
PE4
PE5
RESET
VCC
GND
XTAL2
XTAL1
PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7
VCC
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
STK525 Hardware User Guide
8MHz
Y1
C11
15pF
XTAL1
XTAL2
XTAL1
PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7
Ferrite & capacitors
closed to the MCU
U1
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PD[7..0]
PA3
PA4
PA5
PA6
PA7
PE2
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
PE1
PE0
PC[7..0]
PA[7..0]
PD[7..0]
PA3
PA4
PA5
PA6
PA7
PE2
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
PE1
PE0
PA[7..0]
Date:
Size
A4
Title
NRST
A
NC
VCC
Wednesday , February 15, 2006
Document Number
1
CPU
C5
100nF
C6
100nF
C1
100nF
C9
220nF
RESET
SW1
HWB
R3
47k
Sheet
1
of
4
Rev
1.0
RESET
C8
220nF
PE2
Close Solder Pad
To use parallel prog mode
(12V on Reset Pin)
SW2
Ext Reset
R5
47k
VCC
STK525 MEZZANINE FOR STK500
INT 0/2
BAT54/SOT
SP2
K
D1
Reset Circuit
PC[7..0]
VCC
VCC
VCC
Force Bootloader Execution
DECOUPLING CAPACITORS
CLOSED TO THE DEVICE
MCU Pin3
DECOUPLING CAPACITORS
CLOSED TO THE DEVICE
MCU Pin21
DECOUPLING CAPACITORS
CLOSED TO THE DEVICE
MCU Pin52
Complete Schematics
Figure 6-1 . Schematics, 1 of 5
6-31
7608A–AVR–04/06
6-32
7608A–AVR–04/06
XT 1
VTG
SP3
STKNC
PB7
PB5
PB3
PB1
PD7
PD5
PD3
PD1
C13
100nF
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
XT 2
ST KNC
PC7
PC5
PC3
PC1
PA7
PA5
PA3
PA1
PE1
VTG
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
GND
AUXI0
CT7
CT5
CT3
CT1
(n.c.)
NRST
PE1
GND
VTG
PC7
PC5
PC3
PC1
PA7
PA5
PA3
PA1
GND
J3
GND
AUXO0
CT6
CT4
CT2
BSEL2
REF
PE2
PE0
GND
VTG
PC6
PC4
PC2
PC0
PA6
PA4
PA2
PA0
GND
EXP. CON 0
PB6
PB4
PB2
PB0
PD6
PD4
PD2
PD0
VTG
NRST
EXP. CON 1
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
XTAL2
CON 2x20
GND
AUXO1
DATA6
DATA4
DATA0
DATA9
SO
CS
XT2
VTG
GND
PB6
PB4
PB2
PB0
PD6
PD4
PD2
PD0
GND
2
STK X2
1
JP2
CON 2x20
GND
AUXI1
DATA7
DATA5
DATA3
DATA1
SI
SCK
XT1
VTG
GND
PB7
PB5
PB3
PB1
PD7
PD5
PD3
PD1
GND
J2
XTAL1
Important:
Def ault conf iguration: open
reserv ed f or f uture mass storage extension
3.3V
2
STK X1
1
JP1
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
REF
PE2
PE0
PC6
PC4
PC2
PC0
PA6
PA4
PA2
PA0
VTG
C14
100nF
10k
R9
Date:
Size
A4
Title
JP3
2
Tuesday , January 17, 2006
Document Number
<Doc>
Sheet
STK525 MEZZANINE FOR STK500
PA[7..0]
PB[7..0]
PC[7..0]
PD[7..0]
PE[2..0]
AREF
VTG
C12
1nF
STK500 Expand connectors
PA[7..0]
PB[7..0]
PC[7..0]
PD[7..0]
PE[2..0]
STK AREF
1
Q1
BC847B
2k
R8
2
of
4
Rev
1.0
Complete Schematics
Figure 6-2 . Schematics, 2 of 5
STK525 Hardware User Guide
R13
R14
R15
1k
1k
1k
MICROPHONE
MIC1
R20
2.2k
3.3V
R12
1k
LEDs
C24 4.7uF
R28
100k
R25
100k
R21
TOPLED LP M676
LED 3 (green)
TOPLED LP M676
LED 2 (green)
TOPLED LP M676
LED 1 (green)
TOPLED LP M676
LED 0 (green)
1uF
C25
10k
D5
D4
D3
+
1
2
3
11
12
13
14
D2
In-line Grouped LEDs
PB4
PB1
PB2
PB3
RESET
R11
100k
U2
3.3V
C22
3
1
7
6
3.3V
R18
R16
100k
C15
100nF
1
2
3
4
J7
TPA511G
Com1
Com2
Select
Lef t
Up
Right
Down
POT 100k
R19
CP1 VCC
CP2
CP3
PF Spare (Not mounted)
PF0
PF1
PF2
PF3
1
2
SW3
R26 22k
R22
100k
3.3V
5
6
R24 100k
C26
100nF
R27 0
DECOUPLING CAPACITOR
CLOSE TO THE DEVICE
3.3V
7
U4B
LMV358
Mic
TP4
1
5
7
3
6
4
Joystick Interface
Microphone Preamplifier Interface
NCP18WF104J03RB
Temp Sensor
PF[7..0]
VCC
Caution DataFlash
Fix 3V Power supply Only
GND
VCC
PD[7..0]
220pF
U4A
LMV358
R23 100k
2
PD7
PD6
PD5
PD4
AT45DB321C TSOP28
CS
SCK
SI
SO
BUSY
RESET
WP
DECOUPLING CAPACITOR
CLOSE TO THE DEVICE
PF0
R10
100k
+
4
PF1
Data Flash
PF2
RESET
PB[7..0]
PF[7..0]
PD[7..0]
PB5
PB6
PB7
PE4
PE5
PE[7..0]
PB[7..0]
Date:
Size
A4
Title
PB3
PB1
RESET
PB2
PF7
PF4
PF6
PF5
VCC
RT S
PD0
SP5
CT S
PD1
T XD
PD3
SP4
RxD
PD2
5
3
4
1
V-
CON 2x5
JTAG CON
8
7
14
13
RS-RT S
RS-T xD
RS-CT S
RS-RxD
C23
100nF
Tuesday , January 17, 2006
Document Number
<Doc>
Sheet
3
of
4
Serial ISP
Interface
C21
100nF
DECOUPLING CAPACITOR
CLOSE TO THE CONNECTOR
2
4
6
VCC
VCC
DECOUPLING CAPACITOR
CLOSE TO THE CONNECTOR
2
4
6
8
10
10
11
Rev
1.0
SUB-D9 FEMALE
RS232
P1
C20
100nF
JTAG Interface
SP8
SP7
1
6
2
7
3
8
4
9
5
VCC
STK525 MEZZANINE FOR STK500
ISP CON
CON 2x3
PDO
VCC
SCK
PDI
RESET GND
J5
C18
100nF
C19
100nF
6
2
DECOUPLING CAPACITOR
CLOSE TO THE DEVICE
MAX3232
RS232 BUFFER
.
.
.
.
GND
VCC
RESET
n.c.
GND
GND
J4
TTL
TCK
TDO
TMS
VCC
TDI
.
.
.
.
C2-
C1C2+
V+
RS 232
VCC
C1+
U3
Interf aces
1
3
5
1
3
5
7
9
9
10
11
12
R17
0
100nF
C17
100nF
C16
VCC
RS232 Interface
16
.
.
15
3.3V
8
+
8
4
+
-
STK525 Hardware User Guide
-
PB[7..0]
Complete Schematics
Figure 6-3 . Schematics, 3 of 5
6-33
7608A–AVR–04/06
10k
R29
OC
EN
IN1
IN2
U5
J6
3
2
1
TP5
3.3V
1
3.3V
TP6
5V
5V
2
-
TPS2041A
5
4
2
3
TPS2041A Vbus Icc limiter optionnal
When Not Mounted Close Solder Pad
C27
100nF
CONNECTOR JACK PWR
Ext Power Supply
VBUS
1
TP7
GND
+
C31
4.7uF
TP8
220nF
C32
D7
LL4148
VBUS
DF005S
1
U7
C28
4.7uF
6
7
8
VBUS
OUT3
OUT2
OUT1
SP6
GND
1
3
4
VTG
1
D6
LL4148
3
2
7
33nF
C29
1
4
8
6
5
100nF
C33
OUT
OUT
FAULT
CC
SET
OUT
LM340
GND
IN
U8
LP3982
GND
IN
SHDN
U6
U6out=1.25*(1+R28/R29)
3.3V
5V
R31
124k 1%
100k
R33
Date:
Size
A4
Title
VBUS gen
2
STK
VBUS
3.3V
Ext
3.3V
2
JP7
JP4
VTG
1
STK
3
Ext
UVCON
100k 1% R30
R35
100k 1%
3.3V
1
2
4
6
8
VCC
M1
C34
4.7uF
-
VBUS
POWER
Tuesday , January 17, 2006
Document Number
<Doc>
Sheet
4
of
4
UCAP
Rev
1.0
JP Closed f or 3.0<Vcc<3.3
C30
4.7uF
VBUS generator f or OTG/HOST mode
1 F <Cap Vbus < 6 F OTG Specif ication
-
FDV304P/FAI
JP5
VCC
POWER LED(RED)
D8
TOPLED LP M676
R34
1k
STK525 MEZZANINE FOR STK500
Q2
BC847B
R32
10k
VCC Source
1
3
5
7
JP6
1
7608A–AVR–04/06
2
6-34
1
JP not mounted,
reserv ed f or f uture mass storage extension
in stand alone mode
Complete Schematics
Figure 6-4 . Schematics, 4 of 5
STK525 Hardware User Guide
Complete Schematics
Figure 6-5 . Assembly Drawing, 1 of 2 (component side)
Figure 6-6 . Assembly Drawing, 2 of 2 (solder side)
STK525 Hardware User Guide
6-35
7608A–AVR–04/06
Complete Schematics
Table 6-1 . Bill of material
Item
Q.ty
Reference
Part
Tech. Characteristics
Package
1
2
CR1,CR2
PGB0010603
ESD protection
CASE 0805
2
19
C1,C2,C3,C4,C5,C6,C13,C14,C15,C16,C
17,C18,C19,C20,C21,C23,C26,C27,C33
100nF
50V-10% Ceramic
CASE 0805
3
2
C7,C25
1uF
10Vmin ±10%
EIA/IECQ 3216
4
3
C8,C9,C32
220nF
50V-10% Ceramic
CASE 0805
5
2
C10,C11
15pF
50V-5% Ceramic
CASE 0805
6
1
C12
1nF
50V-5% Ceramic
CASE 0805
7
1
C22
220pF
50V-5% Ceramic
CASE 0805
8
5
C24,C28,C30,C31,C34
4.7uF
10Vmin ±10%
EIA/IECQ 3216
9
1
C29
33nF
50V-5% Ceramic
CASE 0805
10
3
CP1, CP2, CP3
Configuration Pad
11
1
D1
BAT54/SOT
Vf=0.3V
SOT23
12
5
D2,D3,D4,D5,D8
TOPLED LP M676
13
2
D6,D7
LL4148
i=200mA max
LL-34
14
5
JP1,JP2,JP3,JP4,JP5
JUMPER 1x2
Need 1 shunt
0,1" pitch
15
1
J1
USB_MiniABF
USB mini AB receptacle
Surface mount
16
2
J2,J3
CON 2x20
17
1
J4
CON 2x5
18
1
J5
CON 2x3
19
1
J7
CON 2x2
Not Mounted
20
1
JP6
JUMPER 2x4
Need 1 shunt
0,1" pitch
21
1
J6
CONNECTOR JACK
PWR
Int.Diam=2.1mm
PCB Embase
22
1
JP7
JUMPER 3x1
23
1
L1
BLM-21A102S
24
1
MIC1
MICROPHONE
Electret Cap Mic
25
1
M1
FDV304P/FAI
MOSFET P
26
1
P1
SUB-D9 FEMALE
90° with harpoons
27
2
Q1,Q2
BC847B
28
2
R1,R2
22
1/16W-5% SMD
CASE 0602
29
2
R3,R5
47k
1/16W-5% SMD
CASE 0603
30
5
R4,R6,R7,R17,R27
0
CASE 0603
31
1
R8
2k
CASE 0604
32
4
R9,R25,R29,R32
10k
6-36
7608A–AVR–04/06
Green
PLCC-2
I=10 mA_
FERRITE BEAD
1 KOhms at 100 MHz
NPN
IC peak=200mA
1/16W-5% SMD
CASE 0805
SOT23
SOT23
CASE 0603
STK525 Hardware User Guide
Complete Schematics
Item
Q.ty
Reference
Part
Tech. Characteristics
Package
33
9
R10,R11,R16,R21,R22,R23,R24,R28,R33
100k
1/16W-5% SMD
CASE 0603
34
5
R12,R13,R14,R15,R34
1k
1/16W-5% SMD
CASE 0603
35
1
R18
NCP18WF104J03RB
100K - ß=4250
CASE 0603
36
1
R19
POT 100k
PT10MH104ME
37
1
R19 Button
Pot Button
38
1
R20
2.2k
1/16W-5% SMD
CASE 0603
39
1
R26
22k
1/16W-5% SMD
CASE 0603
40
1
R30, R35
100k 1%
1/16W-1% SMD
CASE 0603
41
1
R31
120k 1%
1/16W-1% SMD
CASE 0603
42
6
SP1,SP2,SP3,SP4,SP5,SP6
SolderPad
(NA)
(NA)
43
2
SW1,SW2
PUSH-BUTTON
6x3.5mm - 1.6N
44
1
SW3
TPA511G
4+1 ways joystick CMS
45
8
TP1,TP2,TP3,TP4,TP5,TP6, TP7, TP8
TEST POINT
Diam.=1.32mm
46
1
U1
AT90USBxxx
TQFP64
47
1
U1 Socket
TQFP64 ZIF
48
1
U2
AT45DB321C
TSOP28
49
1
U3
MAX3232ECAE+
SSOP16
50
1
U4
LMV358
SO8
51
1
U5
TPS2041A
SOIC8
52
1
U6
LP3982
53
1
U7
DF005S
Bridge rectifier
See DS
54
1
U8
LM340
Reg 5V CMS
SOT223
55
1
Y1
8MHz CRYSTAL
H=4mm
HC49/4H
6.0.1
Low Drop Out
Vin Max 6V, 300mA
MSOP8
Default Configuration - Summary
Table 6-2 . Default Configuration summary
Name
Ref.
Function
State
Jumpers
STKX1
JP1
XTAL Configuration
OFF
STKX2
JP2
XTAL Configuration
OFF
Aref
JP3
STK500 Analog Ref
OFF
VTG33
JP4
Short 3.3V to VTG (Mass storage extension
board)
OFF
UCAP
JP5
Short UCAP with Uvcc
OFF
Vcc Src
JP6
Vcc Selection
3.4 shorted
Vbus Gen
JP7
VBUS generation selection (host mode)
2.3 shorted
Solder PADS
STK525 Hardware User Guide
6-37
7608A–AVR–04/06
Complete Schematics
Name
Ref.
Function
State
SP1
Bypass L1
OPEN
SP2
OPEN
SP3
3.3V on Expand 0 NC pin
OPEN
SP4
CTS
OPEN
SP5
RTS
OPEN
SP6
Bypass limiter
OPEN
SP7
RS232 hardware control enable
OPEN
SP8
RS232 hardware control enable
OPEN
Configuration PADS
6-38
7608A–AVR–04/06
CP1
Bypass CTN in on PF0
CLOSE
CP2
Bypass Potentiometer ADC in on PF1
CLOSE
CP3
Bypass Mic In on PF2
CLOSE
STK525 Hardware User Guide
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise,to anyintellectualproperty right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-TIONS OF
SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORYWARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULARPURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL
OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUTOF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes norepresentationsor warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make
changes to specificationsand product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein.
Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended,
authorized, or warranted for useas components in applications intended to support or sustainlife.
© Atmel Corporation 2006. All rights reserved. Atmel ® , logo and combinations thereof, are registered trademarks, and Everywhere You Are®
are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
Printed on recycled paper.
7608A–AVR–04/06
/xM