STK525 ............................................................................................. Hardware User Guide Section 1 Introduction ........................................................................................... 1-3 1.1 1.2 Overview ...................................................................................................1-3 STK525 Starter Kit Features .....................................................................1-4 Section 2 Using the STK525................................................................................. 2-6 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.10 2.11 2.12 Overview ...................................................................................................2-6 Power Supply ............................................................................................2-7 RESET ....................................................................................................2-10 AT90USBxxx AVR Microcontroller..........................................................2-11 Serial Links .............................................................................................2-11 On-board Resources...............................................................................2-14 STK500 Resources .................................................................................2-19 In-System Programming .........................................................................2-20 Test Points ..............................................................................................2-23 Configuration Pads .................................................................................2-24 Solder Pads ............................................................................................2-25 Section 3 Troubleshooting Guide ....................................................................... 3-26 Section 4 Technical Specifications ..................................................................... 4-27 Section 5 Technical Support ............................................................................... 5-28 Section 6 Complete Schematics ......................................................................... 6-29 STK525 Hardware User Guide User Guide 1 7608A–AVR–04/06 Section 1 Introduction Congratulation for acquiring the AVR® STK525 Starter Kit. This kit is designed to give designers a quick start to develop code on the AT90USBxxx and for prototyping and testing of new designs. 1.1 Overview This document describes the STK525 dedicated to the AT90USBxxx AVR microcontroller. This board is designed to allow an easy evaluation of the product using demonstration software. To complement the evaluation and enable additional development capability, the STK525 can be plugged into the Atmel STK500 Starter Kit Board in order to use the AT90USBxxx with advanced features such as variable VCC, variable VRef, variable XTAL, etc. and supports all AVR development tools. To increase its demonstrative capabilities, this stand alone board has numerous onboard resources (USB, RS232, joystick, data-flash, microphone and temperature sensor). This user guide acts as a general getting started guide as well as a complete technical reference for advanced users. STK525 Hardware User Guide 1-3 7608A–AVR–04/06 Introduction Figure 1-1 . STK525 Board 1.2 STK525 Starter Kit Features The STK525 provides the following features: AT90USBxxx TQFP device (2.7V<Vcc<5.5V), AVR Studio® software interface (1), USB software interface for Device Firmware Upgrade (DFU bootloader) (2) STK500 compatible Power supply flagged by “VCC-ON” LED: – – – – regulated 3 or 5V, from an external power connector, from the USB interface (USB device bus powered application), from STK500 (2), ISP connector for on-chip ISP, JTAG connector: – for on-chip ISP, – for on-chip debugging using JTAG ICE, Serial interfaces: – 1 USB full/low speed device/host interface – RS-232C ports with RTS/CTS handshake lines, On-board resources: – – – – – 1-4 7608A–AVR–04/06 4+1-ways joystick, 4 LEDs, temperature sensor, microphone, serial dataflash memory, STK525 Hardware User Guide Introduction On-board RESET button, On-board HWB button for force bootloader section execution at reset. System clock: – external clock from STK500 expand connectors – 8 MHz crystal, Numerous access points for test. Notes: STK525 Hardware User Guide 1. The STK525 is supported by AVR Studio®, version 4.12SP2 or higher. For up-to-date information on this and other AVR tool products, please consult our web site. The newest version of AVR Studio®, AVR tools and this User Guide can be found in the AVR section of the Atmel web site, http://www.atmel.com. 2. ATMEL Flip®, In System Programming Version 3 or Higher shall be used for Device Firmware Upgrade. Please consult Atmel web site to retrieve the latest version of Flip and the DFU bootloader Hex file if needed. 1-5 7608A–AVR–04/06 Section 2 Using the STK525 This chapter describes the board and all its features. 2.1 Overview Figure 2-1 . STK525 Overview USB MiniAB RS232 JTAG ISP External Power Vbus Gen. Setting Pin1 Vcc Src. Setting STK500 Expand1 STK500 Expand0 C Sensor Data Flash LEDS TQFP64 Socket Crystal STK525 Hardware User Guide Microphone Joystick Potentiometer Reset Bootloader Activation 2-6 7608A–AVR–04/06 Using the STK525 2.2 Power Supply The on-board power supply circuitry allows various power supply configurations. 2.2.1 Power Supply Sources The power supply source can come from three different (3) and exclusive sources: USB connector, JACK PWR connector (J6, See Figure 2-2), STK500 USB powered: When used as a USB device bus powered application, the STK525 can be powered via the USB VBUS power supply line. JACK PWR connector: – Need of a male JACK outlet, – Input supply from 9 up to 15V (1) DC, – No specific polarization (2) is required. Figure 2-2 . JACK PWR Connector (J6) Figure 2-3 . Male JACK Outlet and Wires + - STK500 Powered: (c.f. “STK500 Resources” on page 19). Notes: STK525 Hardware User Guide 1. 15V is the maximum level limitation of an unidirectional transit diode. 2. There is a diode (bridge) voltage level between the negative output of the power supply and the STK525 “GND”. This could introduce some gap of voltage during measurement and instrumentation. 3. Caution: Do not mount more than one power supply source on STK525. 2-7 7608A–AVR–04/06 Using the STK525 2.2.2 Power Supply Setting Table 2-1 . Power Supply (1) Setting Vcc Source Jumper position VBUS 5 VCC power supply value Comments VBUS (4,7V to 5.0V) This is the default configuration. This should be used for a typical USB device “bus powered” application. In this mode, the STK525 is powered directly from the USB bus, and no other external power supply is required. View VCC Source Reg 5 Reg 3.3 VBUS 5 STK REG 5 This configuration can be used for a USB “self powered” device application” or when operating has a USB host. To use this configuration an external power supply must be connected to J6 connector. 5V VCC Source Reg 5 Reg 3.3 VBUS 5 STK REG 3.3 This configuration allows the STK525 to be used in a 3V range application. This configuration can be used with both device or host mode USB applications. To use this configuration an external power supply must be connected to J6 connector. 3.3V VCC Source Reg 5 Reg 3.3 VBUS 5 STK STK Depends on STK500 VTG setting This configuration allows the STK525 to be used with an STK500 board. In this mode, the STK525 power supply is generated and configured according to the “VTG” parameter of the STK500 (1). VCC Source Reg 5 Reg 3.3 VBUS 5 STK Notes: 2-8 7608A–AVR–04/06 1. Caution: The STK500 has its own “ON/OFF” switch STK525 Hardware User Guide Using the STK525 2.2.3 VBUS Generator Setting When using the AT90USBxxx microcontroller in USB host mode. The STK525 should provide a 5V power supply over the VBUS pin of its USB mini AB connector. A couple of transistors on the STK525 allows the UVCON pin of the AT90USBxxx to control the VBUS generation (See Figure 2-4). In this mode the STK525 is powered by external power supply source (J6 or STK500 expand0/1 connectors). JP7 allows to select the 5V source used by the VBUS generator. Figure 2-4 . VBUS generator schematic JP7 VTG 1 STK 3 Ext FDV304P/FAI 2 VBUS R32 10k VBUS gen M1 R33 Q2 BC847B UVCON - C34 4.7uF 100k Table 2-2 . VBUS Generator Setting External power supply from J6 Comments View Vbus Gen This is the default configuration. The VBUS generator source is the on-board 5V regulator. External power supply from Expand0/1 (connected to a STK500) STK525 Hardware User Guide Vbus Gen Ext “Stk” The VBUS generator source is the STK500. Note: The “Vtarget” setting of STK500 should be set to “5V”. Stk Ext “Ext” STK525 power supply Stk “Vbus Gen” Jumper position 2-9 7608A–AVR–04/06 Using the STK525 2.2.4 “POWER-ON“ LED The POWER-ON LED is always lit when power is applied to STK525 regardless of power supply source and the regulation. Figure 2-5 . “VCC-ON” LED 2.3 RESET Although the AT90USBxxx has its on-chip RESET circuitry (c.f. AT90USBxxx Datasheet, section “System Control and Reset), the STK525 provides the AT90USBxxx a RESET signal which can come from 3 different sources: 2.3.1 Power-on RESET The on-board RC network acts as power-on RESET. 2.3.2 RESET Push Button By pressing the RESET push button on the STK525, a warm RESET of the AT90USBxxx is performed. Figure 2-6 . RESET Push Button (RST) Implementation 2-10 7608A–AVR–04/06 STK525 Hardware User Guide Using the STK525 2.3.3 STK500 RESET (c.f. “RESET from STK500” on page 20 ) 2.4 AT90USBxxx AVR Microcontroller 2.4.1 Main Clock XTAL To use the USB interface of the AT90USBxxx, the clock source should always be a crystal or external clock oscillator (the internal 8MHz RC oscillator cannot be used to operate with the USB interface). Only the following crystal frequency allows proper USB operations: 2MHz, 4MHz, 6MHz, 8MHz, 12MHz, 16MHz. The STK525 comes with a default 8MHz crystal oscillator. When closing STKX1 and STKX2 switches, and STK525 is connected to an STK500, the STK525 can operate with the “STK500 Osc” frequency parameter. 2.4.2 Analog Power Supply AVCC By default, AVCC is equivalent to VCC. ANA REF By default, AREF is an output of AT90USBxxx. An external AREF source can be chosen (c.f. “STK500 Resources” on page 19). 2.5 Serial Links 2.5.1 USB The STK525 is supplied with a standard USB mini A-B receptacle. The mini AB receptacle allows to connect both a mini A plug or a mini B plug connectors. Figure 2-7 . USB mini A-B Receptacle When connected to a mini B plug, the AT90USBxxx operates as an “USB device” (the ID pin of the plug is unconnected) and when connected to a mini A plug, the AT90USBxxx operates as a “USB host” (the ID pin of the plug is tied to ground). STK525 Hardware User Guide 2-11 7608A–AVR–04/06 Using the STK525 2.5.2 RS-232C The AT90USBxxx is a microcontroller with an on-chip USART peripheral (USART1). Only the asynchronous mode is supported by the STK525. The STK525 is supplied with a RS-232 driver/receiver. One female DB9 connector assumes the RS-232 connections. Figure 2-8 . RS-232 DB9 Connector Figure 2-9 . RS-232 DB9 Connections RS-232 DB9 front view pin 2 RS-TxD pin 3 RS-RxD pin 4 pin 6 5 4 3 2 1 9 8 7 6 pin 5 GND pin 7 RS-CTS pin 8 RS-RTS Figure 2-10 . Typical PC Connection Layout PC / DB9 serial port (COM1 or COMx) STK525 / RS-232 DB9 Function Pin No Pin No Function TxD (AT90USBxxx) 2 2 RxD (PC) RxD (AT90USBxxx) 3 3 TxD (PC) GND 5 5 GND If Hardware Data Flow Control 2-12 7608A–AVR–04/06 CTS (AT90USBxxx) 7 7 RTS (PC) RTS (AT90USBxxx) 8 8 CTS (PC) STK525 Hardware User Guide Using the STK525 The STK525 USART implementation allows an optional hardware flow control that can be enabled thanks to SP4, SP5, SP7, SP8 solder pads (See Figure 2-11). Figure 2-11 . USART Schematic VCC 16 RS232 Interface U3 C16 100nF 3 4 C17 5 PD[7..0] VCC . 1 C1+ V+ C1C2+ V- TTL RxD 12 PD3 T XD 11 6 RS 232 . . . . . . . . P1 13 CT S 10 PD0 RT S 9 RS-RxD 14 RS-T xD RS-CT S SP4 PD1 C18 100nF C19 100nF C2- 100nF PD2 2 SP7 7 RS-RT S 8 SP8 11 10 . SP5 1 6 2 7 3 8 4 9 5 15 GND MAX3232 RS232 BUFFER SUB-D9 FEMALE RS232 Table 2-3 . UART Settings Note: STK525 Hardware User Guide Mode Solder Pads Configuration Software Data Flow Control (default configuration) SP4: open SP5: open SP7: open SP8: open Optional Hardware Flow Control SP4: close SP5: close SP7: close SP8: close DB9 Connection (1) Tx Pin 2 Rx Pin 3 Tx Rx CTS RTS Pin 2 Pin 3 Pin 7 Pin 8 1. Tx reference: STK525 source, Rx reference: STK525 destination 2-13 7608A–AVR–04/06 Using the STK525 2.6 On-board Resources 2.6.1 Joystick The 4+1 way joystick offers an easy user interface implementation for a USB application (it can emulate mouse movements, keyboard inputs, etc.). Pushing a push-button causes the corresponding signal to be pulled low, while releasing (not pressed) causes an H.Z state on the signal. The user must enable internal pull-ups on the input pins, removing the need for an external pull-up resistors on the push-button. Figure 2-12 . Joystick Schematic PB[7..0] SW3 1 2 Select Lef t Up Right Down Com1 Com2 5 7 3 6 4 PB5 PB6 PB7 PE4 PE5 PE[7..0] TPA511G Figure 2-13 . Joystick Implementation 2.6.2 LEDs The STK525 includes 4 green LEDs implemented on one line. They are connected to the high nibble of “Port D” of AT90USBxxx (PORTD[4..7]). To light On a LED, the corresponding port pin must drive to high level. To light Off a LED, the corresponding port pin must drive a low level. It is the opposite method used in STK500. 2-14 7608A–AVR–04/06 STK525 Hardware User Guide Using the STK525 Figure 2-14 . LEDs Implementation Schematic In-line Grouped LEDs 1k R12 PD[7..0] LED 0 (green) PD4 TOPLED LP M676 1k R13 D2 LED 1 (green) PD5 TOPLED LP M676 1k R14 D3 LED 2 (green) PD6 TOPLED LP M676 1k R15 D4 LED 3 (green) PD7 TOPLED LP M676 STK525 Hardware User Guide D5 2-15 7608A–AVR–04/06 Using the STK525 2.6.3 Temperature Sensor The temperature sensor uses a thermistor (R18), or temperature-sensitive resistor. This thermistor has a negative temperature coefficient (NTC), meaning the resistance goes up as temperature goes down. Of all passive temperature measurement sensors, thermistors have the highest sensitivity (resistance change per degree of temperature change). Thermistors do not have a linear temperature/resistance curve. The voltage over the NTC can be found using the A/D converter (connected to channel 0). See the AT90USBxxx datasheet for how to use the ADC. The thermistor value (RT) is calculated with the following expression: R T = ( R H ⋅ V ADC 0 ) ⁄ ( V CC – V ADC 0 ) Where: R T = Thermistor value (Ω) at T temperature (°Kelvin) R H = Second resistor of the bridge -100 KΩ ±10% at 25°C VADC0 = Voltage value on ADC-0 input (V) VCC = Board power supply The NTC thermistor used in STK525 has a resistance of 100 KΩ ±5% at 25°C (T0) and a beta-value of 4250 ±3%. By the use of the following equation, the temperature (T) can be calculated: β T = ------------------------------R β T ⎛ ln ------- ⎞ + -----⎝ R ⎠ T 0 0 Where: R T = Thermistor value (Ω) at T temperature (°Kelvin) ß = 4250 ±3% R 0 = 100 KΩ ±5% at 25°C T0 = 298 °K (273 °K + 25°K) The following cross table also can be used. It is based on the above equation. Table 2-4 . Thermistor Values versus Temperature 2-16 7608A–AVR–04/06 Temp. (°C) RT (KΩ) Temp. (°C) RT (KΩ) Temp. (°C) RT (KΩ) Temp. (°C) RT (KΩ) -20 1263,757 10 212,958 40 50,486 70 15,396 -19 1182,881 11 201,989 41 48,350 71 14,851 -18 1107,756 12 191,657 42 46,316 72 14,329 -17 1037,934 13 181,920 43 44,380 73 13,828 -16 973,006 14 172,740 44 42,537 74 13,347 -15 912,596 15 164,083 45 40,781 75 12,885 -14 856,361 16 155,914 46 39,107 76 12,442 -13 803,984 17 148,205 47 37,513 77 12,017 -12 755,175 18 140,926 48 35,992 78 11,608 -11 709,669 19 134,051 49 34,542 79 11,215 -10 667,221 20 127,555 50 33,159 80 10,838 STK525 Hardware User Guide Using the STK525 Temp. (°C) RT (KΩ) Temp. (°C) RT (KΩ) Temp. (°C) RT (KΩ) Temp. (°C) RT (KΩ) -9 627,604 21 121,414 51 31,840 81 10,476 -8 590,613 22 115,608 52 30,580 82 10,128 -7 556,056 23 110,116 53 29,378 83 9,793 -6 523,757 24 104,919 54 28,229 84 9,471 -5 493,555 25 100,000 55 27,133 85 9,161 -4 465,300 26 95,342 56 26,085 86 8,863 -3 438,854 27 90,930 57 25,084 87 8,576 -2 414,089 28 86,750 58 24,126 88 8,300 -1 390,890 29 82,787 59 23,211 89 8,035 0 369,145 30 79,030 60 22,336 90 7,779 1 348,757 31 75,466 61 21,498 91 7,533 2 329,630 32 72,085 62 20,697 92 7,296 3 311,680 33 68,876 63 19,930 93 7,067 4 294,826 34 65,830 64 19,196 94 6,847 5 278,995 35 62,937 65 18,493 95 6,635 6 264,119 36 60,188 66 17,820 96 6,430 7 250,134 37 57,576 67 17,174 97 6,233 8 236,981 38 55,093 68 16,556 98 6,043 9 224,606 39 52,732 69 15,964 99 5,860 Figure 2-15 . Thermistor Schematic PF0 VCC R16 100k CP1 R18 Temperature Sensor 2.6.4 Microphone The STK525 provides an electret microphone associated with its required preamplifier (See Figure 2-16), the interface is connected to ADC channel 2 of the AT90USBxxx microcontroller. STK525 Hardware User Guide 2-17 7608A–AVR–04/06 Using the STK525 Figure 2-16 . Microphone interface schematic 3.3V R23 100k TP4 1 R24 100k R20 2.2k R21 C22 220pF R22 100k Mic 4 + 2 U4A LMV358 R26 22k 1 6 R27 0 7 + 3 U4B LMV358 8 5 + 10k - R25 - C24 4.7uF 4 100k C25 + MIC1 8 R28 100k 3.3V 3.3V 1uF MICROPHONE 2.6.5 Data Flash Memory For mass-storage class demonstration purposes, the STK525 provides an on-chip serial Flash memory (AT45DB321x) connected to the AT90USBxxx Serial Port Interface (SPI). The data-flash chip select signal is connected to PortB bit 4 of the AT90USBxxx (See Figure 2-17). Figure 2-17 . On-board data flash schematic PB[7..0] 3.3V R10 100k R11 100k RESET PB4 PB1 PB2 PB3 U2 1 2 3 11 12 13 14 BUSY RESET WP CS SCK SI SO 3.3V VCC GND 6 7 C15 100nF AT45DB321C TSOP28 2.6.6 Potentiometer The cursor of a potentiometer is connected to ADC channel 1 of the AT90USBxxx. 2-18 7608A–AVR–04/06 STK525 Hardware User Guide Using the STK525 2.7 STK500 Resources Figure 2-18 . Connecting STK525 to the STK500 Board Note: 2.7.1 Caution: Do not mount an AVR microcontroller on the STK500 board when STK525 is plugged on STK500. Supply Voltage from STK500 The AVR supply voltage coming from STK500 (VTG) can also be controlled from AVR Studio®. The supply voltage coming from STK500 is controlled by power supply circuitry of the STK525. Refer to Table 2-1 on page 8 to configure “Vcc Source” jumper. 2.7.2 Analog Reference Voltage from STK500 The AVR Analog Reference Voltage coming from STK500 (REF) can also be controlled from AVR Studio®. JP3 should be closed STK525 Hardware User Guide 2-19 7608A–AVR–04/06 Using the STK525 2.7.3 EXP.CON 0 & EXP.CON 1 Connectors Figure 2-19 . EXP.CON 0 and EXP.CON 1 Connectors GND n.c. (AUXI0) n.c. (CT7) n.c. (CT5) n.c. (CT3) n.c. (CT1) n.c. NRST PG1 GND VTG PC7 PC5 PC3 PC1 PA7 PA5 PA3 PA1 GND 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 GND n.c. (AUXO0) n.c. (CT6) n.c. (CT4) n.c. (CT2) n.c. (BSEL2) REF PG2 PG0 GND VTG PC6 PC4 PC2 PC0 PA6 PA4 PA2 PA0 GND GND n.c. (AUXI1) n.c. (DATA7) n.c. (DATA5) n.c. (DATA3) n.c. (DATA1) n.c. (SI) n.c. (SCK) XT1 VTG GND PB7 PB5 PB3 PB1 PD7 PD5 PD3 PD1 GND EXP. CON 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 GND n.c. (AUXO1) n.c. (DATA6) n.c. (DATA4) n.c. (DATA2) n.c. (DATA0) n.c. (SO) n.c. (CS) XT2 VTG GND PB6 PB4 PB2 PB0 PD6 PD4 PD2 PD0 GND EXP. CON 1 Top View 2.7.4 Main Clock from STK500 The AVR clock frequency (external) coming from STK500 (XT1/XT2) can also be controlled from AVR Studio®. “STKX1” and ”STKX2” jumpers should be closed 2.7.5 RESET from STK500 The AVR RESET coming from STK500 (NRST - EXP.CON 0) can also control the STK525. STK525 is protected against +12V RESET pulse (parallel programing not allowed for AT90USBxxx on STK525) coming from STK500. 2.8 In-System Programming 2.8.1 Programming with USB bootloader: DFU (Device Firmware Upgrade) AT90USBxxx part comes with a default factory pre-programmed USB bootloader located in the on-chip boot section of the AT90USBxxx. This is the easiest and fastest way to reprogram the device directly over the USB interface. The “Flip” PC side application available for free on Atmel website offers a flexible and user friendly interface to reprogram the application over the USB bus. 2-20 7608A–AVR–04/06 STK525 Hardware User Guide Using the STK525 The HWB pin of the AT90USBxxx allows to force the bootloader section execution after reset. (Refer to AT90USBxxx datasheet section “boot loader support”). To force bootloader execution, operate as follows: Press both “RST” and “HWB” push buttons First release the “RST” push button Release the “HWB” push button For more information about the USB bootloader and FLIP software, please refer to the ‘USB bootloader datasheet’ document and ‘FLIP User Manual’. 2.8.2 Programming with AVR ISP mkII Programmer The AT90USBxxx can be programmed using specific SPI serial links. This sub section will explain how to connect the programmer. The Flash, EEPROM and all Fuses and Lock Bits options ISP-programmable can be programmed individually or with the sequential automatic programming option. The AVR ISP mkII programmer is a compact and easy-to-use In-System Programming tool for developing applications with AT90USBxxx. Due to the small size, it is also an excellent tool for field upgrades of existing applications. The AVR ISP programming interface is integrated in AVR Studio®. To program the device using AVR ISP programmer, connect the 6-wire cable on the ISP connector of the STK525 as shown in Figure 2-20. Note: See AVR Studio® on-line Help for information. Figure 2-20 . Programming from AVR ISP mkII programmer 2.8.3 Programming with STK500 The AT90USBxxx can be programmed using the serial programming mode in the AVR Studio STK500 software. The software interface (In-System Programming of an external target system) is integrated in AVR Studio®. STK525 Hardware User Guide 2-21 7608A–AVR–04/06 Using the STK525 To program the device using ISP from STK500, connect the 6-wire cable between the ISP6PIN connector of the STK500 board and the ISP connector of the STK525 as shown in Figure 2-18. 2.8.4 Note: See AVR Studio® on-line Help for information. Note: The high voltage parallel programming mode with STK500 is not available for an STK525. To reprogram an AT90USBxxx part in parallel mode, use an STK501 extension board (AT90USBxxx product pinout is compatible with the STK501 parallel programing mode). Programming with AVR JTAG ICE The AT90USBxxx can be programmed using specific JTAG link. This sub-section will explain how to connect and use the AVR JTAG ICE. Note: When the JTAGEN Fuse is unprogrammed, the four TAP pins are normal port pins, and the TAP controller is in reset. When programmed, the input TAP signals are internally pulled high and the JTAG is enabled for Boundary-scan and programming. The AT90USBxxx device is shipped with this fuse programmed. Figure 2-21 . Connecting AVR JTAG ICE to STK525 The Flash, EEPROM and all Fuse and Lock Bit options ISP-programmable can be programmed individually or with the sequential automatic programming option. Note: 2-22 7608A–AVR–04/06 See AVR Studio® on-line Help for information. STK525 Hardware User Guide Using the STK525 2.9 Debugging 2.9.1 Debugging with AVR JTAG ICE mkII Every STK525 can be used for debugging with JTAG ICE MK II. Connect the JTAG ICE mkII as shown in Figure 2-21, for debugging help, please refer to AVR Studio® Help information. When using JTAG ICE MK II for debugging, and as AT90USBxxx parts are factory configured with the higher security level set, a chip erase operation will be performed on the part before debugging. Thus the on-chip flash bootloader will be erased. It can be restored after the debug session using the bootloader hex file available from ATMEL website. 2.10 Test Points There are 8 test points implemented, these test points are referred in the full schematics section. STK525 Hardware User Guide Config. Pads Reference Related Signals T1 D+ USB D+ data line T2 D- USB D- data line T3 Aref Analog reference T4 Mic Microphone preamplifier output T5 3.3V 3.3V internal power supply T6 5V T7 Gnd Ground T8 Vbus USB Vbus power supply Function 5V internal power supply 2-23 7608A–AVR–04/06 Using the STK525 2.11 Configuration Pads Configuration pads are used to disconnect/connect on-board peripherals or elements, their default configuration is: connect. 2.11.1 Configuration Pads Listing Table 2-5 . Configuration Pads 2.11.2 Config. Pads Reference Related Signals CP1 °c sensor (PF0) This configuration pad is used to disconnect/connect the CTN sensor from STK525. CP2 pot. (PF1) This configuration pad is used to disconnect/connect the potentiometer from STK525. CP3 Mic.(PF2) This configuration pad is used to disconnect/connect the microphone preamplifier output from STK525. Function Configuration Pads - Disconnection Figure 1. Configuration Pad - Disconnection Cut Connection 2.11.3 Configuration Pads - Connection Figure 2. Configuration Pad - Re-connection Droplet of Solder 2-24 7608A–AVR–04/06 Wire STK525 Hardware User Guide Using the STK525 2.12 Solder Pads Solder pads are used to disconnect/connect on-board peripherals or elements, their default configuration is: disconnect. 2.12.1 Solder Pads Listing Table 2-6 . Solder Pads STK525 Hardware User Guide Solder. Pads Reference Related Signals SP1 AVCC/VCC This solder pad can be used to bypass L1. SP2 NRST/RESET This solder pad can be used to bypass D1. SP3 3.3V SP4 PD1/CTS This solder pad allows to enable the logical CTS signal for hardware control flow on RS232 interface. SP5 PD0/RTS This solder pad allows to enable the logical RTS signal for hardware control flow on RS232 interface. SP6 VBUS This solder pad allows to bypass U5 VBUS current limiter. SP7 RS-CTS This solder pad allows to enable the physical CTS signal for hardware control flow on RS232 interface. SP8 RS-RTS This solder pad allows to enable the physical RTS signal for hardware control flow on RS232 interface. Function This solder pad is reserved to connect 3.3V power supply to the N.C pin of Expand0/1 2-25 7608A–AVR–04/06 Section 3 Troubleshooting Guide Figure 3-1 . Troubleshooting Guide Problem Reason Verify the power supply source The Green “VCC-ON” LED is not on No power supply The STK500 ISP header is not connected. Connect a 6-pin flexible cable from STK500 ISP 6-PIN header to the correct STK525 ISP header (page 21) The AVR ISP probe is not connected Connect the AVR ISP 6-PIN header to the correct STK525 ISP header (page 21) The AVR JTAG ICE probe is not connected Connect the JTAG ICE 10-PIN header to the correct STK525 JTAG header (page 22) The memory lock bits are programmed Erase the memory before programming The fuse bits are wrongly programmed Check the fuse bits Programming too fast with ISP SPI Check oscillator settings and make sure it is not set higher than SPI clock Serial/USB cable is not connected, or power is off AVR Studio does not detect the AVR tool used Verify the power supply source Connect the DC power supply source, or USB interface or STK500. STK525 does not work The AT90USBxxx cannot be programmed Solution PC COM port is in use Connect serial cable to RS232 (STK500 AVR ISP) and check power connections Connect serial cable to USB (JATG ICE MKII, AVR ISPmkIIl) and check power connections Disable other programs that are using PC COM port. Change PC COM port AVR Studio does not detect COM port. STK525 Hardware User Guide Disable COM port auto-detection in AVR Studio file menu. Force COM port to correct COM port 3-26 7608A–AVR–04/06 Troubleshooting Guide STK525 Hardware User Guide 3-27 7608A–AVR–04/06 Section 4 Technical Specifications System Unit – Physical Dimensions ................................................. L=119 x W=56 x H=27 mm – Weight ...........................................................................................................70 g Operating Conditions – Internal Voltage Supply .....................................................................2.7V - 5.5V – External Voltage Supply ..........................................................9V -15V (100mA) Connections – USB Connector ......................................................................Mini AB receptacle – USB Communications .......................................................Full speed/low speed – RS 232C Connector .............................................................9-pin D-SUB female – RS 232C Communications Maximum Speed ........................................ 250 kbps STK525 Hardware User Guide 4-28 7608A–AVR–04/06 Section 5 Technical Support For Technical support, please contact [email protected]. When requesting technical support, please include the following information: Which target AVR device is used (complete part number) Target voltage and speed Clock source and fuse setting of the AVR Programming method (ISP, JTAG or specific Boot-Loader) Hardware revisions of the AVR tools, found on the PCB Version number of AVR Studio. This can be found in the AVR Studio help menu. PC operating system and version/build PC processor type and speed A detailed description of the problem STK525 Hardware User Guide 5-29 7608A–AVR–04/06 Section 6 Complete Schematics On the next pages, the following documents of STK525 revision 4381A are shown: Complete schematics, Assembly drawing, Bill of materials. Default configuration summary STK525 Hardware User Guide 6-30 7608A–AVR–04/06 R7 0 R6 0 UCAP C7 1uF PE[7..0] PB[7..0] UCAP Capacitor Closed to the MCU R4 0 PGB0010603 CR2 R2 22 VCC VBUS UVCON PB[7..0] PB7 UVCON PE7 UVCC DD+ UGND UCAP VBUS UID PE3 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PF[7..0] AREF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 100nF C4 D+ TP1 D+ D- TP2 D- TP3 AREF AVCC AGND AREF PE6 PE7 UVcc DD+ UGND UCAP VBUS PE3 PB0 PB1 PB2 PB3 PB4 PB5 PB6 AREF Important Note: U1 is mounted through a TQFP64 ZIF socket PGB0010603 CR1 RESISTORS CLOSED TO THE DEVICE UGND AGND USB_MiniABF 4-ID SHIELD UGND VBUS R1 22 1 1-V_BUS 2-D3-D+ 5-GND VBUS C3 100nF 1 J1 D+ D- RESISTORS Closed to the MCU 100nF C2 SP1 B LM -21A 102S AVCC UGND L1 PE0 PE1 PE2 PE3 1 PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 C10 15pF XTAL2 PE4 PE5 RESET VCC PE7 VCC PA0 PA1 PA2 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 AT90USB128 AVCC GND AREF PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 GND VCC PA0 PA1 PA2 PB7 PE4 PE5 RESET VCC GND XTAL2 XTAL1 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 VCC 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 STK525 Hardware User Guide 8MHz Y1 C11 15pF XTAL1 XTAL2 XTAL1 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 Ferrite & capacitors closed to the MCU U1 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PD[7..0] PA3 PA4 PA5 PA6 PA7 PE2 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 PE1 PE0 PC[7..0] PA[7..0] PD[7..0] PA3 PA4 PA5 PA6 PA7 PE2 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 PE1 PE0 PA[7..0] Date: Size A4 Title NRST A NC VCC Wednesday , February 15, 2006 Document Number 1 CPU C5 100nF C6 100nF C1 100nF C9 220nF RESET SW1 HWB R3 47k Sheet 1 of 4 Rev 1.0 RESET C8 220nF PE2 Close Solder Pad To use parallel prog mode (12V on Reset Pin) SW2 Ext Reset R5 47k VCC STK525 MEZZANINE FOR STK500 INT 0/2 BAT54/SOT SP2 K D1 Reset Circuit PC[7..0] VCC VCC VCC Force Bootloader Execution DECOUPLING CAPACITORS CLOSED TO THE DEVICE MCU Pin3 DECOUPLING CAPACITORS CLOSED TO THE DEVICE MCU Pin21 DECOUPLING CAPACITORS CLOSED TO THE DEVICE MCU Pin52 Complete Schematics Figure 6-1 . Schematics, 1 of 5 6-31 7608A–AVR–04/06 6-32 7608A–AVR–04/06 XT 1 VTG SP3 STKNC PB7 PB5 PB3 PB1 PD7 PD5 PD3 PD1 C13 100nF 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 XT 2 ST KNC PC7 PC5 PC3 PC1 PA7 PA5 PA3 PA1 PE1 VTG 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 GND AUXI0 CT7 CT5 CT3 CT1 (n.c.) NRST PE1 GND VTG PC7 PC5 PC3 PC1 PA7 PA5 PA3 PA1 GND J3 GND AUXO0 CT6 CT4 CT2 BSEL2 REF PE2 PE0 GND VTG PC6 PC4 PC2 PC0 PA6 PA4 PA2 PA0 GND EXP. CON 0 PB6 PB4 PB2 PB0 PD6 PD4 PD2 PD0 VTG NRST EXP. CON 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 XTAL2 CON 2x20 GND AUXO1 DATA6 DATA4 DATA0 DATA9 SO CS XT2 VTG GND PB6 PB4 PB2 PB0 PD6 PD4 PD2 PD0 GND 2 STK X2 1 JP2 CON 2x20 GND AUXI1 DATA7 DATA5 DATA3 DATA1 SI SCK XT1 VTG GND PB7 PB5 PB3 PB1 PD7 PD5 PD3 PD1 GND J2 XTAL1 Important: Def ault conf iguration: open reserv ed f or f uture mass storage extension 3.3V 2 STK X1 1 JP1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 REF PE2 PE0 PC6 PC4 PC2 PC0 PA6 PA4 PA2 PA0 VTG C14 100nF 10k R9 Date: Size A4 Title JP3 2 Tuesday , January 17, 2006 Document Number <Doc> Sheet STK525 MEZZANINE FOR STK500 PA[7..0] PB[7..0] PC[7..0] PD[7..0] PE[2..0] AREF VTG C12 1nF STK500 Expand connectors PA[7..0] PB[7..0] PC[7..0] PD[7..0] PE[2..0] STK AREF 1 Q1 BC847B 2k R8 2 of 4 Rev 1.0 Complete Schematics Figure 6-2 . Schematics, 2 of 5 STK525 Hardware User Guide R13 R14 R15 1k 1k 1k MICROPHONE MIC1 R20 2.2k 3.3V R12 1k LEDs C24 4.7uF R28 100k R25 100k R21 TOPLED LP M676 LED 3 (green) TOPLED LP M676 LED 2 (green) TOPLED LP M676 LED 1 (green) TOPLED LP M676 LED 0 (green) 1uF C25 10k D5 D4 D3 + 1 2 3 11 12 13 14 D2 In-line Grouped LEDs PB4 PB1 PB2 PB3 RESET R11 100k U2 3.3V C22 3 1 7 6 3.3V R18 R16 100k C15 100nF 1 2 3 4 J7 TPA511G Com1 Com2 Select Lef t Up Right Down POT 100k R19 CP1 VCC CP2 CP3 PF Spare (Not mounted) PF0 PF1 PF2 PF3 1 2 SW3 R26 22k R22 100k 3.3V 5 6 R24 100k C26 100nF R27 0 DECOUPLING CAPACITOR CLOSE TO THE DEVICE 3.3V 7 U4B LMV358 Mic TP4 1 5 7 3 6 4 Joystick Interface Microphone Preamplifier Interface NCP18WF104J03RB Temp Sensor PF[7..0] VCC Caution DataFlash Fix 3V Power supply Only GND VCC PD[7..0] 220pF U4A LMV358 R23 100k 2 PD7 PD6 PD5 PD4 AT45DB321C TSOP28 CS SCK SI SO BUSY RESET WP DECOUPLING CAPACITOR CLOSE TO THE DEVICE PF0 R10 100k + 4 PF1 Data Flash PF2 RESET PB[7..0] PF[7..0] PD[7..0] PB5 PB6 PB7 PE4 PE5 PE[7..0] PB[7..0] Date: Size A4 Title PB3 PB1 RESET PB2 PF7 PF4 PF6 PF5 VCC RT S PD0 SP5 CT S PD1 T XD PD3 SP4 RxD PD2 5 3 4 1 V- CON 2x5 JTAG CON 8 7 14 13 RS-RT S RS-T xD RS-CT S RS-RxD C23 100nF Tuesday , January 17, 2006 Document Number <Doc> Sheet 3 of 4 Serial ISP Interface C21 100nF DECOUPLING CAPACITOR CLOSE TO THE CONNECTOR 2 4 6 VCC VCC DECOUPLING CAPACITOR CLOSE TO THE CONNECTOR 2 4 6 8 10 10 11 Rev 1.0 SUB-D9 FEMALE RS232 P1 C20 100nF JTAG Interface SP8 SP7 1 6 2 7 3 8 4 9 5 VCC STK525 MEZZANINE FOR STK500 ISP CON CON 2x3 PDO VCC SCK PDI RESET GND J5 C18 100nF C19 100nF 6 2 DECOUPLING CAPACITOR CLOSE TO THE DEVICE MAX3232 RS232 BUFFER . . . . GND VCC RESET n.c. GND GND J4 TTL TCK TDO TMS VCC TDI . . . . C2- C1C2+ V+ RS 232 VCC C1+ U3 Interf aces 1 3 5 1 3 5 7 9 9 10 11 12 R17 0 100nF C17 100nF C16 VCC RS232 Interface 16 . . 15 3.3V 8 + 8 4 + - STK525 Hardware User Guide - PB[7..0] Complete Schematics Figure 6-3 . Schematics, 3 of 5 6-33 7608A–AVR–04/06 10k R29 OC EN IN1 IN2 U5 J6 3 2 1 TP5 3.3V 1 3.3V TP6 5V 5V 2 - TPS2041A 5 4 2 3 TPS2041A Vbus Icc limiter optionnal When Not Mounted Close Solder Pad C27 100nF CONNECTOR JACK PWR Ext Power Supply VBUS 1 TP7 GND + C31 4.7uF TP8 220nF C32 D7 LL4148 VBUS DF005S 1 U7 C28 4.7uF 6 7 8 VBUS OUT3 OUT2 OUT1 SP6 GND 1 3 4 VTG 1 D6 LL4148 3 2 7 33nF C29 1 4 8 6 5 100nF C33 OUT OUT FAULT CC SET OUT LM340 GND IN U8 LP3982 GND IN SHDN U6 U6out=1.25*(1+R28/R29) 3.3V 5V R31 124k 1% 100k R33 Date: Size A4 Title VBUS gen 2 STK VBUS 3.3V Ext 3.3V 2 JP7 JP4 VTG 1 STK 3 Ext UVCON 100k 1% R30 R35 100k 1% 3.3V 1 2 4 6 8 VCC M1 C34 4.7uF - VBUS POWER Tuesday , January 17, 2006 Document Number <Doc> Sheet 4 of 4 UCAP Rev 1.0 JP Closed f or 3.0<Vcc<3.3 C30 4.7uF VBUS generator f or OTG/HOST mode 1 F <Cap Vbus < 6 F OTG Specif ication - FDV304P/FAI JP5 VCC POWER LED(RED) D8 TOPLED LP M676 R34 1k STK525 MEZZANINE FOR STK500 Q2 BC847B R32 10k VCC Source 1 3 5 7 JP6 1 7608A–AVR–04/06 2 6-34 1 JP not mounted, reserv ed f or f uture mass storage extension in stand alone mode Complete Schematics Figure 6-4 . Schematics, 4 of 5 STK525 Hardware User Guide Complete Schematics Figure 6-5 . Assembly Drawing, 1 of 2 (component side) Figure 6-6 . Assembly Drawing, 2 of 2 (solder side) STK525 Hardware User Guide 6-35 7608A–AVR–04/06 Complete Schematics Table 6-1 . Bill of material Item Q.ty Reference Part Tech. Characteristics Package 1 2 CR1,CR2 PGB0010603 ESD protection CASE 0805 2 19 C1,C2,C3,C4,C5,C6,C13,C14,C15,C16,C 17,C18,C19,C20,C21,C23,C26,C27,C33 100nF 50V-10% Ceramic CASE 0805 3 2 C7,C25 1uF 10Vmin ±10% EIA/IECQ 3216 4 3 C8,C9,C32 220nF 50V-10% Ceramic CASE 0805 5 2 C10,C11 15pF 50V-5% Ceramic CASE 0805 6 1 C12 1nF 50V-5% Ceramic CASE 0805 7 1 C22 220pF 50V-5% Ceramic CASE 0805 8 5 C24,C28,C30,C31,C34 4.7uF 10Vmin ±10% EIA/IECQ 3216 9 1 C29 33nF 50V-5% Ceramic CASE 0805 10 3 CP1, CP2, CP3 Configuration Pad 11 1 D1 BAT54/SOT Vf=0.3V SOT23 12 5 D2,D3,D4,D5,D8 TOPLED LP M676 13 2 D6,D7 LL4148 i=200mA max LL-34 14 5 JP1,JP2,JP3,JP4,JP5 JUMPER 1x2 Need 1 shunt 0,1" pitch 15 1 J1 USB_MiniABF USB mini AB receptacle Surface mount 16 2 J2,J3 CON 2x20 17 1 J4 CON 2x5 18 1 J5 CON 2x3 19 1 J7 CON 2x2 Not Mounted 20 1 JP6 JUMPER 2x4 Need 1 shunt 0,1" pitch 21 1 J6 CONNECTOR JACK PWR Int.Diam=2.1mm PCB Embase 22 1 JP7 JUMPER 3x1 23 1 L1 BLM-21A102S 24 1 MIC1 MICROPHONE Electret Cap Mic 25 1 M1 FDV304P/FAI MOSFET P 26 1 P1 SUB-D9 FEMALE 90° with harpoons 27 2 Q1,Q2 BC847B 28 2 R1,R2 22 1/16W-5% SMD CASE 0602 29 2 R3,R5 47k 1/16W-5% SMD CASE 0603 30 5 R4,R6,R7,R17,R27 0 CASE 0603 31 1 R8 2k CASE 0604 32 4 R9,R25,R29,R32 10k 6-36 7608A–AVR–04/06 Green PLCC-2 I=10 mA_ FERRITE BEAD 1 KOhms at 100 MHz NPN IC peak=200mA 1/16W-5% SMD CASE 0805 SOT23 SOT23 CASE 0603 STK525 Hardware User Guide Complete Schematics Item Q.ty Reference Part Tech. Characteristics Package 33 9 R10,R11,R16,R21,R22,R23,R24,R28,R33 100k 1/16W-5% SMD CASE 0603 34 5 R12,R13,R14,R15,R34 1k 1/16W-5% SMD CASE 0603 35 1 R18 NCP18WF104J03RB 100K - ß=4250 CASE 0603 36 1 R19 POT 100k PT10MH104ME 37 1 R19 Button Pot Button 38 1 R20 2.2k 1/16W-5% SMD CASE 0603 39 1 R26 22k 1/16W-5% SMD CASE 0603 40 1 R30, R35 100k 1% 1/16W-1% SMD CASE 0603 41 1 R31 120k 1% 1/16W-1% SMD CASE 0603 42 6 SP1,SP2,SP3,SP4,SP5,SP6 SolderPad (NA) (NA) 43 2 SW1,SW2 PUSH-BUTTON 6x3.5mm - 1.6N 44 1 SW3 TPA511G 4+1 ways joystick CMS 45 8 TP1,TP2,TP3,TP4,TP5,TP6, TP7, TP8 TEST POINT Diam.=1.32mm 46 1 U1 AT90USBxxx TQFP64 47 1 U1 Socket TQFP64 ZIF 48 1 U2 AT45DB321C TSOP28 49 1 U3 MAX3232ECAE+ SSOP16 50 1 U4 LMV358 SO8 51 1 U5 TPS2041A SOIC8 52 1 U6 LP3982 53 1 U7 DF005S Bridge rectifier See DS 54 1 U8 LM340 Reg 5V CMS SOT223 55 1 Y1 8MHz CRYSTAL H=4mm HC49/4H 6.0.1 Low Drop Out Vin Max 6V, 300mA MSOP8 Default Configuration - Summary Table 6-2 . Default Configuration summary Name Ref. Function State Jumpers STKX1 JP1 XTAL Configuration OFF STKX2 JP2 XTAL Configuration OFF Aref JP3 STK500 Analog Ref OFF VTG33 JP4 Short 3.3V to VTG (Mass storage extension board) OFF UCAP JP5 Short UCAP with Uvcc OFF Vcc Src JP6 Vcc Selection 3.4 shorted Vbus Gen JP7 VBUS generation selection (host mode) 2.3 shorted Solder PADS STK525 Hardware User Guide 6-37 7608A–AVR–04/06 Complete Schematics Name Ref. Function State SP1 Bypass L1 OPEN SP2 OPEN SP3 3.3V on Expand 0 NC pin OPEN SP4 CTS OPEN SP5 RTS OPEN SP6 Bypass limiter OPEN SP7 RS232 hardware control enable OPEN SP8 RS232 hardware control enable OPEN Configuration PADS 6-38 7608A–AVR–04/06 CP1 Bypass CTN in on PF0 CLOSE CP2 Bypass Potentiometer ADC in on PF1 CLOSE CP3 Bypass Mic In on PF2 CLOSE STK525 Hardware User Guide Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Atmel Operations Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 Microcontrollers 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 ASIC/ASSP/Smart Cards 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80 Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise,to anyintellectualproperty right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORYWARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULARPURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUTOF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes norepresentationsor warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specificationsand product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for useas components in applications intended to support or sustainlife. © Atmel Corporation 2006. All rights reserved. Atmel ® , logo and combinations thereof, are registered trademarks, and Everywhere You Are® are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Printed on recycled paper. 7608A–AVR–04/06 /xM