AMD SB600 BIOS Developer’s Guide (Public Version) Technical Reference Manual Rev. 3.00 P/N: 46157_sb600_bdg_pub_3.00 ©2008 Advanced Micro Devices, Inc. Trademarks AMD, the AMD Arrow, ATI, the ATI logo, Radeon, Mobility Radeon, AMD Athlon, Sempron, Turion and combinations thereof are trademarks of Advanced Micro Devices, Inc. HyperTransport is a licensed trademark of the HyperTransport Technology Consortium. Microsoft and Windows are registered trademarks of Microsoft Corporation. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. Disclaimer The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel, or otherwise, to any intellectual property rights are granted by this publication. Except as set forth in AMD's Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. . Table of Contents 1 Introduction ................................................................................................................. 7 1.1 About This Manual........................................................................................................................ 7 1.2 Overview ....................................................................................................................................... 7 1.3 PCI Internal Devices ................................................................................................................... 10 2 SB600 Programming Architecture .......................................................................... 12 2.1 PCI Devices and Functions ......................................................................................................... 12 2.2 I/O Map ....................................................................................................................................... 13 2.2.1 Fixed I/O Address Ranges ...................................................................................................................13 2.2.1.1 Fixed I/O Address Ranges – SB600 Proprietary Ports ................................................................13 2.2.2 Variable I/O Decode Ranges ...............................................................................................................13 2.3 Memory Map............................................................................................................................... 14 3 SB600 Early-POST Initialization............................................................................. 15 3.1 512K/1M ROM Enable ............................................................................................................... 15 3.1.1 3.1.2 3.1.3 3.1.4 PCI ROM.............................................................................................................................................15 LPC ROM............................................................................................................................................15 LPC ROM Read/Write Protect ............................................................................................................15 SPI ROM controller.............................................................................................................................16 3.2 Real Time Clock (RTC) .............................................................................................................. 17 3.2.1 RTC Access .........................................................................................................................................17 3.2.1.1 Special Locked Area in CMOS ...................................................................................................17 3.2.1.2 Century Byte ................................................................................................................................17 3.2.1.3 Date Alarm...................................................................................................................................17 3.3 3.4 3.5 3.6 3.7 BIOS RAM.................................................................................................................................. 18 Serial IRQ.................................................................................................................................... 18 SubSystemID and SubSystem Vendor ID................................................................................... 19 AMD Athlon™ Processor Registers ........................................................................................... 19 System Restart after Power Fail .................................................................................................. 20 3.7.1 Power Fail and Alarm Setup................................................................................................................20 4 PCI IRQ Routing....................................................................................................... 21 4.1 PCI IRQ Routing Registers ......................................................................................................... 21 4.2 PCI IRQ BIOS Programming...................................................................................................... 21 4.3 Integrated PCI Devices IRQ Routing .......................................................................................... 22 4.3.1 IRQ Routing for HD Audio .................................................................................................................22 4.4 PCI IRQ Routing for APIC Mode............................................................................................... 23 5 SMBus Programming ............................................................................................... 24 5.1 SMBus I/O Base Address............................................................................................................ 24 5.2 SMBus Timing ............................................................................................................................ 24 5.3 SMBus Host Controller Programming ........................................................................................ 25 6 IDE Controller........................................................................................................... 27 © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Table of Contents Proprietary Page 3 6.1 IDE Channel Enable/Disable....................................................................................................... 27 6.1.1 IDE Channel Enable ............................................................................................................................27 6.1.2 IDE Channel Disable ...........................................................................................................................27 6.2 PIO Modes................................................................................................................................... 28 6.2.1 PIO Mode ............................................................................................................................................28 6.2.2 PIO Timing ..........................................................................................................................................28 6.3 DMA Modes................................................................................................................................ 28 6.3.1 Legacy (Multi-Words) DMA mode.....................................................................................................28 6.3.2 Ultra-DMA Mode ................................................................................................................................29 7 Serial ATA (SATA) ................................................................................................... 30 7.1 SATA Hot Plug ........................................................................................................................... 30 7.1.1 Sample Code........................................................................................................................................30 8 Power Management................................................................................................... 31 8.1 SMI Handling – EOS (PM IO Reg10h[Bit0])............................................................................. 31 8.2 Programmable I/Os...................................................................................................................... 31 8.3 Power Management Timers......................................................................................................... 32 8.3.1 PM Timer 1 (Inactivity Timer) ............................................................................................................32 8.3.2 PM Timer 2 (Activity Timer) ..............................................................................................................32 8.4 SMI Events.................................................................................................................................. 32 8.4.1 Power Button .......................................................................................................................................34 8.5 C-State Break Events .................................................................................................................. 34 8.5.1 Break Events for C2 State....................................................................................................................34 8.5.2 Break Events for C3 and C4 States......................................................................................................34 8.6 Save/Restore Sequence for S3 State............................................................................................ 34 8.6.1 Register Save Sequence for S3 State ...................................................................................................34 8.7 Wake on Events........................................................................................................................... 35 8.8 Sleep SMI Events ........................................................................................................................ 35 8.8.1 Sleep SMI Control Register.................................................................................................................35 8.8.2 Sleep SMI Programming Sequence .....................................................................................................35 8.8.2.1 Set Sleep SMI Control Register...................................................................................................35 8.8.2.2 Enter Sleep SMI# Routine ...........................................................................................................35 9 APIC Programming .................................................................................................. 37 9.1 9.2 9.3 9.4 9.5 Northbridge APIC Enable ........................................................................................................... 37 Southbridge APIC Enable ........................................................................................................... 37 IOAPIC Base Address................................................................................................................. 37 APIC IRQ Assignment................................................................................................................ 37 APIC IRQ Routing ...................................................................................................................... 38 10 Watchdog Timer........................................................................................................ 39 11 A-Link Bridge ............................................................................................................ 41 11.1 A-Link Registers ......................................................................................................................... 41 11.2 Programming Procedure.............................................................................................................. 42 © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Table of Contents Proprietary Page 4 12 High Precision Event Timer (HPET) ...................................................................... 44 12.1 Initialization ................................................................................................................................ 44 12.1.1 Sample Initialization Code...................................................................................................................44 12.2 ACPI HPET Description Table ................................................................................................... 45 12.3 HPET Support for Longhorn....................................................................................................... 45 13 Common Interface Module – CIM-SB600.............................................................. 46 13.1 13.2 13.3 13.4 CIM-SB600 Architecture ............................................................................................................ 46 CIM-SB600 Build Configuration................................................................................................ 48 CIM-SB600 Setup Input Data Structure ..................................................................................... 48 CIM-SB600 SBPOR Sub-Module .............................................................................................. 51 13.4.1 SBPOR Interface .................................................................................................................................51 13.5 CIM-SB600 SB POST Initialize Sub-Module ............................................................................ 51 13.5.1 Requirements .......................................................................................................................................51 13.5.2 SB POST Interface ..............................................................................................................................52 13.6 CIM-SB600 SB Runtime Interface Sub-Module ........................................................................ 53 13.6.1 Requirements .......................................................................................................................................53 13.6.2 SB Runtime Interface ..........................................................................................................................53 13.7 CIM-SB600 SB SMI Interface Sub-Module ............................................................................... 54 13.7.1 Requirements .......................................................................................................................................54 13.8 CIM-SB600 SPI Interface Sub-Module ...................................................................................... 54 14 Sample Programs ...................................................................................................... 55 14.1 SB600 Register Initialization on Power-Up ................................................................................ 55 14.1.1 Initialization of PCI IRQ Routing Before Resource Allocation ..........................................................55 14.2 Setup Options .............................................................................................................................. 56 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5 14.2.6 14.2.7 14.2.8 14.2.9 64 Bytes DMA.....................................................................................................................................56 USB Overcurrent Detection Disable....................................................................................................56 C3 Support...........................................................................................................................................57 Subtractive Decoding for P2P Bridge..................................................................................................57 Enable/Disable On-Chip SATA ..........................................................................................................58 Change Class ID for SATA .................................................................................................................58 Disable AC97 Audio or MC97 Modem...............................................................................................60 Enable EHCI Controller ......................................................................................................................61 Enable OHCI Controller ......................................................................................................................63 14.3 IDE Settings ................................................................................................................................ 63 14.3.1 14.3.2 14.3.3 14.3.4 14.3.5 PIO Mode Settings...............................................................................................................................63 Multiword DMA Settings ....................................................................................................................65 UDMA Mode Settings.........................................................................................................................65 IDE Channel Disable ...........................................................................................................................66 IDE Channel Enable ............................................................................................................................68 14.4 USB Controller Reset at Hard Reset ........................................................................................... 69 14.5 Clock Throttling .......................................................................................................................... 69 14.6 Lid Switch ................................................................................................................................... 71 14.6.1 Lid Switch Hardware Connection .......................................................................................................71 14.6.2 Associated Registers............................................................................................................................71 14.6.3 BIOS Initialization...............................................................................................................................71 © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Table of Contents Proprietary Page 5 14.6.4 ACPI Programming .............................................................................................................................72 14.7 SATA Hot Plug Sample Program ............................................................................................... 74 14.8 Temperature Limit Shutdown through SMI# .............................................................................. 80 14.8.1 Setting Up ITE 8712 Super I/O Registers ...........................................................................................80 14.8.2 Initialize Southbridge Registers for SMI# ...........................................................................................85 14.8.3 SMI Programming to Shut Down the System......................................................................................86 14.9 Sleep Trap through SMI#............................................................................................................ 87 14.9.1 Enable Sleep SMI# in ACPI ASL code ...............................................................................................87 14.9.2 Sleep Trap SMI Routine ......................................................................................................................88 14.10 HD Audio – Detection and Configuration ............................................................................ 89 Appendix: Revision History ........................................................................................... 98 © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Table of Contents Proprietary Page 6 1 Introduction 1.1 About This Manual This manual provides guidelines for BIOS developers working with the AMD SB600. It describes the BIOS and software modifications required to fully support the device. Note: To help the reader to readily identify changes/updates in this document, changes/updates over the previous revision are highlighted in red. Refer to Appendix: Revision History at the end of this document for a detailed revision history. 1.2 Overview The SB600 is an I/O Communication Processor designed to work with AMD’s ATI Radeon™ and Mobility Radeon™ Integrated Graphics Processors (IGPs). The functions and capabilities of the SB600 are as follows: CPU Interface Supports both Single and Dual core AMD CPUs Desktop: AMD Athlon™ 64, Athlon 64 FX, Athlon 64 X2, Sempron™, Opteron™, dual-core Opteron Mobile: Athlon XP-M, Mobile Athlon 64, Turion 64, Mobile Sempron All 10 ports are USB 1.1 (“Low Speed”, “Full Speed”) and 2.0 (“High Speed”) compatible Supports ACPI S1~S5 Supports legacy keyboard/mouse Supports USB debug port Supports port disable with individual control SMBus Controller PCI Host Bus Controller SMBus Rev. 2.0 compliant Support SMBALERT # signal / GPIO Supports PCI Rev. 2.3 specification Supports PCI bus at 33MHz Supports up to 6 bus master devices Supports 40-bit addressing Supports interrupt steering for plug-n-play devices Supports IOAPIC/X-IO APIC mode for 24 channels of interrupts Supports 8259 legacy mode for 15 interrupts Supports concurrent PCI operations Supports hiding of PCI devices by BIOS/hardware Supports programmable level/edge triggering on each channels Supports serial interrupt on quiet and continuous modes Supports spread spectrum on PCI clocks USB Controllers Interrupt Controller 5 OHCI and 1 EHCI Host controllers to support 10 USB ports DMA Controller Two cascaded 8237 DMA controllers Supports PC/PCI DMA © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Introduction Proprietary Page 7 Supports LPC DMA 6/8 channel support on audio codec Supports type F DMA Multiple functions for audio and modem Codec operations LPC host bus controller Bus master logic Supports LPC based super I/O and flash devices Supports up to 3 codecs simultaneously Supports SPDIF output Supports two master/DMA devices Separate bus from the HD audio Supports TPM version 1.1/1.2 devices for enhanced security Supports SPI devices HD Audio 4 Independent output streams (DMA) 4 Independent input streams (DMA) Up to 16 channels of audio output per stream Supports up to 4 codecs Up to 192kHz sample rate Supports RAID striping (RAID 0) across all 4 ports Up to 32-bit per sample Message Signaled Interrupt (MSI) capability Supports RAID mirroring (RAID 1) across all 4 ports 64-bit addressing capability for MSI Supports RAID 10 (4 ports needed) 64-bit addressing capability for DMA bus master Supports both AHCI mode and IDE mode Supports advanced power management with ACHI mode Unified Audio Architecture (UAA) compatible HD Audio registers can be located anywhere in the 64-bit address space SATA II AHCI Controller Supports four SATA ports, complying with the SATA 2.0 specification Supports SATA II 3.0GHz PHY, with backward compatibility with 1.5GHz IDE Controller Timers Single PATA channel support Supports PIO, Multi-word DMA, and Ultra DMA 33/66/100/133 modes 32x32byte buffers on each channel for buffering Swap bay support by tri-state IDE signals Supports Message Signaled Interrupt (MSI) Integrated IDE series resistors AC Link interface Supports for both audio and modem codecs Compliant with AC-97 codec Rev. 2.3 8254-compatible timer Microsoft High Precision Event Timer (HPET) ACPI power management timer RTC (Real Time Clock) 256-byte battery-backed CMOS RAM Hardware supported century rollover RTC battery monitoring feature © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Introduction Proprietary Page 8 Power Management ACPI specification 2.0 compliant power management schemes Supports C2, C3, C4, ACPI states Supports C1e and C3 pop-up Supports S0, S1, S2, S3, S4, and S5 Wakeup events for S1, S2, S3, S4/S5 generated by: Any GEVENT pin Any GPM pin USB Power button Internal RTC wakeup SMI# event Supports CPU SMM, generating SMI# signal upon power management events GPIO supports on external wake up events Supports CLKRUN# on PCI power management Provides clock generator and CPU STPCLK# control Support for ASF Hardware Monitor Supports 3 Independent FAN Control outputs Supports 1 AMDSI function Note: SB600 does not support thermal diode temperature sensing function. Full support for On-Now™ © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Introduction Proprietary Page 9 1.3 PCI Internal Devices This section contains two block diagrams for the SB600. Figure 1 shows the SB600 internal PCI devices with their assigned bus, device, and function numbers. Figure 2 shows the SB600 internal PCI devices and the major function blocks. ALINK-EXPRESS II AC97 Audio AB 4 PORTS SATA Controller 1 B-LINK A-LINK PORT 1 PORT 0 Bus 0 DEV 20 Function 5 Device ID 4382h AC97 Modem Bus 0 DEV 18 Function 0 Bus 0 DEV 20 Function 6 Device ID 438Eh Device ID 4380h USB:OHCI x5 B-LINK HD Audio Bus 0 DEV 19 Function 0:4 10 PORTS Device ID 4387h : 4388h : 4389h : 438Ah : 438Bh Debug port Bus 0 DEV 19 Function 5 AC97 Bus 0 DEV 20 Function 2 Device ID 4383h USB:EHCI Device ID 4386h ALINK IDE PCI Bridge 6 PCI SLOTS 1 CHANNEL Bus 0 DEV 20 Function 1 Device ID 438Ch Bus 0 DEV 20 Function 4 Device ID 4384h LPC Bus 0 DEV 20 Function 3 Device ID 438Dh SMBUS /ACPI LPC bus SPI bus Bus 0 DEV 20 Function 0 Device ID 4385h Figure 1 SB600 PCI Internal Devices © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Introduction Proprietary Page 10 ALINK-EXPRESS II AB 4 PORTS B-LINK A-LINK PORT 1 PORT 0 AC97 Audio SATA Controller AC97 AC97 Modem B-LINK 10 PORTS HD Audio USB:OHCI USB:EHCI Debug port ALINK 1 CHANNEL IDE LPC bus SMBUS /ACPI LPC PCI Bridge SPI bus 6 PCI SLOTS ROM X1/X2 BUS Controler XBUS SERIRQ# RTC SIRQ APIC PIC PICD[0] RTC_IRQ#, PIDE_INTRQ, SIDE_INTRQ, USB_IRQ#, AC97INTAB, AC97INTBB GPIO BM 8250 TIMER SPEAKER INTERRUPT controller ACPI / HW Monitor SMI INTR IGNNE#, FERRB#, INT# F:A SMBUS GEVENT[7:0],SLPBUTTON TEMPDEAD, TEMPCAUT, SHUTDOWN,DC_STOP# SCIOUT, SLP#, CPUSTP#, PCISTP#, STPCLK#, SOFF#, SMI#, SMIACT# PM PWRGOOD CPURST, INIT#, RESET# Figure 2 SB600 PCI Internal Devices and Major Function Blocks © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Introduction Proprietary Page 11 2 SB600 Programming Architecture 2.1 PCI Devices and Functions Bus:Device:Function Bus 0:Device 14h:Function 0 Bus 0:Device 14h:Function 1 Bus 0:Device 14h:Function 2 Function Description SMBus Controller IDE Controller HD Audio Controller Dev ID 4385h 438Ch 4383h Bus 0:Device 14h:Function 3 LPC Controller 438Dh Bus 0:Device 14h:Function 4 Bus 0:Device 14h:Function 5 PCI to PCI Bridge AC’97 Audio Controller 4384h 4382h Bus 0:Device 14h:Function 6 AC’97 Modem Controller 438Eh Bus 0:Device 13h:Function 5 EHCI USB Controller 4386h Bus 0:Device 13h:Function 0 Bus 0:Device 13h:Function 1 Bus 0:Device 13h:Function 2 Bus 0:Device 13h:Function 3 Bus 0:Device 13h:Function 4 OHCI USB Controller #0 OHCI USB Controller #1 OHCI USB Controller #2 OHCI USB Controller #3 OHCI USB Controller #4 4387h 4388h 4389h 438Ah 438Bh 438Ch Bus 0:Device 12h:Function 0 Raid-5 Serial ATA Controller Non-Raid-5 Serial ATA Controller 4381h 4380h © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Enable/Disable Always enabled Always enabled PM IO Reg59h[Bit3] 0: Disables HD Audio 1: Enables HD Audio SMBus PCI Reg64h[Bit20] 0: Disables LPC controller 1: Enables LPC controller Always enabled PM IO Reg59h[Bit0] 0: Enables AC97 1: Disables AC97 PM IO Reg59h[Bit1] 0: Enables MC97 1: Disables MC97 SMBus PCI Reg68h[Bit0] 0: Enables EHCI controller 1: Disables EHCI controller SMBus PCI Reg68h[Bit1] SMBus PCI Reg68h[Bit2] SMBus PCI Reg68h[Bit3] SMBus PCI Reg68h[Bit4] SMBus PCI Reg68h[Bit5] 0: Disables OHCI controller 1: Enables OHCI controller SMBus PCI Reg ADh[bit 0] SB600 Programming Architecture Proprietary Page 12 2.2 I/O Map The I/O map is divided into Fixed and Variable address ranges. Fixed ranges cannot be moved, but can be disabled in some cases. Variable ranges are configurable. 2.2.1 Fixed I/O Address Ranges 2.2.1.1 Fixed I/O Address Ranges – SB600 Proprietary Ports I/O Address C00h-C01h C14h C50h-C51h C52h C6Fh CD0h-CD1h CD4h-CD5h CD6h-CD7h 2.2.2 Description IRQ Routing Index/Data register PCI Error Control register Client Management Index /Data registers GPM Port Flash Rom Program Enable PM2 Index/Data BIOS RAM Index/Data Power Management I/O register Enable Bit SMBus PCI Reg64h[Bit0] SMBus PCI Reg78h[Bit4] SMBus PCI Reg 79h[Bit3] SMBus PCI Reg78h[Bit6] SMBus PCI Reg78h[Bit8] SMBus PCI Reg64h[Bit2] & Reg78h[Bit9] Variable I/O Decode Ranges I/O Name Description PIO0 PIO1 PIO2 PIO3 PIO4 PIO5 PIO6 PIO7 PM1_EVT PM1_CNT PM_TMR P_BLK GPE0_EVT SMI CMD Block * Pma Cnt Block Reserved SMBus Programmable I/O Range 0 Programmable I/O Range 1 Programmable I/O Range 2 Programmable I/O Range 3 Programmable I/O Range 4 Programmable I/O Range 5 Programmable I/O Range 6 Programmable I/O Range 7 ACPI PM1a_EVT_BLK ACPI PM1a_CNT_BLK ACPI PM_TMR_BLK ACPI P_BLK ACPI GPE0_EVT_BLK SMI Command Block PMa Control Block Reserved SMBus IO Space © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Configure Register PM IO Reg14h & Reg15h PM IO Reg16H & Reg17H PM IO Reg18h & Reg19h PM IO Reg1Ah & Reg1Bh PM IO Reg A0h & Reg A1h PM IO Reg A2h & Reg A3h PM IO Reg A4h & Reg A5h PM IO Reg A6h & Reg A7h PM IO Reg20h & Reg21h PM IO Reg22h & Reg23h PM IO Reg24h & Reg25h PM IO Reg26h & Reg27h PM IO Reg28h & Reg29h PM IO Reg2Ah & Reg2Bh PM IO Reg2Ch & Reg2Dh PM IO Reg2Eh & Reg2Fh SMBus PCI Reg90h & RegD2h[Bit0] Range Size (Bytes) <=16 <=16 <=16 <=16 <=16 <=16 <=16 <=16 4 2 4 6 8 2 1 1 16 SB600 Programming Architecture Proprietary Page 13 * Note: • • • • The SMI CMD Block must be defined on the 16-bit boundary, i.e., the least significant nibble of the address must be zero (for example, B0h, C0h etc.) The SMI CMD Block consists of two ports – the SMI Command Port at base address, and the SMI Status Port at base address+1. The writes to SMI Status Port will not generate an SMI. The writes to the SMI Command Port will generate an SMI. The SMI Command and SMI Status ports may be written individually as 8 bit ports, or together as a 16-bit port. 2.3 Memory Map Memory Range 0000 0000h-000D FFFFh 0010 0000h- TOM 000E 0000h-000F FFFFh FFC0 0000h-FFC7 FFFFh FF80 0000h-FF87 FFFFh FFC8 0000h-FFCF FFFFh FF88 0000h-FF8F FFFFh FFD0 0000h-FFD7 FFFFh FF90 0000h-FF97 FFFFh FFD8 0000h-FFDF FFFFh FF98 0000h-FF9F FFFFh FFE0 0000h-FFE7 FFFFh FFA0 0000h-FFA7 FFFFh FFE8 0000h-FFEF FFFFh FFA8 0000h-FFAF FFFFh FFF0 0000h-FFF7 FFFFh FFB0 0000h-FFB7 FFFFh FFF8 0000h-FFFF FFFFh FFB8 0000h-FFBF FFFFh Description Main System Memory Enable Bit Either PCI ROM or LPC ROM FWH PCI ROM : SMBus PCI Reg41h[Bit4] LPC ROM : LPC Reg68h & LPC_Rom strap LPC Reg70h[3:0] FWH LPC Reg70h[7:4] FWH LPC Reg70h[11:8] FWH LPC Reg70h[15:12] FWH LPC Reg70h[19:16] FWH LPC Reg70H[23:20] FWH LPC Reg70h[27:24] FWH LPC Reg70h[31:28] © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) SB600 Programming Architecture Proprietary Page 14 3 SB600 Early-POST Initialization The system BIOS needs to configure the SB600 at the very beginning of POST. Some of the settings will change depending on the OEM design, or on the newer revision chipset. 3.1 512K/1M ROM Enable With the SB600 design, there can be two possible ROM sources: PCI ROM and LPC ROM. Two pin straps (UseLpcRom, FWHDisable) decide where the ROM is (see the SB600 databook). Upon system power on, the SB600 enables 256K ROM by default. The BIOS needs to enable 512K ROM or up to 1M for LPC ROM, if required. 3.1.1 PCI ROM Control Bit Description SMBus PCI Reg41h[Bit1] When set to 1, the address between FFF80000h to FFFDFFFFh will be directed to the PCI ROM interface. When set to 1, the address between 0E0000h to 0EFFFFh will be directed to the PCI ROM interface. SMBus PCI Reg41h[Bit4] 3.1.2 256K ROM (Default) 512K ROM Setting 0 1 0 1 LPC ROM To use the LPC ROM, the pin straps UseLpcRom, FWHDisable must be set accordingly. Control Bit(s) LPC PCI Reg68h LPC PCI Reg6Ch LPC PCI Reg48Hh[Bits4:3 ] 3.1.3 Description 16-bit starting & end address of the LPC ROM memory address range 1. 16-bit starting & end address of the LPC ROM memory address range 2. Enable bits for LPC ROM memory address range 1 & 2. Note: with pins straps set to LPC ROM, these two bits have no effect on Reg68 & Reg6C. Default 512K ROM Setting 1 M ROM Setting 000E0000h 000E0000h 000E0000h FFF80000h FFF00000h FFFE0000 h 00b 11b 11b LPC ROM Read/Write Protect The SB600 allows all or a portion of the LPC ROM addressed by the firmware hub to be read protected, write protected, or both read and write protected. Four dword registers are provided to select up to 4 LPC ROM ranges for read or write protection. The ROM protection range is defined by the base address and the length. The base address is aligned at a 2K boundary. The address length can be from 1K to 256K in increments of 1K. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) SB600 Early-POST Initialization Proprietary Page 15 Register 50h, 54h, 58h, 5ch of Device 14h, Function 3 Field Name Base Address Bits 31:11 Length 10:2 Read Protect 1 Write Protect 0 Description ROM Base address. The most significant 21 bits of the base address are defined in this field. Bits 10:0 of the base address are assumed to be zero. Base address, therefore, is aligned at a 2K boundary. These 9 bits (0-511) define the length from 1K to 512K in increments of 1K. When set, the memory range defined by this register is read protected. Reading any location in the range returns FFh. When set, the memory range defined by this register is write protected. Writing to the range has no effect. Example: Protect 32K LPC ROM starting with base address FFF80000. Base address bits 31:11 1111 1111 1111 1000 0000 0 b Length 32K bit 10:2 = 31h = 000 0111 11 b Read protect bit 1 = 1 Write protect bit 0 = 1 Register 50h = 1111 1111 1111 1000 0000 0000 0111 1111 b = FFF8007F h Note: 1. Registers 50h ~ 5Fh can be written once after the hardware reset. Subsequent writes to them have no effect. 2. Setting sections of the LPC ROM to either read or write protect will not allow the ROM to be updated by a flash programming utility. Most flash utilities write and verify ROM sectors, and will terminate programming if verification fails due to read protect. 3.1.4 SPI ROM controller The SPI ROM interface is a new feature added to the SB600. Refer to the AMD SB600 Register Reference Guide for more information on this feature. Note: The LPC ROM Read/Write Protect mentioned in the previous paragraph also applies to SPI. Two strap pins, PCICLK0 and PCICLK1, determine the SB600 boot up from LPC ROM or SPI ROM. There is no register status to reflect whether the current ROM interface is LPC or SPI. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) SB600 Early-POST Initialization Proprietary Page 16 3.2 Real Time Clock (RTC) 3.2.1 RTC Access The internal RTC is divided into two sections: the clock and alarm function (registers 0 to 0Dh), and CMOS memory (registers 0Eh to FFh). The clock and alarm functions must be accessed through I/O ports 70h/71h. The CMOS memory (registers 0Eh to FFh) should be accessed through I/O ports 72h/73h. 3.2.1.1 Special Locked Area in CMOS Some CMOS memory locations may be disabled for read/write. Register 6Ah of SMBus (Bus 0, Device 14h, Function 0) has bits to disable these CMOS memory locations. These bits can be written only once after each power up reset or PCI reset. RTCProtect- RW - 8 bits - [PCI_Reg: 6Ah] Field Name RTCProtect Bits 0 Default 0h RTCProtect 1 0h RTCProtect 2 0h RTCProtect 3 0h RTCProtect 4 0h 7:5 0h Reserved Description When set, RTC RAM index 38h:3Fh will be locked from read/write. This bit can only be written once. When set, RTC RAM index F0h:FFh will be locked from read/write. This bit can only be written once. When set, RTC RAM index E0h:EFh will be locked from read/write. This bit can only be written once. When set, RTC RAM index D0h:DFh will be locked from read/write. This bit can only be written once. When set, RTC RAM index C0h:CFh will be locked from read/write. This bit can only be written once. 3.2.1.2 Century Byte The RTC has a century byte at CMOS location 32h. Century is stored in a single byte and the BCD format is used for the century (for example, 20h for the year 20xx). This byte is accessed using I/O ports 70h and 71h. (The BIOS must set PMIO register 7Ch bit 4 to 1 to use this century byte at CMOS location 32h 3.2.1.3 Date Alarm The RTC has a date alarm byte. This byte is accessed as follows: 1. Set to 1 the RTC register 0Ah , bit 4, using I/O ports 70h and 71h. 2. Write Date Alarm in BCD to register 0Dh using I/O ports 70h and 71h. 3. Clear to 0 the RTC register 0Ah bit 4 using I/O ports 70h and 71h. Note: It is important to clear RTC register 0Ah bit 4 to zero; otherwise, the CMOS memory may not be accessed correctly from this point onward. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) SB600 Early-POST Initialization Proprietary Page 17 3.3 BIOS RAM The SB600 has 256 bytes of BIOS RAM. Data in this RAM is preserved until RSMRST# or S5 is asserted, or until power is lost. This RAM is accessed using index and data registers at CD4h/CD5h. 3.4 Serial IRQ The SB600 supports serial IRQ, which allows one single signal to report multiple interrupt requests. The SB600 supports a message for 21 serial interrupts, which include 15 IRQs, SMI#, IOCHK#, and 4 PCI interrupts. SMBus PCI Reg69h is used for setting serial IRQ. Bits in SMBus PCI Reg69 7 6 5:2 1:0 Description 1 – Enables the serial IRQ function 0 – Disables the serial IRQ function 1 – Active (quiet) mode 0 – Continuous mode Total number of serial IRQs = 17 + NumSerIrqBits 0 – 17 serial IRQs (15 IRQs, SMI#, IOCHK#) 1 – 18 serial IRQs (15 IRQs, SMI#, IOCHK#, INTA#) ... 15 - 32 serial IRQ's The SB600 serial IRQ can support 15 IRQs, SMI#, IOCHK#, INTA#, INTB#, INTC#, and INTD#. Number of clocks in the start frame Power-on Default 0 Recommended Value 1 0 0 0 0100b 0 00b Note: The BIOS should enter the continuous mode first when enabling the serial IRQ protocol, so that the SB600 can generate the start frame. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) SB600 Early-POST Initialization Proprietary Page 18 3.5 SubSystemID and SubSystem Vendor ID SubSytem ID and SubSystem Vendor ID can be programmed in various functions of SB600 register 2Ch. These registers are write-once registers. For example, to program a SubSystem vendor ID of 1002h and SubSystem ID of 4341h in AC97 device 14h, function 5, use the following assembly language sample code: mov eax,8000A52Ch mov dx,0CF8h out dx,eax mov dx,0CFCh mov eax,43411002h out dx,eax 3.6 AMD Athlon™ Processor Registers The SB600 is set for the AMD Athlon processor by hardware strap. The following registers in the PM IO space (accessed through index/data registers at CD6h/CD7h) are specific for the AMD Athlon processor. For the early post initialization these registers may be left at default values. SMAFx in the table below are sent with STPCLK messages down the HyperTransport™ link. Register PM IO 80h PM IO 81h PM IO 82h PM IO 83h Name SMAF0 SMAF1 SMAF2 SMAF3 Default 06h 21h 43h 55h PM IO 85h PM IO 86h CF9Rst Thermal Throttle Control LdtStpCmd LdtStartTime LdtAgpTimeCntl StutterTime StpClkDlyTime AbPmeCntl 00h 00h Description System Management Action for C2 and S4/S5 System Management Action for VFID and C3 System Management Action for S3 and S1 System Management Action for thermal and normal throttling. Full reset/INIT Enables time control for thermal throttling. 00h 00h 00h 00h 00h 0Eh Write bit[0] = 1 to generate C3 LDTSTP# assertion delay in microseconds LDTSTP# de-assertion delay select Stutter LDTSTP# duration in microseconds STPCLK# assertion in microseconds Fake A-link bridge PME PM IO 87h PM IO 88h PM IO 8Ah PM IO 8Bh PM IO 8Ch PM IO 8Dh © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) SB600 Early-POST Initialization Proprietary Page 19 3.7 System Restart after Power Fail The way the system restarts following the power-fail/ power-restore cycle depends both on the PMIO register 74h [bits 1:0], and the hardware jumper on the SB600 pin ACPWR_Strap. PMIO Register 74h bits[1:0] 00b 01b 10b 11b Description The system restart will depend on the ACPWR_Strap pin pull up/down state. Pin = 0 : The system will restart without pressing the power button Pin = 1 : The system will remain off until the power button in pressed. The system will always restart after the power is restored. The system will remain off until the power button is pressed. At power-up the system will either restart or remain off depending on the state of the system at power failure. If the system was on when the power failed, the system will restart at power-up. If the system was off when the power failed, the system will remain off after the power is restored. Pressing the power button is required to restart the system. Notes on programming the PMIO register 74h: 1. PMIO register bits[3:0] should be used for programming. Bits[7:4] are read-only bits and reflect the same values as bits[3:0]. 2. Bit2 is used by the hardware to save the power on/off status. This bit should not be modified during Software/BIOS programming. The BIOS programmer should always read the PMIO register 74h, modify bit3 and bits[1:0] as required, and write back the PMIO register 74h. 3.7.1 Power Fail and Alarm Setup The state of the machine after the power-fail/power-restore cycle is controlled by PMIO register 74h bits[1:0] as described above. This programming can be over-ridden for the special case when the alarm is set. When both the alarm and the PMIO register 74h bit3 are set, the system will restart after the power is restored, regardless of how register 74h bits [1:0] are defined. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) SB600 Early-POST Initialization Proprietary Page 20 4 PCI IRQ Routing 4.1 PCI IRQ Routing Registers The SB600 uses one pair of I/O ports to do the PCI IRQ routing. The ports are at C00h/C01h. Address C00h Register Name PCI_Intr_Index C01h PCI_Intr_Data Description PCI IRQ Routing Index 0 – INTA# 1 – INTB# 2 – INTC# 3 – INTD# 4 – SCI 5 – SMBus interrupt 9 – INTE# 0Ah – INTF# 0Bh – INTG# 0Ch – INTH# 0 ~ 15 : IRQ0 to IRQ15 IRQ0, 2, 8, 13 are reserved 4.2 PCI IRQ BIOS Programming PCI IRQs are assigned to interrupt lines using I/O ports at C00h and C01h in index/data format. The register C00h is used for index as written with index number 0 through 0Ch as described in section 4.1 above. Register C01h is written with the interrupt number as data. The following assembly language example assigns INTB# line to interrupt 10 (0Ah). mov dx,0C00h ; To write to IO port C00h mov al,02h ; Index for PCI IRQ INTB# as defined in section 4.1 out dx,al ; Index is now set for INTB# mov dx,0C01h ; To write interrupt number 10 (0Ah) mov al,0Ah ; Data is interrupt number 10 (0Ah ) out dx,al ; Assign IRQB# to interrupt 10 © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) PCI IRQ Routing Proprietary Page 21 4.3 Integrated PCI Devices IRQ Routing In the SB600, the AC’97 and USB need PCI IRQ. Internally, they are routed to different PCI INT#s. Device Reg3Dh of PCI Device 01 01 02 02 01 02 03 02 03 04 01 01 PCI INT# Bus 0:Device 14h:Function 1 INTA# Bus 0:Device 14h: Function 2 Programmable*** Bus 0:Device 14h:Function 5 INTB# Bus 0:Device 14h:Function 6 INTB# Bus 0:Device 13h:Function 0 INTA# Bus 0:Device 13h:Function 1 INTB# Bus 0:Device 13h:Function 2 INTC# Bus 0:Device 13h: Function 3 INTB# Bus 0:Device 13h: Function 4 INTC# Bus 0:Device 13h: Function5 INTD# Bus 0:Device 12h:Function 0 Programmable** Bus 0:Device 11h:Function 0 Programmable** Notes: * IDE controller needs PCI IRQ only if it is set to the native mode. ** Smbus_pci_config 0xAF [4:2] for SATA1 Smbus_pci_config 0xAF [7:5] for SATA2 *** Refer to section 4.3.1 for details. 4.3.1 Description IDE Controller* High Definition Audio AC’97 Audio Controller AC’97 Modem Controller OHCI USB Controller #1 OHCI USB Controller #2 EHCI USB Controller OHCI USB Controller #3 OHCI USB Controller #4 EHCI USB Controller SATA Controller #1 SATA Controller #2 IRQ Routing for HD Audio Interrupt routing for device 14h, function 2 HD Audio is done through PCI SMBUS (device 14h, function 0) register 63h. Values from INTA# to INTH# can be set in this register. Sample Code: Set High Definition Audio interrupt routing to INTA#: mov eax,8000A060h ; Device 14h, function 0, registers 60h-63h mov dx,0CF8h ; PCI configuration Index register out dx,eax ; Set to read/write registers 60h-63h mov dx,0CFFh ; PCI configuration Data register for 63h mov al,0 ; Set to INTA# out dx,al ; Write to PCI register 63h Note: The SB600 has provisions to modify the interrupt pin register (PCI register 3Dh) for special conditions. This pin is modified through device 14h, function 2, register 44h. Under normal circumstances do not modify this register. The default is Pin 1. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) PCI IRQ Routing Proprietary Page 22 4.4 PCI IRQ Routing for APIC Mode PCI IRQ INTA# INTB# INTC# INTD# INTE# INTF# INTG# INTH# APIC Assignment 16 17 18 19 20 21 22 23 © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) PCI IRQ Routing Proprietary Page 23 5 SMBus Programming The SB600 SMBus (System Management Bus) complies with SMBus Specification Version 2.0. 5.1 SMBus I/O Base Address The BIOS needs to set a valid SMBus I/O base address before enabling the SMBus Controller. There are two places at which the BIOS is able to set the SMBus I/O base addresses: one is at PCI Reg10h, another is at PCI Reg90h, and both are on the SMBus Controller (Bus 0, Device 14h, Function 0). Before the BAR register, Reg10h, is assigned automatically during PCI bus enumeration, the BIOS needs to give a temporary SMBus I/O base address for accessing devices on the SMBus. The SMBus controller enable bit is bit 0, register D2h, of the SMBus device (Bus 0, Device 14h, Function 0). The following is a sample code to enable the SMBus with a temporary I/O base address: SMB_IO EQU 8040h ; Set SMBus I/O base address mov dx, 0CF8h ; PCI Index Register mov eax, 8000A090h ; Reg90h on SMBus PCI Controller out dx, eax mov dx, 0CFCh ; PCI Data Register mov eax, SMB_IO ; temp SMBus I/O base address out dx, eax ; Enable the SMBus controller mov dx, 0CF8h ; PCI Index Register mov eax, 8000A0D0h ; RegD0 on SMBus PCI Controller out dx, eax mov dx, 0CFEh ; PCI Data Register in al, dx ; read back from RegD2h or al, 01 ; bit0 for enabling SMBus Controller interface out dx, al 5.2 SMBus Timing The SMBus frequency can be adjusted using different values in an 8-bit I/O register at the SMBus base + 0Eh location. The SMBus frequency is set as follows: SMBus Frequency = (Primary A-Link Clock )/(Count in index 0Eh * 4) © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) SMBus Programming Proprietary Page 24 The power-up default value in register 0Eh is A0h, therefore the default frequency is (66MHz)/(160 * 4), or approximately 103 KHz. The minimum SMBus frequency can be set with the value FFh in the register at index 0Eh, which yields: (66MHz)/(255*4) = 64.7 KHz. 5.3 SMBus Host Controller Programming Step Descriptions Register in SMBus I/O Space Reg00h[Bit0] 1 Wait until SMBus is idle. 2 3 4 7 Clear SMBus status. Set SMBus command. Set SMBus device address with read/write protocol Select SMBus protocol Do a read from Reg02 to reset the counter if it’s going to be a block read/write operation Set low byte when write command 8 Set high byte when write command Reg06h 9 Write the data when block write Reg07h 10 11 12 13 Start SMBus command execution Wait for host not busy Check status to see if there is any error Read data 14 Read data Reg06h 15 Read the data when block write Reg07h 5 6 Comments 0 – Idle 1 – Busy Reg00h[Bit4:1] Write all 1’s to clear Reg03h The command will go to SMBus device. Reg04h Bit7:1 – address Bit0 – 1 for read, 0 for write Reg02h[Bit4:2] Reg02h Reg05h Byte command – It is the written data Word command – It is the low byte data Block command – It is block count Others – Don’t care Word command – It is the high byte data Others – Don’t care Block write – write data one by one to it Others – Don’t care Write 1 to start the command Reg02h[Bit6] Reg00h[Bit0] Reg00h[Bit4:2] With 1 in the bit, there is error Reg05h Byte command – It is the read data Word command – It is the low byte data Block command – It is block count Others – Don’t care Word command – It is the high byte data Others – Don’t care Block read – read data one by one. Others – Don’t care The following flow chart illustrates the steps in programming the SMBus host controller. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) SMBus Programming Proprietary Page 25 © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) SMBus Programming Proprietary Page 26 6 IDE Controller The SB600 IDE controller supports Ultra ATA 33/66/100/133 modes. The IDE controller can be configured into either the compatible mode or the native mode. Under the compatible mode, the IDE controller will use the legacy resources. The SB600 allows programming of the IDE timing and mode for each drive independently on each channel. 6.1 IDE Channel Enable/Disable Register on IDE Controller Reg09h Reg48h Reg48h Bit 1 0 8 Description Primary IDE channel programmable logic enable. Set 1 to disable the primary IDE channel. Set 1 to disable the secondary IDE channel. With the SB600, the BIOS must follow particular sequences to enable or disable the IDE channels (see section 6.1.1 and 6.1.2 below for further information). 6.1.1 IDE Channel Enable Both of the IDE channels are enabled as power-on default. To enable an IDE channel, the BIOS must be set as follows: 1. Set the IDE channel programmable logic enable bit in Reg09h. 2. Clear the IDE channel disable bit in Reg48h to enable the IDE channel. Note: No IDE I/O port access is allowed in between step (1) and step (2). It is recommended that the BIOS execute step (2) immediately after step (1). Refer to section 14.3.5 for a programming sample. 6.1.2 IDE Channel Disable To disable an IDE channel, the BIOS must: 1. Set IDE channel programmable logic enable bit in Reg09h. 2. Set IDE channel disable bit in Reg48h to disable IDE channel. Note: No IDE I/O port access is allowed in between step (1) and (2). It’s recommended that the BIOS execute step (2) immediately after step (1). Note: Secondary IDE channel should always be disabled for there is no pin out for secondary IDE. After the IDE disable sequence, the IDE channel programmable logic enable bit will be cleared automatically. Refer to section 14.3.4 for a programming sample. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) IDE Controller Proprietary Page 27 6.2 PIO Modes The SB600 supports IDE PIO mode 0, 1, 2, 3, and 4. For PIO mode selection, the BIOS needs to program not only the PIO mode register, but also the PIO timing register. 6.2.1 PIO Mode The BIOS can simply give the PIO mode number through Reg4Ah on the IDE controller. 6.2.2 PIO Timing Two parameters determine the PIO bus-cycle timing: the command width and the recovery width. CT (bus-cycle timing) = 30ns * ((command width + 1) + (recovery width + 1)) For each PIO mode, the command width and the recovery width must be set by the BIOS accordingly: PIO Mode 0 1 2 3 4 Command Width (In Reg40h) 9 4 3 2 2 Recovery Width (In Reg40h) 9 7 4 2 0 CT 600ns = 30 * ((9+1) + (9+1)) 390ns = 30 * ((4+1) + (7+1)) 270ns = 30 * ((3+1) + (4+1)) 180ns = 30 * ((2+1) + (2+1)) 120ns = 30 * ((2+1) + (0+1)) 6.3 DMA Modes The SB600 IDE controller can run at either the legacy (Multi-Words) DMA mode, or the UltraDMA mode. 6.3.1 Legacy (Multi-Words) DMA mode The SB600 IDE controller will run at the legacy DMA mode only when the Ultra-DMA mode is disabled. Two parameters determine the DMA bus-cycle timing: the command width and the recovery width. CT (bus-cycle timing) = 30ns * ((command width + 1) + (recovery width + 1)) For each legacy DMA mode, the command width and recovery width must be set by the BIOS accordingly: Legacy DMA Mode 0 1 2 Command Width (In Reg44h) 7 2 2 Recovery Width (In Reg44h) 7 1 0 CT 480ns = 30 * ((7+1) + (7+1)) 150ns = 30 * ((2+1) + (1+1)) 120ns = 30 * ((2+1) + (0+1)) © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) IDE Controller Proprietary Page 28 6.3.2 Ultra-DMA Mode The SB600 IDE controller supports UDMA mode 0, 1, 2, 3, 4, 5, and 6. It only takes two simple steps to program the SB600 IDE controller into the UDMA mode: 1. Set the mode number in UDMA mode register (Reg56h). 2. Enable the UDMA mode through the UDMA control register (Reg54h). The UDMA buscycle timing is fixed after the UDMA mode is selected. UDMA Mode 0 1 2 3 4 5 6 Bus-Cycle Timing (ns) 120 90 60 45 30 20 15 © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) IDE Controller Proprietary Page 29 7 Serial ATA (SATA) The SB600 has two SATA devices. For ASIC revision A21, they are at Bus 0, Device 12h, Function 0 and Bus 0, Device 11h, Function 0. For revisions A11 and A12, they are at Bus 0, Device 13h, Function 3 and Function 4. The SATA devices are enabled/disabled through a register at ADh in the SMBus controller (Device 14h, function 0). MiscSata - RW - 8 bits - [PCI_Reg: ADh] Field Name Bits Default SATA Enable SataSmbusEn SataSmbusMode SataPsvEn Enable MiscSata register 0 1 2 5 1 0 0 1 Description SATA enable SATA SMBus enable SATA SMBus mode, set to 1 to put SATA I2C on GPIO pins SATA power saving enable The SATA option ROM initial load size is 64KB, and the run time size is 2KB. A SATA controller enable/disable sample code is found in section 14.2.5. A SATA class ID change sample code is found in section 14.2.6. 7.1 SATA Hot Plug The SATA hot plug feature is implemented through the following registers: 1. ACPI GPE0 Block status register bit 31 for SCI status. 2. ACPI GPE0 Block enable register bit 31 for SCI enable. 3. PMIO register 37h bit 2 to trigger SATA hot plug SCI. 1 = Rising edge. 0 = Falling edge trigger. 4. The SATA internal status is set whenever a SATA hard drive is plugged in, unplugged, powered up, or powered down. The status registers are: Register BAR 5 + 10Ah, bit 0, for primary channel. Register BAR 5 + 18Ah, bit 0, for secondary channel. 7.1.1 Sample Code See section 14.7 for the SATA Hot Plug sample code. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Serial ATA (SATA) Proprietary Page 30 8 Power Management On the SB600, PM registers can be accessed through I/O ports CD6h/CD7h. Before initiating any power management functions in the SB600, the BIOS needs to set the I/O base addresses for the ACPI I/O register, the SMI Command Port, etc. I/O Name PM1_EVT PM1_CNT PM_TMR P_BLK GPE0_EVT SMI CMD Block * Description ACPI PM1a_EVT_BLK ACPI PM1a_CNT_BLK ACPI PM_TMR_BLK ACPI P_BLK ACPI GPE0_EVT_BLK SMI Command Block Configure Register PM IO Reg20h & Reg21h PM IO Reg22h & Reg23h PM IO Reg24h & Reg25h PM IO Reg26h & Reg27h PM IO Reg28h & Reg29h PM IO Reg2Ah & Reg2Bh Range Size (Bytes) 4 2 4 6 8 2 * Notes: • • • • The SMI CMD Block must be dword aligned, i.e., the least significant two bits of the address must be zero (address[1:0] must be 00). For example, B0h, B4h, B8h, BCh, etc. The SMI CMD Block consists of two ports – the SMI Command Port at base address, and the SMI Status Port at base address+1. The writes to the SMI Status Port will not generate an SMI. The writes to the SMI Command Port will generate an SMI. The SMI Command and SMI Status ports may be written individually as 8 bit ports, or together as a 16 bit port. 8.1 SMI Handling – EOS (PM IO Reg10h[Bit0]) Upon each SMI generation, the SB600 will clear the EOS bit automatically. At the end of the SMI service, the BIOS needs to clear the status bit of the SMI event and re-enable the EOS; otherwise, the SB600 will not be able to generate SMI, even if SMI events arrive. 8.2 Programmable I/Os There are eight sets of programmable I/Os available on the SB600. The BIOS can use them for I/O trapping, which means that an SMI will be generated if any access falls into the PIO range. The PIO address range can be set to 2, 4, 8, and 16. I/O Name PIO0 PIO1 PIO2 PIO3 Description Programmable I/O Range 0 Programmable I/O Range 1 Programmable I/O Range 2 Programmable I/O Range 3 Configure Register PM IO Reg14h & Reg15h PM IO Reg16h & Reg17h PM IO Reg18h & Reg19h PM IO Reg1Ah & Reg1Bh Enable PM IO Reg1Ch[Bit7] PM IO Reg1Ch[Bit6] PM IO Reg1Ch[Bit5] PM IO Reg1Ch[Bit4] © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Status PM IO Reg1Dh[Bit7] PM IO Reg1Dh[Bit6] PM IO Reg1Dh[Bit5] PM IO Reg1Dh[Bit4] Power Management Proprietary Page 31 I/O Name Description Configure Register Enable Status PIO4 Programmable I/O Range 4 PM IO RegA0 & RegA1h PM IO Reg A8h[Bit0] PM IO RegA9h[Bit0] PIO5 Programmable I/O Range 5 PM IO RegA2 & RegA3h PM IO Reg A8h[Bit1] PM IO RegA9h[Bit1] PIO6 Programmable I/O Range 6 PM IO RegA4 & RegA5h PM IO Reg A8h[Bit2] PM IO RegA9h[Bit2] PIO7 Programmable I/O Range 7 PM IO RegA6 & RegA7h PM IO Reg A8h[Bit3] PM IO RegA9h[Bit3] Note: PM IO Reg04h[Bit7] is the overall control bit for enabling all the PIOs. The BIOS must set it before using any PIO. 8.3 Power Management Timers There are two PM timers available on the SB600 – PM Timer 1 and PM Timer 2. The PM Timer 1 (Inactivity Timer) can be programmed to reload on some activities, but not the PM Timer 2 (Activity Timer). 8.3.1 PM Timer 1 (Inactivity Timer) The PM Timer 1 is a 6-bit timer with a granularity of 1 minute. The BIOS can set the initial value of the PM Timer 1 through PM IO Reg0Bh. PM IO Reg0Ch will return the current value of the decrementing counter. The PM Timer 1 is typically used as a stand-by timer under the APM mode. PM Timer1 Reloading On IRQ[15:8] IRQ[7:3], NMI, and IRQ[1:0] Programmable IO Parallel Port Serial Port IDE Port Floppy Port Game Port ExtEvent1 ExtEvent0 8.3.2 Description IRQ[15:8] activity. IRQ[7:3], NMI, and IRQ[1:0] activity Any access to PIO ports. Parallel ports activity Serial Ports activity IDE port activity Floppy port activity Game port (201H) activity Assert ExtEvent1 pin Assert ExtEvent0 pin Enable PM IO Reg08h[Bit7:0] PM IO Reg09h[Bit7:0] PM IO Reg0Ah[Bit7] PM IO Reg0Ah[Bit6] PM IO Reg0Ah[Bit5] PM IO Reg0Ah[Bit4] PM IO Reg0Ah[Bit3] PM IO Reg0Ah[Bit2] PM IO Reg0Ah[Bit1] PM IO Reg0Ah[Bit0] PM Timer 2 (Activity Timer) The PM Timer 2 is an 8-bit timer with a granularity of 500 µs. The BIOS can set the initial value of the PM Timer 2 through PM IO Reg12h. PM IO Reg13h will return the current value of the decrementing counter. Note: The PM Timer 2 cannot be configured to reload on any system activities. 8.4 SMI Events The following is a list of all the SMI events available on the SB600. The events can only generate SMI, not SCI or wakeup events. The global SMI disable bit is PM IO register 53h, bit [3]. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Power Management Proprietary Page 32 PM IO register 53h bit [3] = 0 SMI# enabled (default) PM IO register 53h bit [3] = 1 SMI# disabled (all events disabled) SMI Source Software SMI (obsolete way) Software SMI Description Set SmiReq (PM IO Reg00h[Bit4]) to generate SMI. Any writing to SMI Command port. PM Timer 1 Timeout on PM Timer 1. Activity on PM IO register 08h, 09h, 0Ah will retrigger timer PM Timer 2 Timeout on PM Timer 2. (See section 9.3.2) IRQ[15:8] IRQ[15:8] activity. IRQ[7:3], NMI, and IRQ[7:3], NMI, and IRQ[1:0] IRQ[1:0] activity Programmable I/O Any access to PIO ports Parallel Port Serial Port IDE Port Floppy Port Game Port ExtEvent1 ExtEvent0 Mouse/Keyboard Audio/MSS MIDI AD_LIB SERR# port Global Release Write Temperature Warning Enable Always Status PM IO Reg01h[Bit4] PM IO Reg0Eh[Bit2] PM IO Reg0Fh[Bit2] PM IO Reg00h[Bit1] PM IO Reg01h[Bit1] PM IO Reg00h[Bit2] PM IO Reg01h[Bit2] PM IO Reg02h[Bit7:0] PM IO Reg03h[Bit7:0] PM IO Reg05h[Bit7:0] PM IO Reg06h[Bit7:0] PM IO Reg04h[Bit7] AND PM IO Reg1Ch[Bit7:4] Parallel ports activity PM IO Reg04h[Bit6] Serial Ports activity PM IO Reg04h[Bit5] IDE port activity PM IO Reg04h[Bit4] Floppy port activity PM IO Reg04h[Bit3] Game port (201h) activity PM IO Reg04h[Bit2] Assert ExtEvent1 pin PM IO Reg04h[Bit1] Assert ExtEvent0 pin PM IO Reg04h[Bit0] Mouse/Keyboard port activity PM IO Reg1Ch[Bit3] Audio/MSS port activity PM IO Reg1Ch[Bit2] MINI port activity PM IO Reg1Ch[Bit1] AD_LIB port activity PM IO Reg1Ch[Bit0] System error to report parity PCI SMBus Reg 66h, errors or special cycle command bit[0] or other catastrophic system errors. OS write to PM1 Control PM IO 0Eh[Bit 0] register C50/C51, index 03, [bit1] PM IO Reg1Dh[Bit7:4] © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) PM IO Reg07h[Bit6] PM IO Reg07h[Bit5] PM IO Reg07h[Bit4] PM IO Reg07h[Bit3] PM IO Reg07h[Bit2] PM IO Reg07h[Bit1] PM IO Reg07h[Bit0] PM IO Reg1Dh[Bit3] PM IO Reg1Dh[Bit2] PM IO Reg1Dh[Bit1] PM IO Reg1Dh[Bit0] PCI SMBus reg 04h, bit [30]. PM IO reg 0Fh[Bit 1] PM IO 0Fh[Bit0] C50/C51, index 02, [bit1] Power Management Proprietary Page 33 8.4.1 Power Button Power button is always a wake-up event and can be programmed as an SCI wake-up event. The power button status register is AcpiPmEvtBlk, bit[8]. The BIOS must make sure this bit is cleared prior to the entry into any C or S states. In addition, when the power button is pressed for 4 seconds, the SB600 will shut down the entire system (by going to S5). No programming is required for this function. 8.5 C-State Break Events 8.5.1 Break Events for C2 State Under C2 the break events are as follows: 8.5.2 • PBE# • Special_message from CPU (AMD Athlon™ mode) • I/O write to special register (AMD Athlon mode) • SMI# • NMI • INIT • Interrupts (in PIC mode only) Break Events for C3 and C4 States All of the events listed (above) as break events in C2 state are also break events in C3 and C4 states. In addition, the Bus Master Status is also a break event in C3 and C4 states. 8.6 Save/Restore Sequence for S3 State 8.6.1 Register Save Sequence for S3 State Prior to initiating S3 states, the BIOS must save the registers on the machine. The BIOS reserves a section of the memory and a section of the CMOS to save the registers. Depending on the BIOS architecture, these registers may be saved either one time just prior to handing of the control over to the OS, or every time just before going into the S3 states. The following registers must be saved: • Some Northbridge registers in CMOS • Some Northbridge and Memory Controller registers • Southbridge PCI registers on the SB600 • Southbridge non-PCI registers © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Power Management Proprietary Page 34 • PCI registers not on the SB600 • Super I/O and other I/O registers. The BIOS typically sets aside an area in the memory to save the registers prior to the S3 state. The Southbridge registers may be saved in any order as long as those registers are visible to the BIOS. Some of the registers, such as SubSystem ID and SubSystem Vendor ID, may be saved, but written only once as dword. They are handled separately during restore. 8.7 Wake on Events TBD 8.8 Sleep SMI Events These events provide an SMI# before the system transits to an SX state (e.g. ACPI S1, S2, S3, S4, and S5). This feature helps the System BIOS to develop software workarounds or debugging routines before the system goes to sleep state. 8.8.1 Sleep SMI Control Register There is a Sleep SMI control register in the SB600. Its base I/O address is defined at PMIO Reg 0x04. SLP_SMI_EN is a R/W register bit for controlling a Sleep SMI when the system transits to an ACPI SX state. The register definition is as follows: • SLP_SMI_EN [Bit7] = 0, Disables Sleep SMI event. • SLP_SMI_EN [Bit7] = 1, Enables Sleep SMI event. There is a Sleep SMI Status register in the SB600. Its base I/O address is defined at PMIO Reg 0x07. SLP_SMI_Status [Bit7] is asserted when the system goes to an ACPI SX state, and when SLP_SMI_EN is set to enable. 8.8.2 Sleep SMI Programming Sequence 8.8.2.1 Set Sleep SMI Control Register The Sleep SMI Control Register does not necessary have to be enabled before the system goes to the ACPI SX state. One may enable the control the bit in the ACPI ASL code. Please refer to section 14.9 “Sleep Trap Through SMI#” for the sample code. 8.8.2.2 Enter Sleep SMI# Routine The system does not go into the sleep state (set by ACPI PM1_CNT) when SMI# is asserted. The © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Power Management Proprietary Page 35 System BIOS has to follow the sequence below: 1. 2. 3. 4. 5. Disable Sleep SMI Control register (SLP_SMI_EN). Software workaround or system BIOS debugging routing implementation. Write SLP_SMI_Status 1 to clear this event. Rewrite sleep command to ACPI register (ACPI PM1_CNT). RSM if necessary. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Power Management Proprietary Page 36 9 APIC Programming With the AMD integrated chipset solution, the BIOS needs to program both the Northbridge and the Southbridge in order to support APIC. 9.1 Northbridge APIC Enable There are three bits in the Northbridge that the BIOS should set before enabling APIC support. • • • Enable Local APIC in AMD Athlon processors. (Set bit11 in APIC_BASE MSR(001B) register.) Reg4C[bit1] - This bit should be set to enable. It forces the CPU request with address 0xFECx_xxxx to the Southbridge. Reg4C[bit18] - This bit should be set to enable. It sets the Northbridge to accept MSI with address 0xFEEx_xxxx from the Southbridge. 9.2 Southbridge APIC Enable There are two bits in the Southbridge that the BIOS should set before enabling APIC support. • • Reg64[bit3] = 1 to enable the APIC function. Reg64[bit7] = 1 to enable the xAPIC function. It is only valid if Bit3 is being set. 9.3 IOAPIC Base Address The IOAPIC base address can be defined at SMBus PCI Reg. 74h. The power-on default value is FEC00000h. Note: This register is 32-bit access only. The BIOS should not use the byte restore mechanism to restore its value during S3 resume. 9.4 APIC IRQ Assignment SB600 has IRQ assignments under APIC mode as follows: • • • • • • • • • • IRQ0~15 – legacy IRQ IRQ 16 – PCI INTA IRQ 17 – PCI INTB IRQ 18 – PCI INTC IRQ 19 – PCI INTD IRQ 20 – PCI INTE IRQ 21 – PCI INTF IRQ 22 – PCI INTG INT 23 – PCI INTH IRQ 09 – ACPI SCI SCI is still as low-level trigger with APIC enabled. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) APIC Programming Proprietary Page 37 9.5 APIC IRQ Routing During the BIOS POST, the BIOS will do normal PCI IRQ routing through port C00h/C01h. Once APIC is fully enabled by the OS, the routing in C00h/C01 must be all cleared to zero. The following is a sample ASL code that may be incorporated into the BIOS: Name(PICF,0x00) Method(_PIC, 0x01, NotSerialized) { Store (Arg0, PICF) If(Arg0) { \_SB.PCI0.LPC0.DSPI() // clear interrupt at 0xC00/0xC01 } } OperationRegion(PIRQ, SystemIO, 0xC00, 0x2) Field(PIRQ, ByteAcc, NoLock, Preserve) { PIID, 8, PIDA, 8 } IndexField(PIID, PIDA, ByteAcc, NoLock, Preserve) { PIRA, 8, PIRB, 8, PIRC, 8, PIRD, 8, PIRS, 8 Offset(0x09), PIRE, 8, PIRF, 8, PIRG, 8, PIRH, 8 } Method(DSPI) { Store(0x00, PIRA) Store(0x00, PIRB) Store(0x00, PIRC) Store(0x00, PIRD) Store(0x00, PIRS) Store(0x00, PIRE) Store(0x00, PIRF) Store(0x00, PIRG) Store(0x00, PIRH) } © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) APIC Programming Proprietary Page 38 10 Watchdog Timer To enable the watchdog timer in the SB600, the following registers must be initialized: • • • Enable the watchdog timer by resetting bit 0 in PMIO register 069h. Set bit 3 in SMBus PCI Config (Bus 0 Device 20 Function 0) Reg 41h to enable the watchdog decode. Ensure that the watchdog timer base address is set to a non zero value, typically 0FEC000F0h. The watchdog base address is set at PMIO address 6Ch-6Fh as shown in the sample program below. (PMIO is addressed as byte index/data): Sample Program: mov dx,0CD6h ; PMIO index register mov al,6Fh ; Most significant base address location out dx,al ; Set the index to 6Fh mov dx,0CD7h ; PMIO data register mov al,0FEh out dx,al mov dx,0CD6h ; PMIO index register mov al,6Eh ; Second significant base address location out dx,al ; Set the index to 6Eh mov dx,0CD7h ; PMIO data register mov al,0C0h out dx,al mov dx,0CD6h ; PMIO index register mov al,6Dh ; Third significant base address location out dx,al ; Set the index to 6Dh mov dx,0CD7h ; PMIO data register mov al,00h ; Third significant base address out dx,al ; Most significant base address ; Second significant base address © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Watchdog Timer Proprietary Page 39 mov dx,0CD6h ; PMIO index register mov al,6Ch ; Least significant base address location out dx,al ; Set the index to 6Ch mov dx,0CD7h ; PMIO data register mov al,0F0h out dx,al ; Least significant base address To verify that the watchdog timer works correctly, perform the following steps: • • • Write 100 (count) to the watchdog count register at address 0FEC000F4h. Enable and start the watchdog timer by writing 00000081h to the watchdog control register at 0FEC000F0h. The counter will start decrementing and will reset the system once it reaches 0. This means that the watchdog timer is working as designed. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Watchdog Timer Proprietary Page 40 11 A-Link Bridge 11.1 A-Link Registers The registers are accessed using an address-register/data-register mechanism. The address register is AB_INDX[31:0], and the data register is AB_DATA[31:0]. 31:30 RegSpace[1:0] 29:17 Reserved 16:2 Register address[16:2] 1:0 Reserved AB_INDX [31:0] 31:0 Data[31:0] AB_DATA[31:0] RegSpace[1:0] 00b 01b 10b 11b AXINDC Index/Data Registers. (AX_INDXC) AXINPD Index/Data Registers (AX_INDXP) A-Link Express Configuration (AXCFG) A-Link Bridge Configuration (ABCFG) Definition of RegSpace[1:0] In order to read or write a particular register, the software will write the register address and the register space identifier to AB_INDX and then do a read or write to AB_DATA. This is analogous to how PCI configuration reads and writes work through I/O addresses CF8h/CFCh. The location of AB_INDX in the I/O space is defined by the abRegBaseAddr register located at Device 14h, function 0, register 0F0h. The AB_DATA register address is offset 4h from the AB_INDX address. The address of the AB_INDX must be 8 byte aligned. 31:3 BaseAddr[31:3] 2:0 Rsv abRegBAR[31:0] at Bus 0, Device 14h, Function 0, Register 0F0h AXCFG and ABCFG registers are accessed indirectly through AB_INDX/AB_DATA. To read or write a particular register through AB_INDX/AB_DATA, the register address and the register space identifier is first written to AB_INDX. The specified register is then accessed by doing a read or write to AB_DATA (see the example below). Access to AXINDC and AXINDP registers requires a second level of indirection. Registers in these spaces are addressed through the following indirection registers: AX_INDEXC/AX_DATAC and AX_INDEXP/AX_DATAP. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) A-Link Bridge Proprietary Page 41 Register Indirect Address AX_INDXC 30h AX_DATAC 34h AX_INDXP 38h AX_DATAP 3Ch Example: To write to register 21h in the INDXC space with a data of 00, the following steps are required: 1. Out 30h to AB_INDX. This will prepare to write register from INDXC 2. Out 21h to AB_DATA. This will set register 21h of INDXC 3. Out 34h to AB_INDX. This will prepare to write data to register defined in steps 1 and 2 above 4. Out 00 to AB_DATA. This will write the data to the register defined n steps 1 and 2 above. 11.2 Programming Procedure Indirect access is required to access both A-Link Express Configuration and A-Link Bridge Configuration register space. The programming procedure is as follows: Write: 1. Set the A-Link bridge register access address. This address is set at device 14h, function 0, register 0F0h. This is an I/O address and needs to be set only once after power-up. The I/O address must be on a 8-byte boundary (i.e., 3 LS bits must be zeroes). Example: To set C80h as an A-Link bridge register access address: mov dx,0CF8h ; To access device 14h, function 0 mov eax,8000A0F0h ; out dx,eax mov dx,0CFCh mov eax,00000C80h out dx,eax ; A-Link bridge register access address Note: Although the 32-bit I/O address is set for the A-Link bridge (e.g., 00000C80h), the bridge may be accessed by a 16-bit address (i.e., 0C80h). The MS word is set to 00 by default (see the example below). 2. Write the register address in the AB_INDX. Example: To write to the A-Link Bridge configuration register space at 90h: mov dx,0c80h ; I/O address index assigned to A-Link © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) A-Link Bridge Proprietary Page 42 mov eax, 0C0000090h ; Bits[31:30] = 11 for A-Link Bridge register ; space out dx,eax ; Register index is set mov dx,0c84h ; I/O address for data mov eax,00000001h ; Power down 2 lanes to save power out dx,eax Read: Use a similar indirect procedure to read out the register value inside AB and BIF. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) A-Link Bridge Proprietary Page 43 12 High Precision Event Timer (HPET) The SB600 includes an industry standard High Precision Event Timers (HPET). The details and the operation of the timer are described in the IA-PC HPET specification. This section describes the timer initialization in the SB600 chipset. 12.1 Initialization For SB600 is HPET usage is required, then during the early POST, the timer base address must be programmed in Device 14h, Function 0, register 14h. This base address is also reported to the operating system through the ACPI table as specified in the specification. In addition, the HPET interrupts may also be enabled through Device 14h, Function 0, register 64h, bit 10. 12.1.1 Sample Initialization Code HpetBaseAddress EQU 0FED00000H ; OEM specific address ; Set Base address in Device 14h, Function 0, Register 14h mov mov out mov mov out dx,0CF8h eax,8000A014h dx,eax dx,0CFCh eax,0FED00000h dx,eax ; PCI index register ; Bus 0, Device 14h, Function 0, Register 14h ; Set PCI index to register 14h ; PCI data register ; Base address, OEM specific ; Enable the HPET interrupts, if needed. Set Device 14h, Function 0, Register 64h, bit 10 mov mov out mov in or out dx,0CF8h eax,8000A064h dx,eax dx,0CFCh eax,dx eax,00000400h dx,eax ; PCI index register ; Bus 0, Device 14h, Function 0, Register 64h ; Set PCI index to register 64h ; PCI data register ; Read current value of register 64h ; Set bit 10 © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) High Precision Event Timer (HPET) Proprietary Page 44 12.2 ACPI HPET Description Table As described in the specification, an ACPI HPET table is required to report the base address to the operating system. The table includes a ACPI table header, and HPET table-specific fields. The sample values for the HPET specific fields are as follows: Event Timer Block ID Base Address (Lower 4 bytes) DD Base Address (Middle 4 bytes) DD Base Address (Upper 4 bytes) HPET Number DB Minimum Clock Tick DD 00000000h 00000800h 0FED00000h DD 00000000h 00h DW 37EEh ; ; ; Address on 32 bit system ; Used on 64 bit system ; ; 14318 (decimal) 12.3 HPET Support for Longhorn For the SB600, PM_IO register 72h bits [2:0] should be set to 111b for Longhorn support. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) High Precision Event Timer (HPET) Proprietary Page 45 13 Common Interface Module – CIM-SB600 13.1 CIM-SB600 Architecture CIM-SB600 employs a modular component design with an open interface definition such that the amount of functional components included, the sequence these components are called, and the way these components are called could all be different, depend on different requirements of different OEM projects/platforms. CIM-SB600 requires bios code base provides addresses (for ex. SMBUS Base Address). SB600-CIM can be divided into four functional sub modules: • Power On Reset initialization (SBPOR) • POST initialization. • RUNTIME initialization. • SMM Module The following diagram is a conceptual overview of the AMD SB600-CIM infrastructure and its functional modules in relative with a typical system BIOS power on boot up timeframe. Each modular component (functional module) will be introduced in more detail in later chapters. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Common Interface Module – CIM-SB600 Proprietary Page 46 System PowerOn SBCIM - SBPOR Initialization Module CPU Initialization, NorthBridge Initialization Restore memory controller configuration etc Is S3 resume? Memory detection. System BIOS shadowing NO Yes SBCIM Post Initialization submodule – AtiSbBeforePciInit 1. Reads the PCIE base address from SBCIM Runtime submodule AtiSbBfPciRestore NorthBridge and saves it for further use to do PCI config using MMIO access. 2. Enable or Disable South Bridge devices depending on input data structure values. 3. Reset usb controllers. 4. Enable or disable thermal trip function. 5. Call SBCIM Runtime submodules SBCIM Runtime sub module – 1. Route SATA controllers to different AB-ports depending on input parameters 2. Program prefetch for IDE, USB and PCIB. 3. Program SATA class code 4. Restore Subsystem IDs for all the SB devices Restore PCI devices and do other S3 resume tasks PCI enumeration and resource allocation SBCIM Runtime sub module – 1.Initialize SATA PHY SBCIM Post Initialization submodule – AtiSbAfterPciInit SBCIM Runtime submodule - 1. Configure High definition Audio (Azalia) 2.Detect and configure AC-97 modem 3.Detect and configure MC-97 modem 4.Initialize USB PHY settings and most of the other settings which are recommended in RPR. AtiSbAfPciRestore Do other S3 resume tasks. Jump to Wakeup vector. SBCIM SMI sub module AtiSbSmiService 1. Check & service if SMI due to keyboard reset Configures all IO Devices. Enumerate USB Detect and Initialize boot devices Option ROM initliazation BIOS Setup etc System BIOS SMI handler Operating System Load bootloader and give control to OS © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) SBCIM Post Initialization submodule – AtiSbLatePost 1.Initialize some of the PCI bridge registers which are recommended in RPR. 2.Initialize the SBCIM SMI data structure 3.Program some of RPR settings for SATA controller Common Interface Module – CIM-SB600 Proprietary Page 47 13.2 CIM-SB600 Build Configuration SBCIM module provides the BIOS developer the flexibility to assign their own values (for programmable options such as SMBUS port address). SB module configuration requirement from BIOS code base: Override Symbol ATI_BIOS_SIZE ATI_SMBUS_BASE_ADDRESS ATI_SIO_PME_BASE_ADDRESS sb_acpi_base_tbl: acpi_base STRUC pm1evt dw ? pm1ctr dw ? pmtmr dw ? cpuctr dw ? gpe0 dw ? smicmd dw ? pmactl dw ? ssctl dw ? acpi_base ends ATI_ACPI_WDRT_BASE Description BIOS FlashROM size. Set to 100000h if you are using 1MB flash part. SMBus base address(I2C port address); by default , ASF Base Address is set ATI_SMBUS _BASE_ADDRESS +10h This is a base for SIO PME 8 IO addresses should be provided by bios code base. ;pmio 2ah ;pmio 2eh ATI_HPET_BASE WatchDog timer base address is set to 0xFEC000F0 by default HPET base address 13.3 CIM-SB600 Setup Input Data Structure Before calling any SBCIM module interfaces (except SBPOR), the following input data structure has to be filled depending on the options selected in BIOS setup. It is up to the BIOS porting engineer to decide whether to give a user option or use a fixed value. Since this Input Data Structure is needed all the time (both during POST and runtime), it is necessary this data structure is placed in the runtime segment © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Common Interface Module – CIM-SB600 Proprietary Page 48 ATI_SB_CFG_STRUCT ACAF DD STRUC 0 ; ATI CFG ASL Flags ; BIT0:TPMF ; BIT1:STHP: SATA HOT Plug ; BIT2:SHPG: Second IDE Hot Plug ; BITx:xxxx DB 1 ; 0:None 1:SATA 1 ; 0:IDE 1:RAID 2:AHCI 3 ; 0:disable 1:enable 1 ; 0:disable 1:enable 0 ; 0:AUTO 1:disable 2:enable 0 ; 0:AUTO 1:disable 2:enable DB 0 ; 0:AUTO 1:disable 2:enable 1 ; 0:disable 1:enable 0 ; 0:AUTO 1:disable 2:enable 0 ; 0:Not Detected 1:Detected 0 ; 0:disable 1:enable 0 ; 0:disable 1:enable DB 4 ; 1 byte 0 ; 0:disable 1:enable DB 4 ; 1 byte 0 ; 0:disable 1:enable 0 ; 0:disable 1:enable 0 ; 0:BLINK 1:ALINK 0 ; BIT0/1/2/3 connected of PM/PS/SM/SS SATA_CHANNEL SATA_CLASS DB USB11 DB USB20 DB AC97_AUDIO DB MC97_MODEM DB AZALIA AZA_PIN_CFG DB FRONT_PANEL DB FP_DETECTED DB SATA_SMBUS DB SPD_SPEC DB AL_CLK_DELAY AL_CLK_GATE DB BL_CLK_DELAY BL_CLK_GATE DB DS_PT DB USB_XLINK DB sb600_sata_sts db fan_ctrl db 15h fan0 HWM_FAN <> fan1 HWM_FAN <> fan2 HWM_FAN <> ATI_SB_CFG_STRUCT ends HWM_FAN CTRL STRUC DB 1 Auto DB Linear DB DutyValue DB Misc DB FreqDiv DB 0 LowDuty DB MedDuty DB Multiplier DB LowTemplo DB LowTempHi DB MedTemplo DB MedTempHi DB HighTemplo DB HighTempHi DB LinearRange DB LinearAdjust DB LinearHoldCount DB HWM_FAN ends 0 0 0 0 ; 0 0 0 0 0 0 0 0 0 0 0 0 ; 0:Disabled 1:En w/o Temp ; 2:En w/ Temp0 3:En w/ AMDSI ; 0:Disabled 1:Enabled ; 0:Disabled 1:Enabled ; 0:Output Low 1:Output High ; ; ; ; ; ; ; ; ; ; ; ; © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Common Interface Module – CIM-SB600 Proprietary Page 49 Description of Data Structure Option SATA_CHANNEL Description Enable/Disable SATA controllers SATA_CLASS SATA controller operating mode SATA_SMBUS Enable/Disable SATA SMBUS. There is only one SATA SMBUS (I2C) interface for the two SATA controllers Enable/Disable USB1.1 OHCI controllers. USB11 USB20 Enable/Disable USB2.0 EHCI controller AC97_AUDIO Enable/Disable AC97 controller. MC97_MODEM Enable/Disable MC97 controller. AZALIA Enable/Disable Azalia High Definition (HD) audio controller. AZA_PIN_CFG Azalia Pin Configuration. FRONT_PANEL Front Panel Audio. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Values 0 – Disable SATA controllers 1 - Enable SATA controller 0 - IDE Mode 1 - RAID Mode 2 - AHCI 0 – Disable 1 - Enable Default Value 1 - Enable SATA controllers 0 – Disable all OHCI controllers and EHCI 1 - Enable all OHCI controllers 0 – Disable EHCI controller 1 - Enable EHCI controller 0 - Detect AC ‘97 controller automatically 1 - Always disable AC ’97 controller 2 - Always enable AC ’97 controller 0 - Detect MC ‘97 controller automatically 1 - Always disable MC ’97 controller 2 - Always enable MC ’97 controller 0 - Detect Azalia HD audio controller automatically 1 - Always disable Azalia HD audio controller 2 - Always enable Azalia HD audio controller 0 – Disable 1 – Enable 0 - Detect front panel audio automatically 1 - Always disable front panel audio automatically 1 - Enable all OHCI controllers 0 - IDE Mode 1 – Enable 1 - Enable EHCI controller 0 - Detect AC ‘97 controller automatically 0 - Detect MC ‘97 controller automatically 0 - Detect Azalia HD audio controller automatically 1 – Enable 0- Auto Common Interface Module – CIM-SB600 Proprietary Page 50 13.4 CIM-SB600 SBPOR Sub-Module Southbridge Power-On Reset initialization (SBPOR) is designed to support initialization of Southbridge registers common across all platforms. Design take in to consideration that code will be executed in stackless environment. There is no inputs requirement for this module except that the return address should be setup in SP. Module files: SB_POR.INC Support files: SB_CMN.INC, ATISBCFG.INC 13.4.1 SBPOR Interface ATISBPowerOnResetInitJSP – This routine initializes all the Southbridge device registers (including ACPI Base Address registers, PMIO registers) and applies LPC-DMA deadlock workaround. This routine should be called before the BIOS decides whether it is normal POST or S3 resume. 13.5 CIM-SB600 SB POST Initialize Sub-Module SB POST Initialization module consists of three parts: 1. Early POST (Before PCI enumeration in system BIOS). 2. Mid POST (After PCI enumeration in system BIOS). 3. Late POST(Before BIOS gives control to bootloader) All the PCI configuration access is done using the memory mapped PCI configuration space. Module files: ATISBPT.INC, AM97POST.INC, AZALIAP.INC, SATAPOST.INC, USBPOST.INC Support files: SB_CFG.INC, ATISBCFG.INC, SB_CMN.INC, SB_CMNPT.INC The entire POST initialization module is needed only during POST and it can be discarded at end of POST. 13.5.1 Requirements The following requirements should be met before calling any interface in the SB POST initialization module. 1. Module required stack to be present to operate. 2. Input Data Structure (ATI_SB_CFG_SETUP_SETTING) should be initialized before doing any interface to this module. 3. System should be in 4GB flat mode (also called as Big Real Mode). 4. PCIE BAR should be initialized before calling any interface in this module. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Common Interface Module – CIM-SB600 Proprietary Page 51 13.5.2 SB POST Interface AtiSbBeforePciInit – This interface should be called during early POST after memory detection and BIOS shadowing but before PCI bus enumeration. The segment where the SBCIM Runtime sub module is included should be made writable before calling this routine, since this interfaces updates some of the variables which are present in the SBCIM runtime module. This routine: 1. 2. 3. 4. 5. 6. 7. Reads the PCIE base address from the Northbridge and saves it for further use to do PCI configuration using MMIO access. Enables or Disables Southbridge devices depending on input data structure values. Calls runtime sub module interface to route SATA controllers to different AB-ports depending on input parameters Calls runtime sub module interface to program prefetch for IDE, USB and PCIB. Calls runtime sub module interface to program SATA class code. Resets USB controllers. Enables or disables thermal trip function. AtiSbAfterPciInit – This interface should be called after PCI enumeration is done in the BIOS so that the resources for all the devices are assigned. This interface: Calls runtime sub module interface to initialize SATA PHY and reset SATA channels. Configures High definition Audio (Azalia). Detects and configures AC-97 modem. Detects and configures MC-97 modem. Initializes USB PHY settings and most of the other settings which are recommended in Register Programming requirements ( RPR). 6. Calls runtime sub module interface to program Subsystem IDs for all the SB devices. 7. Enables IDE dynamic power saving. 1. 2. 3. 4. 5. AtiSbLatePost - This interface should be called very late in the POST after hard disk detection and BIOS setup is done. This module: 1. 2. 3. Initializes some of the PCI bridge registers which are recommended in RPR. Initializes the SBCIM SMI data structure. Programs some of the RPR settings for SATA controller. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Common Interface Module – CIM-SB600 Proprietary Page 52 13.6 CIM-SB600 SB Runtime Interface Sub-Module SB Runtime Initialization module is consistent of two parts. 1) Normal boot. 2) S3 resume All the PCI configuration accesses are done using the memory mapped PCI configuration space. Module files: ATISBRT.INC, AM97RT.INC, AZALIAR.INC, SATART.INC, USBRT.INC Support files: ATISBCFG.INC, SB_CMN.INC, SB_CMNPT.INC The entire runtime initialization module is needed during POST and S3 resume and so it should not be discarded at end of BIOS POST. The input data structure ATI_SB_CFG_STRUCT is defined in this module. 13.6.1 Requirements The following requirements should be met before calling any interface in the SB POST initialization module: Module stack should be available.. Input Data Structure (ATI_SB_CFG_SETUP_SETTING) should be initialized before doing any interface to this module. 3. System should be in 4GB flat mode (also called as Big Real Mode). 4. PCIE BAR should be initialized before calling any interface module. 1. 2. 13.6.2 SB Runtime Interface During normal boot, most of the SBCIM runtime interfaces are called by SBCIM POST interface. There is no interface between the BIOS code base and SBCIM runtime sub module during the normal POST. There are following interfaces between the BIOS code base and SBCIM runtime sub module during the S3 resume. AtiSbBfPciRestore - This interface should be called during S3 resume after memory is restored and before PCI devices are restored. This interface: 1. 2. 3. 4. Routes SATA controllers to different AB-ports depending on input parameters Programs prefetch for IDE, USB and PCIB. Programs SATA class code Restores Subsystem IDs for all the SB devices AtiSBAfRestore – This interface should be called during S3 resume after PCI devices are restored. This interface: 1. Initializes SATA PHY and reset SATA channels. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Common Interface Module – CIM-SB600 Proprietary Page 53 2. 3. Enables Keyboard reset SMI for P4 platforms. Enables IDE dynamic power savings. 13.7 CIM-SB600 SB SMI Interface Sub-Module SBCIM SMI interface implements workarounds for some of the known hardware issues Module files: SBSMI.INC, KBRST_WA.INC, RTC_WA.INC, SATATRAP.INC, Support files: ATISBCFG.INC, SB_CMN.INC, SB_CMNPT.INC 13.7.1 Requirements The following requirements should be met before calling any interface in the SB SMI module: Stack should be present. Input Data Structure (ATI_SB_CFG_SETUP_SETTING) should be initialized before doing any interface to this module. 3. PCIE BAR should be initialized before calling this interface module. 4. ES should be set to access 0-4GB address. 1. 2. 13.8 CIM-SB600 SPI Interface Sub-Module Atispi.inc is the only interface to access SPI ROM. This file provides a number of routines to enable the BIOS to read the SPI part ID, to read/write the SPI status register, to erase the sector/block/chip, and to flash a byte to SPI part. The BIOS vendor or customer should implement their own interface routine between flash utility/POST and atisp.inc. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Common Interface Module – CIM-SB600 Proprietary Page 54 14 Sample Programs 14.1 SB600 Register Initialization on Power-Up 14.1.1 Initialization of PCI IRQ Routing Before Resource Allocation The PCI IRQs are programmed using index/data format through registers C00h/C01h. Index 0 through 3, and 9 through 0Ch, are for PCI IRQ lines. Index 4 is for SCI interrupt generated for ACPI, and Index 5 is for SMBus interrupt. Sample Program The following routine initializes all PCI interrupts to zeroes. PciIrqInit push proc ax push dx mov ax,00h near ; Save the registers used in the routine ; Start with index = 0, data = 0 ClearPciIrq0To5: mov dx,0C00h ; PCI interrupt index port out dx,al ; Set index mov dx,0C01h ; PCI interrupt data port xchg ah,al ; Get data in AL = 0 out dx,al xchg ah,al ; AL = Index inc al ; Point to next index cmp al, 05h ; Max index in 0 to 5 series jbe ClearPciIrq0To5 ; Initialize for index 9 through 0Ch mov ax,0009h ; To clear from index 09 to 0Ch ClearPciIrq9ToC: mov dx,0C00h ; PCI interrupt index port out dx,al ; Set index mov dx,0C01h ; PCI interrupt data port xchg ah,al ; Get data in AL = 0 out dx,al xchg ah,al ; AL = Index inc al ; Point to next index © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 55 cmp al, 0Ch jbe ClearPciIrq9ToC pop dx pop ax ; Max index in 9 to 0Ch series ; Restore the registers ret PciIrqInit endp 14.2 Setup Options 14.2.1 64 Bytes DMA If 64 bytes DMA is selected for P2P bridge, set PCI to PCI bridge device 14h, function 4, register 4Bh, bit 4 to 1. 14.2.2 USB Overcurrent Detection Disable To disable over-current detection for both OHCI and EHCI USB devices, set USB device 13h, function 0 register 51h, bit 0, Sample Program UsbOverCurrentDetectionDisable proc near push eax ; Save registers used by this device push dx mov dx,0CF8h ; PCI configuration space index register mov eax,8000A850h ; Device 13h, function 0, register 50h-53h out dx,eax mov dx,0CFDh ; PCI configuration space. Access reg. 51h in dx,al ; Read current value or al,01h ; Set to disable USB OHCI and EHCI overcurrent out dx,al pop dx ; Restore registers used by this routine pop eax ; ret UsbOverCurrentDetectionDisable endp © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 56 14.2.3 C3 Support The C3 support depends on the processor PBE support and HyperThreading. The ACPI FACP table also needs to be modified for C3 support. The description below applies only to the SB600 registers affected by C3 support. PM I/O register 51h is set to C3 latency as follows: C3 Latency = (bits[5:0] of PM I/O register 51h) * 8us Hence for recommended C3 Latency = 40us, set (bits[5:0] of PM I/O register 51h) = 5 For deep C3 support, in addition to setting register 51h above, PM I/O register 50h bit0 must also be set to 1. 14.2.4 Subtractive Decoding for P2P Bridge To enable the subtractive decoding, set device 14h, function 4, P2P bridge register 40h bit 5 to 1. Sample Program: EnableSubtractiveDecoding push eax push dx mov dx,0CF8h mov eax,8000A440h out dx,eax mov dx,0CFCh in al,dx or al,20h out dx,al proc near ; Save registers used in this routine ; Bus 0, device 14h, function 4, register 40h, P2P ; To access register 40h ; Set bit 5 for subtractive decoding ; Set bit 7 of register 4Bh to show subtractive decoding in class code reg. 09h bit 0 mov dx,0CF8h mov eax,8000A448h ; Bus 0, device 14h, function 4, register 48h-4Bh out dx,eax mov dx,0CFFh in al,dx or al,80h out dx,al ; To access register 4Bh ; Control bit for PI register © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 57 pop dx pop eax ; Restore registers ret EnableSubtractiveDecoding endp 14.2.5 Enable/Disable On-Chip SATA SATA may be disabled/enabled by Miscellaneous SATA register located at bus 0, device 14h, function 0, register ADh. Bit 0 of this register, when set to 1, enables SATA. Sample Program: This sample program will enable SATA EnableDisableSataSampleProgram proc near push eax ; Save registers used by this routine push dx mov dx,0CF8h ; To access PCI configuration space mov eax,8000A0ACh ; Register ACh to AFh of device 14h, function 0 out dx,eax mov dx,0CFDh ; To access register 0ADh in al,dx ; Read current value or al,01h ; Set bit 0 to enable SATA out dx,al ; Write the byte back pop dx pop eax ret EnableDisableSataSampleProgram endp 14.2.6 Change Class ID for SATA The SATA device may have multiple PCI class codes. Some of the class codes are as follows:: Class IDE Class AHCI Class Raid Class Base Class Code Register 0Bh 01h 01h 01h SubClass Code Register 0Ah 01h 06h 04h Programming Interface Register 09h 8Fh 01h 00h To change the class ID for the SATA*: 1. Enable header write: Set the SATA PCI Bus 0, Device 12h, Function 0 (for SATA), register 40h, bit 0 to 1. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 58 2. Write to the same SATA device registers (9h, 0Ah, 0Bh) with the class ID. 3. Disable header write: Clear the SATA device register 40h, bit 0 to 0. Sample Program: This sample program will set SATA-1, Bus 0, Device 12h, Function 0 to class code for IDE class 01018Fh. SataClassIdSampleProgram push eax push dx proc near ; Save registers used by this routine ; Enable header write. Set register 40h, bit 0 to 1 mov dx,0CF8h ; To access PCI configuration space mov eax, 80009040h ; SATA-1, Bus 0, Device 12h, Function 0, reg 40h out dx,eax mov dx,CFCh ; To access register 40h in al,dx ; Current register 40h value or al,01h out dx,al ; Write class code. Register 08 is read only and will not be modified mov dx,0CF8h ; To access PCI configuration space mov eax,80009008h ; Bus 0, Device 12h, Function 0 , register 08h out dx,eax mov dx,0CFCh ; To access dword at starting at register 08h mov eax,01018F00h ; Reg 08 is read only. Reg 9-0b will be written out dx,eax ; Disable header write. Clear register 40h, bit 0 to 0 mov dx,0CF8h ; To access PCI configuration space mov eax, 80009040h ; SATA-1, Bus 0, Device 12h, Function 0, reg 40h out dx,eax mov dx,0CFCh ; To access register 40h in al,dx ; Current register 40h value and al,0FEh out dx,al pop dx ; Restore registers used by this routine © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 59 pop eax ret SataClassIdSampleProgram endp Note: For SB600 revision A11 and revision A12, the SATA controller was at Bus 0, Device 13h, function 3 and 4. 14.2.7 Disable AC97 Audio or MC97 Modem For, the AC97 PCI device 14h, functions 5 or 6 may be disabled by setting bits in PM I/O register 59h. The setting of bit 0 will mask out AC97 device 14h, function 5. the setting of bit 1 will mask out MC97 device 14h, function 6. Any memory resources assigned to audio and modem PCI devices should also be cleared prior to disabling these devices. Sample Program: The following sample program shows how to disable AC97 audio device 14h, function 5. To disable MC97 modem device 14h, function 6, set PM I/O register bit 1. DisableAc97Sample push eax push dx proc near ; Save registers used by this routine ; If AC97 audio was previously enabled, clear the memory resources assigned. mov dx,0CD6h ; PM I/O index register mov al, 59h ; AC97 Mask register out dx,al mov dx,0CD7h ; PM I/O data register in al,dx ; Read current value test al,01h ; Is the AC97 audio previously disabled jnz DisableDone ; Already disabled , so exit the routine ; Clear the address at reg. 10h of AC97 device 14h, function 5 to release the resources mov dx,0CF8h ; To access PCI configuration register mov eax,8000A510h ; Device 14h, function 5, register 10h out dx,eax mov dx,0CFCh ; To access dword starting at 10h mov eax,0 ; out dx,eax ; Disable the AC-97 device by setting PM I/O register 59h bit 0 to 1 © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 60 mov dx,0CD6h ; PM I/O index register mov al, 59h ; AC97 Mask register out dx,al mov dx,0CD7h ; PM I/O data register in al,dx ; Read current value or al,01h ; Set AC97 audio to disable out dx,al DisableDone: pop dx pop eax ret DisableAc97Sample endp 14.2.8 Enable EHCI Controller The memory must be in big real mode to access the USB operational registers through the 32-bit base address register. push eax push dx push ebp push es ; Set up a temporary Base Address Register (BAR) ; The value of BAR will be board specific and vary with the BIOS vendor ; This step may be skipped if the BAR is already assigned. mov dx,0CF8h mov eax,80009810h out dx,eax mov dx,0CFCh mov eax,0E0000000h out dx,eax mov ebp,eax ; BAR for device 13h, function 0 ; This value will differ with the BIOS vendor ; Enable memory, I/O, and bus master access mov dx,0CF8h mov eax,80009A04h out dx,eax © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 61 mov dx,0CFCh mov al, 07h out dx,al ; Issue host controller reset through operational register 0 xor ax,ax mov es,ax mov eax, es:[ebp] or eax,02h mov es:[ebp],eax ; To access operational registers through BAR ; Enables the USB PHY auto calibration resistor mov eax, 00020000h mov es[ebp+0C0h], eax ; Program EHCI FIFO threshold. ; Out threshold = 20h, In threshold = 10h for 2lane NB-SB link ; Out threshold = 20h, In threshold = 40h for 4lane NB-SB link mov eax,00200010h mov es:[ebp+0A4h],eax pop es pop ebp pop dx pop eax ret © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 62 14.2.9 Enable OHCI Controller OHCI Device 13h, function 1 and 5, may be enabled/disabled by bits 1 and 5 in SMBus device 14h, function 0, register 068h. If disable is done after BAR resources are allocated, set BAR to zero. USB SMI enabled, when appropriate, at SMBus device 14h, function 0, register 65h, bit 7. Sample Program: Enable 5 OHCIs . EnableOhciSample proc near push eax ; Save registers used in this program push dx mov dx,0CF8h mov eax,8000A068h ; SMBus device 14h, function 0, register 68h out dx,eax mov dx,0CFCh ; To read register 068h in al,dx ; or al,03Eh ; Set bit [5:1] to enable OHCI out dx,al pop dx pop eax ; To access PCI configuration space ret EnableOhciSample endp 14.3 IDE Settings The primary IDE channel is enabled on power-up by default. Refer to section 14.3.4 to disable the IDE channels. 14.3.1 PIO Mode Settings IDE PIO mode and timing is set through the registers 40h-43h, 4Ah-4Bh, the PIO timing is programmed in registers 40h-43h, and PIO mode is programmed in registers 4Ah–4Bh. The PCI IDE device is 14h, function 1. Reg 40h Primary slave timing Reg 41h Primary master timing Reg 42h Secondary slave timing © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 63 Reg 43h Secondary master timing Reg 4Ah, bits[2:0] Primary master mode number Reg 4Ah bits[6:4] Primary slave mode number Reg 4Bh bits[2:0] Secondary master mode number Reg 4Bh bits[6:4] Secondary slave mode number PIO timing has two components – the command width, and the recovery width. The widths are stated in number of cycles of PCICLK and the following values are defined for PCICLK frequency of 33MHz and 66MHz: Width PIO Mode 4 PIO Mode 3 PIO Mode 2 PIO Mode 1 PIO Mode 0 Command Width (cycles) Recovery Width 2 2 3 4 5 0 2 4 7 Dh Sample program: Set primary master to PIO mode 4 ; Set register 41h with timing and 4Ah, bits[2:0] with mode number mov dx,0CF8h ; To set PCI configuration space index mov eax,8000A140h ; To access registers 40h-43h out dx,eax mov dx,0CFDh ; To access PCI configuration space data at 41h mov al,20h ; Timing for mode 4 (See table above) out dx,al ; Set PIO timing mov dx,0CF8h ; To set PCI configuration space index mov eax,8000A148h ; To access registers 48-4Bh out dx,eax ; mov dx,0CFEh ; To access register 4Ah in al,dx ; Read current value and al,0F8h ; Clear bits 2:0 or al,4h ; Set to mode 4 out dx,al ; © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 64 14.3.2 Multiword DMA Settings IDE multiword DMA setting is done through registers 44h to 47h. The timing for the multiword DMA modes has two components – the command width, and the recovery width. Width Command Width (Cycles) Recovery Width (Cycles) MW DMA Mode 2 2h 0h MW DMA Mode 1 2h 1h MW DMA Mode 0 7h 7h The register assignment is as follows: Register 44h Primary slave MW DMA timing Register 45h Primary master MW DMA timing Register 46h Secondary slave MW DMA timing Register 47h Secondary master MW DMA timing Sample Program: The following Assembly language code sample programs the secondary master to multiword DMA Mode 2 (i.e., it programs register 47h to 20h). mov dx,0CF8h ; To access PCI configuration space, index register mov eax,8000A144h ; Device 14h, function 1, registers 44h-47h out dx,eax ; mov dx,0CFFh ; To access PCI register 47h mov al,20h ; Timing for MW DMA Mode 2 out dx,al 14.3.3 UDMA Mode Settings IDE UDMA enable/disable is set through register 54h, and the UDMA mode is set through the registers 56h-57h. The register assignments are as follows: Register 54h, bit[0] Primary master. 1 = Enable, 0 = Disable Register 54h, bit[1] Primary slave. 1 = Enable, 0 = Disable Register 54h, bit[2] Secondary master. 1 = Enable, 0 = Disable Register 54h, bit[3] Secondary slave. 1 = Enable, 0 = Disable Register 56h, bits[2:0] Primary master UDMA mode, 000b-110b Register 56h, bits[6:4] Primary slave UDMA mode, 000b-110b Register 57h, bits[2:0] Secondary master UDMA mode, 000b-110b Register 57h, bits[6:4] Secondary slave UDMA mode, 000b-110b © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 65 Sample Program The sample program below sets the primary slave to UDMA mode 5: push eax push dx ; For primary slave, set register 56h, bits [6:4] to 5 for UDMA mode 5 mov dx,0CF8h ; To access PCI configuration space of IDE controller mov eax,8000A154h ; Device 14h, function 1, register space 54h – 57h out dx,eax ; mov dx,0CFEh ; To access register 56h in al,dx ; Current value of register 56h and al,8Fh ; Clear bits 6:4. or al,50h ; Set UDMA 5 mode for primary slave. out dx,al ; Enable primary slave UDMA mode in register 54h, bit 1, mov dx,CFCh ; To access register 54h in al,dx ; Current value of register 54h or al,02h ; Set bit 1 out dx,al pop dx pop eax ret 14.3.4 IDE Channel Disable To disable an IDE channel, the BIOS must: 1. Set IDE channel programmable logic enable bit in Reg09h. 2. Set IDE channel disable bit in Reg48h to disable IDE channel. Note: No IDE I/O port access is allowed between step (1) and step (2). It is recommended that the BIOS execute step (2) immediately after step (1). There should be no ‘in’ instruction between two ‘out’ instructions to register 09h and 48h. After the IDE disable sequence, the IDE channel programmable logic enable bit will be cleared automatically. Sample program: Disable secondary channel ; Read current register 48h-49h on IDE controller push push eax bx © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 66 push dx mov mov out mov in mov eax,8000A148h dx,0CF8h dx,eax dx,0CFCh ax,dx bx,ax ; To modify register 48h on the IDE controller ; PCI index register ; Set index for register 48h-4Bh ; Set PCI data register for 48h ; Read register 49h ; Save current 48h-49h registers ; Unlock the IDE controller to be enabled/disabled bit mov mov out mov in or out eax,8000A108h dx,0CF8h dx,eax dx,0CFDh al,dx al,08h dx,al ; To write to PCI register 08h on IDE controller ; PCI index register ; Set index for registers 08h – 0Bh ; To read register 09h ; Read register 09h ; Set bit 3 to enable secondary channel program ; Write back to register ; Disable the secondary IDE channel. The register 48h-49h is saved in BX mov mov out mov or mov out eax,8000A148h dx,0CF8h dx,eax dx,0CFCh bx,0100h ax,bx dx,ax ; To modify register 48h on the IDE controller ; PCI index register ; Set index for register 48h-4Bh ; Set PCI data register for 49h ; Set bit 8 of 48h ; Lock in the secondary channel to enable/disable bit mov mov out mov in and out eax,8000A108h dx,0CF8h dx,eax dx,0CFDh al,dx al,0F7h dx,al pop pop pop dx bx eax ; To write to PCI register 08h on IDE controller ; PCI index register ; Set index for registers 08h – 0Bh ; To read register 09h ; Read register 09h ; Clear bit 3 to enable secondary channel program ; Write back to register ; End of secondary channel disable © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 67 14.3.5 IDE Channel Enable The primary IDE channel is enabled as power-on default. To enable an IDE channel after they have been disabled, the BIOS must: 1. Set the IDE channel programmable logic enable bit in Reg09h. 2. Clear the IDE channel disable bit in Reg48h to enable the IDE channel. Note: No IDE I/O port access is allowed between step (1) and step (2). It is recommended that the BIOS execute step (2) immediately after step (1). There should be no ‘in’ instruction between two ‘out’ instructions to register 09h and 48h. Sample program: Enable Primary IDE channel ; Read current register 48h-49h on IDE controller push push push eax bx dx mov mov out mov in mov eax,8000A148h dx,0CF8h dx,eax dx,0CFCh ax,dx bx,ax ; To modify register 48h on the IDE controller ; PCI index register ; Set index for register 48h-4Bh ; Set PCI data register for 48h ; Read register 49h ; Save current 48h-49h registers ; Unlock the IDE controller to enable/disable bit mov mov out mov in or out eax,8000A108h dx,0CF8h dx,eax dx,0CFDh al,dx al,02h dx,al ; To write to PCI register 08h on IDE controller ; PCI index register ; Set index for registers 08h – 0Bh ; To read register 09h ; Read register 09h ; Set bit 1 to enable primary channel program ; Write back to register ; Enable the primary IDE channel. The register 48h-49h is saved in BX mov mov out mov and mov out eax,8000A148h dx,0CF8h dx,eax dx,0CFCh bx,0FFFEh ax,bx dx,ax ; To modify register 48h on the IDE controller ; PCI index register ; Set index for register 48h-4Bh ; Set PCI data register for 49h ; Clear bit 0 of 48h ; Lock in the primary channel to enable/disable bit © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 68 mov mov out mov in and out eax,8000A108h dx,0CF8h dx,eax dx,0CFDh al,dx al,0FBh dx,al pop pop pop dx bx eax ; To write to PCI register 08h on IDE controller ; PCI index register ; Set index for registers 08h – 0Bh ; To read register 09h ; Read register 09h ; Clear bit 1 to enable primary channel program ; Write back to register ; End of primary channel enable 14.4 USB Controller Reset at Hard Reset This USB controller reset sequence is not required for SB600 14.5 Clock Throttling The SB600 has a register for setting clock duty cycle (throttling). The CLKVALUE register is located in the ACPI region. Bit 4 of this register, when set to 1, enables clock throttling, while bits [3:1] select the duty cycle from 12.5% to 87.5%, in seven steps of 12.5% each. The address of ACPI CLKVALUE register is at PM IO location (Index/Data through 0CD6h/0CD7h) index 26h and 27h. CLKVALUE register Bit 4 Bits[3:1] Duty Cycle 0 xxx 100% 1 000 Invalid 1 001 12.5% 1 010 25% 1 011 37.5% 1 100 50% 1 101 62.5% 1 110 75% 1 111 87.5% Sample program: Clock throttling ClockThrottleExample proc push ax push dx near ; Save registers used by this routine © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 69 ; Get ACPI CLKVALUE register address from PM IO index 26h and 27h mov dx,0CD6h ; Set the PM IO register index mov al, 27h ; Index = High byte, ACPI clock address out dx,al mov dx,0CD7h ; Get PM IO register data in al,dx ; High byte of ACPI clock address mov ah,al ; Save High byte of address mov dx,0CD6h ; Set the PM IO register index mov al, 26h ; Index = Low byte, ACPI clock address out dx,al mov dx,0CD7h ; Get PM IO register data in al,dx ; Low byte of ACPI clock address mov dx,ax ; dx = CLKVALUE address ; Enable throttling (set bit 4=1) and set duty cycle to 50%,(Set bits [3:1]=100b in al,dx ; Read current CLKVALue and al,0E1h ; Keep the unused bits or al,18h ; Set bit 4 to enable and bits [3:1]=100b for 50% out dx,al ; Write new throttling value pop dx ; Restore registers used by this routine pop ax ret ClockThrottleExample endp © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 70 14.6 Lid Switch The Lid Switch programming is implementation specific. In a typical implementation the output of the debounced lid switch is connected to one of the Gevent or GPM pins. The Gevent and GPM pins can trigger the ACPI event, and the trigger polarity is programmable through the Southbridge register. The Gevent and GPM pins are in S5 plane and hence can trigger the event in S5 state. 14.6.1 Lid Switch Hardware Connection This sample program assumes that the SB600 ExtEvent0 pin is connected to the lid switch. 14.6.2 Associated Registers The registers associated with ExtEvent0 are: ExtEvent0 Trigger polarity at PMIO index 37h, bit 0. Set to 1 for rising edge trigger and clear to 0 for falling edge trigger. (Default = 0) ExtEvent0 signal to S5 region at PMIO index 78h bit 2. Set to 1 for S5 plane. (Default =1). ExtEvent0 set as ACPI function at Device 14h, function 0, register 66h, bit 6. Set to 1 to enable ExtEvent0 as ACPI function. ExtEvent0 is a multi function pin and it must be set for the ACPI function. ExtEvent0 ACPI event enable. This register is part of ACPI GPE0 block. The address is BIOS implementation specific (refer to PMIO register at index 28h and 29h). For this sample program, the ACPI GPE0 block starts at 820h. ExtEvent0 is bit 16 of the block. 14.6.3 BIOS Initialization. The registers must be initialized during the boot up process. The order of initialization is not critical. The initialization may be done in the BIOS at any stage of the boot up process after GPE0 block is set in PMIO registers 28h,29h). ; Select EvtEvent0 as ACPI pin by setting device 14h, function 0, register 66h, bit 6 = 1 mov eax,8000A064h ; To access registers 64h-67h mov dx,0CF8h ; PCI index register out dx,eax mov dx,0CFEh ; PCI data register for 66h in al,dx ; Read current value or al,40h ; Set bit 6 out dx,al ; Program ExtEvent0 trigger polarity to 0 (falling edge trigger ) to indicate lid open . ; Clear PMIO register 37h, bit 0 = 0 © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 71 mov dx,0CD6h ; PMIO index mov al,37h ; out dx,al ; Set PMIO index mov dx,0CD7h ; PMIO data in al,dx ; Read current value and al,0Feh ; Falling edge trigger (on closing the lid) out dx,al ; Enable ExtEvent bit in ACPI GPE0 enable block. mov dx,824h ; GPE0 enable is offset 4 of GPE0 block in eax,dx ; Read GPE0 block or eax,0100h ; Set bit 16, ExeEvent0 enable out dx,eax ; Enable ExtEvent0 to S5 plane. This step is optional as the bit is set by default. mov dx,0CD6h ; PMIO index mov al,78h ; S5 plane enable register out dx,al mov dx,0CD7h ; PMIO data register in al,dx ; Read current register or al,04h ; ExtEvent0 to S5 plane out dx,al 14.6.4 ACPI Programming The ASL code defines the following: The operation region where the lid polarity resides in address space. In our example that is at PMIO register 37h, bit 0. A device called \_SB.LID with HID of PNP0C0D. Method _LID to return current lid status. A _PRW package that defines wake from S4 states (which includes wake from S1, S3 also). Event handler _GPE. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 72 /////////////////////////////////////////////////////////////////////////////////////////////////////////// //Code for Lid Switch control. // // This code is based on Lid switch connected to ExtEvent0. // // ExtEvent0 causes ACPI event 16 or 0x10 // // ExtEvent0 trigger polarity is controlled by GPIO register 37h, bit 0 // // PMIO reg 37h bit 0 = 0 Trigger ACPI event on falling edge // // PMIO reg 37h bit 0 = 1 Trigger ACPI event on rising edge // // // // In addition, ExtEvent0 needs to be enabled for ACPI event. Device 14h, // // function 0, register 66h, bit 6 should be set to 1 in the BIOS // initialization code for ExtEvent0 to be ACPI event causing SMI. // ///////////////////////////////////////////////////////////////////////////////////////// // // OperationRegion (PMIO, SystemIO, 0xCD6, 0x2) Field (PMIO, ByteAcc, NoLock, Preserve) { INPM,8, DAPM,8 } IndexField (INPM, DAPM, ByteAcc, NoLock, Preserve) //R07 { Offset(0x37), // To change trigger polarity for ExtEvent0 LPOL,1, // 1 = rising edge, 0 = falling edge // } //end of indexed field // Define the Lid Device. Lid switch is connected to ExtEvent0 which // causes ACPI event 16 (0x10) Device(\_SB.LID) { Name(_HID, EISAID("PNP0C0D")) Method(_LID) { © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 73 if(LPOL){Return(0x00)} // Lid is closed else {Return(0x1)} // Lid is open } Name(_PRW, Package(2) { 0x10, 0x03} // ACPI event 0x10 can wake-up from S3 ) } //ACPI event Scope(\_GPE) { Method(_L10) { Not(LPOL, LPOL) // Reverse the polarity from sleep to Notify(\_SB.LID, 0x80) // Notify the OS that status has changed. wake and vice versa } } 14.7 SATA Hot Plug Sample Program Scope(\_GPE) { Method(_L1F,0x0,Notserialized) //hot plug // GPE0 Block bit 31 is used for SATA { sleep(2000) // For SATA at Bus 0, Device 12h, Function 0, channel 0 device // Check if change in the status of the Serial ATA PHY if(\_SB_.PCI0.SATA.STA0) { // BAR5, offset 10ah, bit0 Notify(\_SB.PCI0.SATA.PRID.P_D0, 0x00) sleep(2000) Notify(\_SB.PCI0.SATA.PRID, 0x01) sleep(2000) store(\_SB_.PCI0.SATA.STA0,\_SB_.PCI0.SATA.STA0) //Clear Status of // master SATA } © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 74 // For SATA at Bus 0, Device 12h, Function 0, channel 1 device // Check if change in the status of the Serial ATA PHY if(\_SB_.PCI0.SATA.STA1) { // BAR5, offset 18Ah, bit 0 Notify(\_SB.PCI0.SATA.SECD.S_D0, 0x00) sleep(2000) Notify(\_SB.PCI0.SATA.SECD, 0x01) sleep(2000) store(\_SB_.PCI0.SATA.STA1,\_SB_.PCI0.SATA.STA1) // of slave SAT //clear Status } // For SATA at Bus 0, Device 11h, Function 0 , channel 0 device // Check if change in the status of the Serial ATA PHY if(\_SB_.PCI0.SAT2.STA0){ //BAR5, offset 10ah, bit0 Notify(\_SB.PCI0.SAT2.PRID.P_D0, 0x00) sleep(2000) Notify(\_SB.PCI0.SAT2.PRID, 0x01) sleep(2000) store(\_SB_.PCI0.SAT2.STA0,\_SB_.PCI0.SAT2.STA0) //clear Status // of master SATA } // For SATA at Bus 0, Device 11h, Function 0, channel 1 device // Check if change in the status of the Serial ATA PHY if(\_SB_.PCI0.SAT2.STA1) { //BAR4, offset 18Ah, bit 0 Notify(\_SB.PCI0.SAT2.SECD.S_D0, 0x00) sleep(2000) Notify(\_SB.PCI0.SAT2.SECD, 0x01) sleep(2000) store(\_SB_.PCI0.SAT2.STA1,\_SB_.PCI0.SAT2.STA1) // Status of slave SAT //clear } } } // End of Method(_L1F) // End of Scope(\_GPE) © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 75 Scope(\_SB_.PCI0.SATA) // Bus 0, Device 12h, Function 0 { OperationRegion(BAR5, SystemMemory, 0xFFF80000, 0x1000) // address should be replaced by the BIOS // The Field(BAR5, AnyAcc, NoLock, Preserve) { Offset(0x104), // Channel 0 CSTX, 1, // Device detected but no communication with Phy CST0, 1, // Communication with Phy established. (Physgood) Offset(0x10A), // Channel 0 STA0, 1, // Change in Phy status Offset(0x184), // Channel 1 CSTY, 1, // Device detected but no communications with Phy CST1, 1, // Communication with Phy established (Physgood) Offset(0x18A), // Channel 1 STA1, 1, // Changes in Phy status } // End of Field(BAR5 ……) Method(_INI) { // For Bus 0, Device 12h, Function 0 if(\_SB_.PCI0.SATA.STA0){ store(\_SB_.PCI0.SATA.STA0,\_SB_.PCI0.SATA.STA0) //clear channel // 0 SATA status } if(\_SB_.PCI0.SATA.STA1){ store(\_SB_.PCI0.SATA.STA1,\_SB_.PCI0.SATA.STA1) //clear channel // 1 SATA status } } // End of Method (_INI) Device(PRID) { Name(_ADR, 0) // IDE Primary Channel © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 76 Device(P_D0) { Name(_ADR, 0) // Drive 0 - Master Method(_STA,0){ if (\_SB_.PCI0.SATA.CST0) { //If SATA detected return(0x0f) } else { return (0x00) } } End of Method (_STA ) } // End of P_D0 } // End of PRID Device(SECD) { Name(_ADR, 1) // IDE Secondary Channel Device(S_D0) { Name(_ADR, 0) // Drive 0 - Master Method(_STA,0){ if (\_SB_.PCI0.SATA.CST1) { // If SATA detected return(0x0f) } else { return (0x00) } } / // End of Method (_STA) } // End of S_D0 } // End of SECD } // End of Scope(_SB.PCI0.SATA) © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 77 // Bus 0, Device 11h, Function 0 Scope(\_SB_.PCI0.SAT2) { OperationRegion(BAR5, SystemMemory, 0xFFF80000, 0x1000) // Replace //address in BIOS Field(BAR5, AnyAcc, NoLock, Preserve) { Offset(0x104), //Channel 0 CSTX, 1, // Device detected but no communication with Phy CST0, 1, // Communication with PHY established Offset(0x10A), STA0, 1, Offset(0x184), // Channel 0 // Change in PHY status // Channel 1 CSTY, 1, // Device detected but no communication // with PHY CST1, 1, // Communication with PHY established Offset(0x18A), STA1, 1, } //Channel 1 // Change in PHY status // End of Field Method(_INI) { // For Bus 0, Device 11h, Function 0 if(\_SB_.PCI0.SAT2.STA0){ store(\_SB_.PCI0.SAT2.STA0,\_SB_.PCI0.SAT2.STA0) // clear SATA // channel0 status } if(\_SB_.PCI0.SAT2.STA1){ store(\_SB_.PCI0.SAT2.STA1,\_SB_.PCI0.SAT2.STA1) // clear SATA // channel 1 status } } // End of Method(_INI) Device(PRID) { © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 78 Name(_ADR, 0) // IDE Primary Channel Device(P_D0) { Name(_ADR, 0) // Drive 0 - Master Method(_STA,0){ if (\_SB_.PCI0.SAT2.CST0) { // If SATA detected return(0x0f) } else { return (0x00) } } // End of Method(_STA) } // End of P_D0 } // End of PRID Device(SECD) { Name(_ADR, 1) // IDE Secondary Channel Device(S_D0) { Name(_ADR, 0) // Drive 0 - Master Method(_STA,0){ if (\_SB_.PCI0.SAT2.CST1) { // If SATA detected return(0x0f) } else { return (0x00) } } //End of Method(_STA) } // End of S_D0 } // End of SECD } // End of Scope(\_SB_.PCI0.SAT2) © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 79 14.8 Temperature Limit Shutdown through SMI# The program to shut down the system when the temperature exceeds a pre-set limit requires the following: 1. A temperature sensing diode or thermistor positioned under the CPU socket. 2. A Super I/O device capable of monitoring the temperature and toggle an SMI# line when the temperature exceeds the pre-set limit. 3. SMI programming in the SB600 to shut down the system. The discussion below assumes that an ITE-8712 Super I/O is present in the system and is connected to the thermal diode to measure temperature-1 and temperature-2, and a thermistor to measure temperature-3. This code example shows thermal programming in the Super I/O, and SMI programming related to thermal shutdown. Please refer to ITE-8712 Super I/O device manual for register details. This code example assumes that the GP47 from Super I/O is connected to the ExtEvent1 pin on the SB600. 14.8.1 Setting Up ITE 8712 Super I/O Registers ITE 8712 Super I/O registers are set during the boot up process through the BIOS program. 1. Set the Environmental Controller base address. Select a base address in the I/O range which is not used by any device and is also accessible to the LPC. The address range is 8 bytes. In this example the I/O address 228h – 22Fh will be used. This address is set in Super I/O logical device 04h, registers 60h, and 61h. After the base address is set, the environment registers are accessed by index/data method at base address+5 as index, and base address+6 as data. For this example the index/data address would be 22Dh/22Eh. ; Define equates for index/data, shutdown temperature, and Super I/O access port. Sensor_Port TemperatureLimit SuperIo_Config_Port call SuperIoEnterConfig EQU EQU EQU 22Dh 75 2EH ; Write 87h, 01h, 55h, 55h to SuperIo ; Enable the access to device 04 registers, i.e. set Super I/O address register to 04 ; Device 04 is the Environment controller mov mov out dx,2Eh al, 07h dx,al ; Super I/O index ; Register 07 is device select mov mov out dx,2Fh al, 04h dx,al ; Super I/O data ; Set register to 04 © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 80 ; Logical Device Number (LDN) is now set to 04. ; Set Base address to 0228h in registers 60h and 61h of this LDN = 04 ; Set MS byte of base address to 02h mov mov out dx,2Eh dx,60h dx,al mov mov out dx,2Fh al,02h dx,al ; Super I/O index ; MS byte of 0228h ; Set LS byte of the base address to 28h mov mov out dx,2Eh dx,61h dx,al mov mov out dx,2Fh al,28h dx,al ; Super I/O index ; MS byte of 0228h ; The environment (temperature, voltage etc.) registers can now be accessed ; through Base address + 5 (index), and base address + 6, i.e. 22Dh and 22Eh mov ah, TemperatureLimit ; Selected through setup or OEM ; Set limit for 1st Thermistor ; Register 40h is for upper limit, register 41h is for lower limit ; If lower limit is set to 7Fh, then the temperature controller is in the comparator mode mov dx,Sensor_Port mov al,40h out dx,al ; The register is written through index at 22Dh ; To set the upper limit mov dx,Sensor_Port+1 mov al,ah out dx,al ; The temperature value is written through 22Eh ; Get the Temperature upper limit mov dx,Sensor_Port mov al,41h out dx,al ; The register is written through index at 22Dh ; To set the lower limit mov dx,Sensor_Port+1 mov al,7fh out dx,al ; Lower limit of 7Fh to enable the comparator mode ; Set limit for 2nd Thermistor © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 81 ; Register 42h is for upper limit, register 43h is for lower limit ; If lower limit is 7Fh then it is comparator mode mov dx,Sensor_Port mov al,42h out dx,al ; The register is written through index at 22Dh ; To set the upper limit mov dx,Sensor_Port+1 mov al,ah out dx,al ; The temperature value is written through 22Eh ; Get the Temperature upper limit mov dx,Sensor_Port mov al,43h out dx,al ; The register is written through index at 22Dh ; To set the lower limit mov dx,Sensor_Port+1 mov al,7fh out dx,al ; The temperature value is written through 22Eh ; For comparator mode ; Set limit for 3rd Thermistor ; Register 44h is for upper limit, register 45h is for lower limit ; If lower limit is 7Fh then it is comparator mode mov dx,Sensor_Port mov al,44h out dx,al ; The register is written through index at 22Dh ; To set the upper limit mov dx,Sensor_Port+1 mov al,ah out dx,al ; The temperature value is written through 22Eh ; Get the temperature upper limit mov ; The register is written through index at 22Dh dx,Sensor_Port mov al,45h out dx,al ; To set the lower limit mov dx,Sensor_Port+1 mov al,7Fh out dx,al ; The temperature value is written through 22Eh ; For comparator mode ; Set Thermal out limit registers at 52h, 53h, 54h mov dx,Sensor_Port ; The register is written through index at 22Dh mov al,52h ; Thermal limit for diode 1 out dx,al mov dx,Sensor_Port+1 ; The temperature value is written through 22Eh mov al,ah ; Get temperature upper limit out dx,al mov dx,Sensor_Port ; The register is written through index at 22Dh mov al,53h ; Thermal limit for diode 2 © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 82 out dx,al mov dx,Sensor_Port+1 mov al,ah out dx,al mov dx,Sensor_Port mov al,54h out dx,al ; The temperature value is written through 22Eh ; Get temperature upper limit ; The register is written through index at 22Dh ; Thermal limit for thermistor 3 mov dx,Sensor_Port+1 mov al,ah out dx,al ; The temperature value is written through 22Eh ; Get temperature upper limit ; Read status from register 03 to clear the status mov dx,Sensor_Port mov al,03h out dx,al ; The register is read through index at 22Dh mov dx,Sensor_Port+1 in al,dx ; The register is read through data at 22Eh ; Enable Interrupt/SMI# register at 00. mov dx,Sensor_Port mov al,00h out dx,al ; The register is written through index at 22Dh mov dx,Sensor_Port+1 in al,dx or al,07h out dx,al ; The register is written through data at 22Eh ; Enable IRQ, SMI# and enable monitoring ; In logical device 7, set SMI registers, thermal out register, ; and enable the SMI. ; 1. Set logical device to 7 mov al,07h mov dx,SuperIo_Config_Port out dx,al mov al,07h inc dx out dx,al ; 2. Set SMI pin to GP47 ( 00 100 111 = 27h) in reg 0f4h © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 83 ; Register F4 is SMI mapping register mov al,0f4h mov dx,SuperIo_Config_Port out dx,al inc dx mov al,27h out dx,al ; 3. Set Thermal output to GP47(00 100 111 = 27h) in reg 0F5h ; Register 0F is thermal mapping register mov al,0f5h mov dx,SuperIo_Config_Port out dx,al inc dx mov al,27h out dx,al ; Enable generation of SMI# due to environment condition mov al,0f0h mov dx,SuperIo_Config_Port out dx,al inc in or out dx al,dx al,10h dx,al ; Set GP47 as general purpose pins ; Registers 25h and 28 are global access registers ; Select IRTX/GP47 as GP47 mov mov out inc in or out al,028h ; For GP-47 dx,SuperIo_Config_Port dx,al dx al,dx al,80h dx,al call SuperioExitConfig ; Write 02, 02 to Super IO © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 84 14.8.2 Initialize Southbridge Registers for SMI# ; Enable the base address range (228h-22Fh) in the LPC register. ; Address range 228h-22Fh is enabled in LPC Device 14h, function 3, Register 45h, bit 1 mov mov out mov in or out dx,0CF8h eax,8000A344h dx,eax dx,0CFDh al,dx al,02h dx,al ; PCI device access index register ; Device 14h, function 3, registers 44h-47h ; To access register 45h ; Read register 45h ; Set bit 1 ; Configure ExtEvent1 for SMI#. ExtEvent1 is configured through PMIO ; register 32h bit 3:2 = 00 mov mov out mov in and or out dx,0cd6h al,32h dx,al dx,0cd7h al,dx al,0f3h al,04h dx,al ; Clear bits 3:2 ; Set [3:2] = 01 for SMI ; Set ExtEvent1 for SMI, negative edge through PMIO register 37h, bit 1 = 0 mov mov out mov in and out dx,0cd6h al,37h dx,al dx,0cd7h al,dx al,0fdh dx,al ; Clear bit 1 for Negative edge ; Also set PMIO register 04 to enable ExtEvent1 for SMI mov mov out mov in or out dx,0cd6h al,04h dx,al dx,0cd7h al,dx al,02h dx,al ; End of temperature setting program. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 85 14.8.3 SMI Programming to Shut Down the System The SMI programming should shut down the system when the line connected to Super I/O for temperature over run is set. ; Check ExtEvent1 status. The ExtEvent1 status is on the PMIO register 07h, bit 1 mov mov out mov in test jnz dx,0cd6h al,07h dx,al dx,0cd7h al,dx al,02h ShutDownFromTalert ; Bit 1 for ExtEvent1 ; ExtEvent1 is set, shut down ; Check alternate ExtEvent 1 status mov dx,0cd6h mov dl,3ah out dx,al mov dx,0cd7h in al,dx test al,02h jz NoShutDown ShutDownFromTalert: mov dx,PM1a_CNT_BLK+1 mov al,34h out dx,al jmp $ ; Set S5 status NoShutDown: ; Continue with rest of the SMI routine. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 86 14.9 Sleep Trap through SMI# This sample code provides an SMI# routine to develop some software workarounds or debugging functions before the system goes into ACPI sleep state. 14.9.1 Enable Sleep SMI# in ACPI ASL code The following example implements Sleep SMI Control Register enable by the ASL code _PTS method. Method(_PTS, 1) { Store(One, \_SB.PCI0.SMBS.SLPS) PTS(Arg0) Store(0, Index(WAKP,0)) // Clear Wake up package. Store(0, Index(WAKP,1)) // Clear Wake up package. } OperationRegion (PMIO, SystemIO, 0xCD6, 0x2) Field (PMIO, ByteAcc, NoLock, Preserve) { INPM,8, DAPM,8 } IndexField (INPM, DAPM, ByteAcc, NoLock, Preserve) //R07 { Offset(0x00), ,1, TM1E,1, // Set to 1 to enable SMI# when PM_TIMER1 expires TM2E,1, // Set to 1 to enable SMI# when PM_TIMER2 expires Offset(0x01), ,1, TM1S,1, // SB sets this bit to indicate that PM_TIMER1 has expired TM2S,1, // SB sets this bit to indicate that PM_TIMER2 has expired Offset(0x04), ,7, SLPS,1, // Set this bit to enable SLP2SMI Offset(0x1C), ,3, MKME,1, // PI3E,1, // I2E,1, // PI1E,1, // PI0E,1, // Offset(0x1D), ,3, MKMS,1, // PI3S,1, // PI2S,1, // © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 87 } PI1S,1, // PI0S,1, // Offset(0x55), SPRE,1, // Offset(0x68), ,3, TPDE,1, // ,1 //end of indexed field 14.9.2 Sleep Trap SMI Routine The following example implements the Sleep Trap SMI# routine. SLPSMI_HANDLER_FAR PROC FAR PUBLIC ; Read PM1_CNT to get sleep type mov dx, PM_BASE_ADDRESS + SB_PM_IO_PM1_CTRL; (PM1_CNT 04h) in ax, dx and ax, PM1_CNT_SLP_TYPE shr ah, 2 dec ah ; For Table from 0 movzx bx, ah shl bx, 1 add bx, offset cs:ACPISleepTrapTable mov bx, cs:[bx] SleepTrapPatch: cmp word ptr cs:[bx], 0ffffh je short SleepTrapPatchDone push bx call word ptr cs:[bx] pop bx inc bx inc bx jmp short SleepTrapPatch SleepTrapPatchDone: ; Disable SLP2SMI mov ah, SB_PMU_REG_04 ; PMIO_REG.04h[7] = SLP2SMI Enable call read_io_pmu and al, NOT BIT7 ; Disable SLP2SMI call write_io_pmu ; Clear SLP2SMI Status bit mov ah, SB_PMU_REG_07 ; PMIO_REG.07h[7] = SLP2SMI Status call read_io_pmu call write_io_pmu ; Write 1 to clear SLP2SMI status ; Write SLP_EN to put SB into sleep mov dx, PM_BASE_ADDRESS + SB_PM_IO_PM1_CTRL ; PM1_CNT 04h in ax, dx or ax, Bit13 ; PM1_CNT_SLP_EN out dx, ax ; This puts SB to sleep state ret © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 88 SLPSMI_HANDLER_FAR ENDP ACPISleepTrapTable label byte dw offset cs:ACPISleepTrapS1 dw offset cs:ACPISleepTrapS2 dw offset cs:ACPISleepTrapS3 dw offset cs:ACPISleepTrapS4 dw offset cs:ACPISleepTrapS5 ACPISleepTrapS1 label byte dw offset cs:OemACPISleepTrapS1 dw 0FFFFh ACPISleepTrapS3 label byte dw offset cs:Port80_Enabled dw offset cs:OemACPISleepTrapS3 dw 0FFFFh ACPISleepTrapS4 label byte dw offset cs:OemACPISleepTrapS4 dw 0FFFFh ACPISleepTrapS5 label byte dw offset cs:OemACPISleepTrapS5 dw 0FFFFh 14.10 HD Audio – Detection and Configuration :******************************************************************************************** ; Equates for HD Audio detection ATI_PCIE_BAR3 EQU 0E0000000h ATI_AZALIA_BUS_DEV_FUN EQU ATI_SMBUS_BUS_DEV_FUN EQU (14h) shl 3 + 2 (14H) shl 3 + 0 ATI_AZALIA_ID EQU 0437b1002h ATI_AZALIA_ExtBlk_Addr ATI_AZALIA_ExtBlk_DATA EQU EQU 0F8h 0FCh ; NB BAR3 base at Bus-0,Dev-0, func-0,Reg 1ch ;************************************************************************ ; ATI_SB_Cfg_Azalia * ; * ; Configure HD Audios * ; * ; Input: EBP = 0 * ; ES = 0 * ; * ;************************************************************************ ATI_SB_Cfg_Azalia PROC NEAR © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 89 pushad ; OEM specific CMOS setup option to Auto/Disable/enable HD Audio mov ax,CMOS_Azalia_Option ; OEM specific call ReadCMOSOption ; OEM specific cmp ax,1 ; Is it disable? je DisableAzaliaController ; Jump for Disable HD Audio ; OEMs may have a CMOS setup option for HD Audio clock source. ; The options may be USB 48 MHz or HD Audio 48 MHz ; Device 14h, function 2, register 43h, bit 0 = 1 for HD Audio clock. mov call cmp jne or call ax,CMOS_AZA_CLOCK ; OEM specific ReadCMOSOption ; OEM specific ax,1 ; Is it HD Audio clock at 48 MHz @f ; Jump for USB 48 MHz clock Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_AZALIA_BUS_DEV_FUN shl 12 + 043h], BIT0 ; Enable xAz48Mhz pin as clock source of 48Mhz ATI_fixed_delay_1ms_far ; Wait 1ms @@: ; OEM may have CMOS setup for HD Audio snoop (0= Disable, 1=Enable) ; Device 14h, function 2, register 42, bits 1 and 0 control snoop option mov call cmp jne or ax,CMOS_AZA_SNOOP ; OEM specific ReadCMOSOption ; OEM specific ax,1 ; Snoop enabled? @f ; Jump for disabled Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_AZALIA_BUS_DEV_FUN shl 12 + 042h], BIT1 ; Enable Snoop @@: ; Set subsystem ID at device 14h, function 2, register 2ch mov Dword PTR es:[ebp+ATI_PCIE_BAR3+ATI_AZALIA_BUS_DEV_FUN shl 12 +2Ch], \ ATI_AZALIA_ID ; Write subsystem ID ; Get HD Audio controller’s memory mapped configuration registers in EBX mov ebx, Dword PTR es:[ebp+ATI_PCIE_BAR3+ATI_AZALIA_BUS_DEV_FUN shl 12 +10h] ; HD Audio port configuration through Extended registers. ; Extended registers are addressed as index/data through SMBUS(Dev 14h, func0) register 0F8h, ; and 0FCh ; Index 0 is Audio port configuration. 2 bit per port for total of 4 ports mov Dword PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 \ +ATI_AZALIA_ExtBlk_Addr], 0 ; Set index to 0 ; First declare all the lines as GPIO lines by setting index 00 to all 1's. ; Then read the input status of these line at index 02 ; If the line is 1, it is guaranteed not to be HD Audio ; This step is necessary because after S4 resume from ring, the AC-97 gives same status as HD Audio © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 90 mov call mov shr mov mov Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 \ +SB600_SMBUS_REGFC], 11111111b ; Set to GPIO ATI_fixed_delay_1ms_far ; Wait 1ms ecx, dword PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 \ +SB600_SMBUS_REGFC] ecx,10h di,cx ; Save GPIO lines status at di[7:0] Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 \ +ATI_AZALIA_ExtBlk_DATA], 10101010b ; Set pin to HD Audio ; Interrupt routing table for HD Audio is at SMBUS ( Dev 14h, func 0) register 63h mov Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 + 063h], 0 ; Set PCI routing to #INTA ; Attempt to exit the reset state. This is done by command to exit the reset state and waiting ; for status of ready to begin operation. mov ecx, 10 ; Make up to 10 attempt to exit reset state re_do_reset: and or call test jnz loop jmp bx, BIT15+BIT14 Byte PTR ES:[ebx+08h], BIT0 ATI_fixed_delay_1ms_far Byte PTR ES:[ebx+08h], BIT0 @f re_do_reset ATI_SB_Cfg_Azalia_exit ; Clear bit0-13 ; Exit the reset state ; Wait 1ms ; Read of 1 = Ready to begin operation ; Go if reset bit is set ; Wait until ready to begin operation ; Exit because reset bit can not be set ; Ready to begin operation. ; Check codecs present by examining memory mapped register (pointed by EBX) at 0Eh @@: call mov and jnz ATI_fixed_delay_1ms_far ; Wait 1ms al, Byte PTR ES:[ebx+0eh] al, 0fh At_least_one_azalia ; State change status register ; Bits 3:0 are for state change status ; Codec present ; Disable Azalia controller and leave DisableAzaliaController: ; Clear memory access at PCI register 04 and Word PTR es:[ebp+ATI_PCIE_BAR3+ATI_AZALIA_BUS_DEV_FUN shl 12 +04h], 0 ; Disable HD Audio module through PMIO register 59h bit 3 mov mov out mov in dx,0cd6h al,59h dx,al dx,0cd7h al,dx ; PMIO index register ; Set PMIO index to 59h ; ; PMIO data register ; Read current data © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 91 not out al, BIT3 dx,al ; Clear bit 3 to disable HD Audio ; Output new data ; HD Audio port configuration through Extended registers. ; Extended registers are addressed as index/data through SMBUS(Dev 14h, func0) register 0F8h, ; and 0FCh ; Index 0 is Audio port configuration. 2 bit per port for total of 4 ports mov jmp Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 \ +ATI_AZALIA_ExtBlk_DATA], 01010101b ; Set pin routine to AC97 ATI_SB_Cfg_Azalia_exit ; Audio codec present ; Register AL has codec present bit map in bits 3:0 ; Register EBX points to memory mapped configuration registers At_least_one_azalia: mov dl, al ; After resume from S4 through ring, the AC97 lines give same status as HD Audio ; It is necessary to remove HD Audio status from those bits. The AC-97 ring resume status is in register ; DI[3:0] mov mov and xor and ax,di ah,0fh al,ah al,ah dl,al mov cl, 0 test_SDI: test jnz dl, BIT0 configure_Azalia_channel ; Get GPIO status and AC97 S4 ring wakeup ; To keep only bits 3:0 ; Keep only bits 3:0 ; Invert the AC97 ring bits ; Remove GPIO and AC-97 bits from HD Audio bits ; Test for specific codec present ; Jump, codec is present ; This specific codec is not present. Set pin config to AC97 ; This pin is set through index 0 of extended registers. ; The extended registes are accessed as index/data at SMBus (dev 14h, func 0) registers 0F8h/0FCh ; There are two bits per codec. Register CL has the codec number. mov shl shl mov shl shl xor and or jmp ah, 01b ; 01 = Set codec as AC97 ah, cl ; Move in the position for this codec ah, cl ; Two bits per codec al, 11b ; Mask for this codec al, cl ; Move it in the position for this codec al, cl ; Two bits per codec al, -1 ; Zero these two bits Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 \ +ATI_AZALIA_ExtBlk_DATA], al ; Clear channel pin config Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 \ +ATI_AZALIA_ExtBlk_DATA], ah ; Set channel pin config to AC97 test_next_SDI © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 92 configure_Azalia_channel: call ATI_SB_Cfg_Azalia_Pin_CMD ; Configure this pin test_next_SDI: shr inc cmp je jmp ; Get next codec present ; Update the codec Channel number ; Completed all channels ; Yes, jump. Reset the controller and exit ; Do the next codec dl, 1 cl cl, 4 re_do_clear_reset test_SDI ; Reset the controller and wait till it enters reset state. re_do_clear_reset: and Byte PTR ES:[ebx+08h], NOT (BIT0) test Byte PTR ES:[ebx+08h], (BIT0) jnz re_do_clear_reset ; Controller transition to reset state ; Test the reset status. 0 = Controller in reset state ; If 1, wait to enter reset state ATI_SB_Cfg_Azalia_exit: popad ret ATI_SB_Cfg_Azalia ENDP ;******************************************************************************* ; ATI_SB_Cfg_Azalia_Pin_CMD * ; * ; Configure each codec pin * ; * ; Input: cl, = channel number * ; ebx = Memory mapped configuration register address * ; * ;******************************************************************************** ATI_SB_Cfg_Azalia_Pin_CMD PROC NEAR pushad ; OEM may have CMOS setup option for Pin Configuration (0= Disable, 1=Enable) mov call cmp jne ax CMOS_Pin_Config ReadCMOSOption ax,1 ATI_SB_Cfg_Azalia_Pin_CMD_exit ; OEM specific ; OEM specific ; Jump if Pin Configuration is disabled ; Set codec channel number in bits 31:28 ; Write command for ID read shl mov or mov ecx, 28 eax, 0F0000h eax, ecx Dword PTR ES:[ebx+60h], eax ; Read IDs command ; Immediate command output register © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 93 call ATI_SB_Cfg_Azalia_Delay ; About 30 uSec delay mov cmp jne eax, Dword PTR ES:[ebx+64h] eax, 010ec0880h ATI_SB_Cfg_Azalia_Pin_CMD_exit ; Immediate command input ; Is it Realtec codec? ; This routine works only with Realtec codec mov mov si, offset Azalia_Codec_Table_Start di, offset Azalia_Codec_Table_end ; Table end does not include front panel ; OEM may have a CMOS setup selection for Front panel audio (0=Auto, 1=Disable) mov call cmp je ax CMOS_Front_Panel ; OEM specific ReadCMOSOption ; OEM specific ax,1 ; Front panel disable loop_Immediat_Command_Output_Interface ; Jump for front panel disable ; Front panel option is Auto. GPIO9 detects the front panel audio in the SB600, and GPIO8 detects the front panel audio in SB460. ;Check whether SB460?Call DetectSB460 Jz SB460_Chip ;jmp if SB460 ;Control comes here if SB600 ; Set GPIO9 as input through SMBus (Dev 14h, func 0) register A9h, bit 5 ; Read GPIO9 through SMBus (Dev 14h, func 9) register AAh, bit 5 or Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 + 0A9h], BIT5 ; Set GPIO9 Input test Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 + 0AAh], BIT5 ; GPIO9 0:connected 1:not jmp DetectFrontPanelAudio SB460_Chip: ;Control comes here if SB460 ; Set GPIO8 as input through SMBus (Dev 14h, func 0) register A9h, bit 4 ; Read GPIO8 through SMBus (Dev 14h, func 9) register AAh, bit 4 or Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 + 0A9h], BIT4 ; Set GPIO8 Input test Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 + 0AAh], BIT4 ; GPIO8 0:connected 1:not DetectFrontPanelAudio: jnz loop_Immediat_Command_Output_Interface ; Jump, Front Panel audio is not present ; Front panel audio is present. Extend the end pointer to include front panel commands mov di, offset Azalia_Codec_Table_FP_Enable_end ; Write the codec commands loop_Immediat_Command_Output_Interface: cmp si, di je ATI_SB_Cfg_Azalia_Pin_CMD_exit test_again: test Byte PTR ES:[ebx+68h], BIT0 ; End of table? ; Jump at the end of the command ; Immediate command status register © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 94 jnz mov or mov test_again eax, cs:[si] eax, ecx Dword PTR ES:[ebx+60h], eax ; If bit 0 == 1, codec is not ready for command ; Get the command from the table ; Add codec number 0 to 3 ; Write immediate command call ATI_SB_Cfg_Azalia_Delay ; About 30 uSec delay add jmp si, 4 ; Update the pointer loop_Immediat_Command_Output_Interface ; Next command ATI_SB_Cfg_Azalia_Pin_CMD_exit: popad ret ATI_SB_Cfg_Azalia_Pin_CMD ENDP ;************************************************************************ : ATI_SB_Cfg_Azalia_Delay * ; * ; Wait about 30 uSec * ; * : Input : None * ;************************************************************************ ATI_SB_Cfg_Azalia_Delay PROC NEAR push cx mov cx, 4 call ATI_fixed_delay_far ; Wait approx cx * 7 uSec pop cx ret ATI_SB_Cfg_Azalia_Delay ENDP ;*********************************************************************** ; ATI_Fixed_delay_1ms_FAR * ; * ; Delay for approx 1 mSec * ; * ; Input: None * ;************************************************************************ PUBLIC ATI_fixed_delay_1ms_FAR ATI_fixed_delay_1ms_FAR PROC FAR push cx mov cx, 1000/15 call ATI_fixed_delay pop cx ret ATI_fixed_delay_1ms_FAR ENDP ;************************************************************************ ; ATI_fixed_delay_far * © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 95 ; * ; Delay for about 30 uSec * ; Input: None * ; * ;************************************************************************ ATI_fixed_delay_far PROC FAR push ax fixed_delay_1: in al, 61h test al, 00010000b jz fixed_delay_1 dec cx jz fixed_delay_2 fixed_delay_3: in al, 61h test al, 00010000b jnz fixed_delay_3 dec cx jnz fixed_delay_1 fixed_delay_2: pop ax ret ATI_fixed_delay ENDP ; refresh_port ; refresh_port Azalia_Codec_Table_Start: dd 01471C10h dd 01471D40h dd 01471E01h dd 01471F01h dd 01571C11h dd 01571D10h dd 01571E01h dd 01571F01h dd 01671C12h dd 01671D60h dd 01671E01h dd 01671F01h dd 01771C13h dd 01771D20h dd 01771E01h dd 01771F01h dd 01871C30h dd 01871D91h dd 01871Ea1h dd 01871F01h dd 01971C00h dd 01971D00h dd 01971E00h dd 01971F40h dd 01a71C31h dd 01a71D31h © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 96 dd 01a71E81h dd 01a71F01h dd 01b71C00h dd 01b71D00h dd 01b71E00h dd 01b71F40h dd 01c71C70h dd 01c71D10h dd 01c71E33h dd 01c71F99h dd 01d71C00h dd 01d71D10h dd 01d71E7fh dd 01d71F90h dd 01e71C50h dd 01e71D00h dd 01e71E44h dd 01e71F01h dd 01f71C60h dd 01f71D00h dd 01f71Ec4h dd 01f71F01h Azalia_Codec_Table_end: dd 01971C20h dd 01971D91h dd 01971E21h dd 01971F02h dd 01B71C40h dd 01B71D41h dd 01B71EA1h dd 01B71F02h Azalia_Codec_Table_FP_Enable_end: © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Sample Programs Proprietary Page 97 Appendix: Revision History Date Nov. 2008 Rev PDF 3.00 46157_sb600_bdg_pub_3.00 Description Initial public release. © 2008 Advanced Micro Devices Inc. AMD SB600 BIOS Developer’s Guide (Public Version) Appendix: Revision History Proprietary Page 98