Power Integrations - Engineering Prototype Report

Engineering Prototype Report for EP-34 –
Single Output 30 W AC-DC Power Supply
Using TOP245Y (TOPSwitch®-GX)
Title
Specification Universal Input, 12 V at 30 W Output
Application
Generic
Author
Power Integrations Applications Department
Document
Number
EPR-34
Date
10-Feb-04
Revision
1.1
Features
•
•
•
•
•
Universal Input 85 VAC to 265 VAC
Low Parts Count
Zero Load Power Consumption <0.3 W at 115 VAC, <0.45 W at 230 VAC
Meets CISPR22B EMI with Margin
Efficiency >80%
The products and applications illustrated herein (including circuits external to the products and transformer
construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign
patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at
www.powerint.com.
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-34 – 12 V, 30 W, Universal Input
10-Feb-2004
Table Of Contents
1
2
3
4
Introduction.................................................................................................................4
Power Supply Specification ........................................................................................5
Schematic...................................................................................................................6
Circuit Description ......................................................................................................7
4.1
Input EMI Filtering ...............................................................................................7
4.2
TOPSwitch Primary .............................................................................................7
4.3
Output Rectification .............................................................................................7
4.4
Output Feedback.................................................................................................7
5 PCB Layout ................................................................................................................9
6 Bill Of Materials ........................................................................................................10
7 Transformer Specification.........................................................................................11
7.1
Electrical Diagram .............................................................................................11
7.2
Electrical Specifications.....................................................................................11
7.3
Materials............................................................................................................11
7.4
Transformer Build Diagram ...............................................................................12
7.5
Transformer Construction..................................................................................12
7.6
Transformer Sources.........................................................................................12
8 Transformer Spreadsheets .......................................................................................13
9 Performance Data ....................................................................................................15
9.1
Efficiency ...........................................................................................................15
9.2
No-load Input Power..........................................................................................15
9.3
Regulation .........................................................................................................16
9.3.1
Load ...........................................................................................................16
9.3.2
Line ............................................................................................................16
9.4
Overload Power.................................................................................................17
10
Thermal Performance ...........................................................................................18
11
Waveforms............................................................................................................19
11.1 Drain Voltage and Current, Normal Operation...................................................19
11.2 Output Voltage Start-up Profile..........................................................................19
11.3 Drain Voltage and Current Start-up Profile ........................................................19
11.4 Load Transient Response (75% to 100% Load Step) .......................................20
11.5 Output Ripple Measurements............................................................................21
11.5.1 Ripple Measurement Technique ................................................................21
11.5.2 Measurement Results ................................................................................22
12
Control Loop Measurements.................................................................................23
12.1 115 VAC Maximum Load...................................................................................23
12.2 230 VAC Maximum Load...................................................................................23
13
Conducted EMI .....................................................................................................24
14
AC Surge and 100 kHz Ring Wave Immunity .......................................................25
14.1 Common Mode Surge, 1.2/50 µs .......................................................................25
14.2 Differential Mode Surge, 1.2/50 µs ....................................................................26
14.3 Common Mode, 100 kHz Ring Wave ................................................................26
14.4 Differential Mode, 100 kHz Ring Wave..............................................................26
15
Revision History ....................................................................................................27
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 28
10-Feb-2004
EPR-34 – 12 V, 30 W, Universal Input
Important Note:
Although the EP-34 is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed
using an isolation transformer to provide the AC input to the prototype board.
Page 3 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-34 – 12 V, 30 W, Universal Input
1
10-Feb-2004
Introduction
This document is an engineering report describing a 12 V, 30 W universal input flyback
power supply, intended as a standard evaluation platform for TOPSwitch-GX.
The document contains the power supply specification, schematic, bill of materials,
transformer documentation, printed circuit board layout, and performance data.
Figure 1 – EP-34 Populated Circuit Board.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 4 of 28
10-Feb-2004
2
EPR-34 – 12 V, 30 W, Universal Input
Power Supply Specification
Description
Input
Voltage
Frequency
No-load Input Power (230 VAC)
Output
Output Voltage
Output Ripple Voltage
Output Current
Total Output Power
Continuous Output Power
Efficiency
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
85
47
265
64
0.45
VAC
Hz
W
2 Wire – no P.E.
50/60
VOUT
VRIPPLE
IOUT
11.4
12.00
12.6
150
V
mV
A
POUT
η
0
2.5
30
W
%
80
± 5%
20 MHz Bandwidth
o
Measured at POUT (30 W), 25 C
Environmental
Conducted EMI
Meets CISPR22B / EN55022B
Safety
Designed to meet IEC950,
UL1950 Class II
1.2/50 µs surge, IEC 1000-4-5,
2 / 12 Ω series impedance,
differential common mode
100 kHz ring wave, 500 A short
circuit current, differential and
common mode
Surge
4
kV
Surge
3
kV
Ambient Temperature
Page 5 of 28
TAMB
0
50
o
C
Free convection, sea level
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-34 – 12 V, 30 W, Universal Input
3
10-Feb-2004
Schematic
Figure 2 – EP-34 Schematic.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 6 of 28
10-Feb-2004
4
EPR-34 – 12 V, 30 W, Universal Input
Circuit Description
The schematic in Figure 2 shows an off-line flyback converter using the TOP245Y. The
circuit is designed for 85 VAC to 265 VAC input and provides an isolated 12 V, 2.5 A
output.
4.1
Input EMI Filtering
Capacitor CX1 and the leakage inductance of L1 filter differential mode conducted EMI.
Inductor L1 and CY1 filter common mode conducted EMI.
4.2
TOPSwitch Primary
Rectifier bridge BR1 and C1 provide a high voltage DC supply rail for the primary
circuitry. The DC rail is applied to the primary winding of T1. The other side of the
transformer primary is driven by the integrated MOSFET in U1. Diode D1 and VR1 clamp
leakage spikes generated when the MOSFET in U1 switches off. Capacitor C2 reduces
the operating temperature of VR1 by bypassing the leading edge of the primary leakage
spike away from VR1. Resistor R3 provides damping to reduce drain ringing improving
EMI. Resistor R1 sets the low-line turn-on threshold to approximately 69 VAC and sets
the overvoltage shutdown level to approximately 320 VAC. Resistor R4 sets the U1
current limit to approximately 70% of its nominal value. Resistor R2 reduces the U1
current limit as a function of line voltage so that maximum overload power is relatively
constant (<50 W) over the entire input voltage range. This limits the output power
delivered during fault conditions. Capacitor C4 bypasses the U1 CONTROL pin while C3
has three functions. It provides the energy required by U1 during startup, sets the autorestart frequency during fault conditions, and also acts to roll off the gain of U1 as a
function of frequency. Resistor R5 adds a zero to the control loop to stabilize the power
supply. Diode D2 and capacitor C5 provide rectified and filtered bias power for U2 and
U1.
4.3
Output Rectification
The secondary of T1 is rectified and filtered by D3, C6, and C7. Inductor L2 and C8
provide additional high frequency filtering. Resistor R11 and C11 provide snubbing for
D3. Choosing the proper snubber values is important for low zero-load power
consumption and for high frequency EMI suppression. The snubber components were
chosen so that the turn-on voltage spike at the D3 anode is slightly under-damped.
Increasing C11 and reducing R11 will improve damping and high frequency EMI, at the
cost of higher zero load power consumption.
4.4
Output Feedback
Resistors R9 and R10 divide down the supply output voltage and apply it to the reference
pin of error amplifier U3. Shunt regulator U3 drives the LED of optocoupler U2 through
resistor R6 to provide feedback information to the U1 CONTROL pin. The optocoupler
output also provides power to U1 from the bias winding during normal operating
conditions. Diode D4 and capacitor C10 apply drive to the optocoupler during supply
Page 7 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-34 – 12 V, 30 W, Universal Input
10-Feb-2004
startup to reduce output voltage overshoot (soft finish network). Diode D4 also isolates
C10 from the supply feedback loop after startup. Resistor R7 discharges C10 when the
supply is off.
Components C3, C9, R5, R6, and R8 all play a role in compensating the power supply
control loop. Capacitor C3 rolls off the gain of U1 at relatively low frequency. Resistor
R5 provides a zero to cancel the phase shift of C5. Resistor R6 sets the gain of the direct
signal path from the supply output through U2 and U3. Components C9 and R8 roll off
the gain of U3.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 28
10-Feb-2004
5
EPR-34 – 12 V, 30 W, Universal Input
PCB Layout
Figure 3 – EP-34 Printed Circuit Board Layout (dimensions 0.001”).
Page 9 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-34 – 12 V, 30 W, Universal Input
6
10-Feb-2004
Bill Of Materials
EP-34 – 12 V, 30 W TOPSwitch-GX Evaluation Board
Bill Of Materials
Item
Qty
Reference
Description
1
2
1
1
U1
U2
3
4
5
6
7
8
9
10
1
1
1
1
2
1
1
1
U3
VR1
BR1
D1
D2, 4
D3
CX1
C1
11
12
13
14
15
16
1
1
2
1
1
2
C2
C3
C4, 9
C5
CY1
C6, 7
17
18
19
20
1
1
1
1
C8
C10
C11
T1
21
22
23
1
1
1
L1
L2
F1
24
25
26
27
28
29
30
31
32
33
34
35
1
1
1
1
1
1
1
1
1
1
1
2
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
HS1, HS2
36
2
HS1, HS2
37
38
2
1
HS1, HS2
J1
39
1
J2
40
41
1
1
JP1-4
TOPSwitch-GX IC
TOP245Y
Power Integrations
Optocoupler,
ISP817C
Isocom
controlled CTR
Adj. Shunt regulator
LM431CZ
National Semiconductor
TVS, 600 W, 200 V
P6KE200
On Semiconductor
Bridge, 600 V, 2 A
2KBP06M
General Semiconductor
600 V, 1 A, UFR
UF4005
General Semiconductor
Diode, 75 V
1N4148
Any
100 V, 10 A, Schottky
MBR10100
General Semiconductor
X2 capacitor, 220 nF
ECQ-U2A224ML
Panasonic
68 µF, 400 V, 105 °C
KMX400VB68RM18X25LL United Chemicon
18 mm x 25 mm
Ceramic disk, 4.7 nF, 1 kV 5GAD47
Vishay
47 µF, 16 V, 105 °C
KME16VB47RM5X11LL United Chemicon
100 nF, 50 V, ceramic
C320C104K1R5CA
Kemet
1 µF, 50 V, 105 °C
KME50VB1R0M5X11LL United Chemicon
2.2 nF Y1
440LD22
Cera-Mite
560 µF, 35 V
LXZ35VB561M10X25LL United Chemicon
10 mm x 25mm
(ESR ≤45 mΩ)
100 µF, 35 V
KME35VB101M8X11LL United Chemicon
10 µF, 50 V, 105 °C
KME50VB10RM5X11LL United Chemicon
470 pF, 100 V
C315C471K1R5CA
Kemet
Transformer, EF25
SIL6020, Rev. 6
Hical
NL 021 218 11
VOGT
Balun, 20 mH, 0.8 A
ELF-18N008A
Panasonic
3.3 µH, 2.7 A
622LY3R3M
Toko, or equiv.
Fuse, 3.15 A, 250 VAC
372-1315
Wickman
Time Delay
2 MΩ, 1/2 W, 5%
Any
8.2 MΩ, 1/2 W, 5%
Any
68 Ω, 1/2 W, 5%
Any
12.1 kΩ, 1%, 1/8 W size
Any
6.8 Ω, 1/8 W, 5%
Any
1 kΩ, 1/8 W, 5%
Any
15 kΩ, 1/8 W, 5%
Any
3.3 kΩ, 1/8 W, 5%
Any
38.3 kΩ, 1%, 1/8 W size
Any
10 kΩ, 1%, 1/8 W size
Any
33 Ω, 1/4 W, 5%
Any
Heatsink, TO-220
581002B02500
Aavid (also Wakefield
634-10ABP)
Screw, 6-32 5/16”
Pan Head Philips Zinc
Washer, 6-32, Zinc
Header
0.156” spacing, 3 pos
26-48-1031
Molex
(pull middle pin)
Header
26-48-1021
Molex
0.156” spacing, 2 pos
EP-34 Printed Circuit Board, Rev. A
Tinned Bus Wire, 22 AWG
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
P/N
Manufacturer
Page 10 of 28
10-Feb-2004
EPR-34 – 12 V, 30 W, Universal Input
7
Transformer Specification
7.1
Electrical Diagram
1
9, 10
WDG #1 58T
#26 AWG
3
5
WDG #3 6T
4 x #25 AWG
Triple Insulated
6, 7
WDG #2 5T
2 x #26 AWG
4
Figure 4 – EP-34 Triple Insulated Transformer.
7.2
Electrical Specifications
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage Inductance
7.3
1 second, 60 Hz, from Pins 1-5 to Pins 6-10
Pins 1-3, all other windings open, measured at
100 kHz, 0.4 VRMS
Pins 1-3, all other windings open
Pins 1-3, with Pins 6-10 shorted, measured at
100 kHz, 0.4 VRMS
3000 VAC
827 µH, ±10%
750 kHz (Min.)
20 µH (Max.)
Materials
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
Description
Core: EF25 Nippon Ceramic NC-2H material or equivalent. Gapped for AL of 246 nH/T2
Bobbin: 10 pin EF25, Vertical Mount, Miles-Platts FE0100 with TBS-601 pins or equivalent
Magnet Wire: #26 AWG Double Coated
Triple Insulated Wire: #25 AWG
Tape, 3M #44 or equivalent 1.5 mm wide (min.)
Tape, 3M #1298 or equivalent 14.2 mm wide
Tape, 3M #1298 or equivalent 15.7 mm wide
Varnish
Page 11 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-34 – 12 V, 30 W, Universal Input
7.4
10-Feb-2004
Transformer Build Diagram
Pins Side
Secondary
Bias
Margin
Primary
Figure 5 – EP-34 Transformer Build Diagram.
7.5
Transformer Construction
Bobbin Preparation
Primary Margin
Primary
Basic Insulation
Bifilar Bias Winding
Basic Insulation
12 V Quadrifilar
Secondary Winding
Outer Wrap
Core Preparation
Final Assembly
Pull Pin 8 on bobbin [2] to provide polarization. Bobbin pinout is shown
below.
Apply 1.5 mm wide margin to pin side of bobbin using item [5]. Match
height of primary and bias windings. Margin tape is needed to meet safety
spacing from primary winding to core and core to secondary pins.
Start at Pin 3. Wind 30 turns of item [3] in approximately 1 layer. Bring
finish lead back to start. Wind remaining 28 primary turns, finish on Pin 1.
Note: This “Z” winding technique significantly lowers primary capacitance
to reduce no-load power consumption.
Use two layers of item [6] for basic insulation.
Starting at Pin 5, wind 5 bifilar turns of item [3]. Spread turns evenly
across bobbin. Finish at Pin 4.
Use one layer of item [7] for basic insulation.
Start at Pins 9 and 10. Wind 6 quadrifilar turns of item [4] (about 1.2
layers). Spread turns evenly across bobbin. Finish on Pins 6 and 7.
Wrap windings with 3 layers of tape [item [7].
Wrap bottom of one E core [1] with 2 layers of tape [7] as shown.
Assemble and secure core halves so that the tape wrapped E core is at
the bottom of the transformer. Varnish impregnate (item [8]).
7.6
Transformer Sources
For information on the vendors used to source the transformers used on this board,
please visit the Power Integrations' Web site at the URL below and select “Engineering
Prototype Boards”.
http://www.powerint.com/componentsuppliers.htm
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 12 of 28
10-Feb-2004
8
EPR-34 – 12 V, 30 W, Universal Input
Transformer Spreadsheets
Power Supply Input
VACMIN
VACMAX
FL
TC
Z
N
Volts
Volts
Hertz
mSeconds
85
265
50
2.21
0.49
80.0
%
Min Input AC Voltage
Max Input AC Voltage
AC Main Frequency
Bridge Rectifier Conduction Time Estimate
Loss Allocation Factor
Efficiency Estimate
Power Supply
Outputs
VOx
IOx
VB
IB
Volts
Amps
Volts
Amps
12.00 9.00 Output Voltage
2.500 0.010 Output Current
15.00
Bias Voltage
0.006
Bias Current
Device Variables
Device
PO
VDRAIN
VDS
FS
KRPKDP
KI
ILIMITEXT
ILIMITMIN
ILIMITMAX
IP
IRMS
DMAX
Watts
Volts
Volts
Hertz
Amps
Amps
Amps
Amps
Amps
TOP245Y/F
30.18
647
Device Name
Total Output Power
Maximum Drain Voltage Estimate (Includes Effect
of Leakage Inductance)
Device On-State Drain to Source Voltage
Device Switching Frequency
Ripple to Peak Current Ratio
External Current Limit Ratio
Device Current Limit External Minimum
Device Current Limit Minimum
Device Current Limit Maximum
Peak Primary Current
Primary RMS Current
Maximum Duty Cycle
5.2
132000
0.40
0.70
1.17
1.67
1.93
0.98
0.63
0.63
Power Supply Components
Selection
CIN
VMIN
VMAX
VCLO
PZ
VDB
PIVB
uFarads
Volts
Volts
Volts
Watts
Volts
Volts
68.0
76
375
190
2.5
0.7
64
Input Filter Capacitor
Minimum DC Input Voltage
Maximum DC Input Voltage
Clamp Zener Voltage
Estimated Primary Zener Clamp Loss
Bias Winding Diode Forward Voltage Drop
Bias Rectifier Maximum Peak Inverse Voltage
Power Supply Output
Parameters
VDx
PIVSx
ISPx
ISRMSx
IRIPPLEx
Volts
Volts
Amps
Amps
Amps
Page 13 of 28
0.5
51
9.17
4.52
3.77
0.5 Output Winding Diode Forward Voltage Drop
39 Output Rectifier Maximum Peak Inverse Voltage
0.04 Peak Secondary Current
0.02 Secondary RMS Current
0.02 Output Capacitor RMS Ripple Current
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-34 – 12 V, 30 W, Universal Input
10-Feb-2004
Transformer Construction
Parameters
Core/Bobbin
Core Manuf.
Bobbin Manuf
LP
NP
NB
AWG
uHenries
AWG
Cmils/A
Volts
mm
mm
E25/13/7 (EF25)
Margi
Generic
Generic
827
58
7.54
27
CMA
VOR
BW
M
L
AE
ALG
BM
BP
BAC
LG
LL
cm^2
nH/T^2
Gauss
Gauss
Gauss
mm
uHenries
322
120.00
15.30
1.0
2.0
0.53
249
2693
3688
539
0.23
12.4
LSEC
nHenries
20
Core and Bobbin Type
Core Manufacturing
Bobbin Manufacturing
Primary Inductance
Primary Winding Number of Turns
Bias Winding Number of Turns
Primary Wire Gauge (Rounded to next smaller
standard AWG value)
Primary Winding Current Capacity
Reflected Output Voltage
Bobbin Physical Winding Width
Safety Margin Width
Number of Primary Layers
Core Effective Cross Section Area
Gapped Core Effective Inductance
Maximum Operating Flux Density
Peak Flux Density
AC Flux Density for Core Curves
Gap Length
Estimated Transformer Primary Leakage
Inductance
Estimated Secondary Trace Inductance
Secondary
Parameters
NSx
Rounded Down NSx
Rounded Down Volts
Vox
Rounded Up NSx
Rounded Up
Volts
Vox
AWGSx Range AWG
6.00
17 21
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
4.56 Secondary Number of Turns
4 Rounded to Integer Secondary Number of Turns
7.83 Auxiliary Output Voltage for Rounded to Integer
NSx
5 Rounded to Next Integer Secondary Number of
Turns
9.92 Auxiliary Output Voltage for Rounded to Next
Integer NSx
40 - Secondary Wire Gauge Range
44 Comment: Primary wire gauge is less than
recommended minimum (26 AWG) and may
overheat
Tip: Consider a parallel winding technique (bifilar,
trifilar), increase size of transformer (larger BW) or
reduce margin (M).
Comment: Wire
Page 14 of 28
10-Feb-2004
9
EPR-34 – 12 V, 30 W, Universal Input
Performance Data
All measurements performed at room temperature, 60 Hz input frequency.
9.1
Efficiency
EP-34 Efficiency vs. Input Voltage
100%
Efficiency (%)
95%
Iout = 2.5 A
Iout = 1 A
90%
85%
80%
75%
70%
80
100
120
140
160
180
200
220
240
260
280
AC Input Voltage
Figure 6 - Efficiency vs. Input Voltage, Room Temperature, 60 Hz.
9.2
No-load Input Power
EP-34 Zero Load Input Power vs. Input Voltage
0.5
Input Power (W)
0.45
0.4
0.35
0.3
0.25
0.2
85
105
125
145
165
185
205
225
245
265
AC Input Voltage
Figure 7 - Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz.
Page 15 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-34 – 12 V, 30 W, Universal Input
9.3
10-Feb-2004
Regulation
9.3.1 Load
EP-34 Load Regulation
Regulation (% of Nominal)
105%
104%
103%
85 VAC
102%
115 VAC
101%
230 VAC
100%
265 VAC
99%
98%
97%
96%
95%
0
1
2
3
Output Load (A)
Figure 8 – EP-34 Load Regulation, Room Temperature.
9.3.2 Line
EP-34 Line Regulation, Full Load
Regulation (% of Nominal)
105%
104%
103%
102%
101%
100%
99%
98%
97%
96%
95%
80 100 120 140 160 180 200 220 240 260 280
AC Input Voltage
Figure 9 – EP-34 Line Regulation, Room Temperature, Full Load.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 16 of 28
10-Feb-2004
EPR-34 – 12 V, 30 W, Universal Input
9.4
Overload Power
The curve below shows the maximum overload power vs. input line voltage. The X pin of
U1 is used to reduce the primary current limit with increasing line voltage, limiting
overload power.
Overload Power vs Line Voltage
200
Overload Power (% of 30 W)
190
180
170
160
150
140
130
120
110
100
80
100
120
140
160
180
200
220
240
260
Input Voltage (VAC)
Figure 10 – EP-34 Overload Power vs. Line Voltage, Room Temperature.
Page 17 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
280
EPR-34 – 12 V, 30 W, Universal Input
10
10-Feb-2004
Thermal Performance
All measurements were made with the unit operating open frame in still air with a load of
30 W. The results show adequate thermal margin, the worst case being low line and
50 °C ambient.
Note: The thermal image does not correctly indicate the temperature of the capacitors
due to their shiney top surface.
Temperature (°C)
Item
85
115
VAC VAC
230
VAC
85
VAC
115
VAC
230
VAC
Ambient
29
28
28
50
50
52
Balun (L1)
54
43
36
82
74
66
Bridge (BR1)
63
49
43
92
83
73
Transformer (T1)
62
59
65
89
87
90
Clamp Zener (VR1)
55
55
48
97
89
85
TOPSwitch (U1)
68
57
55
106
91
86
Rectifier (D3)
57
56
55
88
85
85
Figure 11 - Infrared Thermograph of EP-34, 85 VAC Input, Maximum Continuous Load, 22 °C Ambient.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 18 of 28
10-Feb-2004
EPR-34 – 12 V, 30 W, Universal Input
11
Waveforms
11.1
Drain Voltage and Current, Normal Operation
Figure 12 - 85 VAC, Full Load.
Upper: IDRAIN, 0.5 A/div.
Lower: VDRAIN, 100 V, 2 µs/div.
11.2
Output Voltage Start-up Profile
Figure 14 - Start-up Profile, 115 VAC.
2 V, 20 ms/div.
11.3
Figure 13 - 265 VAC, Full Load.
Upper: IDRAIN, 0.5 A /div.
Lower: VDRAIN, 200 V, 2 µs/div.
Figure 15 - Start-up Profile, 230 VAC.
2 V, 20 ms/div.
Drain Voltage and Current Start-up Profile
Figure 16 - 85 VAC Input and Maximum Load.
Upper: IDRAIN, 0.5 A/div.
Lower: VDRAIN, 100 V, 1 ms/div.
Page 19 of 28
Figure 17 - 265 VAC Input and Maximum Load.
Upper: IDRAIN, 0.5 A /div.
Lower: VDRAIN, 200 V, 1 ms/div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-34 – 12 V, 30 W, Universal Input
11.4
10-Feb-2004
Load Transient Response (75% to 100% Load Step)
In the figures shown below, signal averaging was used to better enable viewing the load
transient response. The oscilloscope was triggered using the load current step as a
trigger source. Since the output switching and line frequency occur essentially at random
with respect to the load transient, contributions to the output ripple from these sources
will average out, leaving the contribution only from the load-step response.
Figure 18 – EP-34 Transient Response, 115 VAC,
75%-100%-75% Load Step.
Top: Load Current, 1 A/div.
Bottom: Output Voltage.
50 mV, 500 µs/div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 19 – EP-34 Transient Response, 230 VAC,
75%-100%-75% Load Step
Upper: Load Current, 1 A/div.
Bottom: Output Voltage.
50 mV, 2 ms/div.
Page 20 of 28
10-Feb-2004
11.5
EPR-34 – 12 V, 30 W, Universal Input
Output Ripple Measurements
11.5.1 Ripple Measurement Technique
For DC output ripple measurements, a modified oscilloscope test probe must be utilized
in order to reduce spurious signals due to pickup. Details of the probe modification are
provided in Figure 19 and Figure 20.
The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe
tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V
aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so
proper polarity across DC outputs must be maintained (see below).
Probe Ground
Probe Tip
Figure 20 - Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).
Figure 21 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter (Modified with wires for probe
ground for ripple measurement, and two parallel decoupling capacitors added).
Page 21 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-34 – 12 V, 30 W, Universal Input
10-Feb-2004
11.5.2 Measurement Results
Figure 22 - Ripple, 85 VAC, Full Load.
2 ms, 50 mV / div.
Figure 23 - 5 V Ripple, 115 VAC, Full Load.
2 ms, 50 mV / div.
Figure 24 - Ripple, 230 VAC, Full Load.
2 ms, 50 mV /div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 22 of 28
10-Feb-2004
12
Control Loop Measurements
12.1
115 VAC Maximum Load
EPR-34 – 12 V, 30 W, Universal Input
Figure 25 - Gain-Phase Plot, 180 VAC, Maximum Steady State Load.
Vertical Scale: Gain = 10 dB/div, Phase = 50°/div.
Crossover Frequency = 1.16 kHz Phase Margin = 66.5°
12.2
230 VAC Maximum Load
Figure 26 - Gain-Phase Plot, 230 VAC, Maximum Steady State Load.
Vertical Scale: Gain = 10 dB/div, Phase = 50°/div.
Crossover Frequency = 831 Hz, Phase Margin = 79.4°
Page 23 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-34 – 12 V, 30 W, Universal Input
13
10-Feb-2004
Conducted EMI
Figure 26 - Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits.
Figure 27 - Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 24 of 28
10-Feb-2004
14
EPR-34 – 12 V, 30 W, Universal Input
AC Surge and 100 kHz Ring Wave Immunity
Four series of line transient tests were performed on the EP-34 to determine the level of
immunity attainable for the basic board. Testing was performed using a Keytek EMC Pro
surge generator. The input voltage for the supply under test was 230 VAC, and the
supply was loaded to the maximum continuous output power using a resistive load. An
LED was used to monitor the presence of output voltage and to detect output
interruptions. The secondary return was hard wired to the safety ground at the surge
generator. This is a worst-case test condition for common mode surge and ring wave
testing, and the test results reflect this. If surge tests are conducted without this ground
connection, the common mode surge/ring wave withstand is higher. Test for each series
was terminated upon non-destructive interruption of output voltage, arcing, or nonrecoverable interruption of output voltage. A test failure was defined as a nonrecoverable interruption of output voltage requiring supply repair or recycling of input AC
voltage.
14.1
Common Mode Surge, 1.2/50 µs
Surge
Voltage
1 kV
1 kV
1 kV
2 kV
2 kV
2 kV
3 kV
3 kV
3 kV
0
90
270
0
90
270
0
90
270
Generator
Impedance
12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
Number of
Strikes
10
10
10
10
10
10
10
10
10
4 kV
0
12 Ω
10
4 kV
90
12 Ω
10
4 kV
270
12 Ω
1
Page 25 of 28
Phase Angle (°)
Test Result
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS (1 power
interruption/10strikes,
recovered)
PASS (2 power
interruptions/10 strikes,
recovered)
PASS (4 power
interruptions/10 strikes,
recovered)
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-34 – 12 V, 30 W, Universal Input
14.2
Differential Mode Surge, 1.2/50 µs
Surge
Voltage
1 kV
1 kV
1 kV
2 kV
2 kV
2 kV
3 kV
3 kV
3 kV
4kV
4 kV
4 kV
14.3
Phase Angle (°)
0
90
270
0
90
270
0
90
270
0
90
270
Generator
Impedance
12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
Number of
Strikes
10
10
10
10
10
10
10
10
10
10
10
10
Test Result
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
Common Mode, 100 kHz Ring Wave
Surge
Voltage
(kV)
1 kV
1 kV
1 kV
2 kV
2 kV
2 kV
14.4
10-Feb-2004
Phase Angle (°)
Short Circuit
Current
Number of
Strikes
0
90
270
0
90
270
500 A
500 A
500 A
500 A
500 A
500 A
10
10
10
10
10
10
3 kV
0
500 A
10
3 kV
90
500 A
10
3 kV
270
500 A
10
Test Result
PASS
PASS
PASS
PASS
PASS
PASS
PASS (6 interruptions/10
strikes, recovered)
PASS (7 interruptions/10
strikes, recovered)
PASS (6 interruptions/10
strikes, recovered)
Differential Mode, 100 kHz Ring Wave
Surge
Voltage
1 kV
1 kV
2 kV
2 kV
2 kV
3 kV
3 kV
3 kV
3 kV
4 kV
4 kV
4 kV
Phase Angle (°)
0
90
270
0
90
270
0
90
270
0
90
270
Short Circuit
Current
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Number of
Strikes
10
10
10
10
10
10
10
10
10
10
10
10
Test Result
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
Page 26 of 28
10-Feb-2004
15
EPR-34 – 12 V, 30 W, Universal Input
Revision History
Date
28-Jan-03
03-Feb-03
21-Feb-03
21-Apr-03
10-Feb-04
Page 27 of 28
Author
RH
RH
RH
RH
KM
Revision
0.1
0.2
0.3
1.0
1.1
Description & changes
First draft
Second draft
Third draft
First Release
Second Release – Transformer
specification on page 11 corrected
(primary inductance, resonant
frequency and ALG).
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-34 – 12 V, 30 W, Universal Input
10-Feb-2004
For the latest updates, visit our Web site: www.powerint.com
Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your
use of any information, device or circuit described herein nor does it convey any license under its patent rights or the
rights of others. POWER INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS ALL
WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including circuits external to the products and transformer
construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign
patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at
www.powerint.com.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, and EcoSmart are registered trademarks of
Power Integrations. PI Expert and DPA-Switch are trademarks of Power Integrations.
© Copyright 2004, Power Integrations.
WORLD HEADQUARTERS
Power Integrations
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main:
+1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax:
+1-408-414-9765
e-mail:
[email protected]
CHINA (SHENZHEN)
Power Integrations
International Holdings, Inc.
Rm# 1705, Bao Hua Bldg.
1016 Hua Qiang Bei Lu
Shenzhen Guangdong,
518031, China
Phone: +86-755-8367-5143
Fax:
+86-755-8377-9610
e-mail: [email protected]
ITALY
Power Integrations S.r.l.
Via Vittorio Veneto 12,
Bresso
Milano, 20091, Italy
Phone: +39-028-928-6001
Fax: +39-028-928-6009
e-mail:
[email protected]
SINGAPORE (ASIA PACIFIC
HEADQUARTERS)
Power Integrations, Singapore
51 Newton Road
#15-08/10 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax:
+65-6358-2015
e-mail:
[email protected]
AMERICAS
Power Integrations
4335 South Lee Street,
Suite G
Buford, GA 30518, USA
Phone: +1-678-714-6033
Fax:
+1-678-714-6012
e-mail:
[email protected]
GERMANY
Power Integrations, GmbH
Rueckertstrasse 3
D-80336, Muenchen, Germany
Phone: +49-89-5527-3910
Fax:
+49-89-5527-3920
e-mail: [email protected]
JAPAN
Power Integrations, K.K.
Keihin-Tatemono 1st Bldg.
12-20 Shin-Yokohama
2-Chome,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033, Japan
Phone: +81-45-471-1021
Fax:
+81-45-471-3717
e-mail:
[email protected]
TAIWAN
Power Integrations
International Holdings, Inc.
5F-1, No. 316, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, Taiwan 114, R.O.C.
Phone: +886-2-2659-4570
Fax:
+886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Power Integrations
International Holdings, Inc.
Rm 807, Pacheer
Commercial Centre
555 Nanjing West Road
Shanghai, 200041, China
Phone: +86-21-6215-5548
Fax:
+86-21-6215-2468
e-mail:
[email protected]
INDIA (TECHNICAL SUPPORT)
Innovatech
261/A, Ground Floor
7th Main, 17th Cross,
Sadashivanagar
Bangalore 560080
Phone: +91-80-5113-8020
Telefax: +91-80-5113-8023
e-mail: [email protected]
KOREA
Power Integrations
International Holdings, Inc.
8th Floor, DongSung Bldg.
17-8 Yoido-dong,
Youngdeungpo-gu,
Seoul, 150-874, Korea
Phone: +82-2-782-2840
Fax:
+82-2-782-4427
e-mail:
[email protected]
UK (EUROPE & AFRICA
HEADQUARTERS)
Power Integrations (Europe) Ltd.
st
1 Floor, St. James’s House
East Street
Farnham
Surrey
GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-140
Fax:
+44 (0) 1252-727-689
e-mail: [email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
APPLICATIONS FAX
World Wide +1-408-414-9760
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 28 of 28