Engineering Prototype Report for EP-34 – Single Output 30 W AC-DC Power Supply Using TOP245Y (TOPSwitch®-GX) Title Specification Universal Input, 12 V at 30 W Output Application Generic Author Power Integrations Applications Department Document Number EPR-34 Date 10-Feb-04 Revision 1.1 Features • • • • • Universal Input 85 VAC to 265 VAC Low Parts Count Zero Load Power Consumption <0.3 W at 115 VAC, <0.45 W at 230 VAC Meets CISPR22B EMI with Margin Efficiency >80% The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-34 – 12 V, 30 W, Universal Input 10-Feb-2004 Table Of Contents 1 2 3 4 Introduction.................................................................................................................4 Power Supply Specification ........................................................................................5 Schematic...................................................................................................................6 Circuit Description ......................................................................................................7 4.1 Input EMI Filtering ...............................................................................................7 4.2 TOPSwitch Primary .............................................................................................7 4.3 Output Rectification .............................................................................................7 4.4 Output Feedback.................................................................................................7 5 PCB Layout ................................................................................................................9 6 Bill Of Materials ........................................................................................................10 7 Transformer Specification.........................................................................................11 7.1 Electrical Diagram .............................................................................................11 7.2 Electrical Specifications.....................................................................................11 7.3 Materials............................................................................................................11 7.4 Transformer Build Diagram ...............................................................................12 7.5 Transformer Construction..................................................................................12 7.6 Transformer Sources.........................................................................................12 8 Transformer Spreadsheets .......................................................................................13 9 Performance Data ....................................................................................................15 9.1 Efficiency ...........................................................................................................15 9.2 No-load Input Power..........................................................................................15 9.3 Regulation .........................................................................................................16 9.3.1 Load ...........................................................................................................16 9.3.2 Line ............................................................................................................16 9.4 Overload Power.................................................................................................17 10 Thermal Performance ...........................................................................................18 11 Waveforms............................................................................................................19 11.1 Drain Voltage and Current, Normal Operation...................................................19 11.2 Output Voltage Start-up Profile..........................................................................19 11.3 Drain Voltage and Current Start-up Profile ........................................................19 11.4 Load Transient Response (75% to 100% Load Step) .......................................20 11.5 Output Ripple Measurements............................................................................21 11.5.1 Ripple Measurement Technique ................................................................21 11.5.2 Measurement Results ................................................................................22 12 Control Loop Measurements.................................................................................23 12.1 115 VAC Maximum Load...................................................................................23 12.2 230 VAC Maximum Load...................................................................................23 13 Conducted EMI .....................................................................................................24 14 AC Surge and 100 kHz Ring Wave Immunity .......................................................25 14.1 Common Mode Surge, 1.2/50 µs .......................................................................25 14.2 Differential Mode Surge, 1.2/50 µs ....................................................................26 14.3 Common Mode, 100 kHz Ring Wave ................................................................26 14.4 Differential Mode, 100 kHz Ring Wave..............................................................26 15 Revision History ....................................................................................................27 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 2 of 28 10-Feb-2004 EPR-34 – 12 V, 30 W, Universal Input Important Note: Although the EP-34 is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Page 3 of 28 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-34 – 12 V, 30 W, Universal Input 1 10-Feb-2004 Introduction This document is an engineering report describing a 12 V, 30 W universal input flyback power supply, intended as a standard evaluation platform for TOPSwitch-GX. The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit board layout, and performance data. Figure 1 – EP-34 Populated Circuit Board. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 4 of 28 10-Feb-2004 2 EPR-34 – 12 V, 30 W, Universal Input Power Supply Specification Description Input Voltage Frequency No-load Input Power (230 VAC) Output Output Voltage Output Ripple Voltage Output Current Total Output Power Continuous Output Power Efficiency Symbol Min Typ Max Units Comment VIN fLINE 85 47 265 64 0.45 VAC Hz W 2 Wire – no P.E. 50/60 VOUT VRIPPLE IOUT 11.4 12.00 12.6 150 V mV A POUT η 0 2.5 30 W % 80 ± 5% 20 MHz Bandwidth o Measured at POUT (30 W), 25 C Environmental Conducted EMI Meets CISPR22B / EN55022B Safety Designed to meet IEC950, UL1950 Class II 1.2/50 µs surge, IEC 1000-4-5, 2 / 12 Ω series impedance, differential common mode 100 kHz ring wave, 500 A short circuit current, differential and common mode Surge 4 kV Surge 3 kV Ambient Temperature Page 5 of 28 TAMB 0 50 o C Free convection, sea level Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-34 – 12 V, 30 W, Universal Input 3 10-Feb-2004 Schematic Figure 2 – EP-34 Schematic. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 6 of 28 10-Feb-2004 4 EPR-34 – 12 V, 30 W, Universal Input Circuit Description The schematic in Figure 2 shows an off-line flyback converter using the TOP245Y. The circuit is designed for 85 VAC to 265 VAC input and provides an isolated 12 V, 2.5 A output. 4.1 Input EMI Filtering Capacitor CX1 and the leakage inductance of L1 filter differential mode conducted EMI. Inductor L1 and CY1 filter common mode conducted EMI. 4.2 TOPSwitch Primary Rectifier bridge BR1 and C1 provide a high voltage DC supply rail for the primary circuitry. The DC rail is applied to the primary winding of T1. The other side of the transformer primary is driven by the integrated MOSFET in U1. Diode D1 and VR1 clamp leakage spikes generated when the MOSFET in U1 switches off. Capacitor C2 reduces the operating temperature of VR1 by bypassing the leading edge of the primary leakage spike away from VR1. Resistor R3 provides damping to reduce drain ringing improving EMI. Resistor R1 sets the low-line turn-on threshold to approximately 69 VAC and sets the overvoltage shutdown level to approximately 320 VAC. Resistor R4 sets the U1 current limit to approximately 70% of its nominal value. Resistor R2 reduces the U1 current limit as a function of line voltage so that maximum overload power is relatively constant (<50 W) over the entire input voltage range. This limits the output power delivered during fault conditions. Capacitor C4 bypasses the U1 CONTROL pin while C3 has three functions. It provides the energy required by U1 during startup, sets the autorestart frequency during fault conditions, and also acts to roll off the gain of U1 as a function of frequency. Resistor R5 adds a zero to the control loop to stabilize the power supply. Diode D2 and capacitor C5 provide rectified and filtered bias power for U2 and U1. 4.3 Output Rectification The secondary of T1 is rectified and filtered by D3, C6, and C7. Inductor L2 and C8 provide additional high frequency filtering. Resistor R11 and C11 provide snubbing for D3. Choosing the proper snubber values is important for low zero-load power consumption and for high frequency EMI suppression. The snubber components were chosen so that the turn-on voltage spike at the D3 anode is slightly under-damped. Increasing C11 and reducing R11 will improve damping and high frequency EMI, at the cost of higher zero load power consumption. 4.4 Output Feedback Resistors R9 and R10 divide down the supply output voltage and apply it to the reference pin of error amplifier U3. Shunt regulator U3 drives the LED of optocoupler U2 through resistor R6 to provide feedback information to the U1 CONTROL pin. The optocoupler output also provides power to U1 from the bias winding during normal operating conditions. Diode D4 and capacitor C10 apply drive to the optocoupler during supply Page 7 of 28 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-34 – 12 V, 30 W, Universal Input 10-Feb-2004 startup to reduce output voltage overshoot (soft finish network). Diode D4 also isolates C10 from the supply feedback loop after startup. Resistor R7 discharges C10 when the supply is off. Components C3, C9, R5, R6, and R8 all play a role in compensating the power supply control loop. Capacitor C3 rolls off the gain of U1 at relatively low frequency. Resistor R5 provides a zero to cancel the phase shift of C5. Resistor R6 sets the gain of the direct signal path from the supply output through U2 and U3. Components C9 and R8 roll off the gain of U3. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 8 of 28 10-Feb-2004 5 EPR-34 – 12 V, 30 W, Universal Input PCB Layout Figure 3 – EP-34 Printed Circuit Board Layout (dimensions 0.001”). Page 9 of 28 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-34 – 12 V, 30 W, Universal Input 6 10-Feb-2004 Bill Of Materials EP-34 – 12 V, 30 W TOPSwitch-GX Evaluation Board Bill Of Materials Item Qty Reference Description 1 2 1 1 U1 U2 3 4 5 6 7 8 9 10 1 1 1 1 2 1 1 1 U3 VR1 BR1 D1 D2, 4 D3 CX1 C1 11 12 13 14 15 16 1 1 2 1 1 2 C2 C3 C4, 9 C5 CY1 C6, 7 17 18 19 20 1 1 1 1 C8 C10 C11 T1 21 22 23 1 1 1 L1 L2 F1 24 25 26 27 28 29 30 31 32 33 34 35 1 1 1 1 1 1 1 1 1 1 1 2 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 HS1, HS2 36 2 HS1, HS2 37 38 2 1 HS1, HS2 J1 39 1 J2 40 41 1 1 JP1-4 TOPSwitch-GX IC TOP245Y Power Integrations Optocoupler, ISP817C Isocom controlled CTR Adj. Shunt regulator LM431CZ National Semiconductor TVS, 600 W, 200 V P6KE200 On Semiconductor Bridge, 600 V, 2 A 2KBP06M General Semiconductor 600 V, 1 A, UFR UF4005 General Semiconductor Diode, 75 V 1N4148 Any 100 V, 10 A, Schottky MBR10100 General Semiconductor X2 capacitor, 220 nF ECQ-U2A224ML Panasonic 68 µF, 400 V, 105 °C KMX400VB68RM18X25LL United Chemicon 18 mm x 25 mm Ceramic disk, 4.7 nF, 1 kV 5GAD47 Vishay 47 µF, 16 V, 105 °C KME16VB47RM5X11LL United Chemicon 100 nF, 50 V, ceramic C320C104K1R5CA Kemet 1 µF, 50 V, 105 °C KME50VB1R0M5X11LL United Chemicon 2.2 nF Y1 440LD22 Cera-Mite 560 µF, 35 V LXZ35VB561M10X25LL United Chemicon 10 mm x 25mm (ESR ≤45 mΩ) 100 µF, 35 V KME35VB101M8X11LL United Chemicon 10 µF, 50 V, 105 °C KME50VB10RM5X11LL United Chemicon 470 pF, 100 V C315C471K1R5CA Kemet Transformer, EF25 SIL6020, Rev. 6 Hical NL 021 218 11 VOGT Balun, 20 mH, 0.8 A ELF-18N008A Panasonic 3.3 µH, 2.7 A 622LY3R3M Toko, or equiv. Fuse, 3.15 A, 250 VAC 372-1315 Wickman Time Delay 2 MΩ, 1/2 W, 5% Any 8.2 MΩ, 1/2 W, 5% Any 68 Ω, 1/2 W, 5% Any 12.1 kΩ, 1%, 1/8 W size Any 6.8 Ω, 1/8 W, 5% Any 1 kΩ, 1/8 W, 5% Any 15 kΩ, 1/8 W, 5% Any 3.3 kΩ, 1/8 W, 5% Any 38.3 kΩ, 1%, 1/8 W size Any 10 kΩ, 1%, 1/8 W size Any 33 Ω, 1/4 W, 5% Any Heatsink, TO-220 581002B02500 Aavid (also Wakefield 634-10ABP) Screw, 6-32 5/16” Pan Head Philips Zinc Washer, 6-32, Zinc Header 0.156” spacing, 3 pos 26-48-1031 Molex (pull middle pin) Header 26-48-1021 Molex 0.156” spacing, 2 pos EP-34 Printed Circuit Board, Rev. A Tinned Bus Wire, 22 AWG Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com P/N Manufacturer Page 10 of 28 10-Feb-2004 EPR-34 – 12 V, 30 W, Universal Input 7 Transformer Specification 7.1 Electrical Diagram 1 9, 10 WDG #1 58T #26 AWG 3 5 WDG #3 6T 4 x #25 AWG Triple Insulated 6, 7 WDG #2 5T 2 x #26 AWG 4 Figure 4 – EP-34 Triple Insulated Transformer. 7.2 Electrical Specifications Electrical Strength Primary Inductance Resonant Frequency Primary Leakage Inductance 7.3 1 second, 60 Hz, from Pins 1-5 to Pins 6-10 Pins 1-3, all other windings open, measured at 100 kHz, 0.4 VRMS Pins 1-3, all other windings open Pins 1-3, with Pins 6-10 shorted, measured at 100 kHz, 0.4 VRMS 3000 VAC 827 µH, ±10% 750 kHz (Min.) 20 µH (Max.) Materials Item [1] [2] [3] [4] [5] [6] [7] [8] Description Core: EF25 Nippon Ceramic NC-2H material or equivalent. Gapped for AL of 246 nH/T2 Bobbin: 10 pin EF25, Vertical Mount, Miles-Platts FE0100 with TBS-601 pins or equivalent Magnet Wire: #26 AWG Double Coated Triple Insulated Wire: #25 AWG Tape, 3M #44 or equivalent 1.5 mm wide (min.) Tape, 3M #1298 or equivalent 14.2 mm wide Tape, 3M #1298 or equivalent 15.7 mm wide Varnish Page 11 of 28 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-34 – 12 V, 30 W, Universal Input 7.4 10-Feb-2004 Transformer Build Diagram Pins Side Secondary Bias Margin Primary Figure 5 – EP-34 Transformer Build Diagram. 7.5 Transformer Construction Bobbin Preparation Primary Margin Primary Basic Insulation Bifilar Bias Winding Basic Insulation 12 V Quadrifilar Secondary Winding Outer Wrap Core Preparation Final Assembly Pull Pin 8 on bobbin [2] to provide polarization. Bobbin pinout is shown below. Apply 1.5 mm wide margin to pin side of bobbin using item [5]. Match height of primary and bias windings. Margin tape is needed to meet safety spacing from primary winding to core and core to secondary pins. Start at Pin 3. Wind 30 turns of item [3] in approximately 1 layer. Bring finish lead back to start. Wind remaining 28 primary turns, finish on Pin 1. Note: This “Z” winding technique significantly lowers primary capacitance to reduce no-load power consumption. Use two layers of item [6] for basic insulation. Starting at Pin 5, wind 5 bifilar turns of item [3]. Spread turns evenly across bobbin. Finish at Pin 4. Use one layer of item [7] for basic insulation. Start at Pins 9 and 10. Wind 6 quadrifilar turns of item [4] (about 1.2 layers). Spread turns evenly across bobbin. Finish on Pins 6 and 7. Wrap windings with 3 layers of tape [item [7]. Wrap bottom of one E core [1] with 2 layers of tape [7] as shown. Assemble and secure core halves so that the tape wrapped E core is at the bottom of the transformer. Varnish impregnate (item [8]). 7.6 Transformer Sources For information on the vendors used to source the transformers used on this board, please visit the Power Integrations' Web site at the URL below and select “Engineering Prototype Boards”. http://www.powerint.com/componentsuppliers.htm Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 12 of 28 10-Feb-2004 8 EPR-34 – 12 V, 30 W, Universal Input Transformer Spreadsheets Power Supply Input VACMIN VACMAX FL TC Z N Volts Volts Hertz mSeconds 85 265 50 2.21 0.49 80.0 % Min Input AC Voltage Max Input AC Voltage AC Main Frequency Bridge Rectifier Conduction Time Estimate Loss Allocation Factor Efficiency Estimate Power Supply Outputs VOx IOx VB IB Volts Amps Volts Amps 12.00 9.00 Output Voltage 2.500 0.010 Output Current 15.00 Bias Voltage 0.006 Bias Current Device Variables Device PO VDRAIN VDS FS KRPKDP KI ILIMITEXT ILIMITMIN ILIMITMAX IP IRMS DMAX Watts Volts Volts Hertz Amps Amps Amps Amps Amps TOP245Y/F 30.18 647 Device Name Total Output Power Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Device On-State Drain to Source Voltage Device Switching Frequency Ripple to Peak Current Ratio External Current Limit Ratio Device Current Limit External Minimum Device Current Limit Minimum Device Current Limit Maximum Peak Primary Current Primary RMS Current Maximum Duty Cycle 5.2 132000 0.40 0.70 1.17 1.67 1.93 0.98 0.63 0.63 Power Supply Components Selection CIN VMIN VMAX VCLO PZ VDB PIVB uFarads Volts Volts Volts Watts Volts Volts 68.0 76 375 190 2.5 0.7 64 Input Filter Capacitor Minimum DC Input Voltage Maximum DC Input Voltage Clamp Zener Voltage Estimated Primary Zener Clamp Loss Bias Winding Diode Forward Voltage Drop Bias Rectifier Maximum Peak Inverse Voltage Power Supply Output Parameters VDx PIVSx ISPx ISRMSx IRIPPLEx Volts Volts Amps Amps Amps Page 13 of 28 0.5 51 9.17 4.52 3.77 0.5 Output Winding Diode Forward Voltage Drop 39 Output Rectifier Maximum Peak Inverse Voltage 0.04 Peak Secondary Current 0.02 Secondary RMS Current 0.02 Output Capacitor RMS Ripple Current Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-34 – 12 V, 30 W, Universal Input 10-Feb-2004 Transformer Construction Parameters Core/Bobbin Core Manuf. Bobbin Manuf LP NP NB AWG uHenries AWG Cmils/A Volts mm mm E25/13/7 (EF25) Margi Generic Generic 827 58 7.54 27 CMA VOR BW M L AE ALG BM BP BAC LG LL cm^2 nH/T^2 Gauss Gauss Gauss mm uHenries 322 120.00 15.30 1.0 2.0 0.53 249 2693 3688 539 0.23 12.4 LSEC nHenries 20 Core and Bobbin Type Core Manufacturing Bobbin Manufacturing Primary Inductance Primary Winding Number of Turns Bias Winding Number of Turns Primary Wire Gauge (Rounded to next smaller standard AWG value) Primary Winding Current Capacity Reflected Output Voltage Bobbin Physical Winding Width Safety Margin Width Number of Primary Layers Core Effective Cross Section Area Gapped Core Effective Inductance Maximum Operating Flux Density Peak Flux Density AC Flux Density for Core Curves Gap Length Estimated Transformer Primary Leakage Inductance Estimated Secondary Trace Inductance Secondary Parameters NSx Rounded Down NSx Rounded Down Volts Vox Rounded Up NSx Rounded Up Volts Vox AWGSx Range AWG 6.00 17 21 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 4.56 Secondary Number of Turns 4 Rounded to Integer Secondary Number of Turns 7.83 Auxiliary Output Voltage for Rounded to Integer NSx 5 Rounded to Next Integer Secondary Number of Turns 9.92 Auxiliary Output Voltage for Rounded to Next Integer NSx 40 - Secondary Wire Gauge Range 44 Comment: Primary wire gauge is less than recommended minimum (26 AWG) and may overheat Tip: Consider a parallel winding technique (bifilar, trifilar), increase size of transformer (larger BW) or reduce margin (M). Comment: Wire Page 14 of 28 10-Feb-2004 9 EPR-34 – 12 V, 30 W, Universal Input Performance Data All measurements performed at room temperature, 60 Hz input frequency. 9.1 Efficiency EP-34 Efficiency vs. Input Voltage 100% Efficiency (%) 95% Iout = 2.5 A Iout = 1 A 90% 85% 80% 75% 70% 80 100 120 140 160 180 200 220 240 260 280 AC Input Voltage Figure 6 - Efficiency vs. Input Voltage, Room Temperature, 60 Hz. 9.2 No-load Input Power EP-34 Zero Load Input Power vs. Input Voltage 0.5 Input Power (W) 0.45 0.4 0.35 0.3 0.25 0.2 85 105 125 145 165 185 205 225 245 265 AC Input Voltage Figure 7 - Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz. Page 15 of 28 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-34 – 12 V, 30 W, Universal Input 9.3 10-Feb-2004 Regulation 9.3.1 Load EP-34 Load Regulation Regulation (% of Nominal) 105% 104% 103% 85 VAC 102% 115 VAC 101% 230 VAC 100% 265 VAC 99% 98% 97% 96% 95% 0 1 2 3 Output Load (A) Figure 8 – EP-34 Load Regulation, Room Temperature. 9.3.2 Line EP-34 Line Regulation, Full Load Regulation (% of Nominal) 105% 104% 103% 102% 101% 100% 99% 98% 97% 96% 95% 80 100 120 140 160 180 200 220 240 260 280 AC Input Voltage Figure 9 – EP-34 Line Regulation, Room Temperature, Full Load. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 16 of 28 10-Feb-2004 EPR-34 – 12 V, 30 W, Universal Input 9.4 Overload Power The curve below shows the maximum overload power vs. input line voltage. The X pin of U1 is used to reduce the primary current limit with increasing line voltage, limiting overload power. Overload Power vs Line Voltage 200 Overload Power (% of 30 W) 190 180 170 160 150 140 130 120 110 100 80 100 120 140 160 180 200 220 240 260 Input Voltage (VAC) Figure 10 – EP-34 Overload Power vs. Line Voltage, Room Temperature. Page 17 of 28 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 280 EPR-34 – 12 V, 30 W, Universal Input 10 10-Feb-2004 Thermal Performance All measurements were made with the unit operating open frame in still air with a load of 30 W. The results show adequate thermal margin, the worst case being low line and 50 °C ambient. Note: The thermal image does not correctly indicate the temperature of the capacitors due to their shiney top surface. Temperature (°C) Item 85 115 VAC VAC 230 VAC 85 VAC 115 VAC 230 VAC Ambient 29 28 28 50 50 52 Balun (L1) 54 43 36 82 74 66 Bridge (BR1) 63 49 43 92 83 73 Transformer (T1) 62 59 65 89 87 90 Clamp Zener (VR1) 55 55 48 97 89 85 TOPSwitch (U1) 68 57 55 106 91 86 Rectifier (D3) 57 56 55 88 85 85 Figure 11 - Infrared Thermograph of EP-34, 85 VAC Input, Maximum Continuous Load, 22 °C Ambient. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 18 of 28 10-Feb-2004 EPR-34 – 12 V, 30 W, Universal Input 11 Waveforms 11.1 Drain Voltage and Current, Normal Operation Figure 12 - 85 VAC, Full Load. Upper: IDRAIN, 0.5 A/div. Lower: VDRAIN, 100 V, 2 µs/div. 11.2 Output Voltage Start-up Profile Figure 14 - Start-up Profile, 115 VAC. 2 V, 20 ms/div. 11.3 Figure 13 - 265 VAC, Full Load. Upper: IDRAIN, 0.5 A /div. Lower: VDRAIN, 200 V, 2 µs/div. Figure 15 - Start-up Profile, 230 VAC. 2 V, 20 ms/div. Drain Voltage and Current Start-up Profile Figure 16 - 85 VAC Input and Maximum Load. Upper: IDRAIN, 0.5 A/div. Lower: VDRAIN, 100 V, 1 ms/div. Page 19 of 28 Figure 17 - 265 VAC Input and Maximum Load. Upper: IDRAIN, 0.5 A /div. Lower: VDRAIN, 200 V, 1 ms/div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-34 – 12 V, 30 W, Universal Input 11.4 10-Feb-2004 Load Transient Response (75% to 100% Load Step) In the figures shown below, signal averaging was used to better enable viewing the load transient response. The oscilloscope was triggered using the load current step as a trigger source. Since the output switching and line frequency occur essentially at random with respect to the load transient, contributions to the output ripple from these sources will average out, leaving the contribution only from the load-step response. Figure 18 – EP-34 Transient Response, 115 VAC, 75%-100%-75% Load Step. Top: Load Current, 1 A/div. Bottom: Output Voltage. 50 mV, 500 µs/div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 19 – EP-34 Transient Response, 230 VAC, 75%-100%-75% Load Step Upper: Load Current, 1 A/div. Bottom: Output Voltage. 50 mV, 2 ms/div. Page 20 of 28 10-Feb-2004 11.5 EPR-34 – 12 V, 30 W, Universal Input Output Ripple Measurements 11.5.1 Ripple Measurement Technique For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 19 and Figure 20. The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below). Probe Ground Probe Tip Figure 20 - Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed). Figure 21 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added). Page 21 of 28 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-34 – 12 V, 30 W, Universal Input 10-Feb-2004 11.5.2 Measurement Results Figure 22 - Ripple, 85 VAC, Full Load. 2 ms, 50 mV / div. Figure 23 - 5 V Ripple, 115 VAC, Full Load. 2 ms, 50 mV / div. Figure 24 - Ripple, 230 VAC, Full Load. 2 ms, 50 mV /div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 22 of 28 10-Feb-2004 12 Control Loop Measurements 12.1 115 VAC Maximum Load EPR-34 – 12 V, 30 W, Universal Input Figure 25 - Gain-Phase Plot, 180 VAC, Maximum Steady State Load. Vertical Scale: Gain = 10 dB/div, Phase = 50°/div. Crossover Frequency = 1.16 kHz Phase Margin = 66.5° 12.2 230 VAC Maximum Load Figure 26 - Gain-Phase Plot, 230 VAC, Maximum Steady State Load. Vertical Scale: Gain = 10 dB/div, Phase = 50°/div. Crossover Frequency = 831 Hz, Phase Margin = 79.4° Page 23 of 28 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-34 – 12 V, 30 W, Universal Input 13 10-Feb-2004 Conducted EMI Figure 26 - Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits. Figure 27 - Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 24 of 28 10-Feb-2004 14 EPR-34 – 12 V, 30 W, Universal Input AC Surge and 100 kHz Ring Wave Immunity Four series of line transient tests were performed on the EP-34 to determine the level of immunity attainable for the basic board. Testing was performed using a Keytek EMC Pro surge generator. The input voltage for the supply under test was 230 VAC, and the supply was loaded to the maximum continuous output power using a resistive load. An LED was used to monitor the presence of output voltage and to detect output interruptions. The secondary return was hard wired to the safety ground at the surge generator. This is a worst-case test condition for common mode surge and ring wave testing, and the test results reflect this. If surge tests are conducted without this ground connection, the common mode surge/ring wave withstand is higher. Test for each series was terminated upon non-destructive interruption of output voltage, arcing, or nonrecoverable interruption of output voltage. A test failure was defined as a nonrecoverable interruption of output voltage requiring supply repair or recycling of input AC voltage. 14.1 Common Mode Surge, 1.2/50 µs Surge Voltage 1 kV 1 kV 1 kV 2 kV 2 kV 2 kV 3 kV 3 kV 3 kV 0 90 270 0 90 270 0 90 270 Generator Impedance 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω Number of Strikes 10 10 10 10 10 10 10 10 10 4 kV 0 12 Ω 10 4 kV 90 12 Ω 10 4 kV 270 12 Ω 1 Page 25 of 28 Phase Angle (°) Test Result PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS (1 power interruption/10strikes, recovered) PASS (2 power interruptions/10 strikes, recovered) PASS (4 power interruptions/10 strikes, recovered) Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-34 – 12 V, 30 W, Universal Input 14.2 Differential Mode Surge, 1.2/50 µs Surge Voltage 1 kV 1 kV 1 kV 2 kV 2 kV 2 kV 3 kV 3 kV 3 kV 4kV 4 kV 4 kV 14.3 Phase Angle (°) 0 90 270 0 90 270 0 90 270 0 90 270 Generator Impedance 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω Number of Strikes 10 10 10 10 10 10 10 10 10 10 10 10 Test Result PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS Common Mode, 100 kHz Ring Wave Surge Voltage (kV) 1 kV 1 kV 1 kV 2 kV 2 kV 2 kV 14.4 10-Feb-2004 Phase Angle (°) Short Circuit Current Number of Strikes 0 90 270 0 90 270 500 A 500 A 500 A 500 A 500 A 500 A 10 10 10 10 10 10 3 kV 0 500 A 10 3 kV 90 500 A 10 3 kV 270 500 A 10 Test Result PASS PASS PASS PASS PASS PASS PASS (6 interruptions/10 strikes, recovered) PASS (7 interruptions/10 strikes, recovered) PASS (6 interruptions/10 strikes, recovered) Differential Mode, 100 kHz Ring Wave Surge Voltage 1 kV 1 kV 2 kV 2 kV 2 kV 3 kV 3 kV 3 kV 3 kV 4 kV 4 kV 4 kV Phase Angle (°) 0 90 270 0 90 270 0 90 270 0 90 270 Short Circuit Current 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Number of Strikes 10 10 10 10 10 10 10 10 10 10 10 10 Test Result PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS Page 26 of 28 10-Feb-2004 15 EPR-34 – 12 V, 30 W, Universal Input Revision History Date 28-Jan-03 03-Feb-03 21-Feb-03 21-Apr-03 10-Feb-04 Page 27 of 28 Author RH RH RH RH KM Revision 0.1 0.2 0.3 1.0 1.1 Description & changes First draft Second draft Third draft First Release Second Release – Transformer specification on page 11 corrected (primary inductance, resonant frequency and ALG). Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-34 – 12 V, 30 W, Universal Input 10-Feb-2004 For the latest updates, visit our Web site: www.powerint.com Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your use of any information, device or circuit described herein nor does it convey any license under its patent rights or the rights of others. POWER INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, and EcoSmart are registered trademarks of Power Integrations. PI Expert and DPA-Switch are trademarks of Power Integrations. © Copyright 2004, Power Integrations. WORLD HEADQUARTERS Power Integrations 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] CHINA (SHENZHEN) Power Integrations International Holdings, Inc. Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu Shenzhen Guangdong, 518031, China Phone: +86-755-8367-5143 Fax: +86-755-8377-9610 e-mail: [email protected] ITALY Power Integrations S.r.l. Via Vittorio Veneto 12, Bresso Milano, 20091, Italy Phone: +39-028-928-6001 Fax: +39-028-928-6009 e-mail: [email protected] SINGAPORE (ASIA PACIFIC HEADQUARTERS) Power Integrations, Singapore 51 Newton Road #15-08/10 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] AMERICAS Power Integrations 4335 South Lee Street, Suite G Buford, GA 30518, USA Phone: +1-678-714-6033 Fax: +1-678-714-6012 e-mail: [email protected] GERMANY Power Integrations, GmbH Rueckertstrasse 3 D-80336, Muenchen, Germany Phone: +49-89-5527-3910 Fax: +49-89-5527-3920 e-mail: [email protected] JAPAN Power Integrations, K.K. Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama 2-Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033, Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] TAIWAN Power Integrations International Holdings, Inc. 5F-1, No. 316, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: [email protected] CHINA (SHANGHAI) Power Integrations International Holdings, Inc. Rm 807, Pacheer Commercial Centre 555 Nanjing West Road Shanghai, 200041, China Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 e-mail: [email protected] INDIA (TECHNICAL SUPPORT) Innovatech 261/A, Ground Floor 7th Main, 17th Cross, Sadashivanagar Bangalore 560080 Phone: +91-80-5113-8020 Telefax: +91-80-5113-8023 e-mail: [email protected] KOREA Power Integrations International Holdings, Inc. 8th Floor, DongSung Bldg. 17-8 Yoido-dong, Youngdeungpo-gu, Seoul, 150-874, Korea Phone: +82-2-782-2840 Fax: +82-2-782-4427 e-mail: [email protected] UK (EUROPE & AFRICA HEADQUARTERS) Power Integrations (Europe) Ltd. st 1 Floor, St. James’s House East Street Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-140 Fax: +44 (0) 1252-727-689 e-mail: [email protected] APPLICATIONS HOTLINE World Wide +1-408-414-9660 APPLICATIONS FAX World Wide +1-408-414-9760 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 28 of 28