Title Engineering Prototype Report (EP13) 43 W / 57 W pk, 5 Output TOPSwitch-GX (TOP246Y) Power Supply Specification 185 - 265 VAC input, 3.3 V / 3 A, 5 V / 3.2 A, 12 V / 0.6 A (1.8 A pk), 18 V / 0.5 A, 30 V / 0.03 A output. (Details for 115 VAC conversion included) Target Applications Set top box with internal hard drive, or other multiple output applications Author Power Integrations Applications Department Document Number EPR-000013 Date 08-May-2001 Revision 1.0 Features • • • • • • • • • • • • Compact Design (6.875” L X 2.56” W X 1.56” H) 43 W steady state output power at 50 °C ambient, free convection High efficiency (75% minimum at 180 VAC input, maximum continuous load) Low no-load power consumption (< 0.7 W @ 180 VAC, < 0.8 W @ 265 VAC) Multiple section transformer for low cost automated production Excellent output voltage tracking and cross regulation Primary soft-start minimizes component stress during start-up Low conducted EMI due to frequency jittering: meets CISPR22B/EN55022B Line overvoltage shutdown provides extended line surge protection Hysteretic thermal shutdown allows automatic supply recovery after fault removal Low component count with single sided printed circuit board Surge immunity up to 4 kV (surge or 100 kHz ring wave) Power Integrations, Inc. 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 Table Of Contents 1 2 3 4 5 6 7 Introduction .................................................................................................................4 Power Supply Specification ........................................................................................5 Schematic ...................................................................................................................6 Circuit Description.......................................................................................................7 PCB Layout...............................................................................................................10 Bill Of Materials.........................................................................................................11 Transformer Specification .........................................................................................13 7.1 Electrical Specifications.........................................................................................13 7.2 Materials................................................................................................................13 7.3 Winding Instructions ..............................................................................................14 7.4 Transformer Sources.............................................................................................14 8 Transformer Spreadsheets .......................................................................................15 8.1 230 VAC, 60 W Peak Load .....................................................................................15 8.2 230 VAC, 45 W Steady State Load.........................................................................18 9 Performance Data.....................................................................................................21 9.1 Efficiency...............................................................................................................21 9.2 No-load Input Power..............................................................................................21 9.3 Regulation .............................................................................................................22 9.3.1 Maximum load all outputs ..............................................................................22 9.3.2 Peak load all outputs......................................................................................22 9.3.3 3.3 V Min. load, 12 V peak, other outputs fully loaded ...................................23 9.3.4 12 V Min. load, other outputs at maximum load condition..............................23 9.3.5 12 V Peak load, 30 V min. load, other outputs at max. load...........................24 9.3.6 5 V and 3.3 V min load, all other outputs maximum .......................................24 10 Thermal Performance ...............................................................................................25 11 Waveforms................................................................................................................26 11.1 Drain Voltage and Current, Normal Operation...................................................26 11.2 Output Voltage Start-up Profile..........................................................................26 11.3 Drain Voltage and Current Start-up Profile ........................................................27 11.4 Load Transient Response (75% to 100% Load Step)........................................28 11.5 Output Ripple Measurements ............................................................................29 11.5.1 Ripple Measurement Technique ....................................................................29 11.5.2 Measurement Results at 180 VAC...................................................................30 11.5.3 Measurement Results at 230 VAC...................................................................31 12 Control Loop Measurements.....................................................................................32 12.1 180 VAC Maximum Load ....................................................................................32 12.2 230 VAC Maximum Load ....................................................................................33 12.3 265 VAC Maximum Load ....................................................................................34 13 Conducted EMI .........................................................................................................35 14 AC Surge and 100 kHz Ring Wave Immunity ...........................................................35 14.1 Common Mode Surge, 1.2/50 µsec ...................................................................36 14.2 Differential Mode Surge, 1.2/50 µsec ................................................................36 14.3 Common Mode, 100 kHz Ring Wave.................................................................37 14.4 Differential Mode, 100 kHz Ring Wave ..............................................................37 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 2 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 15 Appendix A – EP13, 115 VAC Version ...................................................................... 38 15.1 115 VAC Option Power Supply Specification.................................................... 38 15.2 Schematic for EP13 115 VAC-only Version........................................................ 39 15.3 EP13 115 VAC Version Circuit Description ........................................................ 40 15.4 EP13 115 VAC Transformer Drawing ................................................................. 41 15.5 Electrical Specifications .................................................................................... 41 15.6 Materials ........................................................................................................... 42 15.7 Transformer Construction Diagram................................................................... 42 15.8 Winding Instructions.......................................................................................... 43 15.8.1 Shield Foil Assembly ..................................................................................... 44 Secondary Foil Assembly......................................................................................... 44 15.8.3 Design Notes................................................................................................. 44 15.9 EP13 115 VAC Transformer Spreadsheets ........................................................ 45 15.9.1 115 VAC, 60 W Peak Load ............................................................................. 45 15.9.2 115 VAC, 45 W Steady State Load................................................................. 48 15.10 List of Included Parts for 230 VAC-115 VAC Conversion ................................. 51 15.11 EP13 230 VAC-115 VAC Conversion Instructions ............................................ 51 15.11.1 Required Tools and Supplies..................................................................... 51 15.11.2 Conversion Instructions ............................................................................. 51 16 Appendix B Miscellaneous Custom Parts ................................................................ 52 16.1 Secondary Heat Sink ........................................................................................ 52 17 Revision History ....................................................................................................... 53 Page 3 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 1 Introduction This document is an engineering report describing a 230 VAC input, 5-output flyback supply utilizing TOPSwitch®-GX (TOP246Y). The supply is rated for 43 W continuous output power, with 57 W of peak power capability for starting a disk drive. The design is optimized for high-end set-top box applications, but is easily adapted for other multiple output uses such as VCRs, DVD players, cable modems, and direct satellite receivers. The design kit includes a component kit and instructions for converting the supply to 115 VAC input operation. This document contains the power supply specification, schematic, and bill of materials, transformer documentation, printed circuit layout, and performance data. 1.56” 6.875” 2.56” Figure 1 - EP13 Populated Circuit Board. Figure 2 - EP13 230 VAC Input to 115 VAC Input Retrofit Kit. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 4 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 2 Power Supply Specification Description Input Voltage Frequency No-load Input Power (230 VAC) Output Output Voltage 1 Output Ripple Voltage 1 Output Current 1 Output Voltage 2 Output Ripple Voltage 2 Output Current 2 Output Voltage 3 Output Ripple Voltage 3 Output Current 3 Output Voltage 4 Output Ripple Voltage 4 Output Current 4 Output Voltage 5 Output Ripple Voltage 5 Output Current 5 Total Output Power Continuous Output Power Peak Output Power Efficiency Symbol Min Typ Max Units Comment VIN fLINE 180 47 230 50/60 265 64 0.75 VAC Hz W 2 Wire – no P.E. VOUT1 VRIPPLE1 IOUT1 VOUT2 VRIPPLE2 IOUT2 VOUT3 VRIPPLE3 3.14 3.30 3.00 5.00 V mV A V mV A V mV ± 5% 20 MHz Bandwidth 1.0 4.75 3.46 33 3.00 5.25 50 3.20 12.84 120 1.00 11.16 3.20 12.0 * 0.30 0.60 1.8 A VOUT4 VRIPPLE4 IOUT4 VOUT5 VRIPPLE5 IOUT5 16.74 18.00 19.26 180 0.5 36.3 200 0.03 V mV A V mV A 43 57 W W % POUT POUT_PEAK η 0.01 33 - 75 ±7% 20 MHz Bandwidth * IOUT3 0.5 29.7 ±5% 20 MHz Bandwidth Peak, 10 s max, thermally limited ±7% 20 MHz Bandwidth ±10% 20 MHz Bandwidth Measured at POUT (43 W), 25 oC Environmental Conducted EMI Meets CISPR22B / EN55022B Safety Designed to meet IEC950, UL1950 Class II 1.2/50 µs surge, IEC 1000-4-5, 12 Ω series impedance, differential and common mode 100 kHz ring wave, 500 A short circuit current, differential and common mode Surge 4 kV Surge 4 kV Ambient Temperature Page 5 of 56 TAMB 0 50 o C Free convection, Sea level Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 3 Schematic Figure 3 - EP13 Schematic. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 6 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 4 Circuit Description The EP13 is a five-output flyback power supply using the TOP246Y integrated circuit. The circuit shown in Figure 3 provides 43 W continuous power, with peak capability of 57 W (thermally limited). Input voltage range is 180-265 VAC. AC input power is rectified and filtered by D1-4 and C2 to provide a high voltage DC bus, which is applied to the primary of transformer T1. The TOP246Y DRAIN pin drives the other side of the transformer primary. Components D5, VR1, R2 and C5 clamp the DRAIN voltage leakage inductance spike to below the 700 V maximum rating of the TOPSwitch. The TOPSwitch-GX family provides several new features, as well as extended specifications. The EP13 power supply is designed to take advantage of several of these features. Resistor R1 connected to the LINE SENSE pin (L) of TOPSwitch-GX U1 is used to implement the built-in line voltage feed forward and overvoltage protection features. The line feed forward feature modulates the control circuit of the TOPSwitch-GX with the AC line frequency ripple component of the input DC, reducing the line frequency ripple at the output of the supply. This simplifies the design of the power supply control loop by reducing the amount of control loop gain required at the line ripple frequency in order to meet output ripple specifications. The overvoltage feature shuts down the power supply if the rectified DC bus voltage exceeds approximately 450 V, set by the value of R1. The supply resumes operation when the bus voltage falls again below the overvoltage threshold value. This feature allows the supply to withstand severe line transients or extended surge conditions without damage. This is an attractive feature for products designed for markets with poor power quality. Resistor R4 connects to the EXTERNAL CURRENT LIMIT pin (X) of U1 and is used to externally program the device current limit to just above the peak primary current of the supply at maximum peak load, minimum line voltage. This allows the transformer to be better optimized for the chosen operating conditions, while at the same time avoiding transformer core saturation during start-up or overload conditions. Transformer optimization choices can include using a smaller core (less expensive transformer), fewer primary turns (less leakage inductance), or higher primary inductance (more continuous operation, less TOPSwitch dissipation). The EP13 transformer design does not take full advantage of the flexibility offered by the TOPSwitch-GX due to secondary volts per turn required to minimize voltage error between 3.3 V and 5 V outputs. The secondary turns were deliberately chosen to optimize output voltage centering with the fewest possible number of turns. The reflected Page 7 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 voltage at the primary was fixed at 100 V to optimize output cross regulation, thus fixing the number of primary turns. A design with fewer output voltages can take better advantage of the design flexibility offered by the TOPSwitch-GX family. D6 and C3 provide a DC voltage of approximately 12 V to power the TOP246Y. A relatively large value of C3 (1 µF) is used to provide bias voltage ride-through during severe output load transients. Capacitor C4 filters the internal bias supply of the TOPSwitch-GX, providing the necessary peak currents to drive the gate of its internal high-voltage MOSFET. Capacitor C4 also determines the TOPSwitch-GX auto-restart frequency, and along with resistor R3, helps to compensate the power supply control loop. Transformer T1 utilizes a nine section slotted bobbin designed for an automated production environment. Primary and secondary windings are applied in alternate bobbin slots using ordinary magnet wire. The slots provide the necessary safety isolation and creepage distance between the primary and secondary windings without the need for additional insulation of any kind. The large number of winding slots provides sufficient interleaving of primary and secondary windings to reduce the leakage inductance to a tolerable value, while the open construction of the transformer reduces winding temperature rise, allowing use of relatively fine wire, further facilitating automatic winding. Diodes D7, 8, 9, 10 and 11, along with capacitors C7, 9, 11, 13, 14, 16 and 17 are used to rectify and filter the five output secondary windings of T1. Two techniques are used to properly center the output voltages of the supply and to improve cross regulation between outputs. An ultrafast rectifier is used for D10 (5 V output rectifier) instead of a Schottky rectifier. The extra voltage drop of the ultrafast rectifier centers the 5 V output at precisely 5 V. Also, the 12 V, 18 V and 30 V secondary windings are stacked on the cathode side of the 5 V output rectifier (DC stacking) rather than the anode side (AC stacking). This means that the current for these outputs passes through the 5 V output rectifier (D10) as well as their respective output rectifiers (D7, 8, and 9). This increases the dissipation in D10, but has two beneficial effects. First, the extra voltage drop imposed by D10 precisely centers the 12 V output. Also, since the current for the 12 V, 18 V and 30 V outputs passes through D10 and its connecting printed circuit traces, variations in the current from these outputs will modulate the voltage drop across D10 to a certain extent. This change is passed on to the 5 V output, causing the output control loop to change the duty cycle to compensate. This indirect feedback improves the cross regulation of these outputs. Inductors L2, 3, 4, 5 and 6 are used along with capacitors C8, 10, 12, 15 and 18 to provide high frequency filtering for the five outputs of the supply. These filters greatly reduce the switching frequency ripple and high frequency spike noise at the outputs of the supply. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 8 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply A voltage divider consisting of resistors R10, 11 and 13 monitors the voltage on the 5 V and 3.3 V outputs. The resistor values are weighted so that the voltage feedback loop is controlled mostly by the 5 V output, with some contribution from the 3.3 V output. Sharing the voltage regulation control between the two outputs in this manner improves the cross regulation for the 3.3 V output at the expense of a slight change in the regulation of the 5 V output. The voltage from R10, 11 and 13 is applied to the reference pin of shunt regulator U3. These resistor values and the reference voltage of U3 are used to set the output voltages of the supply. Resistor R7 is used to set the overall gain of the supply control loop, while R8 provides bias current for U3. R9 and C19 provide frequency compensation for U3 to help stabilize the power supply control loop. Capacitor C20 is used to provide open loop feedback through optocoupler U2 during start-up, which in conjunction with the built-in soft start-up feature of TOPSwitch-GX, completely controls the start-up drain current profile, preventing transformer saturation and output overshoot. Optocoupler U2 applies the feedback signal from U3 to the CONTROL pin of U1. Resistor R15 and capacitor C24 form a snubber across D10 that reduces the reverse recovery transient from this diode, improving EMI performance. Inductor L7 is a ferrite bead placed in series with the 12 V, 18 V and 30 V output windings of T1. This bead acts as a small saturable reactor to improve the centering and cross regulation of these outputs. R6 provides a small amount of pre-filtering for the 30 V output, and is used to help prevent peak charging of this output due to leakage spikes. C1, L1 and C6 provide common-mode and differential mode EMI filtering for the power supply. Fuse F1 protects against gross circuit faults. Varistor RV1 is used to clamp differential mode line transients. Thermistor RT1 reduces the initial current surge when AC power is first applied to the circuit. Page 9 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 5 PCB Layout Figure 4 - EP13 Printed Circuit Layout. (Approximately 1:1 Scale) Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 10 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 6 Bill Of Materials EP13 Set Top Supply, 230 VAC Slot Wound XFMR 1/25/01 Bill Of Materials Item Qty Reference Description P/N Manufacturer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 1 1 1 1 1 1 1 1 2 1 4 2 2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10, 12 C11 C13, 14,16,17 C15, 18 C19, 23 0.22 µF 250 V, X2 68 µF, 400 V 1 µF, 50 V NHG 47 µF 16 V NHG 1 nF, 1 kV 2.2 µF, Y1 47 µF, 50 V NHG 10 µF, 50 V NHG 330 µF, 25 V HFQ 100 µF, 25 V NHG 390 µF, 35 V HFQ 1000 µF, 25 V HFQ 220 µF,16 V NHG 0.1 µF, 50 V 306 20224 ECO-S2GP680AA ECA-1HHG010 ECA-1CHG470 ECK-D3A102KBN 440LD22 ECA-1HHGG470 ECA-1HHG100 ECA-1EFQ331 ECA-1EHG101 ECA-1VFQ391 ECA-1EFQ102 ECA-1CHG221 K104M15Z5UF5TH5 15 16 1 1 C20 C24 22 µF, 50 V NHG 1 nF, 50 V ECA-1HHG220 K102K15X7Rf5TL2 Philips Panasonic Panasonic Panasonic Panasonic Cera-Mite Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Beyerschlag /Centralab Panasonic Beyerschlag /Centralab 17 18 4 1 D1-4 D5 1 A, 1000 V 1 A, 600 V, 200 nsec 1N4007 1N4937 19 20 1 1 D6 D7 Diode, 75 V 1 A, 200 V, 50 nsec 1N4148 UF4003 21 2 D8, 9 3 A, 200 V, 50 nsec UF5402 22 23 1 1 D10 D11 20 A, 200 V, 35 nsec 10 A, 45 V Schottky BYV32-200 MBR1045 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 1 1 4 1 1 1 1 1 1 2 1 1 1 1 1 1 1 F1 L1 L2-5 L6 L7 R1 R2 R3 R4 R6, 15 R7 R8 R9 R10 R11 R13 R14 Fuse, 250 VAC 3.15 A 20 mH, 0.8 A 3.3 uH, 33 uH, 190 mA Ferrite Bead 2 M, 1/2 W, 5% 68 kΩ, 2 W, 5% Metal Oxide 6.8 Ω, 1/4 W, 5% 9.09 kΩ, 1 %, RN55 10 Ω, 1/4 W, 5% 150 Ω, 1/4 W, 5% 1 kΩ, 1/4 W, 5% 3.3 kΩ, 1/4 W, 5% 9.53 kΩ, 1%, RN55 10 kΩ, 1%, RN55 15 kΩ, 1%, RN55 2.7 kΩ, 1/2 W, 5% 372-1315 ELF-18N008A 622-LY-3R3M 78F330J 2643022401 Page 11 of 56 General Semiconductor General Semiconductor General Semiconductor Philips General Semiconductor Wickman Panasonic Toko J.W. Miller Fair-Rite Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 41 42 43 44 45 46 1 1 1 1 1 1 T1 U1 U2 U3 RV1 VR1 XFMR, Custom Slotted Bobbin TOP246Y Optocoupler, graded CTR Shunt Regulator, 1% Varistor, 275 VAC, 14 mm TVS, 200 V, 600 W 47 48 49 50 51 1 1 1 1 1 RT1 J1 J2 HS1 HS2 Thermistor, 10 ohm 1.7 A 3 pin, 0.156 ctr* 14 pin, 0.156 ctr. Heat Sink, TO-220, 1.5” ht. Heat Sink Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com LTV817A TL431ACLP P6KE200 KC012L 26-60-2030 26-60-2140 531102N02500 08-May-2001 Orega Power Integrations Liteon TI General Semiconductor Keystone Molex Molex Aavid Custom Page 12 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 7 Transformer Specification Figure 5 - EP13 Multiple Slot Transformer. 7.1 Electrical Specifications Electrical Strength Primary Inductance Resonant Frequency Primary Leakage Inductance 7.2 1 minute, 60 Hz, from Pins 1-9 to Pins 10-18 Pins 1-5 with Pins 3-4 shorted together, all other windings open, 130 kHz measurement frequency Pins 1-5 with Pins 3-4 shorted together, all other windings open Pins 1-5 with Pins 3-4 shorted together, Pins 1018 shorted together, 130 kHz measurement frequency 3000 VAC 487 µH +/-10% 2 MHz minimum 15 µH maximum Materials Item [1] [2] [3] Description 2 Orega SMT18 Core/Bobbin Set, Gap core for AL of 180 nH/T Magnet Wire, Solderable Double Coated 0.25 mm/30 AWG Epoxy Glue Page 13 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 7.3 08-May-2001 Winding Instructions Slot # Slot 1 – Slot 2 – Slot 3 – Slot 4 – Slot 5 – Slot 6 – Slot 7 – Slot 8 – Slot 9 – Start Pin Start Pin 5 Start Pin 11 Start Pin 14 Start Pin 16 Start Pin 17 Start Pin 18 Start Pin 3 Start Pin 8 Start Pin 11 Start Pin 14 Start Pin 14 Start Pin 5 Start Pin 11 Start Pin 15 Start Pin 15 Start Pin 16 Start Pin 4 Start Pin 11 Start Pin 15 Start Pin 16 Start Pin 17 Start Pin 18 Start Pin 5 Turns 26t 1t 2t 4t 3t 6t 26t 7t 1t 2t 2t 26t 1t 2t 2t 4t 26t 1t 2t 4t 3t 6t 26t Wire size 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25mm 0.25mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm 0.25 mm Finish Pin Finish Pin 3 Finish Pin 14 Finish Pin 12 Finish Pin 10 Finish Pin 16 Finish Pin 17 Finish Pin 1 Finish Pin 9 Finish Pin 14 Finish Pin 12 Finish Pin 12 Finish Pin 4 Finish Pin 15 Finish Pin 13 Finish Pin 13 Finish Pin 10 Finish Pin 1 Finish Pin 15 Finish Pin 13 Finish Pin 10 Finish Pin 16 Finish Pin 17 Finish Pin 4 7.4 Transformer Sources For information on the vendors used to source the transformers used on this board, please visit the Power Integrations' Web site at the URL below and select “Engineering Prototype Boards” http://www.powerint.com/componentsuppliers.htm Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 14 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 8 Transformer Spreadsheets 8.1 230 VAC, 60 W Peak Load ACDC_TOPGX_Rev1.1_040401 Copyright Power Integrations Inc. 2000 INPUT INFO OUTPUT UNIT ENTER APPLICATION VARIABLES TOP_GX_040401.xls: TOPSwitch-GX Continuous/Discontinuous Flyback Transformer Design Spreadsheet Customer VACMIN 180 Volts Minimum AC Input Voltage VACMAX 265 Volts Maximum AC Input Voltage fL 50 Hertz AC Mains Frequency VO 3.3 Volts Output Voltage PO 60 Watts n 0.7 Z 0.5 VB 12 tC 3 CIN Output Power Efficiency Estimate Loss Allocation Factor 68 Volts Bias Voltage mSeconds Bridge Rectifier Conduction Time Estimate µFarads Input Filter Capacitor ENTER TOPSwitch-GX VARIABLES TOP-GX TOP246 Chosen Device Universal Power Out 90 W 115 Doubled/230 V ILIMITMIN 1.944 Amps 150 W External ILIMIT reduction factor (KI=1.0 for default ILIMIT, KI <1.0 for lower ILIMIT) Use 1% resistor in setting external ILIMIT ILIMITMAX Frequency - (F)=130 kHz, (H)=65 kHz 2.376 Amps Use 1% resistor in setting external ILIMIT KI TOP246 0.8 f Full (F) frequency option - 130 kHz fSmin 1.24E+05 Hertz TOPSwitch-GX Switching Frequency: Choose between 130 kHz and 65 kHz TOPSwitch-GX Minimum Switching Frequency fSmax 1.40E+05 Hertz TOPSwitch-GX Maximum Switching Frequency fS VOR 130000 1.30E+05 Hertz 99 Volts Reflected Output Voltage TOPSwitch on-state Drain to Source Voltage VDS 10 Volts VD 0.5 Volts Output Winding Diode Forward Voltage Drop VDB 0.7 Volts Bias Winding Diode Forward Voltage Drop Ripple to Peak Current Ratio (0.4 < KRP < 1.0 : 1.0< KDP<6.0) P/N: PC40EER28L-Z P/N: BEER-28L-1112CPH KP 0.60 ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type EER28L Core EER28L Bobbin EER28L_BOBBIN AE 0.814 cm^2 LE 7.55 cm Core Effective Path Length AL 2520 nH/T^2 Ungapped Core Effective Inductance BW 21.8 mm Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary Creepage Distance) Number of Primary Layers M 0 L 3.3 NS Page 15 of 56 2 mm Core Effective Cross Sectional Area Number of Secondary Turns Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 DC INPUT VOLTAGE PARAMETERS VMIN 217 Volts Minimum DC Input Voltage VMAX 375 Volts Maximum DC Input Voltage DMAX 0.32 Maximum Duty Cycle IAVG 0.39 Amps Average Primary Current CURRENT WAVEFORM SHAPE PARAMETERS IP 1.74 Amps Peak Primary Current IR 1.05 Amps Primary Ripple Current IRMS 0.72 Amps Primary RMS Current 460 µHenries Primary Inductance TRANSFORMER PRIMARY DESIGN PARAMETERS LP NP 52 NB 7 ALG Primary Winding Number of Turns Bias Winding Number of Turns 169 nH/T^2 Gapped Core Effective Inductance BM 1891 Gauss Maximum Flux Density at PO, VMIN (BM<3000) BP 2577 Gauss Peak Flux Density (BP<4200) AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core BAC 567 Gauss ur 1860 LG 0.56 mm BWE 71.94 mm OD 1.38 mm INS 0.09 DIA 1.29 AWG 17 CM 2048 CMA Warning 2864 Gap Length (Lg > 0.1 mm) Effective Bobbin Width Maximum Primary Wire Diameter including insulation Estimated Total Insulation Thickness (= 2 * film mm thickness) mm Bare conductor diameter Primary Wire Gauge (Rounded to next smaller AWG standard AWG value) Cmils Bare conductor effective area in circular mils !!!!!!!!!! DECREASE CMA> (decrease L (primary Cmils/Amp layers), increase NS, smaller Core) TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT / SINGLE OUTPUT EQUIVALENT) Lumped parameters ISP 45.43 Amps Peak Secondary Current ISRMS 26.95 Amps Secondary RMS Current IO 18.18 Amps Power Supply Output Current IRIPPLE 19.89 Amps Output Capacitor RMS Ripple Current CMS 5390 Cmils Secondary Bare Conductor minimum circular mils Secondary Wire Gauge (Rounded up to next larger standard AWG value) Secondary Minimum Bare Conductor Diameter Secondary Maximum Outside Diameter for Triple Insulated Wire Maximum Secondary Insulation Wall Thickness AWGS 12 AWG DIAS 2.05 mm ODS 10.90 mm INSS 4.42 mm VOLTAGE STRESS PARAMETERS PIVS 18 Volts Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Output Rectifier Maximum Peak Inverse Voltage PIVB 60 Volts Bias Rectifier Maximum Peak Inverse Voltage VDRAIN 603 Volts Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 16 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) 1st output VO1 IO1 5.0 PO1 VD1 Volts 3.200 Amps 16.00 Watts 0.7 NS1 Volts 3.00 ISRMS1 Output DC Current Output Power Output Diode Forward Voltage Drop Output Winding Number of Turns 4.743 Amps IRIPPLE1 Output Voltage 3.50 Amps PIVS1 27 Volts CMS1 949 Cmils Output Winding RMS Current Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage DIAS1 0.81 mm Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter ODS1 7.27 mm Maximum Outside Diameter for Triple Insulated Wire AWGS1 20 AWG 2nd output VO2 12.0 Volts IO2 0.600 Amps PO2 VD2 7.20 Watts 1.4 NS2 Volts 7.05 ISRMS2 Output DC Current Output Power Output Diode Forward Voltage Drop Output Winding Number of Turns 0.889 Amps IRIPPLE2 Output Voltage 0.66 Amps PIVS2 63 Volts CMS2 178 Cmils Output Winding RMS Current Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage DIAS2 0.36 mm Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter ODS2 3.09 mm Maximum Outside Diameter for Triple Insulated Wire AWGS2 27 AWG 3rd output VO3 18.0 IO3 0.500 PO3 VD3 Volts Amps 9.00 Watts 1.4 Volts Output Voltage Output DC Current Output Power Output Diode Forward Voltage Drop NS3 10.21 Output Winding Number of Turns ISRMS3 0.741 Amps Output Winding RMS Current IRIPPLE3 0.55 Amps PIVS3 91 Volts CMS3 148 Cmils Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage DIAS3 0.32 mm Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter ODS3 2.14 mm Maximum Outside Diameter for Triple Insulated Wire AWGS3 Page 17 of 56 28 AWG Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 8.2 08-May-2001 230 VAC, 45 W Steady State Load ACDC_TOPGX_Rev1.1_040401 Copyright Power Integrations Inc. 2000 INPUT INFO OUTPUT UNIT ENTER APPLICATION VARIABLES TOP_GX_040401.xls: TOPSwitch-GX Continuous/Discontinuous Flyback Transformer Design Spreadsheet Customer VACMIN 180 Volts Minimum AC Input Voltage VACMAX 265 Volts Maximum AC Input Voltage fL 50 Hertz AC Mains Frequency VO 3.3 Volts Output Voltage PO 45 Watts n 0.75 Z 0.5 VB 12 tC Loss Allocation Factor 3 CIN Output Power Efficiency Estimate 68 Volts Bias Voltage mSeconds Bridge Rectifier Conduction Time Estimate µFarads Input Filter Capacitor Universal 115 Doubled/230 V ENTER TOPSwitch-GX VARIABLES TOP-GX TOP246 Chosen Device TOP246 ILIMITMIN 1.944 Amps 150 W External ILIMIT reduction factor (KI=1.0 for default ILIMIT, KI <1.0 for lower ILIMIT) Use 1% resistor in setting external ILIMIT ILIMITMAX Frequency - (F)=130 kHz, (H)=65 kHz 2.376 Amps Use 1% resistor in setting external ILIMIT KI fS Power Out 90 W 0.8 f Full (F) frequency option - 130 kHz 130000 1.24E+05 Hertz TOPSwitch-GX Switching Frequency: Choose between 130 kHz and 65 kHz TOPSwitch-GX Minimum Switching Frequency 1.40E+05 Hertz TOPSwitch-GX Maximum Switching Frequency 1.30E+05 Hertz fSmin fSmax VOR 99 Volts Reflected Output Voltage VDS 10 Volts TOPSwitch on-state Drain to Source Voltage VD 0.5 Volts Output Winding Diode Forward Voltage Drop VDB 0.7 Volts Bias Winding Diode Forward Voltage Drop Ripple to Peak Current Ratio (0.4 < KRP < 1.0 : 1.0< KDP<6.0) KP 0.79 ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type EER28L Core EER28L P/N: PC40EER28L-Z Bobbin EER28L_BOBBIN P/N: BEER-28L-1112CPH AE 0.814 cm^2 LE 7.55 cm Core Effective Cross Sectional Area Core Effective Path Length AL 2520 nH/T^2 Ungapped Core Effective Inductance BW 21.8 mm M 0 L 1 Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary Creepage Distance) Number of Primary Layers NS 2 Number of Secondary Turns mm DC INPUT VOLTAGE PARAMETERS VMIN 229 Volts Minimum DC Input Voltage VMAX 375 Volts Maximum DC Input Voltage Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 18 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply CURRENT WAVEFORM SHAPE PARAMETERS DMAX 0.31 IAVG 0.26 Amps Maximum Duty Cycle Average Primary Current IP 1.39 Amps Peak Primary Current IR 1.10 Amps Primary Ripple Current IRMS 0.50 Amps Primary RMS Current TRANSFORMER PRIMARY DESIGN PARAMETERS LP NP NB ALG 458 µHenries 52 Primary Inductance Primary Winding Number of Turns 7 Bias Winding Number of Turns 169 nH/T^2 Gapped Core Effective Inductance BM 1501 Gauss Maximum Flux Density at PO, VMIN (BM<3000) BP 2565 Gauss ur 1860 Peak Flux Density (BP<4200) AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core LG 0.57 mm Gap Length (Lg > 0.1 mm) BWE 21.8 mm BAC 593 Gauss Effective Bobbin Width Maximum Primary Wire Diameter including OD 0.42 mm insulation Estimated Total Insulation Thickness (= 2 * film INS 0.06 mm thickness) DIA 0.36 mm Bare conductor diameter Primary Wire Gauge (Rounded to next smaller AWG 28 AWG standard AWG value) CM 161 Cmils Bare conductor effective area in circular mils Primary Winding Current Capacity (200 < CMA < CMA 321 Cmils/Amp 500) TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT / SINGLE OUTPUT EQUIVALENT) Lumped parameters ISP 36.24 Amps Peak Secondary Current ISRMS 19.45 Amps Secondary RMS Current IO 13.64 Amps Power Supply Output Current IRIPPLE 13.86 Amps Output Capacitor RMS Ripple Current CMS 3889 Cmils Secondary Bare Conductor minimum circular mils Secondary Wire Gauge (Rounded up to next larger standard AWG value) Secondary Minimum Bare Conductor Diameter Secondary Maximum Outside Diameter for Triple Insulated Wire Maximum Secondary Insulation Wall Thickness AWGS 14 AWG DIAS 1.63 mm ODS 10.90 mm INSS 4.64 mm VOLTAGE STRESS PARAMETERS PIVS 18 Volts Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Output Rectifier Maximum Peak Inverse Voltage PIVB 60 Volts Bias Rectifier Maximum Peak Inverse Voltage VDRAIN Page 19 of 56 603 Volts Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) 1st output VO1 IO1 5.0 3.200 PO1 VD1 Volts Output Voltage Amps Output DC Current 16.00 Watts 0.7 NS1 Volts 3.00 ISRMS1 Output Winding Number of Turns 4.563 Amps IRIPPLE1 3.25 Amps PIVS1 27 Volts CMS1 913 Cmils AWGS1 Output Power Output Diode Forward Voltage Drop 20 AWG DIAS1 0.81 mm ODS1 7.27 mm Output Winding RMS Current Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter Maximum Outside Diameter for Triple Insulated Wire 2nd output VO2 12.0 Volts Output Voltage IO2 0.600 Amps Output DC Current PO2 VD2 7.20 Watts 1.4 NS2 Volts 7.05 ISRMS2 0.61 Amps PIVS2 63 Volts CMS2 171 Cmils AWGS2 Output Diode Forward Voltage Drop Output Winding Number of Turns 0.856 Amps IRIPPLE2 Output Power 27 AWG DIAS2 0.36 mm ODS2 3.09 mm Output Winding RMS Current Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter Maximum Outside Diameter for Triple Insulated Wire 3rd output VO3 18.0 IO3 0.500 PO3 VD3 Volts Output Voltage Amps Output DC Current 9.00 Watts 1.4 Volts Output Power Output Diode Forward Voltage Drop NS3 10.21 Output Winding Number of Turns ISRMS3 0.713 Amps Output Winding RMS Current IRIPPLE3 0.51 Amps PIVS3 91 Volts CMS3 143 Cmils AWGS3 28 AWG DIAS3 0.32 mm ODS3 2.14 mm Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter Maximum Outside Diameter for Triple Insulated Wire Page 20 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 9 Performance Data All measurements performed at room temperature, 60 Hz input frequency. 9.1 Efficiency Efficiency vs. Vin 80% Max Continuous Load 79% Max Peak Load 78% Efficiency (%) 77% 76% 75% 74% 73% 72% 71% 70% 160 180 200 220 240 260 280 AC Input Voltage Figure 6 - Efficiency vs. Input Voltage, Full Load, Room Temperature, 60 Hz. 9.2 No-load Input Power Zero Load Input Power vs. Line Voltage 0.8 Input Power (W) 0.75 0.7 0.65 0.6 0.55 0.5 160 180 200 220 240 260 280 AC Input Voltage (VAC) Figure 7 - Zero Load Input Power vs. Input Line Voltage Room Temperature, 60 Hz. Page 21 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 9.3 08-May-2001 Regulation 9.3.1 Maximum load all outputs Line Regulation, Full Load Regulation (% of Absolute Voltage). 105% 3.3V 5V 12V 18V 30V 104% 103% 102% 101% 100% 99% 98% 160 180 200 220 240 260 280 AC Input Voltage (VAC) Figure 8 - Line Regulation, Maximum Continuous Load 9.3.2 Peak load all outputs Line Regulation - Peak Load (3.3 V @ 3A, 5 V @ 3.2 A, 12 V @ 1.8 A, 18 V @ 0.5 A, 30 V @ 30 mA) Regulation (% of Absolute Voltage) 104% 3.3V 5V 12V 18V 30V 103% 102% 101% 100% 99% 98% 160 180 200 220 240 260 280 AC Input Voltage Figure 9 - Line Regulation, Peak Load Condition Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 22 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 9.3.3 3.3 V Min. load, 12 V peak, other outputs fully loaded Line Regulation (3.3 V @ 1 A, 5 V @ 3.2 A, 12 V @ 1.8 A, 18V @ 0.5 A, 30 V @ 30 mA) Regulation (% of Absolute Voltage). 105.0% 3.3V 5V 12V 18V 30V 103.0% 101.0% 99.0% 97.0% 95.0% 160 180 200 220 240 260 280 AC Input Voltage (VAC) Figure 10 - Line Regulation, 3.3 V @ 1 A, 12 V @ 1.8 A, All Other Outputs Maximum Steady State Load 9.3.4 12 V Min. load, other outputs at maximum load condition Line Regulation - Peak Load Condition (3.3 V @ 3 A, 5 V @ 3.2 A, 12 V @ 0.3 A, 18 V @ 0.5 A, 30 V @ 30 mA) Regulation (% of Absolute Voltage). 106% 3.3V 5V 12V 18V 30V 105% 104% 103% 102% 101% 100% 99% 160 180 200 220 240 260 280 AC Input Voltage Figure 11 - Line Regulation, 12 V min, and all other outputs maximum load Page 23 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 9.3.5 12 V Peak load, 30 V min. load, other outputs at max. load Line Regulation - Peak Load (3.3 V @ 3 A, 5 V @ 3.2 A, 12 V @ 1.8 A, 18 V @ 0.6 A, 30 V @ 10 mA) Regulation (% of Absolute voltage). 110% 3.3V 5V 12V 18V 30V 108% 106% 104% 102% 100% 98% 160 180 200 220 240 260 280 AC Input Voltage (VAC) Figure 12 - Line Regulation – 12 V Peak, 30 V Min. Load Condition 9.3.6 5 V and 3.3 V min load, all other outputs maximum Line Regulation 5V @ 1A, 3.3 V @ 1 A, 12 V @ 0.6 A, 18 V @ 0.5 A, 30 V @ 0.03 A Regualtion (% of Absolute Output Voltage). 104% 3.3V 5V 12V 18V 30V 103% 102% 101% 100% 99% 98% 97% 96% 95% 160 180 200 220 240 260 280 AC Input Voltage Figure 13 - Line Regulation – 5 V and 3.3 V minimum, other output maximum load Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 24 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 10 Thermal Performance Item Ambient Balun (L1) Thermistor (RT1) Snubber Resistor (R2) Clamp Zener (VR1) TOPSwitch (U1) Transformer (T1) 18V Rectifier (D8) 12V Rectifier (D9) 5V Rectifier (D10) 3.3V Rectifier (D11) 180 VAC 30.2 °C 41.1 °C 78.9 °C 69.4 °C 65.9 °C 58.6 °C 71.2 °C 67.8 °C 74.2 °C 80.3 °C 73.7 °C Temperature 230 VAC 180 VAC 31.1 °C 50.9 °C 37.8 °C 59.7 °C 71.3 °C 99.3 °C 69.3 °C 86.4 °C 63.4 °C 85.0 °C 59.3 °C 81 °C 72.6 °C 94.8 °C 68.8 °C 87.3 °C 75.1 °C 94.0 °C 81.8 °C 102.7 °C 75 °C 96.1 °C 230 VAC 52 °C 55.7 °C 90.1 °C 85.6 °C 81.2 °C 79.7 °C 93.7 °C 87.5 °C 93.8 °C 102.5 °C 96.0 °C Figure 14 - EP13 Thermal Performance Figure 15 - Infrared Thermograph of EP13, 180 VAC Input, Maximum Continuous Load, 22 °C Ambient. (Board was sprayed black to give an accurate emissivity figure) Page 25 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 11 Waveforms 11.1 Drain Voltage and Current, Normal Operation Figure 16 - 180 VAC - Upper: IDRAIN, 0.5 A / div, Lower: VDRAIN, 200 V / div, 2 µs / div Figure 17 - 265 VAC, Full Load - Upper: IDRAIN, 0.5 A / div, Lower: VDRAIN, 200 V / div, 2 µs / div 11.2 Output Voltage Start-up Profile Figure 18 - Start-up Profile, 3.3 V, 5 V and 12 V outputs. 2 V & 5 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 19 - Start-up Profile, 5 V, 18 V and 30 V outputs. 2 V & 5 ms / div. Page 26 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 11.3 Drain Voltage and Current Start-up Profile Figure 20 - 180 VAC Input and Maximum Load. Upper: IDRAIN, 0.5 A / div. Lower: VDRAIN, 100 V & 2 ms / div. Page 27 of 56 Figure 21 - 265 VAC Input and Maximum Load. Upper: IDRAIN, 0.5 A / div. Lower: VDRAIN, 100 V & 2 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 11.4 Load Transient Response (75% to 100% Load Step) In the figures shown below, signal averaging was used to better enable viewing the load transient response. The oscilloscope was triggered using the load current step as a trigger source. Since the output switching and line frequency occur essentially at random with respect to the load transient, contributions to the output ripple from these sources will average out, leaving the contribution only from the load step response. Figure 22 - 5 V and 3.3 V Transient Response. 75-100-75% Load Step 5 V output. Upper: 5 V, 100 mV / div. Middle: 3.3 V, 100 mV / div. Bottom: 5 V output current, 1 A / div. 500 µs / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 23 - 12, 18 and 30 V Transient Response. 75-100-75% Load Step 5 V output. Upper: 30 V, 200 mV / div. Middle1: 18 V, 200 mV / div. Middle2: 12 V, 200 mV / div. Bottom: 5 V output current, 1 A / div. 2 ms / div. Page 28 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 11.5 Output Ripple Measurements 11.5.1 Ripple Measurement Technique For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 24 and Figure 25. The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below). Probe Ground Probe Tip Figure 24 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed) Figure 25 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added) Page 29 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 11.5.2 Measurement Results at 180 VAC Figure 26 - 3.3 V Ripple, 180 VAC, Full Load. 2 ms, 20 mV / div Figure 27 - 5 V Ripple, 180 VAC, Full Load. 2 ms, 20 mV / div Figure 29 - 18 V Ripple, 180 VAC, Full Load. 2 ms, 20 mV / div Figure 30 - 33 V Ripple, 180 VAC, Full Load. 2 ms, 20 mV / div Figure 28 - 12 V Ripple, 180 VAC, Full Load. 2ms, 20 mV / div Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 30 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 11.5.3 Measurement Results at 230 VAC Figure 31 - 3.3 V Ripple, 230 VAC, Full Load. 2 ms, 20 mV / div Figure 34 - 18 V Ripple, 230 VAC, Full Load. 2 ms, 20 mV / div Figure 32 - 5 V Ripple, 230 VAC, Full Load. 2 ms, 20 mV / div Figure 35 - 18 V Ripple, 230 VAC, Full Load. 2 ms, 20 mV / div Figure 33 - 12 V Ripple, 230 VAC, Full Load. 2 ms, 20 mV / div Page 31 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 12 Control Loop Measurements 12.1 180 VAC Maximum Load 0 dB Gain 45° Phase Margin Figure 36 - Gain-Phase Plot, 180 VAC, Maximum Steady State Load Vertical Scale: Gain = 10 dB/div, Phase = 30 °/div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 32 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 12.2 230 VAC Maximum Load 0 dB Gain 50° Phase Margin Figure 37 - Gain-Phase Plot, 230 VAC, Maximum Steady State Load Vertical Scale: Gain = 10 dB/div, Phase = 30 °/div. Page 33 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 12.3 265 VAC Maximum Load 0 dB Gain 63° Phase Margin Figure 38 - Gain-Phase Plot, 265 VAC, Maximum Steady State Load Vertical Scale: Gain = 10 dB/div, Phase = 30 °/div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 34 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 13 Conducted EMI QP Limit Line AV Limit Line Quasi-peak scan Average scan Figure 39 - Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits. 14 AC Surge and 100 kHz Ring Wave Immunity Four series of line transient tests were performed on the EP13 to determine the level of immunity attainable for the basic board. Testing was performed using a Keytek EMC Pro surge generator. The input voltage for the supply under test was 230 VAC, and the supply was loaded to the maximum continuous output power using resistive loads on each output. An LED was used to monitor the presence of output voltage and to detect output interruptions. Test for each series was terminated upon non-destructive interruption of output voltage, arcing, or non-recoverable interruption of output voltage. A test failure was defined as a non-recoverable interruption of output voltage requiring supply repair or recycling of input AC voltage. Page 35 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 14.1 Common Mode Surge, 1.2/50 µsec Surge Voltage 1 kV 1 kV 1 kV 1.5 kV 1.5 kV 1.5 kV 2 kV 2 kV 2 kV 2.5 kV 2.5 kV 2.5 kV 3 kV 3 kV 3 kV 3.5 kV 3.5 kV 3.5 kV 4 kV 4 kV Phase Angle (°°) 0 90 270 0 90 270 0 90 270 0 90 270 0 90 270 0 90 270 0 90 Generator Impedance 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms Number of Strikes 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 4 kV 270 12 ohms 1 Test Result PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS (board arcing, supply still operational) 14.2 Differential Mode Surge, 1.2/50 µsec Surge Voltage 1 kV 1 kV 1 kV 1.5 kV 1.5 kV 1.5 kV 2 kV 2 kV 2 kV 2.5 kV 2.5 kV 2.5 kV 3 kV 3 kV 3 kV 3.5 kV 3.5 kV 3.5 kV 4 kV 4 kV Phase Angle (°°) 0 90 270 0 90 270 0 90 270 0 90 270 0 90 270 0 90 270 0 90 Generator Impedance 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms 12 ohms Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Number of Strikes 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1 Test Result PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS (output interruption, board still functional) Page 36 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 14.3 Common Mode, 100 kHz Ring Wave Surge Voltage (kV) 1 kV 1 kV 1 kV 2 kV 2 kV 2 kV 3 kV 3 kV 3 kV 4 kV 4 kV 4 kV 4.5 kV 4.5 kV 4.5 kV 5 kV 5 kV 5 kV 5.5 kV 5.5 kV 5.5 kV 6 kV Phase Angle (°°) Short Circuit Current Number of Strikes Test Result 0 90 270 0 90 270 0 90 270 0 90 270 0 90 270 0 90 270 0 90 270 0 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1 PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS FAIL* * U1 failure 14.4 Differential Mode, 100 kHz Ring Wave Surge Voltage 3 kV 3 kV 3 kV 4 kV 4 kV 4 kV 4.5 kV 4.5 kV 4.5 kV 5 kV 5 kV 5 kV 5.5 kV 5.5 kV 5.5 kV 6 kV 6 kV 6 kV Page 37 of 56 Phase Angle (°°) 0 90 270 0 90 270 0 90 270 0 90 270 0 90 270 0 0 0 Short Circuit Current 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A 500 A Number of Strikes 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Test Result PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 15 Appendix A – EP13, 115 VAC Version A kit of parts is included in the DAK-13 to convert the EP13 supply from 230 V to 115 V operation. The EP13 printed circuit board is designed to accommodate these changes without modification, so that only a stuffing change is required. Specification, schematic, and modification information for the EP13 115 V version are shown below. 15.1 115 VAC Option Power Supply Specification Description Input Voltage Output Output Voltage 1 Output Ripple Voltage 1 Output Current 1 Output Voltage 2 Output Ripple Voltage 2 Output Current 2 Output Voltage 3 Output Ripple Voltage 3 Output Current 3 Output Voltage 4 Output Ripple Voltage 4 Output Current 4 Output Voltage 5 Output Ripple Voltage 5 Output Current 5 Symbol Min 85 Typ Max 132 Units VAC Comment 2 Wire VOUT1 VRIPPLE1 IOUT VOUT2 VRIPPLE2 IOUT VOUT3 VRIPPLE3 IOUT VOUT4 VRIPPLE4 IOUT VOUT5 VRIPPLE5 IOUT 3.14 3.30 3.00 5.00 1.00 11.16 3.20 12.0 0.30 16.74 0.60 18.00 0.5 27 33 0.01 - V mV A V mV A V mV A V mV A V mV A +/-5% 20 MHz BW 1.0 4.75 3.46 33 3.00 5.25 50 3.20 12.84 120 1.8* 19.26 180 0.5 32.4 200 0.03 43 57 W Total Output Power Continuous Output Power POUT_TOTAL Peak Output Power Efficiency η 75% % +/-5% 20 MHz BW +/-7% 20 MHz BW *Peak load, 10 sec max. +/-7% 20 MHz BW +/-10% 20 MHz BW @ maximum continuous load Environmental Conducted EMI Meets CISPR22B/EN55022B Safety Ambient Temperature 0 °C 50 °C o C Designed to meet IEC950, UL1950 Class II Free convection, sea level Table 1 - EP13 115 VAC Option Specification Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 38 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 15.2 Schematic for EP13 115 VAC-only Version Figure 40 - Schematic for EP13 115 VAC only Version Page 39 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 15.3 EP13 115 VAC Version Circuit Description The circuit shown in the schematic of Figure 38 is a 115 VAC-only version of the EP13. Several notable changes were made in the circuit to accommodate 115 VAC-only operation. C2 is changed from 68 µF, 400 V to 150 µF, 200 V. RT1, D1-4, and L1 were changed to devices with higher current rating to accommodate the increased current draw at 115 VAC. U1 is changed from a TOP246Y to a TOP247Y, which has a higher current rating. Since the 115 VAC-only supply runs at a higher primary peak and RMS current, the secondary RMS currents are correspondingly higher. To handle the increased secondary RMS ripple current, the filter capacitors in the 5 V and 3.3 V outputs (C13-14 and C1617) are changed to devices with a higher ripple current rating. R12 and C21 have been added on the secondary voltage control to inject AC ripple information from the 12 V output into the control circuit. This “ripple steering” circuit reduces the 12 V output ripple, especially at low AC input voltage. T1 is replaced with a conventional margin-wound ERL28 transformer, since the multiple section transformer used in the 230 VAC version of the EP13 cannot handle the higher primary and secondary currents present at lower input voltages. The 5 V and 3.3 V secondaries in this transformer are wound using copper foil to reduce resistive losses and improve cross regulation. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 40 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 15.4 EP13 115 VAC Transformer Drawing Set-Top GX ERL28 Transformer 14 WDG #6 6T 13 Shield 1 WDG #5 3T 2 X 27AWG 12 WDG#7 23t 25AWG 12 V WDG #4 4T 2X 27 AWG Primary 3 8 WDG #1 30t 25AWG 9 WDG #3B 1T CU FOIL 4 6 11 WDG#2 7t 2 X 27 AWG Bias 18 V 5V 3.3 V WDG #3A 2T CU FOIL 7 10 15.5 Electrical Specifications Electrical strength Primary Inductance Resonant Frequency Primary leakage inductance Page 41 of 56 60 Hz 1 minute, from Pins 1-7 to Pins 8-14 Pins 1-4, All other windings open, 100 kHz Pins 1-4, All other windings open Pins 1-4, Pins 8-12 shorted, 100 kHz 3000 VAC 356 µH 1.1 MHz <11 µH Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 15.6 Materials Item [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Description Core: ERL28, Nippon Ceramic NC-2H material or equivalent 2 Gap for AL of 128 nH/t Bobbin: ERL28 vertical, 14 pins, Jinbo Industrial JB-0039 or equivalent Magnet Wire: #25 AWG solderable double coated Magnet Wire: #27 AWG solderable double coated Copper foil 0.60” x .005” Copper foil 0.60” x .001” Tinned bus wire, 22 AWG Tape: 3M Type 1298 polyester film or equiv. 22.4 mm wide Tape: 3M Type 1298 polyester film or equiv. 16 mm wide Tape: 3M Type 44. polyester web or equiv. 3.2 mm wide (min) Transformer Varnish 15.7 Transformer Construction Diagram Bobbin Pin Side 1 3 ½ Primary 13 14 12 13 8 12 Tape T a Secondaries 10 11 9 7 6 1 3 4 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Bias Shield ½ Primary Page 42 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 15.8 Winding Instructions Bobbin Preparation Margin Taping st 1 Primary Winding Basic Insulation Shield Basic Insulation Bifilar Bias Winding Reinforced Insulation Margin Taping Copper Foil Winding Basic Insulation +12 V Bifilar Winding +18 V Bifilar Winding +30V Winding Reinforced Insulation Margin Taping nd 2 Primary Winding Outer Insulation Varnish Page 43 of 56 Remove pins 2 and 5 on bobbin. Apply a 3.2 mm margin at each side of bobbin using item [10]. st Match combined height of 1 primary, shield and bias windings. Start at pin 4. Wind 30 turns of item [3] uniformly across the bobbin in one layer. Finish at pin 3. Apply one layer of tape [9] for basic insulation. Prepare shield assembly using items [4] and [6]. Position shield assembly so that termination wire is adjacent to pin 1. Wrap foil around bobbin, and insulate between overlapping foil ends using tape [9]. Terminate drain wire at pin 1. Apply one layer of tape [9] for basic insulation. Start at pin 6. Wind 7 bifilar turns of item [4] uniformly in a single layer, across entire width of bobbin. Finish on pin 7. Apply three layers of tape [8] for reinforced insulation. Apply a 3.2 mm margin at each side of bobbin using item [10]. Match combined height of secondary windings. Prepare cuffed foil assembly as shown below, using items [5], [7], [8], and [9]. Start foil winding at pin 9. Wind 1 turn and terminate tap at pin 11. Wind 2 additional turns and finish at pin 10. Apply one layer of tape [9] for basic insulation. Starting at pin12, wind 4 bifilar turns of item [4] evenly across bobbin. Finish at pin 8. Starting at pin 13, wind 3 bifilar turns of item [4] directly over the 12 V winding. Apply turns evenly across bobbin. Finish at Pin 12. Starting at pin 14, wind 6 turns of item [4] directly over the 18 V winding. Apply turns evenly across bobbin. Finish at Pin 13. Apply three layers of tape [8] for reinforced insulation. Apply a 3.2 mm margin at each side of bobbin using item [10]. Match height of 2nd primary winding. Start at pin 3. Wind 23 turns of item [3] uniformly across the bobbin in one layer. Finish at pin 1. Apply 3 Layers of tape [8] for outer insulation Impregnate transformer using item [11] Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 15.8.1 Shield Foil Assembly 2.25” 1.1” Copper Foil [6] 2” Shield Assembly Item [4] Termination Wire 15.8.2 Secondary Foil Assembly 6.1” Tape [9] (2 places) 2” (3 places) 2.125” Start Tape [8] Copper Foil [5] Item [7] (3 places) Tap Finish Secondary Foil Assembly 15.8.3 Design Notes Power Integrations Device Frequency of Operation Mode Peak Current Reflected Voltage (Secondary to Primary) Maximum DC Input Voltage Minimum DC Input Voltage Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com TOP247 132 kHz Continuous 1.71 Amps 100 V 187 VDC 93 VDC Page 44 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 15.9 EP13 115 VAC Transformer Spreadsheets 15.9.1 115 VAC, 60 W Peak Load ACDC_TOPGX_Rev1.1_040401 Copyright Power Integrations INPUT Inc. 2000 INFO TOP_GX_040401.xls: TOPSwitch-GX Continuous/Discontinuous Flyback Transformer Design Spreadsheet OUTPUT UNIT ENTER APPLICATION VARIABLES Customer VACMIN 85 Volts Minimum AC Input Voltage VACMAX 132 Volts Maximum AC Input Voltage fL 50 Hertz AC Mains Frequency VO 3.3 Volts Output Voltage PO 60 Watts n 0.7 Efficiency Estimate Z 0.5 Loss Allocation Factor VB 12 tC 3 CIN Output Power Volts Bias Voltage mSeconds Bridge Rectifier Conduction Time Estimate 150 µFarads Input Filter Capacitor Universal 115 Doubled/230 V 105 W 200 W ENTER TOPSwitch-GX VARIABLES TOP-GX TOP247 Chosen Device TOP247 Power Out ILIMITMIN 2.592 Amps External ILIMIT reduction factor (KI=1.0 for default ILIMIT, KI <1.0 for lower ILIMIT) Use 1% resistor in setting external ILIMIT ILIMITMAX Frequency - (F)=130 kHz, (H)=65 kHz 3.168 Amps Use 1% resistor in setting external ILIMIT KI fS 0.8 f Full (F) frequency option - 130 kHz 130000 1.30E+05 Hertz fSmin 1.24E+05 Hertz fSmax 1.40E+05 Hertz VOR 100 TOPSwitch-GX Switching Frequency: Choose between 130 kHz and 65 kHz TOPSwitch-GX Minimum Switching Frequency TOPSwitch-GX Maximum Switching Frequency Volts Reflected Output Voltage TOPSwitch on-state Drain to Source Voltage VDS 10 Volts VD 0.5 Volts Output Winding Diode Forward Voltage Drop VDB 0.7 Volts Bias Winding Diode Forward Voltage Drop Ripple to Peak Current Ratio (0.4 < KRP < 1.0 : 1.0< KDP<6.0) P/N: PC40EER28L-Z P/N: BEER-28L-1112CPH KP 0.40 ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type EER28L Core EER28L Bobbin EER28L_BOBBIN AE 0.814 cm^2 LE 7.55 cm Core Effective Path Length AL 2520 nH/T^2 Ungapped Core Effective Inductance 21.8 mm BW Core Effective Cross Sectional Area M 3.2 L 2 Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary Creepage Distance) Number of Primary Layers NS 2 Number of Secondary Turns mm DC INPUT VOLTAGE PARAMETERS Page 45 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply VMIN 80 Volts Minimum DC Input Voltage VMAX 187 Volts Maximum DC Input Voltage DMAX 0.59 Maximum Duty Cycle IAVG 1.07 Amps Average Primary Current IP 2.27 Amps Peak Primary Current IR 0.91 Amps Primary Ripple Current IRMS 1.41 Amps Primary RMS Current 356 µHenries Primary Inductance 08-May-2001 CURRENT WAVEFORM SHAPE PARAMETERS TRANSFORMER PRIMARY DESIGN PARAMETERS LP NP 53 NB 7 ALG Primary Winding Number of Turns Bias Winding Number of Turns 128 nH/T^2 Gapped Core Effective Inductance BM 1886 Gauss Maximum Flux Density at PO, VMIN (BM<3000) BP 2630 Gauss Peak Flux Density (BP<4200) AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core BAC 377 Gauss ur 1860 LG 0.76 mm Gap Length (Lg > 0.1 mm) BWE 30.8 mm Effective Bobbin Width OD 0.59 mm Maximum Primary Wire Diameter including insulation Estimated Total Insulation Thickness (= 2 * film INS 0.07 mm thickness) DIA 0.52 mm Bare conductor diameter Primary Wire Gauge (Rounded to next smaller AWG 24 AWG standard AWG value) CM 406 Cmils Bare conductor effective area in circular mils Primary Winding Current Capacity (200 < CMA < CMA 289 Cmils/Amp 500) TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT / SINGLE OUTPUT EQUIVALENT) Lumped parameters ISP 59.79 Amps Peak Secondary Current ISRMS 31.05 Amps Secondary RMS Current IO 18.18 Amps Power Supply Output Current IRIPPLE 25.17 Amps Output Capacitor RMS Ripple Current CMS 6211 Cmils Secondary Bare Conductor minimum circular mils Secondary Wire Gauge (Rounded up to next larger standard AWG value) Secondary Minimum Bare Conductor Diameter Secondary Maximum Outside Diameter for Triple Insulated Wire Maximum Secondary Insulation Wall Thickness AWGS 12 AWG DIAS 2.05 mm ODS 7.70 mm INSS 2.82 mm VOLTAGE STRESS PARAMETERS PIVS 10 Volts Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Output Rectifier Maximum Peak Inverse Voltage PIVB 36 Volts Bias Rectifier Maximum Peak Inverse Voltage VDRAIN 417 Volts TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) 1st output VO1 IO1 5.0 3.200 PO1 VD1 Volts Output Voltage Amps Output DC Current 16.00 Watts 0.7 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Volts Output Power Output Diode Forward Voltage Drop Page 46 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply NS1 3.00 ISRMS1 Output Winding Number of Turns 5.465 Amps IRIPPLE1 4.43 Amps PIVS1 16 Volts CMS1 1093 Cmils Output Winding RMS Current Output Capacitor RMS Ripple Current DIAS1 0.91 mm Output Rectifier Maximum Peak Inverse Voltage Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter ODS1 5.13 mm Maximum Outside Diameter for Triple Insulated Wire AWGS1 19 AWG 2nd output VO2 12.0 Volts Output Voltage IO2 0.600 Amps Output DC Current PO2 VD2 7.20 Watts 1.4 NS2 Volts 7.05 ISRMS2 Output Winding Number of Turns 1.025 Amps IRIPPLE2 Output Power Output Diode Forward Voltage Drop 0.83 Amps PIVS2 37 Volts CMS2 205 Cmils Output Winding RMS Current Output Capacitor RMS Ripple Current DIAS2 0.41 mm Output Rectifier Maximum Peak Inverse Voltage Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter ODS2 2.18 mm Maximum Outside Diameter for Triple Insulated Wire AWGS2 26 AWG 3rd output VO3 18.0 Volts Output Voltage IO3 0.500 Amps Output DC Current PO3 VD3 9.00 Watts 1.4 Volts Output Power Output Diode Forward Voltage Drop NS3 10.21 Output Winding Number of Turns ISRMS3 0.854 Amps Output Winding RMS Current IRIPPLE3 0.69 Amps PIVS3 54 Volts CMS3 171 Cmils Output Capacitor RMS Ripple Current DIAS3 0.36 mm Output Rectifier Maximum Peak Inverse Voltage Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter ODS3 1.51 mm Maximum Outside Diameter for Triple Insulated Wire AWGS3 Page 47 of 56 27 AWG Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 15.9.2 115 VAC, 45 W Steady State Load ACDC_TOPGX_Rev1.1_04040 1 Copyright Power Integrations Inc. 2000 INPUT INFO OUTPUT UNIT ENTER APPLICATION VARIABLES TOP_GX_040401.xls: TOPSwitch-GX Continuous/Discontinuous Flyback Transformer Design Spreadsheet Customer VACMIN 85 Volts Minimum AC Input Voltage VACMAX 132 Volts Maximum AC Input Voltage fL 50 Hertz AC Mains Frequency VO 3.3 Volts Output Voltage PO 45 Watts n 0.7 Z 0.5 VB 12 tC Loss Allocation Factor Volts 3 CIN Output Power Efficiency Estimate Bias Voltage mSeconds Bridge Rectifier Conduction Time Estimate 150 µFarads Input Filter Capacitor Universal 115 Doubled/230 V 105 W 200 W ENTER TOPSwitch-GX VARIABLES TOP-GX TOP247 Chosen Device TOP247 Power Out ILIMITMIN 2.592 Amps External ILIMIT reduction factor (KI=1.0 for default ILIMIT, KI <1.0 for lower ILIMIT) Use 1% resistor in setting external ILIMIT ILIMITMAX Frequency - (F)=130 kHz, (H)=65 kHz 3.168 Amps Use 1% resistor in setting external ILIMIT KI fS 0.8 f Full (F) frequency option - 130 kHz 130000 1.30E+05 Hertz fSmin 1.24E+05 Hertz fSmax 1.40E+05 Hertz TOPSwitch-GX Switching Frequency: Choose between 130 kHz and 65 kHz TOPSwitch-GX Minimum Switching Frequency TOPSwitch-GX Maximum Switching Frequency VOR 100 Volts Reflected Output Voltage VDS 10 Volts TOPSwitch on-state Drain to Source Voltage VD 0.5 Volts Output Winding Diode Forward Voltage Drop VDB 0.7 Volts Bias Winding Diode Forward Voltage Drop Ripple to Peak Current Ratio (0.4 < KRP < 1.0 : 1.0< KDP<6.0) KP 0.55 ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type EER28L Core EER28L P/N: PC40EER28L-Z Bobbin EER28L_BOBBIN P/N: BEER-28L-1112CPH AE 0.814 cm^2 LE 7.55 cm Core Effective Cross Sectional Area Core Effective Path Length AL 2520 nH/T^2 Ungapped Core Effective Inductance BW 21.8 mm M 3.2 L 2 Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary Creepage Distance) Number of Primary Layers NS 2 Number of Secondary Turns mm DC INPUT VOLTAGE PARAMETERS VMIN 92 Volts Minimum DC Input Voltage VMAX 187 Volts Maximum DC Input Voltage CURRENT WAVEFORM SHAPE PARAMETERS Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 48 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply DMAX 0.55 IAVG 0.70 Amps Maximum Duty Cycle Average Primary Current IP 1.75 Amps Peak Primary Current IR 0.97 Amps Primary Ripple Current IRMS 0.97 Amps Primary RMS Current 359 µHenries Primary Inductance TRANSFORMER PRIMARY DESIGN PARAMETERS LP NP 53 NB Primary Winding Number of Turns 7 ALG Bias Winding Number of Turns 130 nH/T^2 Gapped Core Effective Inductance BM 1470 Gauss Maximum Flux Density at PO, VMIN (BM<3000) BP 2654 Gauss ur 1860 Peak Flux Density (BP<4200) AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core LG 0.75 mm Gap Length (Lg > 0.1 mm) BWE 30.8 mm Effective Bobbin Width OD 0.59 mm BAC 404 Gauss Maximum Primary Wire Diameter including insulation Estimated Total Insulation Thickness (= 2 * film INS 0.07 mm thickness) DIA 0.52 mm Bare conductor diameter Primary Wire Gauge (Rounded to next smaller AWG 24 AWG standard AWG value) CM 406 Cmils Bare conductor effective area in circular mils Primary Winding Current Capacity (200 < CMA < CMA 421 Cmils/Amp 500) TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT / SINGLE OUTPUT EQUIVALENT) Lumped parameters ISP 46.18 Amps Peak Secondary Current ISRMS 23.00 Amps Secondary RMS Current IO 13.64 Amps Power Supply Output Current IRIPPLE 18.52 Amps Output Capacitor RMS Ripple Current CMS 4600 Cmils Secondary Bare Conductor minimum circular mils Secondary Wire Gauge (Rounded up to next larger standard AWG value) Secondary Minimum Bare Conductor Diameter Secondary Maximum Outside Diameter for Triple Insulated Wire Maximum Secondary Insulation Wall Thickness AWGS 13 AWG DIAS 1.83 mm ODS 7.70 mm INSS 2.94 mm VOLTAGE STRESS PARAMETERS PIVS 10 Volts Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Output Rectifier Maximum Peak Inverse Voltage PIVB 36 Volts Bias Rectifier Maximum Peak Inverse Voltage VDRAIN 417 Volts TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) 1st output VO1 IO1 5.0 3.200 PO1 VD1 NS1 ISRMS1 Page 49 of 56 Volts Output Voltage Amps Output DC Current 16.00 Watts 0.7 Volts 3.00 5.397 Amps Output Power Output Diode Forward Voltage Drop Output Winding Number of Turns Output Winding RMS Current Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply IRIPPLE1 4.35 Amps PIVS1 16 Volts CMS1 1079 Cmils 08-May-2001 Output Capacitor RMS Ripple Current DIAS1 0.91 mm Output Rectifier Maximum Peak Inverse Voltage Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter ODS1 5.13 mm Maximum Outside Diameter for Triple Insulated Wire AWGS1 19 AWG 2nd output VO2 12.0 IO2 0.600 PO2 VD2 Volts Output Voltage Amps Output DC Current 7.20 Watts 1.4 NS2 Volts 7.05 ISRMS2 Output Winding Number of Turns 1.012 Amps IRIPPLE2 Output Power Output Diode Forward Voltage Drop 0.81 Amps PIVS2 37 Volts CMS2 202 Cmils Output Winding RMS Current Output Capacitor RMS Ripple Current DIAS2 0.36 mm Output Rectifier Maximum Peak Inverse Voltage Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter ODS2 2.18 mm Maximum Outside Diameter for Triple Insulated Wire AWGS2 27 AWG 3rd output VO3 30.0 Volts Output Voltage IO3 0.030 Amps Output DC Current PO3 VD3 0.90 Watts 1.4 Volts Output Power Output Diode Forward Voltage Drop NS3 16.53 Output Winding Number of Turns ISRMS3 0.051 Amps Output Winding RMS Current IRIPPLE3 0.04 Amps PIVS3 89 Volts CMS3 10 Cmils AWGS3 39 AWG Output Capacitor RMS Ripple Current DIAS3 0.09 mm Output Rectifier Maximum Peak Inverse Voltage Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter ODS3 0.93 mm Maximum Outside Diameter for Triple Insulated Wire Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 50 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 15.10 List of Included Parts for 230 VAC-115 VAC Conversion Set-Top GX, 115 V, Conversion Kit Bill Of Materials Item Qty Reference Description 1 2 3 4 5 6 7 8 9 10 1 4 2 4 1 1 1 1 1 1 C2 C13,14,16,17 C21,22 D1-4 L1 R12 T1 U1 RT1 JP5 150 µF, 200 VEB 1200 µF, 35 V FA 0.1 µF, 50 V 2 A, 600 v 18 mH, 1.3 A 18 kΩ, 1/4 W, 5% Transformer, Custom, TOP247Y Thermistor, 10 Ω, 3.2 A Zero ohm resistor P/N Manufacturer EEU-EB2D151 EEU-FA1V122L K104M15Z5UF5TH5 RL205 ELF-20N013A Panasonic Panasonic Beyerschlag/Centralab Diodes, Inc. Panasonic ERL28 KC011L Keystone 15.11 EP13 230 VAC-115 VAC Conversion Instructions 15.11.1 Required Tools and Supplies 1) Soldering iron 2) Solder 3) Pliers 4) Desoldering tool/solder wick 5) Philips screwdriver 6) Thermal compound 15.11.2 Conversion Instructions 1) Remove C2, C13-17, D1-4, L1, T1, U1, and RT1. Retain mounting screw and nut from U1 heat sink for reuse. 2) Replace C2 with 150 µF, 200 V capacitor from conversion kit. Observe proper polarity. 3) Replace C13, 14, 16, and 17 with 1200 µF, 35 V capacitors from conversion kit. Observe proper polarity. 4) Replace D1-4 with RL205 diodes from conversion kit. Check for proper diode polarity according to PCB silkscreen. 5) Replace L1 with 18 mH common mode inductor from conversion kit. 6) Replace U1 with TOP247Y from conversion kit. Use thermal compound between device mounting tab and heat sink to assure proper thermal interface. 7) Replace T1 with transformer from conversion kit. 8) Replace RT1 with thermistor from conversion kit. 9) Populate C21 and C22 positions with 0.1 µF capacitors from conversion kit. 10) Populate R12 position with 18 kΩ resistor from conversion kit. 11) Populate JP5 position using zero ohm resistor from conversion kit. Page 51 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 16 Appendix B Miscellaneous Custom Parts 16.1 Secondary Heat Sink Figure 41 - EP13 Secondary Heat Sink Drawing. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 52 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply 17 Revision History Date 25-Jan-2001 12-Apr-2001 16-Apr-2001 08-May-2001 Page 53 of 56 Author RH RH RH RH Revision 0.1 0.2 0.3 1.0 Description & changes First draft Second draft Third Draft First Release Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 Notes Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 54 of 56 08-May-2001 EPR-000013 – 43 W Multiple Output TOP246 Power Supply Notes Page 55 of 56 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EPR-000013 – 43 W Multiple Output TOP246 Power Supply 08-May-2001 For the latest updates, visit our website: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others. PI Logo, TOPSwitch and TinySwitch are registered trademarks of Power Integrations, Inc. ©Copyright 2001, Power Integrations, Inc. WORLD HEADQUARTERS NORTH AMERICA - WEST Power Integrations, Inc. 5245 Hellyer Avenue San Jose, CA 95138 USA. Main: +1•408•414•9200 Customer Service: Phone: +1•408•414•9665 Fax: +1•408•414•9765 NORTH AMERICA - EAST & SOUTH AMERICA Power Integrations, Inc. Eastern Area Sales Office 1343 Canton Road, Suite C1 Marietta, GA 30066 USA Phone: +1•770•424•5152 Fax: +1•770•424•6567 EUROPE & AFRICA Power Integrations (Europe) Ltd. Centennial Court Easthampstead Road Bracknell Berkshire RG12 1YQ, United Kingdom Phone: +44•1344•462•301 Fax: +44•1344•311•732 TAIWAN Power Integrations International Holdings, Inc. 2F, #508, Chung Hsiao E. Rd., Sec. 5, Taipei 105, Taiwan Phone: +886•2•2727•1221 Fax: +886•2•2727•1223 CHINA Power Integrations International Holdings, Inc. Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu Shenzhen Guangdong, 518031 Phone: +86•755•367•5143 Fax: +86•755•377•9610 KOREA Power Integrations International Holdings, Inc. Rm# 402, Handuk Building, 649-4 Yeoksam-Dong, Kangnam-Gu, Seoul, Korea Phone: +82•2•568•7520 Fax: +82•2•568•7474 JAPAN Power Integrations, K.K. Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama 2Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222, Japan Phone: +81•45•471•1021 Fax: +81•45•471•3717 INDIA (Technical Support) Innovatech #1, 8th Main Road Vasanthnagar Bangalore, India 560052 Phone: +91•80•226•6023 Fax: +91•80•228•9727 APPLICATIONS HOTLINE World Wide +1•408•414•9660 APPLICATIONS FAX World Wide +1•408•414•9760 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 56 of 56