EPR-13

Title
Engineering Prototype Report (EP13)
43 W / 57 W pk, 5 Output TOPSwitch-GX
(TOP246Y) Power Supply
Specification
185 - 265 VAC input, 3.3 V / 3 A, 5 V / 3.2 A,
12 V / 0.6 A (1.8 A pk), 18 V / 0.5 A, 30 V / 0.03 A
output. (Details for 115 VAC conversion included)
Target
Applications
Set top box with internal hard drive, or other
multiple output applications
Author
Power Integrations Applications Department
Document
Number
EPR-000013
Date
08-May-2001
Revision
1.0
Features
•
•
•
•
•
•
•
•
•
•
•
•
Compact Design (6.875” L X 2.56” W X 1.56” H)
43 W steady state output power at 50 °C ambient, free convection
High efficiency (75% minimum at 180 VAC input, maximum continuous load)
Low no-load power consumption (< 0.7 W @ 180 VAC, < 0.8 W @ 265 VAC)
Multiple section transformer for low cost automated production
Excellent output voltage tracking and cross regulation
Primary soft-start minimizes component stress during start-up
Low conducted EMI due to frequency jittering: meets CISPR22B/EN55022B
Line overvoltage shutdown provides extended line surge protection
Hysteretic thermal shutdown allows automatic supply recovery after fault removal
Low component count with single sided printed circuit board
Surge immunity up to 4 kV (surge or 100 kHz ring wave)
Power Integrations, Inc.
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
Table Of Contents
1
2
3
4
5
6
7
Introduction .................................................................................................................4
Power Supply Specification ........................................................................................5
Schematic ...................................................................................................................6
Circuit Description.......................................................................................................7
PCB Layout...............................................................................................................10
Bill Of Materials.........................................................................................................11
Transformer Specification .........................................................................................13
7.1 Electrical Specifications.........................................................................................13
7.2 Materials................................................................................................................13
7.3 Winding Instructions ..............................................................................................14
7.4 Transformer Sources.............................................................................................14
8 Transformer Spreadsheets .......................................................................................15
8.1 230 VAC, 60 W Peak Load .....................................................................................15
8.2 230 VAC, 45 W Steady State Load.........................................................................18
9 Performance Data.....................................................................................................21
9.1 Efficiency...............................................................................................................21
9.2 No-load Input Power..............................................................................................21
9.3 Regulation .............................................................................................................22
9.3.1 Maximum load all outputs ..............................................................................22
9.3.2 Peak load all outputs......................................................................................22
9.3.3 3.3 V Min. load, 12 V peak, other outputs fully loaded ...................................23
9.3.4 12 V Min. load, other outputs at maximum load condition..............................23
9.3.5 12 V Peak load, 30 V min. load, other outputs at max. load...........................24
9.3.6 5 V and 3.3 V min load, all other outputs maximum .......................................24
10 Thermal Performance ...............................................................................................25
11 Waveforms................................................................................................................26
11.1 Drain Voltage and Current, Normal Operation...................................................26
11.2 Output Voltage Start-up Profile..........................................................................26
11.3 Drain Voltage and Current Start-up Profile ........................................................27
11.4 Load Transient Response (75% to 100% Load Step)........................................28
11.5 Output Ripple Measurements ............................................................................29
11.5.1 Ripple Measurement Technique ....................................................................29
11.5.2 Measurement Results at 180 VAC...................................................................30
11.5.3 Measurement Results at 230 VAC...................................................................31
12 Control Loop Measurements.....................................................................................32
12.1 180 VAC Maximum Load ....................................................................................32
12.2 230 VAC Maximum Load ....................................................................................33
12.3 265 VAC Maximum Load ....................................................................................34
13 Conducted EMI .........................................................................................................35
14 AC Surge and 100 kHz Ring Wave Immunity ...........................................................35
14.1 Common Mode Surge, 1.2/50 µsec ...................................................................36
14.2 Differential Mode Surge, 1.2/50 µsec ................................................................36
14.3 Common Mode, 100 kHz Ring Wave.................................................................37
14.4 Differential Mode, 100 kHz Ring Wave ..............................................................37
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
15 Appendix A – EP13, 115 VAC Version ...................................................................... 38
15.1 115 VAC Option Power Supply Specification.................................................... 38
15.2 Schematic for EP13 115 VAC-only Version........................................................ 39
15.3 EP13 115 VAC Version Circuit Description ........................................................ 40
15.4 EP13 115 VAC Transformer Drawing ................................................................. 41
15.5 Electrical Specifications .................................................................................... 41
15.6 Materials ........................................................................................................... 42
15.7 Transformer Construction Diagram................................................................... 42
15.8 Winding Instructions.......................................................................................... 43
15.8.1 Shield Foil Assembly ..................................................................................... 44
Secondary Foil Assembly......................................................................................... 44
15.8.3 Design Notes................................................................................................. 44
15.9 EP13 115 VAC Transformer Spreadsheets ........................................................ 45
15.9.1 115 VAC, 60 W Peak Load ............................................................................. 45
15.9.2 115 VAC, 45 W Steady State Load................................................................. 48
15.10 List of Included Parts for 230 VAC-115 VAC Conversion ................................. 51
15.11 EP13 230 VAC-115 VAC Conversion Instructions ............................................ 51
15.11.1 Required Tools and Supplies..................................................................... 51
15.11.2 Conversion Instructions ............................................................................. 51
16 Appendix B Miscellaneous Custom Parts ................................................................ 52
16.1 Secondary Heat Sink ........................................................................................ 52
17 Revision History ....................................................................................................... 53
Page 3 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
1 Introduction
This document is an engineering report describing a 230 VAC input, 5-output flyback
supply utilizing TOPSwitch®-GX (TOP246Y). The supply is rated for 43 W continuous
output power, with 57 W of peak power capability for starting a disk drive. The design is
optimized for high-end set-top box applications, but is easily adapted for other multiple
output uses such as VCRs, DVD players, cable modems, and direct satellite receivers.
The design kit includes a component kit and instructions for converting the supply to
115 VAC input operation.
This document contains the power supply specification, schematic, and bill of materials,
transformer documentation, printed circuit layout, and performance data.
1.56”
6.875”
2.56”
Figure 1 - EP13 Populated Circuit Board.
Figure 2 - EP13 230 VAC Input to 115 VAC Input Retrofit Kit.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 4 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
2 Power Supply Specification
Description
Input
Voltage
Frequency
No-load Input Power (230 VAC)
Output
Output Voltage 1
Output Ripple Voltage 1
Output Current 1
Output Voltage 2
Output Ripple Voltage 2
Output Current 2
Output Voltage 3
Output Ripple Voltage 3
Output Current 3
Output Voltage 4
Output Ripple Voltage 4
Output Current 4
Output Voltage 5
Output Ripple Voltage 5
Output Current 5
Total Output Power
Continuous Output Power
Peak Output Power
Efficiency
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
180
47
230
50/60
265
64
0.75
VAC
Hz
W
2 Wire – no P.E.
VOUT1
VRIPPLE1
IOUT1
VOUT2
VRIPPLE2
IOUT2
VOUT3
VRIPPLE3
3.14
3.30
3.00
5.00
V
mV
A
V
mV
A
V
mV
± 5%
20 MHz Bandwidth
1.0
4.75
3.46
33
3.00
5.25
50
3.20
12.84
120
1.00
11.16
3.20
12.0
*
0.30
0.60
1.8
A
VOUT4
VRIPPLE4
IOUT4
VOUT5
VRIPPLE5
IOUT5
16.74
18.00
19.26
180
0.5
36.3
200
0.03
V
mV
A
V
mV
A
43
57
W
W
%
POUT
POUT_PEAK
η
0.01
33
-
75
±7%
20 MHz Bandwidth
*
IOUT3
0.5
29.7
±5%
20 MHz Bandwidth
Peak, 10 s max,
thermally limited
±7%
20 MHz Bandwidth
±10%
20 MHz Bandwidth
Measured at POUT (43 W), 25 oC
Environmental
Conducted EMI
Meets CISPR22B / EN55022B
Safety
Designed to meet IEC950,
UL1950 Class II
1.2/50 µs surge, IEC 1000-4-5,
12 Ω series impedance,
differential and common mode
100 kHz ring wave, 500 A short
circuit current, differential and
common mode
Surge
4
kV
Surge
4
kV
Ambient Temperature
Page 5 of 56
TAMB
0
50
o
C
Free convection, Sea level
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
3 Schematic
Figure 3 - EP13 Schematic.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 6 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
4 Circuit Description
The EP13 is a five-output flyback power supply using the TOP246Y integrated circuit.
The circuit shown in Figure 3 provides 43 W continuous power, with peak capability of
57 W (thermally limited). Input voltage range is 180-265 VAC.
AC input power is rectified and filtered by D1-4 and C2 to provide a high voltage DC bus,
which is applied to the primary of transformer T1. The TOP246Y DRAIN pin drives the
other side of the transformer primary. Components D5, VR1, R2 and C5 clamp the
DRAIN voltage leakage inductance spike to below the 700 V maximum rating of the
TOPSwitch.
The TOPSwitch-GX family provides several new features, as well as extended
specifications. The EP13 power supply is designed to take advantage of several of these
features.
Resistor R1 connected to the LINE SENSE pin (L) of TOPSwitch-GX U1 is used to
implement the built-in line voltage feed forward and overvoltage protection features. The
line feed forward feature modulates the control circuit of the TOPSwitch-GX with the AC
line frequency ripple component of the input DC, reducing the line frequency ripple at the
output of the supply. This simplifies the design of the power supply control loop by
reducing the amount of control loop gain required at the line ripple frequency in order to
meet output ripple specifications.
The overvoltage feature shuts down the power supply if the rectified DC bus voltage
exceeds approximately 450 V, set by the value of R1. The supply resumes operation
when the bus voltage falls again below the overvoltage threshold value. This feature
allows the supply to withstand severe line transients or extended surge conditions without
damage. This is an attractive feature for products designed for markets with poor power
quality.
Resistor R4 connects to the EXTERNAL CURRENT LIMIT pin (X) of U1 and is used to
externally program the device current limit to just above the peak primary current of the
supply at maximum peak load, minimum line voltage. This allows the transformer to be
better optimized for the chosen operating conditions, while at the same time avoiding
transformer core saturation during start-up or overload conditions.
Transformer optimization choices can include using a smaller core (less expensive
transformer), fewer primary turns (less leakage inductance), or higher primary inductance
(more continuous operation, less TOPSwitch dissipation).
The EP13 transformer design does not take full advantage of the flexibility offered by the
TOPSwitch-GX due to secondary volts per turn required to minimize voltage error
between 3.3 V and 5 V outputs. The secondary turns were deliberately chosen to
optimize output voltage centering with the fewest possible number of turns. The reflected
Page 7 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
voltage at the primary was fixed at 100 V to optimize output cross regulation, thus fixing
the number of primary turns. A design with fewer output voltages can take better
advantage of the design flexibility offered by the TOPSwitch-GX family.
D6 and C3 provide a DC voltage of approximately 12 V to power the TOP246Y. A
relatively large value of C3 (1 µF) is used to provide bias voltage ride-through during
severe output load transients.
Capacitor C4 filters the internal bias supply of the TOPSwitch-GX, providing the
necessary peak currents to drive the gate of its internal high-voltage MOSFET. Capacitor
C4 also determines the TOPSwitch-GX auto-restart frequency, and along with resistor
R3, helps to compensate the power supply control loop.
Transformer T1 utilizes a nine section slotted bobbin designed for an automated
production environment. Primary and secondary windings are applied in alternate bobbin
slots using ordinary magnet wire. The slots provide the necessary safety isolation and
creepage distance between the primary and secondary windings without the need for
additional insulation of any kind. The large number of winding slots provides sufficient
interleaving of primary and secondary windings to reduce the leakage inductance to a
tolerable value, while the open construction of the transformer reduces winding
temperature rise, allowing use of relatively fine wire, further facilitating automatic winding.
Diodes D7, 8, 9, 10 and 11, along with capacitors C7, 9, 11, 13, 14, 16 and 17 are used
to rectify and filter the five output secondary windings of T1.
Two techniques are used to properly center the output voltages of the supply and to
improve cross regulation between outputs. An ultrafast rectifier is used for D10 (5 V
output rectifier) instead of a Schottky rectifier. The extra voltage drop of the ultrafast
rectifier centers the 5 V output at precisely 5 V. Also, the 12 V, 18 V and 30 V secondary
windings are stacked on the cathode side of the 5 V output rectifier (DC stacking) rather
than the anode side (AC stacking). This means that the current for these outputs passes
through the 5 V output rectifier (D10) as well as their respective output rectifiers (D7, 8,
and 9). This increases the dissipation in D10, but has two beneficial effects. First, the
extra voltage drop imposed by D10 precisely centers the 12 V output. Also, since the
current for the 12 V, 18 V and 30 V outputs passes through D10 and its connecting
printed circuit traces, variations in the current from these outputs will modulate the
voltage drop across D10 to a certain extent. This change is passed on to the 5 V output,
causing the output control loop to change the duty cycle to compensate. This indirect
feedback improves the cross regulation of these outputs.
Inductors L2, 3, 4, 5 and 6 are used along with capacitors C8, 10, 12, 15 and 18 to
provide high frequency filtering for the five outputs of the supply. These filters greatly
reduce the switching frequency ripple and high frequency spike noise at the outputs of
the supply.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
A voltage divider consisting of resistors R10, 11 and 13 monitors the voltage on the 5 V
and 3.3 V outputs. The resistor values are weighted so that the voltage feedback loop is
controlled mostly by the 5 V output, with some contribution from the 3.3 V output.
Sharing the voltage regulation control between the two outputs in this manner improves
the cross regulation for the 3.3 V output at the expense of a slight change in the
regulation of the 5 V output.
The voltage from R10, 11 and 13 is applied to the reference pin of shunt regulator U3.
These resistor values and the reference voltage of U3 are used to set the output voltages
of the supply. Resistor R7 is used to set the overall gain of the supply control loop, while
R8 provides bias current for U3. R9 and C19 provide frequency compensation for U3 to
help stabilize the power supply control loop. Capacitor C20 is used to provide open loop
feedback through optocoupler U2 during start-up, which in conjunction with the built-in
soft start-up feature of TOPSwitch-GX, completely controls the start-up drain current
profile, preventing transformer saturation and output overshoot.
Optocoupler U2 applies the feedback signal from U3 to the CONTROL pin of U1.
Resistor R15 and capacitor C24 form a snubber across D10 that reduces the reverse
recovery transient from this diode, improving EMI performance. Inductor L7 is a ferrite
bead placed in series with the 12 V, 18 V and 30 V output windings of T1. This bead acts
as a small saturable reactor to improve the centering and cross regulation of these
outputs. R6 provides a small amount of pre-filtering for the 30 V output, and is used to
help prevent peak charging of this output due to leakage spikes.
C1, L1 and C6 provide common-mode and differential mode EMI filtering for the power
supply. Fuse F1 protects against gross circuit faults. Varistor RV1 is used to clamp
differential mode line transients. Thermistor RT1 reduces the initial current surge when
AC power is first applied to the circuit.
Page 9 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
5 PCB Layout
Figure 4 - EP13 Printed Circuit Layout. (Approximately 1:1 Scale)
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 10 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
6 Bill Of Materials
EP13 Set Top Supply, 230 VAC Slot Wound XFMR 1/25/01
Bill Of Materials
Item
Qty
Reference
Description
P/N
Manufacturer
1
2
3
4
5
6
7
8
9
10
11
12
13
14
1
1
1
1
1
1
1
1
1
2
1
4
2
2
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10, 12
C11
C13, 14,16,17
C15, 18
C19, 23
0.22 µF 250 V, X2
68 µF, 400 V
1 µF, 50 V NHG
47 µF 16 V NHG
1 nF, 1 kV
2.2 µF, Y1
47 µF, 50 V NHG
10 µF, 50 V NHG
330 µF, 25 V HFQ
100 µF, 25 V NHG
390 µF, 35 V HFQ
1000 µF, 25 V HFQ
220 µF,16 V NHG
0.1 µF, 50 V
306 20224
ECO-S2GP680AA
ECA-1HHG010
ECA-1CHG470
ECK-D3A102KBN
440LD22
ECA-1HHGG470
ECA-1HHG100
ECA-1EFQ331
ECA-1EHG101
ECA-1VFQ391
ECA-1EFQ102
ECA-1CHG221
K104M15Z5UF5TH5
15
16
1
1
C20
C24
22 µF, 50 V NHG
1 nF, 50 V
ECA-1HHG220
K102K15X7Rf5TL2
Philips
Panasonic
Panasonic
Panasonic
Panasonic
Cera-Mite
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Beyerschlag
/Centralab
Panasonic
Beyerschlag
/Centralab
17
18
4
1
D1-4
D5
1 A, 1000 V
1 A, 600 V, 200 nsec
1N4007
1N4937
19
20
1
1
D6
D7
Diode, 75 V
1 A, 200 V, 50 nsec
1N4148
UF4003
21
2
D8, 9
3 A, 200 V, 50 nsec
UF5402
22
23
1
1
D10
D11
20 A, 200 V, 35 nsec
10 A, 45 V Schottky
BYV32-200
MBR1045
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
1
4
1
1
1
1
1
1
2
1
1
1
1
1
1
1
F1
L1
L2-5
L6
L7
R1
R2
R3
R4
R6, 15
R7
R8
R9
R10
R11
R13
R14
Fuse, 250 VAC 3.15 A
20 mH, 0.8 A
3.3 uH,
33 uH, 190 mA
Ferrite Bead
2 M, 1/2 W, 5%
68 kΩ, 2 W, 5% Metal Oxide
6.8 Ω, 1/4 W, 5%
9.09 kΩ, 1 %, RN55
10 Ω, 1/4 W, 5%
150 Ω, 1/4 W, 5%
1 kΩ, 1/4 W, 5%
3.3 kΩ, 1/4 W, 5%
9.53 kΩ, 1%, RN55
10 kΩ, 1%, RN55
15 kΩ, 1%, RN55
2.7 kΩ, 1/2 W, 5%
372-1315
ELF-18N008A
622-LY-3R3M
78F330J
2643022401
Page 11 of 56
General
Semiconductor
General
Semiconductor
General
Semiconductor
Philips
General
Semiconductor
Wickman
Panasonic
Toko
J.W. Miller
Fair-Rite
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
41
42
43
44
45
46
1
1
1
1
1
1
T1
U1
U2
U3
RV1
VR1
XFMR, Custom Slotted Bobbin
TOP246Y
Optocoupler, graded CTR
Shunt Regulator, 1%
Varistor, 275 VAC, 14 mm
TVS, 200 V, 600 W
47
48
49
50
51
1
1
1
1
1
RT1
J1
J2
HS1
HS2
Thermistor, 10 ohm 1.7 A
3 pin, 0.156 ctr*
14 pin, 0.156 ctr.
Heat Sink, TO-220, 1.5” ht.
Heat Sink
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
LTV817A
TL431ACLP
P6KE200
KC012L
26-60-2030
26-60-2140
531102N02500
08-May-2001
Orega
Power Integrations
Liteon
TI
General
Semiconductor
Keystone
Molex
Molex
Aavid
Custom
Page 12 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
7 Transformer Specification
Figure 5 - EP13 Multiple Slot Transformer.
7.1
Electrical Specifications
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage Inductance
7.2
1 minute, 60 Hz, from Pins 1-9 to Pins 10-18
Pins 1-5 with Pins 3-4 shorted together, all other
windings open, 130 kHz measurement frequency
Pins 1-5 with Pins 3-4 shorted together, all other
windings open
Pins 1-5 with Pins 3-4 shorted together, Pins 1018 shorted together, 130 kHz measurement
frequency
3000 VAC
487 µH +/-10%
2 MHz minimum
15 µH maximum
Materials
Item
[1]
[2]
[3]
Description
2
Orega SMT18 Core/Bobbin Set, Gap core for AL of 180 nH/T
Magnet Wire, Solderable Double Coated 0.25 mm/30 AWG
Epoxy Glue
Page 13 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
7.3
08-May-2001
Winding Instructions
Slot #
Slot 1 –
Slot 2 –
Slot 3 –
Slot 4 –
Slot 5 –
Slot 6 –
Slot 7 –
Slot 8 –
Slot 9 –
Start Pin
Start Pin 5
Start Pin 11
Start Pin 14
Start Pin 16
Start Pin 17
Start Pin 18
Start Pin 3
Start Pin 8
Start Pin 11
Start Pin 14
Start Pin 14
Start Pin 5
Start Pin 11
Start Pin 15
Start Pin 15
Start Pin 16
Start Pin 4
Start Pin 11
Start Pin 15
Start Pin 16
Start Pin 17
Start Pin 18
Start Pin 5
Turns
26t
1t
2t
4t
3t
6t
26t
7t
1t
2t
2t
26t
1t
2t
2t
4t
26t
1t
2t
4t
3t
6t
26t
Wire size
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25mm
0.25mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
0.25 mm
Finish Pin
Finish Pin 3
Finish Pin 14
Finish Pin 12
Finish Pin 10
Finish Pin 16
Finish Pin 17
Finish Pin 1
Finish Pin 9
Finish Pin 14
Finish Pin 12
Finish Pin 12
Finish Pin 4
Finish Pin 15
Finish Pin 13
Finish Pin 13
Finish Pin 10
Finish Pin 1
Finish Pin 15
Finish Pin 13
Finish Pin 10
Finish Pin 16
Finish Pin 17
Finish Pin 4
7.4 Transformer Sources
For information on the vendors used to source the transformers used on this board,
please visit the Power Integrations' Web site at the URL below and select “Engineering
Prototype Boards”
http://www.powerint.com/componentsuppliers.htm
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 14 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
8 Transformer Spreadsheets
8.1
230 VAC, 60 W Peak Load
ACDC_TOPGX_Rev1.1_040401
Copyright Power Integrations Inc.
2000
INPUT
INFO
OUTPUT
UNIT
ENTER APPLICATION VARIABLES
TOP_GX_040401.xls: TOPSwitch-GX
Continuous/Discontinuous Flyback Transformer
Design Spreadsheet
Customer
VACMIN
180
Volts
Minimum AC Input Voltage
VACMAX
265
Volts
Maximum AC Input Voltage
fL
50
Hertz
AC Mains Frequency
VO
3.3
Volts
Output Voltage
PO
60
Watts
n
0.7
Z
0.5
VB
12
tC
3
CIN
Output Power
Efficiency Estimate
Loss Allocation Factor
68
Volts
Bias Voltage
mSeconds
Bridge Rectifier Conduction Time Estimate
µFarads
Input Filter Capacitor
ENTER TOPSwitch-GX VARIABLES
TOP-GX
TOP246
Chosen Device
Universal
Power Out 90 W
115 Doubled/230 V
ILIMITMIN
1.944 Amps
150 W
External ILIMIT reduction factor (KI=1.0 for default
ILIMIT, KI <1.0 for lower ILIMIT)
Use 1% resistor in setting external ILIMIT
ILIMITMAX
Frequency - (F)=130 kHz,
(H)=65 kHz
2.376 Amps
Use 1% resistor in setting external ILIMIT
KI
TOP246
0.8
f
Full (F) frequency option - 130 kHz
fSmin
1.24E+05 Hertz
TOPSwitch-GX Switching Frequency: Choose between
130 kHz and 65 kHz
TOPSwitch-GX Minimum Switching Frequency
fSmax
1.40E+05 Hertz
TOPSwitch-GX Maximum Switching Frequency
fS
VOR
130000
1.30E+05 Hertz
99
Volts
Reflected Output Voltage
TOPSwitch on-state Drain to Source Voltage
VDS
10
Volts
VD
0.5
Volts
Output Winding Diode Forward Voltage Drop
VDB
0.7
Volts
Bias Winding Diode Forward Voltage Drop
Ripple to Peak Current Ratio
(0.4 < KRP < 1.0 : 1.0< KDP<6.0)
P/N:
PC40EER28L-Z
P/N:
BEER-28L-1112CPH
KP
0.60
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
EER28L
Core
EER28L
Bobbin
EER28L_BOBBIN
AE
0.814 cm^2
LE
7.55 cm
Core Effective Path Length
AL
2520 nH/T^2
Ungapped Core Effective Inductance
BW
21.8 mm
Bobbin Physical Winding Width
Safety Margin Width (Half the Primary to Secondary
Creepage Distance)
Number of Primary Layers
M
0
L
3.3
NS
Page 15 of 56
2
mm
Core Effective Cross Sectional Area
Number of Secondary Turns
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
DC INPUT VOLTAGE PARAMETERS
VMIN
217 Volts
Minimum DC Input Voltage
VMAX
375 Volts
Maximum DC Input Voltage
DMAX
0.32
Maximum Duty Cycle
IAVG
0.39 Amps
Average Primary Current
CURRENT WAVEFORM SHAPE PARAMETERS
IP
1.74 Amps
Peak Primary Current
IR
1.05 Amps
Primary Ripple Current
IRMS
0.72 Amps
Primary RMS Current
460 µHenries
Primary Inductance
TRANSFORMER PRIMARY DESIGN PARAMETERS
LP
NP
52
NB
7
ALG
Primary Winding Number of Turns
Bias Winding Number of Turns
169 nH/T^2
Gapped Core Effective Inductance
BM
1891 Gauss
Maximum Flux Density at PO, VMIN (BM<3000)
BP
2577 Gauss
Peak Flux Density (BP<4200)
AC Flux Density for Core Loss Curves (0.5 X Peak to
Peak)
Relative Permeability of Ungapped Core
BAC
567 Gauss
ur
1860
LG
0.56 mm
BWE
71.94 mm
OD
1.38 mm
INS
0.09
DIA
1.29
AWG
17
CM
2048
CMA
Warning
2864
Gap Length (Lg > 0.1 mm)
Effective Bobbin Width
Maximum Primary Wire Diameter including insulation
Estimated Total Insulation Thickness (= 2 * film
mm
thickness)
mm
Bare conductor diameter
Primary Wire Gauge (Rounded to next smaller
AWG
standard AWG value)
Cmils
Bare conductor effective area in circular mils
!!!!!!!!!! DECREASE CMA> (decrease L (primary
Cmils/Amp
layers), increase NS, smaller Core)
TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT / SINGLE OUTPUT EQUIVALENT)
Lumped parameters
ISP
45.43 Amps
Peak Secondary Current
ISRMS
26.95 Amps
Secondary RMS Current
IO
18.18 Amps
Power Supply Output Current
IRIPPLE
19.89 Amps
Output Capacitor RMS Ripple Current
CMS
5390 Cmils
Secondary Bare Conductor minimum circular mils
Secondary Wire Gauge (Rounded up to next larger
standard AWG value)
Secondary Minimum Bare Conductor Diameter
Secondary Maximum Outside Diameter for Triple
Insulated Wire
Maximum Secondary Insulation Wall Thickness
AWGS
12 AWG
DIAS
2.05 mm
ODS
10.90 mm
INSS
4.42 mm
VOLTAGE STRESS PARAMETERS
PIVS
18 Volts
Maximum Drain Voltage Estimate (Includes Effect of
Leakage Inductance)
Output Rectifier Maximum Peak Inverse Voltage
PIVB
60 Volts
Bias Rectifier Maximum Peak Inverse Voltage
VDRAIN
603 Volts
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 16 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS)
1st output
VO1
IO1
5.0
PO1
VD1
Volts
3.200
Amps
16.00 Watts
0.7
NS1
Volts
3.00
ISRMS1
Output DC Current
Output Power
Output Diode Forward Voltage Drop
Output Winding Number of Turns
4.743 Amps
IRIPPLE1
Output Voltage
3.50 Amps
PIVS1
27 Volts
CMS1
949 Cmils
Output Winding RMS Current
Output Capacitor RMS Ripple Current
Output Rectifier Maximum Peak Inverse Voltage
DIAS1
0.81 mm
Output Winding Bare Conductor minimum circular mils
Wire Gauge (Rounded up to next larger standard AWG
value)
Minimum Bare Conductor Diameter
ODS1
7.27 mm
Maximum Outside Diameter for Triple Insulated Wire
AWGS1
20 AWG
2nd output
VO2
12.0
Volts
IO2
0.600
Amps
PO2
VD2
7.20 Watts
1.4
NS2
Volts
7.05
ISRMS2
Output DC Current
Output Power
Output Diode Forward Voltage Drop
Output Winding Number of Turns
0.889 Amps
IRIPPLE2
Output Voltage
0.66 Amps
PIVS2
63 Volts
CMS2
178 Cmils
Output Winding RMS Current
Output Capacitor RMS Ripple Current
Output Rectifier Maximum Peak Inverse Voltage
DIAS2
0.36 mm
Output Winding Bare Conductor minimum circular mils
Wire Gauge (Rounded up to next larger standard AWG
value)
Minimum Bare Conductor Diameter
ODS2
3.09 mm
Maximum Outside Diameter for Triple Insulated Wire
AWGS2
27 AWG
3rd output
VO3
18.0
IO3
0.500
PO3
VD3
Volts
Amps
9.00 Watts
1.4
Volts
Output Voltage
Output DC Current
Output Power
Output Diode Forward Voltage Drop
NS3
10.21
Output Winding Number of Turns
ISRMS3
0.741 Amps
Output Winding RMS Current
IRIPPLE3
0.55 Amps
PIVS3
91 Volts
CMS3
148 Cmils
Output Capacitor RMS Ripple Current
Output Rectifier Maximum Peak Inverse Voltage
DIAS3
0.32 mm
Output Winding Bare Conductor minimum circular mils
Wire Gauge (Rounded up to next larger standard AWG
value)
Minimum Bare Conductor Diameter
ODS3
2.14 mm
Maximum Outside Diameter for Triple Insulated Wire
AWGS3
Page 17 of 56
28 AWG
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
8.2
08-May-2001
230 VAC, 45 W Steady State Load
ACDC_TOPGX_Rev1.1_040401
Copyright Power Integrations Inc.
2000
INPUT
INFO
OUTPUT
UNIT
ENTER APPLICATION VARIABLES
TOP_GX_040401.xls: TOPSwitch-GX
Continuous/Discontinuous Flyback Transformer
Design Spreadsheet
Customer
VACMIN
180
Volts
Minimum AC Input Voltage
VACMAX
265
Volts
Maximum AC Input Voltage
fL
50
Hertz
AC Mains Frequency
VO
3.3
Volts
Output Voltage
PO
45
Watts
n
0.75
Z
0.5
VB
12
tC
Loss Allocation Factor
3
CIN
Output Power
Efficiency Estimate
68
Volts
Bias Voltage
mSeconds
Bridge Rectifier Conduction Time Estimate
µFarads
Input Filter Capacitor
Universal
115 Doubled/230 V
ENTER TOPSwitch-GX VARIABLES
TOP-GX
TOP246
Chosen Device
TOP246
ILIMITMIN
1.944 Amps
150 W
External ILIMIT reduction factor (KI=1.0 for
default ILIMIT, KI <1.0 for lower ILIMIT)
Use 1% resistor in setting external ILIMIT
ILIMITMAX
Frequency - (F)=130 kHz,
(H)=65 kHz
2.376 Amps
Use 1% resistor in setting external ILIMIT
KI
fS
Power Out 90 W
0.8
f
Full (F) frequency option - 130 kHz
130000
1.24E+05 Hertz
TOPSwitch-GX Switching Frequency: Choose
between 130 kHz and 65 kHz
TOPSwitch-GX Minimum Switching Frequency
1.40E+05 Hertz
TOPSwitch-GX Maximum Switching Frequency
1.30E+05 Hertz
fSmin
fSmax
VOR
99
Volts
Reflected Output Voltage
VDS
10
Volts
TOPSwitch on-state Drain to Source Voltage
VD
0.5
Volts
Output Winding Diode Forward Voltage Drop
VDB
0.7
Volts
Bias Winding Diode Forward Voltage Drop
Ripple to Peak Current Ratio
(0.4 < KRP < 1.0 : 1.0< KDP<6.0)
KP
0.79
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
EER28L
Core
EER28L
P/N:
PC40EER28L-Z
Bobbin
EER28L_BOBBIN
P/N:
BEER-28L-1112CPH
AE
0.814 cm^2
LE
7.55 cm
Core Effective Cross Sectional Area
Core Effective Path Length
AL
2520 nH/T^2
Ungapped Core Effective Inductance
BW
21.8 mm
M
0
L
1
Bobbin Physical Winding Width
Safety Margin Width (Half the Primary to
Secondary Creepage Distance)
Number of Primary Layers
NS
2
Number of Secondary Turns
mm
DC INPUT VOLTAGE PARAMETERS
VMIN
229 Volts
Minimum DC Input Voltage
VMAX
375 Volts
Maximum DC Input Voltage
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 18 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
CURRENT WAVEFORM SHAPE PARAMETERS
DMAX
0.31
IAVG
0.26 Amps
Maximum Duty Cycle
Average Primary Current
IP
1.39 Amps
Peak Primary Current
IR
1.10 Amps
Primary Ripple Current
IRMS
0.50 Amps
Primary RMS Current
TRANSFORMER PRIMARY DESIGN PARAMETERS
LP
NP
NB
ALG
458 µHenries
52
Primary Inductance
Primary Winding Number of Turns
7
Bias Winding Number of Turns
169 nH/T^2
Gapped Core Effective Inductance
BM
1501 Gauss
Maximum Flux Density at PO, VMIN (BM<3000)
BP
2565 Gauss
ur
1860
Peak Flux Density (BP<4200)
AC Flux Density for Core Loss Curves (0.5 X
Peak to Peak)
Relative Permeability of Ungapped Core
LG
0.57 mm
Gap Length (Lg > 0.1 mm)
BWE
21.8 mm
BAC
593 Gauss
Effective Bobbin Width
Maximum Primary Wire Diameter including
OD
0.42 mm
insulation
Estimated Total Insulation Thickness (= 2 * film
INS
0.06 mm
thickness)
DIA
0.36 mm
Bare conductor diameter
Primary Wire Gauge (Rounded to next smaller
AWG
28 AWG
standard AWG value)
CM
161 Cmils
Bare conductor effective area in circular mils
Primary Winding Current Capacity (200 < CMA <
CMA
321 Cmils/Amp
500)
TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT / SINGLE OUTPUT EQUIVALENT)
Lumped parameters
ISP
36.24 Amps
Peak Secondary Current
ISRMS
19.45 Amps
Secondary RMS Current
IO
13.64 Amps
Power Supply Output Current
IRIPPLE
13.86 Amps
Output Capacitor RMS Ripple Current
CMS
3889 Cmils
Secondary Bare Conductor minimum circular mils
Secondary Wire Gauge (Rounded up to next
larger standard AWG value)
Secondary Minimum Bare Conductor Diameter
Secondary Maximum Outside Diameter for Triple
Insulated Wire
Maximum Secondary Insulation Wall Thickness
AWGS
14 AWG
DIAS
1.63 mm
ODS
10.90 mm
INSS
4.64 mm
VOLTAGE STRESS PARAMETERS
PIVS
18 Volts
Maximum Drain Voltage Estimate (Includes Effect
of Leakage Inductance)
Output Rectifier Maximum Peak Inverse Voltage
PIVB
60 Volts
Bias Rectifier Maximum Peak Inverse Voltage
VDRAIN
Page 19 of 56
603 Volts
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS)
1st output
VO1
IO1
5.0
3.200
PO1
VD1
Volts
Output Voltage
Amps
Output DC Current
16.00 Watts
0.7
NS1
Volts
3.00
ISRMS1
Output Winding Number of Turns
4.563 Amps
IRIPPLE1
3.25 Amps
PIVS1
27 Volts
CMS1
913 Cmils
AWGS1
Output Power
Output Diode Forward Voltage Drop
20 AWG
DIAS1
0.81 mm
ODS1
7.27 mm
Output Winding RMS Current
Output Capacitor RMS Ripple Current
Output Rectifier Maximum Peak Inverse Voltage
Output Winding Bare Conductor minimum circular
mils
Wire Gauge (Rounded up to next larger standard
AWG value)
Minimum Bare Conductor Diameter
Maximum Outside Diameter for Triple Insulated
Wire
2nd output
VO2
12.0
Volts
Output Voltage
IO2
0.600
Amps
Output DC Current
PO2
VD2
7.20 Watts
1.4
NS2
Volts
7.05
ISRMS2
0.61 Amps
PIVS2
63 Volts
CMS2
171 Cmils
AWGS2
Output Diode Forward Voltage Drop
Output Winding Number of Turns
0.856 Amps
IRIPPLE2
Output Power
27 AWG
DIAS2
0.36 mm
ODS2
3.09 mm
Output Winding RMS Current
Output Capacitor RMS Ripple Current
Output Rectifier Maximum Peak Inverse Voltage
Output Winding Bare Conductor minimum circular
mils
Wire Gauge (Rounded up to next larger standard
AWG value)
Minimum Bare Conductor Diameter
Maximum Outside Diameter for Triple Insulated
Wire
3rd output
VO3
18.0
IO3
0.500
PO3
VD3
Volts
Output Voltage
Amps
Output DC Current
9.00 Watts
1.4
Volts
Output Power
Output Diode Forward Voltage Drop
NS3
10.21
Output Winding Number of Turns
ISRMS3
0.713 Amps
Output Winding RMS Current
IRIPPLE3
0.51 Amps
PIVS3
91 Volts
CMS3
143 Cmils
AWGS3
28 AWG
DIAS3
0.32 mm
ODS3
2.14 mm
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Output Capacitor RMS Ripple Current
Output Rectifier Maximum Peak Inverse Voltage
Output Winding Bare Conductor minimum circular
mils
Wire Gauge (Rounded up to next larger standard
AWG value)
Minimum Bare Conductor Diameter
Maximum Outside Diameter for Triple Insulated
Wire
Page 20 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
9 Performance Data
All measurements performed at room temperature, 60 Hz input frequency.
9.1
Efficiency
Efficiency vs. Vin
80%
Max Continuous Load
79%
Max Peak Load
78%
Efficiency (%)
77%
76%
75%
74%
73%
72%
71%
70%
160
180
200
220
240
260
280
AC Input Voltage
Figure 6 - Efficiency vs. Input Voltage, Full Load, Room Temperature, 60 Hz.
9.2
No-load Input Power
Zero Load Input Power vs. Line Voltage
0.8
Input Power (W)
0.75
0.7
0.65
0.6
0.55
0.5
160
180
200
220
240
260
280
AC Input Voltage (VAC)
Figure 7 - Zero Load Input Power vs. Input Line Voltage Room Temperature, 60 Hz.
Page 21 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
9.3
08-May-2001
Regulation
9.3.1 Maximum load all outputs
Line Regulation, Full Load
Regulation (% of Absolute Voltage).
105%
3.3V
5V
12V
18V
30V
104%
103%
102%
101%
100%
99%
98%
160
180
200
220
240
260
280
AC Input Voltage (VAC)
Figure 8 - Line Regulation, Maximum Continuous Load
9.3.2 Peak load all outputs
Line Regulation - Peak Load
(3.3 V @ 3A, 5 V @ 3.2 A, 12 V @ 1.8 A, 18 V @ 0.5 A, 30 V @ 30 mA)
Regulation (% of Absolute Voltage)
104%
3.3V
5V
12V
18V
30V
103%
102%
101%
100%
99%
98%
160
180
200
220
240
260
280
AC Input Voltage
Figure 9 - Line Regulation, Peak Load Condition
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 22 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
9.3.3 3.3 V Min. load, 12 V peak, other outputs fully loaded
Line Regulation
(3.3 V @ 1 A, 5 V @ 3.2 A, 12 V @ 1.8 A, 18V @ 0.5 A, 30 V @ 30 mA)
Regulation (% of Absolute Voltage).
105.0%
3.3V
5V
12V
18V
30V
103.0%
101.0%
99.0%
97.0%
95.0%
160
180
200
220
240
260
280
AC Input Voltage (VAC)
Figure 10 - Line Regulation, 3.3 V @ 1 A, 12 V @ 1.8 A, All Other Outputs Maximum Steady State Load
9.3.4 12 V Min. load, other outputs at maximum load condition
Line Regulation - Peak Load Condition
(3.3 V @ 3 A, 5 V @ 3.2 A, 12 V @ 0.3 A, 18 V @ 0.5 A, 30 V @ 30 mA)
Regulation (% of Absolute Voltage).
106%
3.3V
5V
12V
18V
30V
105%
104%
103%
102%
101%
100%
99%
160
180
200
220
240
260
280
AC Input Voltage
Figure 11 - Line Regulation, 12 V min, and all other outputs maximum load
Page 23 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
9.3.5 12 V Peak load, 30 V min. load, other outputs at max. load
Line Regulation - Peak Load
(3.3 V @ 3 A, 5 V @ 3.2 A, 12 V @ 1.8 A, 18 V @ 0.6 A, 30 V @ 10 mA)
Regulation (% of Absolute voltage).
110%
3.3V
5V
12V
18V
30V
108%
106%
104%
102%
100%
98%
160
180
200
220
240
260
280
AC Input Voltage (VAC)
Figure 12 - Line Regulation – 12 V Peak, 30 V Min. Load Condition
9.3.6 5 V and 3.3 V min load, all other outputs maximum
Line Regulation
5V @ 1A, 3.3 V @ 1 A, 12 V @ 0.6 A, 18 V @ 0.5 A, 30 V @ 0.03 A
Regualtion (% of Absolute Output Voltage).
104%
3.3V
5V
12V
18V
30V
103%
102%
101%
100%
99%
98%
97%
96%
95%
160
180
200
220
240
260
280
AC Input Voltage
Figure 13 - Line Regulation – 5 V and 3.3 V minimum, other output maximum load
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 24 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
10 Thermal Performance
Item
Ambient
Balun (L1)
Thermistor (RT1)
Snubber Resistor (R2)
Clamp Zener (VR1)
TOPSwitch (U1)
Transformer (T1)
18V Rectifier (D8)
12V Rectifier (D9)
5V Rectifier (D10)
3.3V Rectifier (D11)
180 VAC
30.2 °C
41.1 °C
78.9 °C
69.4 °C
65.9 °C
58.6 °C
71.2 °C
67.8 °C
74.2 °C
80.3 °C
73.7 °C
Temperature
230 VAC
180 VAC
31.1 °C
50.9 °C
37.8 °C
59.7 °C
71.3 °C
99.3 °C
69.3 °C
86.4 °C
63.4 °C
85.0 °C
59.3 °C
81 °C
72.6 °C
94.8 °C
68.8 °C
87.3 °C
75.1 °C
94.0 °C
81.8 °C
102.7 °C
75 °C
96.1 °C
230 VAC
52 °C
55.7 °C
90.1 °C
85.6 °C
81.2 °C
79.7 °C
93.7 °C
87.5 °C
93.8 °C
102.5 °C
96.0 °C
Figure 14 - EP13 Thermal Performance
Figure 15 - Infrared Thermograph of EP13, 180 VAC Input, Maximum Continuous Load, 22 °C Ambient.
(Board was sprayed black to give an accurate emissivity figure)
Page 25 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
11 Waveforms
11.1 Drain Voltage and Current, Normal Operation
Figure 16 - 180 VAC - Upper: IDRAIN, 0.5 A / div,
Lower: VDRAIN, 200 V / div, 2 µs / div
Figure 17 - 265 VAC, Full Load - Upper: IDRAIN,
0.5 A / div, Lower: VDRAIN, 200 V / div, 2 µs / div
11.2 Output Voltage Start-up Profile
Figure 18 - Start-up Profile, 3.3 V, 5 V and 12 V
outputs. 2 V & 5 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 19 - Start-up Profile, 5 V, 18 V and 30 V
outputs. 2 V & 5 ms / div.
Page 26 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
11.3 Drain Voltage and Current Start-up Profile
Figure 20 - 180 VAC Input and Maximum Load.
Upper: IDRAIN, 0.5 A / div.
Lower: VDRAIN, 100 V & 2 ms / div.
Page 27 of 56
Figure 21 - 265 VAC Input and Maximum Load.
Upper: IDRAIN, 0.5 A / div.
Lower: VDRAIN, 100 V & 2 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
11.4 Load Transient Response (75% to 100% Load Step)
In the figures shown below, signal averaging was used to better enable viewing the load
transient response. The oscilloscope was triggered using the load current step as a
trigger source. Since the output switching and line frequency occur essentially at random
with respect to the load transient, contributions to the output ripple from these sources
will average out, leaving the contribution only from the load step response.
Figure 22 - 5 V and 3.3 V Transient Response.
75-100-75% Load Step 5 V output.
Upper: 5 V, 100 mV / div.
Middle: 3.3 V, 100 mV / div.
Bottom: 5 V output current, 1 A / div.
500 µs / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 23 - 12, 18 and 30 V Transient Response.
75-100-75% Load Step 5 V output.
Upper: 30 V, 200 mV / div.
Middle1: 18 V, 200 mV / div.
Middle2: 12 V, 200 mV / div.
Bottom: 5 V output current, 1 A / div.
2 ms / div.
Page 28 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
11.5 Output Ripple Measurements
11.5.1 Ripple Measurement Technique
For DC output ripple measurements, a modified oscilloscope test probe must be utilized
in order to reduce spurious signals due to pickup. Details of the probe modification are
provided in Figure 24 and Figure 25.
The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe
tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V
aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so
proper polarity across DC outputs must be maintained (see below).
Probe Ground
Probe Tip
Figure 24 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)
Figure 25 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe
ground for ripple measurement, and two parallel decoupling capacitors added)
Page 29 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
11.5.2 Measurement Results at 180 VAC
Figure 26 - 3.3 V Ripple, 180 VAC, Full Load.
2 ms, 20 mV / div
Figure 27 - 5 V Ripple, 180 VAC, Full Load.
2 ms, 20 mV / div
Figure 29 - 18 V Ripple, 180 VAC, Full Load.
2 ms, 20 mV / div
Figure 30 - 33 V Ripple, 180 VAC, Full Load.
2 ms, 20 mV / div
Figure 28 - 12 V Ripple, 180 VAC, Full Load.
2ms, 20 mV / div
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 30 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
11.5.3 Measurement Results at 230 VAC
Figure 31 - 3.3 V Ripple, 230 VAC, Full Load.
2 ms, 20 mV / div
Figure 34 - 18 V Ripple, 230 VAC, Full Load.
2 ms, 20 mV / div
Figure 32 - 5 V Ripple, 230 VAC, Full Load.
2 ms, 20 mV / div
Figure 35 - 18 V Ripple, 230 VAC, Full Load.
2 ms, 20 mV / div
Figure 33 - 12 V Ripple, 230 VAC, Full Load.
2 ms, 20 mV / div
Page 31 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
12 Control Loop Measurements
12.1 180 VAC Maximum Load
0 dB Gain
45°
Phase
Margin
Figure 36 - Gain-Phase Plot, 180 VAC, Maximum Steady State Load
Vertical Scale: Gain = 10 dB/div, Phase = 30 °/div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 32 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
12.2 230 VAC Maximum Load
0 dB Gain
50°
Phase
Margin
Figure 37 - Gain-Phase Plot, 230 VAC, Maximum Steady State Load
Vertical Scale: Gain = 10 dB/div, Phase = 30 °/div.
Page 33 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
12.3 265 VAC Maximum Load
0 dB Gain
63°
Phase
Margin
Figure 38 - Gain-Phase Plot, 265 VAC, Maximum Steady State Load
Vertical Scale: Gain = 10 dB/div, Phase = 30 °/div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 34 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
13 Conducted EMI
QP Limit Line
AV Limit Line
Quasi-peak scan
Average scan
Figure 39 - Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits.
14 AC Surge and 100 kHz Ring Wave Immunity
Four series of line transient tests were performed on the EP13 to determine the level of
immunity attainable for the basic board. Testing was performed using a Keytek EMC Pro
surge generator. The input voltage for the supply under test was 230 VAC, and the
supply was loaded to the maximum continuous output power using resistive loads on
each output. An LED was used to monitor the presence of output voltage and to detect
output interruptions. Test for each series was terminated upon non-destructive
interruption of output voltage, arcing, or non-recoverable interruption of output voltage. A
test failure was defined as a non-recoverable interruption of output voltage requiring
supply repair or recycling of input AC voltage.
Page 35 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
14.1 Common Mode Surge, 1.2/50 µsec
Surge
Voltage
1 kV
1 kV
1 kV
1.5 kV
1.5 kV
1.5 kV
2 kV
2 kV
2 kV
2.5 kV
2.5 kV
2.5 kV
3 kV
3 kV
3 kV
3.5 kV
3.5 kV
3.5 kV
4 kV
4 kV
Phase Angle (°°)
0
90
270
0
90
270
0
90
270
0
90
270
0
90
270
0
90
270
0
90
Generator
Impedance
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
Number of
Strikes
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
4 kV
270
12 ohms
1
Test Result
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS (board arcing, supply
still operational)
14.2 Differential Mode Surge, 1.2/50 µsec
Surge
Voltage
1 kV
1 kV
1 kV
1.5 kV
1.5 kV
1.5 kV
2 kV
2 kV
2 kV
2.5 kV
2.5 kV
2.5 kV
3 kV
3 kV
3 kV
3.5 kV
3.5 kV
3.5 kV
4 kV
4 kV
Phase Angle (°°)
0
90
270
0
90
270
0
90
270
0
90
270
0
90
270
0
90
270
0
90
Generator
Impedance
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
12 ohms
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Number of
Strikes
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
1
Test Result
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS (output interruption,
board still functional)
Page 36 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
14.3 Common Mode, 100 kHz Ring Wave
Surge
Voltage
(kV)
1 kV
1 kV
1 kV
2 kV
2 kV
2 kV
3 kV
3 kV
3 kV
4 kV
4 kV
4 kV
4.5 kV
4.5 kV
4.5 kV
5 kV
5 kV
5 kV
5.5 kV
5.5 kV
5.5 kV
6 kV
Phase Angle (°°)
Short Circuit
Current
Number of
Strikes
Test Result
0
90
270
0
90
270
0
90
270
0
90
270
0
90
270
0
90
270
0
90
270
0
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
1
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
FAIL*
* U1 failure
14.4 Differential Mode, 100 kHz Ring Wave
Surge
Voltage
3 kV
3 kV
3 kV
4 kV
4 kV
4 kV
4.5 kV
4.5 kV
4.5 kV
5 kV
5 kV
5 kV
5.5 kV
5.5 kV
5.5 kV
6 kV
6 kV
6 kV
Page 37 of 56
Phase Angle (°°)
0
90
270
0
90
270
0
90
270
0
90
270
0
90
270
0
0
0
Short Circuit
Current
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
500 A
Number of
Strikes
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Test Result
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
15 Appendix A – EP13, 115 VAC Version
A kit of parts is included in the DAK-13 to convert the EP13 supply from 230 V to 115 V
operation. The EP13 printed circuit board is designed to accommodate these changes
without modification, so that only a stuffing change is required. Specification, schematic,
and modification information for the EP13 115 V version are shown below.
15.1 115 VAC Option Power Supply Specification
Description
Input Voltage
Output
Output Voltage 1
Output Ripple Voltage 1
Output Current 1
Output Voltage 2
Output Ripple Voltage 2
Output Current 2
Output Voltage 3
Output Ripple Voltage 3
Output Current 3
Output Voltage 4
Output Ripple Voltage 4
Output Current 4
Output Voltage 5
Output Ripple Voltage 5
Output Current 5
Symbol
Min
85
Typ
Max
132
Units
VAC
Comment
2 Wire
VOUT1
VRIPPLE1
IOUT
VOUT2
VRIPPLE2
IOUT
VOUT3
VRIPPLE3
IOUT
VOUT4
VRIPPLE4
IOUT
VOUT5
VRIPPLE5
IOUT
3.14
3.30
3.00
5.00
1.00
11.16
3.20
12.0
0.30
16.74
0.60
18.00
0.5
27
33
0.01
-
V
mV
A
V
mV
A
V
mV
A
V
mV
A
V
mV
A
+/-5%
20 MHz BW
1.0
4.75
3.46
33
3.00
5.25
50
3.20
12.84
120
1.8*
19.26
180
0.5
32.4
200
0.03
43
57
W
Total Output Power
Continuous Output Power POUT_TOTAL
Peak Output Power
Efficiency
η
75%
%
+/-5%
20 MHz BW
+/-7%
20 MHz BW
*Peak load, 10 sec max.
+/-7%
20 MHz BW
+/-10%
20 MHz BW
@ maximum continuous load
Environmental
Conducted EMI
Meets CISPR22B/EN55022B
Safety
Ambient Temperature
0 °C
50 °C
o
C
Designed to meet IEC950,
UL1950 Class II
Free convection, sea level
Table 1 - EP13 115 VAC Option Specification
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 38 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
15.2 Schematic for EP13 115 VAC-only Version
Figure 40 - Schematic for EP13 115 VAC only Version
Page 39 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
15.3 EP13 115 VAC Version Circuit Description
The circuit shown in the schematic of Figure 38 is a 115 VAC-only version of the EP13.
Several notable changes were made in the circuit to accommodate 115 VAC-only
operation. C2 is changed from 68 µF, 400 V to 150 µF, 200 V. RT1, D1-4, and L1 were
changed to devices with higher current rating to accommodate the increased current
draw at 115 VAC. U1 is changed from a TOP246Y to a TOP247Y, which has a higher
current rating.
Since the 115 VAC-only supply runs at a higher primary peak and RMS current, the
secondary RMS currents are correspondingly higher. To handle the increased secondary
RMS ripple current, the filter capacitors in the 5 V and 3.3 V outputs (C13-14 and C1617) are changed to devices with a higher ripple current rating.
R12 and C21 have been added on the secondary voltage control to inject AC ripple
information from the 12 V output into the control circuit. This “ripple steering” circuit
reduces the 12 V output ripple, especially at low AC input voltage.
T1 is replaced with a conventional margin-wound ERL28 transformer, since the multiple
section transformer used in the 230 VAC version of the EP13 cannot handle the higher
primary and secondary currents present at lower input voltages. The 5 V and 3.3 V
secondaries in this transformer are wound using copper foil to reduce resistive losses
and improve cross regulation.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 40 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
15.4 EP13 115 VAC Transformer Drawing
Set-Top GX ERL28 Transformer
14
WDG #6
6T
13
Shield
1
WDG #5
3T
2 X 27AWG
12
WDG#7
23t
25AWG
12 V
WDG #4
4T
2X 27 AWG
Primary 3
8
WDG #1
30t
25AWG
9
WDG #3B
1T
CU FOIL
4
6
11
WDG#2
7t
2 X 27 AWG
Bias
18 V
5V
3.3 V
WDG #3A
2T
CU FOIL
7
10
15.5 Electrical Specifications
Electrical strength
Primary Inductance
Resonant Frequency
Primary leakage inductance
Page 41 of 56
60 Hz 1 minute, from Pins 1-7
to Pins 8-14
Pins 1-4, All other windings
open, 100 kHz
Pins 1-4, All other windings
open
Pins 1-4, Pins 8-12 shorted,
100 kHz
3000 VAC
356 µH
1.1 MHz
<11 µH
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
15.6 Materials
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
Description
Core: ERL28, Nippon Ceramic NC-2H material or equivalent
2
Gap for AL of 128 nH/t
Bobbin: ERL28 vertical, 14 pins, Jinbo Industrial JB-0039 or equivalent
Magnet Wire: #25 AWG solderable double coated
Magnet Wire: #27 AWG solderable double coated
Copper foil 0.60” x .005”
Copper foil 0.60” x .001”
Tinned bus wire, 22 AWG
Tape: 3M Type 1298 polyester film or equiv. 22.4 mm wide
Tape: 3M Type 1298 polyester film or equiv. 16 mm wide
Tape: 3M Type 44. polyester web or equiv. 3.2 mm wide (min)
Transformer Varnish
15.7 Transformer Construction Diagram
Bobbin
Pin Side
1
3
½ Primary
13
14
12
13
8
12
Tape
T
a
Secondaries
10
11
9
7
6
1
3
4
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Bias
Shield
½ Primary
Page 42 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
15.8 Winding Instructions
Bobbin Preparation
Margin Taping
st
1 Primary Winding
Basic Insulation
Shield
Basic Insulation
Bifilar Bias Winding
Reinforced Insulation
Margin Taping
Copper Foil Winding
Basic Insulation
+12 V Bifilar Winding
+18 V Bifilar Winding
+30V Winding
Reinforced Insulation
Margin Taping
nd
2 Primary Winding
Outer Insulation
Varnish
Page 43 of 56
Remove pins 2 and 5 on bobbin.
Apply a 3.2 mm margin at each side of bobbin using item [10].
st
Match combined height of 1 primary, shield and bias
windings.
Start at pin 4. Wind 30 turns of item [3] uniformly across the
bobbin in one layer. Finish at pin 3.
Apply one layer of tape [9] for basic insulation.
Prepare shield assembly using items [4] and [6]. Position
shield assembly so that termination wire is adjacent to pin 1.
Wrap foil around bobbin, and insulate between overlapping foil
ends using tape [9]. Terminate drain wire at pin 1.
Apply one layer of tape [9] for basic insulation.
Start at pin 6. Wind 7 bifilar turns of item [4] uniformly in a
single layer, across entire width of bobbin. Finish on pin 7.
Apply three layers of tape [8] for reinforced insulation.
Apply a 3.2 mm margin at each side of bobbin using item [10].
Match combined height of secondary windings.
Prepare cuffed foil assembly as shown below, using items [5],
[7], [8], and [9]. Start foil winding at pin 9. Wind 1 turn and
terminate tap at pin 11. Wind 2 additional turns and finish at
pin 10.
Apply one layer of tape [9] for basic insulation.
Starting at pin12, wind 4 bifilar turns of item [4] evenly across
bobbin. Finish at pin 8.
Starting at pin 13, wind 3 bifilar turns of item [4] directly over
the 12 V winding. Apply turns evenly across bobbin. Finish at
Pin 12.
Starting at pin 14, wind 6 turns of item [4] directly over the
18 V winding. Apply turns evenly across bobbin. Finish at
Pin 13.
Apply three layers of tape [8] for reinforced insulation.
Apply a 3.2 mm margin at each side of bobbin using item [10].
Match height of 2nd primary winding.
Start at pin 3. Wind 23 turns of item [3] uniformly across the
bobbin in one layer. Finish at pin 1.
Apply 3 Layers of tape [8] for outer insulation
Impregnate transformer using item [11]
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
15.8.1 Shield Foil Assembly
2.25”
1.1”
Copper
Foil [6]
2”
Shield
Assembly
Item [4]
Termination
Wire
15.8.2 Secondary Foil Assembly
6.1”
Tape [9]
(2 places)
2”
(3 places)
2.125”
Start
Tape [8]
Copper Foil [5]
Item [7] (3
places)
Tap
Finish
Secondary Foil Assembly
15.8.3 Design Notes
Power Integrations Device
Frequency of Operation
Mode
Peak Current
Reflected Voltage (Secondary to Primary)
Maximum DC Input Voltage
Minimum DC Input Voltage
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
TOP247
132 kHz
Continuous
1.71 Amps
100 V
187 VDC
93 VDC
Page 44 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
15.9 EP13 115 VAC Transformer Spreadsheets
15.9.1 115 VAC, 60 W Peak Load
ACDC_TOPGX_Rev1.1_040401
Copyright Power Integrations
INPUT
Inc. 2000
INFO
TOP_GX_040401.xls: TOPSwitch-GX
Continuous/Discontinuous Flyback Transformer
Design Spreadsheet
OUTPUT UNIT
ENTER APPLICATION VARIABLES
Customer
VACMIN
85
Volts
Minimum AC Input Voltage
VACMAX
132
Volts
Maximum AC Input Voltage
fL
50
Hertz
AC Mains Frequency
VO
3.3
Volts
Output Voltage
PO
60
Watts
n
0.7
Efficiency Estimate
Z
0.5
Loss Allocation Factor
VB
12
tC
3
CIN
Output Power
Volts
Bias Voltage
mSeconds Bridge Rectifier Conduction Time Estimate
150
µFarads
Input Filter Capacitor
Universal
115 Doubled/230 V
105 W
200 W
ENTER TOPSwitch-GX VARIABLES
TOP-GX
TOP247
Chosen Device
TOP247
Power
Out
ILIMITMIN
2.592 Amps
External ILIMIT reduction factor (KI=1.0 for default
ILIMIT, KI <1.0 for lower ILIMIT)
Use 1% resistor in setting external ILIMIT
ILIMITMAX
Frequency - (F)=130 kHz,
(H)=65 kHz
3.168 Amps
Use 1% resistor in setting external ILIMIT
KI
fS
0.8
f
Full (F) frequency option - 130 kHz
130000
1.30E+05 Hertz
fSmin
1.24E+05 Hertz
fSmax
1.40E+05 Hertz
VOR
100
TOPSwitch-GX Switching Frequency: Choose
between 130 kHz and 65 kHz
TOPSwitch-GX Minimum Switching Frequency
TOPSwitch-GX Maximum Switching Frequency
Volts
Reflected Output Voltage
TOPSwitch on-state Drain to Source Voltage
VDS
10
Volts
VD
0.5
Volts
Output Winding Diode Forward Voltage Drop
VDB
0.7
Volts
Bias Winding Diode Forward Voltage Drop
Ripple to Peak Current Ratio
(0.4 < KRP < 1.0 : 1.0< KDP<6.0)
P/N:
PC40EER28L-Z
P/N:
BEER-28L-1112CPH
KP
0.40
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
EER28L
Core
EER28L
Bobbin
EER28L_BOBBIN
AE
0.814 cm^2
LE
7.55 cm
Core Effective Path Length
AL
2520 nH/T^2
Ungapped Core Effective Inductance
21.8 mm
BW
Core Effective Cross Sectional Area
M
3.2
L
2
Bobbin Physical Winding Width
Safety Margin Width (Half the Primary to Secondary
Creepage Distance)
Number of Primary Layers
NS
2
Number of Secondary Turns
mm
DC INPUT VOLTAGE PARAMETERS
Page 45 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
VMIN
80 Volts
Minimum DC Input Voltage
VMAX
187 Volts
Maximum DC Input Voltage
DMAX
0.59
Maximum Duty Cycle
IAVG
1.07 Amps
Average Primary Current
IP
2.27 Amps
Peak Primary Current
IR
0.91 Amps
Primary Ripple Current
IRMS
1.41 Amps
Primary RMS Current
356 µHenries
Primary Inductance
08-May-2001
CURRENT WAVEFORM SHAPE PARAMETERS
TRANSFORMER PRIMARY DESIGN PARAMETERS
LP
NP
53
NB
7
ALG
Primary Winding Number of Turns
Bias Winding Number of Turns
128 nH/T^2
Gapped Core Effective Inductance
BM
1886 Gauss
Maximum Flux Density at PO, VMIN (BM<3000)
BP
2630 Gauss
Peak Flux Density (BP<4200)
AC Flux Density for Core Loss Curves (0.5 X Peak to
Peak)
Relative Permeability of Ungapped Core
BAC
377 Gauss
ur
1860
LG
0.76 mm
Gap Length (Lg > 0.1 mm)
BWE
30.8 mm
Effective Bobbin Width
OD
0.59 mm
Maximum Primary Wire Diameter including insulation
Estimated Total Insulation Thickness (= 2 * film
INS
0.07 mm
thickness)
DIA
0.52 mm
Bare conductor diameter
Primary Wire Gauge (Rounded to next smaller
AWG
24 AWG
standard AWG value)
CM
406 Cmils
Bare conductor effective area in circular mils
Primary Winding Current Capacity (200 < CMA <
CMA
289 Cmils/Amp
500)
TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT / SINGLE OUTPUT EQUIVALENT)
Lumped parameters
ISP
59.79 Amps
Peak Secondary Current
ISRMS
31.05 Amps
Secondary RMS Current
IO
18.18 Amps
Power Supply Output Current
IRIPPLE
25.17 Amps
Output Capacitor RMS Ripple Current
CMS
6211 Cmils
Secondary Bare Conductor minimum circular mils
Secondary Wire Gauge (Rounded up to next larger
standard AWG value)
Secondary Minimum Bare Conductor Diameter
Secondary Maximum Outside Diameter for Triple
Insulated Wire
Maximum Secondary Insulation Wall Thickness
AWGS
12 AWG
DIAS
2.05 mm
ODS
7.70 mm
INSS
2.82 mm
VOLTAGE STRESS PARAMETERS
PIVS
10 Volts
Maximum Drain Voltage Estimate (Includes Effect of
Leakage Inductance)
Output Rectifier Maximum Peak Inverse Voltage
PIVB
36 Volts
Bias Rectifier Maximum Peak Inverse Voltage
VDRAIN
417 Volts
TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS)
1st output
VO1
IO1
5.0
3.200
PO1
VD1
Volts
Output Voltage
Amps
Output DC Current
16.00 Watts
0.7
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Volts
Output Power
Output Diode Forward Voltage Drop
Page 46 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
NS1
3.00
ISRMS1
Output Winding Number of Turns
5.465 Amps
IRIPPLE1
4.43 Amps
PIVS1
16 Volts
CMS1
1093 Cmils
Output Winding RMS Current
Output Capacitor RMS Ripple Current
DIAS1
0.91 mm
Output Rectifier Maximum Peak Inverse Voltage
Output Winding Bare Conductor minimum circular
mils
Wire Gauge (Rounded up to next larger standard
AWG value)
Minimum Bare Conductor Diameter
ODS1
5.13 mm
Maximum Outside Diameter for Triple Insulated Wire
AWGS1
19 AWG
2nd output
VO2
12.0
Volts
Output Voltage
IO2
0.600
Amps
Output DC Current
PO2
VD2
7.20 Watts
1.4
NS2
Volts
7.05
ISRMS2
Output Winding Number of Turns
1.025 Amps
IRIPPLE2
Output Power
Output Diode Forward Voltage Drop
0.83 Amps
PIVS2
37 Volts
CMS2
205 Cmils
Output Winding RMS Current
Output Capacitor RMS Ripple Current
DIAS2
0.41 mm
Output Rectifier Maximum Peak Inverse Voltage
Output Winding Bare Conductor minimum circular
mils
Wire Gauge (Rounded up to next larger standard
AWG value)
Minimum Bare Conductor Diameter
ODS2
2.18 mm
Maximum Outside Diameter for Triple Insulated Wire
AWGS2
26 AWG
3rd output
VO3
18.0
Volts
Output Voltage
IO3
0.500
Amps
Output DC Current
PO3
VD3
9.00 Watts
1.4
Volts
Output Power
Output Diode Forward Voltage Drop
NS3
10.21
Output Winding Number of Turns
ISRMS3
0.854 Amps
Output Winding RMS Current
IRIPPLE3
0.69 Amps
PIVS3
54 Volts
CMS3
171 Cmils
Output Capacitor RMS Ripple Current
DIAS3
0.36 mm
Output Rectifier Maximum Peak Inverse Voltage
Output Winding Bare Conductor minimum circular
mils
Wire Gauge (Rounded up to next larger standard
AWG value)
Minimum Bare Conductor Diameter
ODS3
1.51 mm
Maximum Outside Diameter for Triple Insulated Wire
AWGS3
Page 47 of 56
27 AWG
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
15.9.2 115 VAC, 45 W Steady State Load
ACDC_TOPGX_Rev1.1_04040
1
Copyright Power
Integrations Inc. 2000
INPUT
INFO
OUTPUT
UNIT
ENTER APPLICATION VARIABLES
TOP_GX_040401.xls: TOPSwitch-GX
Continuous/Discontinuous Flyback Transformer
Design Spreadsheet
Customer
VACMIN
85
Volts
Minimum AC Input Voltage
VACMAX
132
Volts
Maximum AC Input Voltage
fL
50
Hertz
AC Mains Frequency
VO
3.3
Volts
Output Voltage
PO
45
Watts
n
0.7
Z
0.5
VB
12
tC
Loss Allocation Factor
Volts
3
CIN
Output Power
Efficiency Estimate
Bias Voltage
mSeconds Bridge Rectifier Conduction Time Estimate
150
µFarads
Input Filter Capacitor
Universal
115 Doubled/230 V
105 W
200 W
ENTER TOPSwitch-GX VARIABLES
TOP-GX
TOP247
Chosen Device
TOP247
Power
Out
ILIMITMIN
2.592 Amps
External ILIMIT reduction factor (KI=1.0 for default
ILIMIT, KI <1.0 for lower ILIMIT)
Use 1% resistor in setting external ILIMIT
ILIMITMAX
Frequency - (F)=130 kHz,
(H)=65 kHz
3.168 Amps
Use 1% resistor in setting external ILIMIT
KI
fS
0.8
f
Full (F) frequency option - 130 kHz
130000
1.30E+05 Hertz
fSmin
1.24E+05 Hertz
fSmax
1.40E+05 Hertz
TOPSwitch-GX Switching Frequency: Choose
between 130 kHz and 65 kHz
TOPSwitch-GX Minimum Switching Frequency
TOPSwitch-GX Maximum Switching Frequency
VOR
100
Volts
Reflected Output Voltage
VDS
10
Volts
TOPSwitch on-state Drain to Source Voltage
VD
0.5
Volts
Output Winding Diode Forward Voltage Drop
VDB
0.7
Volts
Bias Winding Diode Forward Voltage Drop
Ripple to Peak Current Ratio
(0.4 < KRP < 1.0 : 1.0< KDP<6.0)
KP
0.55
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
EER28L
Core
EER28L
P/N:
PC40EER28L-Z
Bobbin
EER28L_BOBBIN
P/N:
BEER-28L-1112CPH
AE
0.814 cm^2
LE
7.55 cm
Core Effective Cross Sectional Area
Core Effective Path Length
AL
2520 nH/T^2
Ungapped Core Effective Inductance
BW
21.8 mm
M
3.2
L
2
Bobbin Physical Winding Width
Safety Margin Width (Half the Primary to Secondary
Creepage Distance)
Number of Primary Layers
NS
2
Number of Secondary Turns
mm
DC INPUT VOLTAGE PARAMETERS
VMIN
92 Volts
Minimum DC Input Voltage
VMAX
187 Volts
Maximum DC Input Voltage
CURRENT WAVEFORM SHAPE PARAMETERS
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 48 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
DMAX
0.55
IAVG
0.70 Amps
Maximum Duty Cycle
Average Primary Current
IP
1.75 Amps
Peak Primary Current
IR
0.97 Amps
Primary Ripple Current
IRMS
0.97 Amps
Primary RMS Current
359 µHenries
Primary Inductance
TRANSFORMER PRIMARY DESIGN PARAMETERS
LP
NP
53
NB
Primary Winding Number of Turns
7
ALG
Bias Winding Number of Turns
130 nH/T^2
Gapped Core Effective Inductance
BM
1470 Gauss
Maximum Flux Density at PO, VMIN (BM<3000)
BP
2654 Gauss
ur
1860
Peak Flux Density (BP<4200)
AC Flux Density for Core Loss Curves (0.5 X Peak to
Peak)
Relative Permeability of Ungapped Core
LG
0.75 mm
Gap Length (Lg > 0.1 mm)
BWE
30.8 mm
Effective Bobbin Width
OD
0.59 mm
BAC
404 Gauss
Maximum Primary Wire Diameter including insulation
Estimated Total Insulation Thickness (= 2 * film
INS
0.07 mm
thickness)
DIA
0.52 mm
Bare conductor diameter
Primary Wire Gauge (Rounded to next smaller
AWG
24 AWG
standard AWG value)
CM
406 Cmils
Bare conductor effective area in circular mils
Primary Winding Current Capacity (200 < CMA <
CMA
421 Cmils/Amp
500)
TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT / SINGLE OUTPUT EQUIVALENT)
Lumped parameters
ISP
46.18 Amps
Peak Secondary Current
ISRMS
23.00 Amps
Secondary RMS Current
IO
13.64 Amps
Power Supply Output Current
IRIPPLE
18.52 Amps
Output Capacitor RMS Ripple Current
CMS
4600 Cmils
Secondary Bare Conductor minimum circular mils
Secondary Wire Gauge (Rounded up to next larger
standard AWG value)
Secondary Minimum Bare Conductor Diameter
Secondary Maximum Outside Diameter for Triple
Insulated Wire
Maximum Secondary Insulation Wall Thickness
AWGS
13 AWG
DIAS
1.83 mm
ODS
7.70 mm
INSS
2.94 mm
VOLTAGE STRESS PARAMETERS
PIVS
10 Volts
Maximum Drain Voltage Estimate (Includes Effect of
Leakage Inductance)
Output Rectifier Maximum Peak Inverse Voltage
PIVB
36 Volts
Bias Rectifier Maximum Peak Inverse Voltage
VDRAIN
417 Volts
TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS)
1st output
VO1
IO1
5.0
3.200
PO1
VD1
NS1
ISRMS1
Page 49 of 56
Volts
Output Voltage
Amps
Output DC Current
16.00 Watts
0.7
Volts
3.00
5.397 Amps
Output Power
Output Diode Forward Voltage Drop
Output Winding Number of Turns
Output Winding RMS Current
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
IRIPPLE1
4.35 Amps
PIVS1
16 Volts
CMS1
1079 Cmils
08-May-2001
Output Capacitor RMS Ripple Current
DIAS1
0.91 mm
Output Rectifier Maximum Peak Inverse Voltage
Output Winding Bare Conductor minimum circular
mils
Wire Gauge (Rounded up to next larger standard
AWG value)
Minimum Bare Conductor Diameter
ODS1
5.13 mm
Maximum Outside Diameter for Triple Insulated Wire
AWGS1
19 AWG
2nd output
VO2
12.0
IO2
0.600
PO2
VD2
Volts
Output Voltage
Amps
Output DC Current
7.20 Watts
1.4
NS2
Volts
7.05
ISRMS2
Output Winding Number of Turns
1.012 Amps
IRIPPLE2
Output Power
Output Diode Forward Voltage Drop
0.81 Amps
PIVS2
37 Volts
CMS2
202 Cmils
Output Winding RMS Current
Output Capacitor RMS Ripple Current
DIAS2
0.36 mm
Output Rectifier Maximum Peak Inverse Voltage
Output Winding Bare Conductor minimum circular
mils
Wire Gauge (Rounded up to next larger standard
AWG value)
Minimum Bare Conductor Diameter
ODS2
2.18 mm
Maximum Outside Diameter for Triple Insulated Wire
AWGS2
27 AWG
3rd output
VO3
30.0
Volts
Output Voltage
IO3
0.030
Amps
Output DC Current
PO3
VD3
0.90 Watts
1.4
Volts
Output Power
Output Diode Forward Voltage Drop
NS3
16.53
Output Winding Number of Turns
ISRMS3
0.051 Amps
Output Winding RMS Current
IRIPPLE3
0.04 Amps
PIVS3
89 Volts
CMS3
10 Cmils
AWGS3
39 AWG
Output Capacitor RMS Ripple Current
DIAS3
0.09 mm
Output Rectifier Maximum Peak Inverse Voltage
Output Winding Bare Conductor minimum circular
mils
Wire Gauge (Rounded up to next larger standard
AWG value)
Minimum Bare Conductor Diameter
ODS3
0.93 mm
Maximum Outside Diameter for Triple Insulated Wire
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 50 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
15.10 List of Included Parts for 230 VAC-115 VAC Conversion
Set-Top GX, 115 V, Conversion Kit
Bill Of Materials
Item
Qty
Reference
Description
1
2
3
4
5
6
7
8
9
10
1
4
2
4
1
1
1
1
1
1
C2
C13,14,16,17
C21,22
D1-4
L1
R12
T1
U1
RT1
JP5
150 µF, 200 VEB
1200 µF, 35 V FA
0.1 µF, 50 V
2 A, 600 v
18 mH, 1.3 A
18 kΩ, 1/4 W, 5%
Transformer, Custom,
TOP247Y
Thermistor, 10 Ω, 3.2 A
Zero ohm resistor
P/N
Manufacturer
EEU-EB2D151
EEU-FA1V122L
K104M15Z5UF5TH5
RL205
ELF-20N013A
Panasonic
Panasonic
Beyerschlag/Centralab
Diodes, Inc.
Panasonic
ERL28
KC011L
Keystone
15.11 EP13 230 VAC-115 VAC Conversion Instructions
15.11.1
Required Tools and Supplies
1)
Soldering iron
2)
Solder
3)
Pliers
4)
Desoldering tool/solder wick
5)
Philips screwdriver
6)
Thermal compound
15.11.2
Conversion Instructions
1) Remove C2, C13-17, D1-4, L1, T1, U1, and RT1. Retain mounting screw and nut
from U1 heat sink for reuse.
2) Replace C2 with 150 µF, 200 V capacitor from conversion kit. Observe proper
polarity.
3) Replace C13, 14, 16, and 17 with 1200 µF, 35 V capacitors from conversion kit.
Observe proper polarity.
4) Replace D1-4 with RL205 diodes from conversion kit. Check for proper diode
polarity according to PCB silkscreen.
5) Replace L1 with 18 mH common mode inductor from conversion kit.
6) Replace U1 with TOP247Y from conversion kit. Use thermal compound between
device mounting tab and heat sink to assure proper thermal interface.
7) Replace T1 with transformer from conversion kit.
8) Replace RT1 with thermistor from conversion kit.
9) Populate C21 and C22 positions with 0.1 µF capacitors from conversion kit.
10) Populate R12 position with 18 kΩ resistor from conversion kit.
11) Populate JP5 position using zero ohm resistor from conversion kit.
Page 51 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
16 Appendix B Miscellaneous Custom Parts
16.1 Secondary Heat Sink
Figure 41 - EP13 Secondary Heat Sink Drawing.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 52 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
17 Revision History
Date
25-Jan-2001
12-Apr-2001
16-Apr-2001
08-May-2001
Page 53 of 56
Author
RH
RH
RH
RH
Revision
0.1
0.2
0.3
1.0
Description & changes
First draft
Second draft
Third Draft
First Release
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
Notes
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 54 of 56
08-May-2001
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
Notes
Page 55 of 56
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000013 – 43 W Multiple Output TOP246 Power Supply
08-May-2001
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or
manufacturability. Power Integrations does not assume any liability arising from the use of any device or
circuit described herein, nor does it convey any license under its patent rights or the rights of others.
PI Logo, TOPSwitch and TinySwitch are registered trademarks of Power Integrations, Inc.
©Copyright 2001, Power Integrations, Inc.
WORLD HEADQUARTERS
NORTH AMERICA - WEST
Power Integrations, Inc.
5245 Hellyer Avenue
San Jose, CA 95138 USA.
Main:
+1•408•414•9200
Customer Service:
Phone: +1•408•414•9665
Fax:
+1•408•414•9765
NORTH AMERICA - EAST
& SOUTH AMERICA
Power Integrations, Inc.
Eastern Area Sales Office
1343 Canton Road, Suite C1
Marietta, GA 30066 USA
Phone: +1•770•424•5152
Fax:
+1•770•424•6567
EUROPE & AFRICA
Power Integrations (Europe) Ltd.
Centennial Court
Easthampstead Road
Bracknell
Berkshire RG12 1YQ,
United Kingdom
Phone: +44•1344•462•301
Fax:
+44•1344•311•732
TAIWAN
Power Integrations International
Holdings, Inc.
2F, #508, Chung Hsiao E. Rd.,
Sec. 5,
Taipei 105, Taiwan
Phone: +886•2•2727•1221
Fax:
+886•2•2727•1223
CHINA
Power Integrations
International
Holdings, Inc.
Rm# 1705, Bao Hua Bldg.
1016 Hua Qiang Bei Lu
Shenzhen Guangdong,
518031
Phone: +86•755•367•5143
Fax:
+86•755•377•9610
KOREA
Power Integrations
International
Holdings, Inc.
Rm# 402, Handuk Building,
649-4 Yeoksam-Dong,
Kangnam-Gu,
Seoul, Korea
Phone: +82•2•568•7520
Fax:
+82•2•568•7474
JAPAN
Power Integrations, K.K.
Keihin-Tatemono 1st Bldg.
12-20 Shin-Yokohama 2Chome,
Kohoku-ku, Yokohama-shi,
Kanagawa 222, Japan
Phone: +81•45•471•1021
Fax:
+81•45•471•3717
INDIA (Technical Support)
Innovatech
#1, 8th Main Road
Vasanthnagar
Bangalore, India 560052
Phone: +91•80•226•6023
Fax:
+91•80•228•9727
APPLICATIONS HOTLINE
World Wide +1•408•414•9660
APPLICATIONS FAX
World Wide +1•408•414•9760
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 56 of 56