Title Engineering Prototype Report (EPR-9) 5 W, Universal Input, Dual Output, Isolated, TNY266 (EP9) Target Applications Home Appliance Market Author S.L. Document Number EPR-9 Date 03-April-2001 Revision 8 Abstract This document presents the specification, schematic & BOM, transformer calculation, test data, waveforms and EMI scan for a low cost, isolated converter for a home appliance application. Power Integrations, Inc. 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 03-April-2001 Table Of Contents 1 2 3 Introduction .................................................................................................................3 Power Supply Requirements Specification .................................................................3 Schematic ...................................................................................................................4 3.1 Configuration “1” 2 kV..........................................................................................4 3.2 Configuration “2” 6 kV..........................................................................................5 4 Circuit Description.......................................................................................................6 5 Layout and Picture......................................................................................................7 6 Bill Of Materials...........................................................................................................9 6.1 Configuration ”1”, 2 kV.........................................................................................9 6.2 Configuration ”2”, 6 kV.........................................................................................9 7 Transformer – T1 ......................................................................................................10 7.1 Transformer Drawing .........................................................................................10 7.2 Electrical Specifications .....................................................................................10 7.3 Transformer Construction ..................................................................................10 7.4 Transformer Materials........................................................................................11 7.5 Transformer Winding Instructions......................................................................11 7.6 Transformer Bobbin Dimensions .......................................................................12 7.7 Transformer Spreadsheet..................................................................................13 8 Performance Data.....................................................................................................15 8.1 Efficiency ...........................................................................................................15 8.2 Regulation @ 25 °C Ambient.............................................................................16 8.3 Temperature ......................................................................................................17 8.4 Waveforms (2 kV config.”1”) ..............................................................................18 8.4.1 Turn-on Delay/Hold-up Time ......................................................................18 8.4.2 Auto-Restart ...............................................................................................19 8.5 Transient Response...........................................................................................21 8.6 Conducted EMI Scans .......................................................................................22 8.7 Surge Voltage Immunity (2 kV and 6 kV, 1.2/50 µs per IEC1000-4-5)...............23 8.8 Acoustic Emissions............................................................................................24 Appendix A Example of 24 V Output Design....................................................................25 Appendix A1.1 Schematic of 24 V Design ....................................................................25 Appendix A1.2 Bill of Materials (5 W, 5 VDC, 24 VDC PS)..............................................26 Appendix A1.3 Transformer Spreadsheet ....................................................................27 9 Revision History ........................................................................................................29 Important Note: Although the EP-9 is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 2 of 32 03-April-2001 5 W Universal Input Dual Output Isolated TNY266 1 Introduction This document presents the specification, schematic & BOM, transformer design, test data, waveforms and EMI scan for a low cost, dual output (5 VDC, 12 VDC), isolated converter for a home appliance application. The unit has to operate up to 85 °C ambient and to ride through input voltage surges up to 2 kV (config. ”1”) or to 6 kV (config. ”2”). The unit is also designed to meet the industry safety and EMI standards. The EMI standard is met with a low cost transformer (without shield winding and flux band) and low cost input filter (no common mode choke). There are different input voltage surge withstand requirements depending upon the geographical area the white goods are built for. The power supply designer has to choose the level of protection, the voltage level and the number of surges the unit must survive. For applications with elevated ambient temperature requiring full power, the heat sink (included in the kit) has to be soldered to the board in the slot next to U1. The board is accompanied by a kit that includes a copper heat sink (Fig. 5.2) and the input voltage surge protection components (R7, R8, RV1) for 6 kV (config. ”2”) protection. For applications requiring 5 VDC and 24 VDC, a schematic, BOM and transformer spreadsheet is included in Appendix A. 2 Power Supply Requirements Specification Description Input Input Voltage Output Output 1 Voltage Output 1 Ripple Voltage Output 1 Current Output 2 Voltage Output 2 Ripple Voltage Output 2 Current Power Output Continuous Output Power Power supply efficiency Environmental Temperature Input Surge Voltage Withstand Safety EMI-Conducted Symbol Min VAC 85 VDC OUT VOUT RIPPLE IOUT VDC OUT VOUT RIPPLE IOUT 10.2 Max Units Comment 265 VAC 50/60 Hz 13.8 150 200 5.25 50 500 V mV mA V mV mA (12 V±15%) @ full load POUT 2.8 5.0 η 0.3 0.3 55 W W % 85° C ambient* inside box 50° C ambient* inside box @ low line, full load TAMB config.”1” config.”2” 0 ±2 ±6 85** °C kV kV 6”x6”x4” sealed enclosure IEC1000-4-5 (1.2/50 µs) IEC1000-4-5 (1.2/50 µs) IEC950 CISPR22B *** 20 4.75 20 Typ 12 100 5 40 (-5 V±5%) @ full load *The unit was placed in a 6” x 6” x 4” sealed box inside the temperature chamber. **See Paragraph 4.0. *** FCC accepts CISPR22B @ 115 VAC in place of FCC limit. Page 3 of 32 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 3 Schematic 3.1 Configuration “1” 2 kV Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 03-April-2001 Page 4 of 32 03-April-2001 3.2 5 W Universal Input Dual Output Isolated TNY266 Configuration “2” 6 kV Page 5 of 32 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 03-April-2001 4 Circuit Description This circuit was designed for Home Appliance applications. The design for this had three main drivers: low cost, high ambient temperature operation and input voltage surge withstand. There are two input protection configurations, "1" (2 kV surge) on page 4 and "2" (6 kV) on page 5. Configuration "1" has a 33 Ω, 3 W fusible resistor (R1) which limits the 2 kV voltage surge current such that the peak charging voltage on C2 does not exceed the breakdown voltage of U1 (TNY266). R1 also functions as a fuse, opening any short that might occur on the primary side. (Pico II, series 263, Littelfuse or TR5, series 370, Wickmann) can be used (if R1 is unavailable in low wattage to ensure fusing). - Configuration "2" has two 47 Ω, energy rated resistors (R7, R8), which, along with the varistor RV1, form a voltage divider. The life of RV1 is endless if its energy rating is not exceeded (see Fig. 8.7.1). The energy rated resistors R7, R8 are not fusible and the short circuit current being limited (~0.9 A at 85 VAC) by R7, R8 (94 Ω), and a 0.5 A fast acting fuse The efficiency of the 6 kV configuration can be improved at the expense of the total number of 6 kV surges protection, by reducing the value of R7, R8 up to zero. Downstream of the input protection circuits, the operation of the two configurations is identical. In this Home Appliance application (refer to page 4 or 5 of this report), the AC input is rectified and filtered by D1-D4, C1 and C2 to create a high voltage DC buss which is connected to T1. Inductor L1 forms a pifilter in conjunction with C1 and C2. The resistor R2 damps resonance in inductor L1. The frequency jitter in U1 allows the unit to meet worldwide conducted EMI standards using a simple pi-filter in combination with a small value Y1-capacitor C4 and a proper PCB layout. The built-in circuitry of U1 practically eliminates the audio noise permitting the use of ordinary varnished transformers. VR1 and D5 form a clamp circuit that limits the turn-off voltage spike to a safe level on the U1-DRAIN pin. The secondary windings are stacked to improve the cross regulation. The 5 V winding is rectified and filtered by D6, C5 with additional filtering provided by L2, C7 to give the 5 VDC output. The 5 VDC output voltage is determined by the sum of the voltage drops across the optocoupler U2 and the Zener diode VR2. Resistor R3 (AC gain of the circuit) limits the current through U2, improving its response time. Resistor R4 sets the bias current for VR2. The 12 V winding is rectified and filtered by D7, C6 to provide the 12 VDC output. A minimum loading is necessary on the two outputs to keep them within the specified limits. The primary-to-secondary isolation is provided by using parts/materials (opto/transformer insulation) with the correct level of isolation and creepage distances (opto slot/transformer bobbin). Also the C4 value (while allowing common mode noise current path) has to keep the leakage current below the standard (IEC950) accepted value. The 5 VDC and 12 VDC monitoring light emitting diodes (LED2, LED1) and R6, R5 are optional, and have been included in this circuit for troubleshooting convenience. The board has a small, secondary side prototyping area for alternate voltage regulation control. Test points TP1 (U1-SOURCE) and TP2 (U1-DRAIN) are provided for ease of monitoring VDS. TP2 jumper can be replaced with a longer one to allow a current probe insertion for Id monitoring. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 6 of 32 03-April-2001 5 W Universal Input Dual Output Isolated TNY266 5 Layout and Picture Heat Sink Slot For 6 kV TP1 (U1-S) TP2 (U1-D) Breadboard Figure 5.1 - Footprint (3.3”X1.2”), With or Without (Derated At 85 °C Ambient) Heat Sink. - For the drain-to-source voltage waveforms connect the high voltage probe tip to TP2 and the probe ground to test point TP1. - For switching current waveforms replace jumper TP2 with a wire loop and use a Tektronix A6302 current probe and AM503 current probe amplifier (with TM501 power module) or equivalent. R1 60.8 Figure 5.2 - Visible Picture. Page 7 of 32 T1 59 °C D6 58 °C Figure 5.3 - Infrared Picture. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 03-April-2001 Figure 5.4 - Heat Sink. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 8 of 32 03-April-2001 5 W Universal Input Dual Output Isolated TNY266 6 Bill Of Materials 6.1 Configuration ”1”, 2 kV Item Qty. Ref. Description Manufacturer Part Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6.8 µF, 400 V, 105 °C 0.1 µF, 50 V, ceramic 2.2 nF, Y1-Safety 180 µF, 35 V (0.12 Ω) 82 µF, 35 V 100 µF, 10 V Glass Passivated Diode 600 V,1 A, 150 ns 60 V, 1.1 A, Schottky 200 V, 1 A, ultrafast Header, 3 pos., 0.156 spacing low current 2.2 mH ±5%, 10.9 Ω, 128 mA 18 µH, 10%, 2.2 A 33 Ω, flame proof, fusible, 3 W Rubycon Panasonic Panasonic Panasonic Panasonic Panasonic Vishay/ Lite On Fagor/Gen. Semi. IR ON/NTE Molex Siemens/HP Bosung Toko Vitrohm (Farnell Components) Yageo Yageo Yageo Yageo Yageo DT Magnetics Power Integrations Sharp General Instrument Diodes Incorporated 400BXA6R8M10x16 ECU-S1H104KBB ECK-DNA222ME EEUFC1V181 ECA-1VFQ820 ECA-1AFQ101 1N4005GP 1N4937 11DQ6 MUR120/NTE587 26-48-1035 LG3369/HLMP1790 2 1 1 1 1 1 4 1 1 1 2 2 1 1 1 C1, C2 C3 C4 C5 C6 C7 D1- D4 D5 D6 D7 **J1,J2 *LED1,LED2 L1 L2 R1 16 1 R2 17 1 R3 18 1 R4 19 1 *R5 20 1 *R6 21 1 T1 22 1 U1 23 1 U2 24 1 VR1 25 1 VR2 *Optional **Remove middle pin for J1 6.2 4.7 kΩ, 1/8 W 100 Ω, 1/8 W 1 kΩ, 1/8 W 6.8 kΩ, 1/4 W 2.4 kΩ, 1/4 W Transformer EE16 Custom Off-line Switcher Optocoupler 200 V Transient suppressor Zener, 4.3 V ±2% R622LY-180k (08 WX7860) TBD TNY266P PC817A BZY97C200 1N5991C Configuration ”2”, 6 kV (Add the following items to Configuration "1") Item Qty. Ref. Description 26 1 F1 0.5 A, 250 V, fast-acting fuse 27 2 R7, R8 47 Ω, 1 W 28 1 RV1 Varistor, 275 VAC, 14 mm Page 9 of 32 Manufacturer Littelfuse Ohmite Harris/Littelfuse Part Number Series 263 OX470K V275LA20A Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 03-April-2001 7 Transformer – T1 7.1 Transformer Drawing 10 1 10T # 28AWG T.I Wire WDG #3 76T # WDG # 8,9 7T # 28AWG x 2 T.I Wire 4 WDG # 2 5 7.2 Electrical Specifications Electrical Strength Creepage Primary Inductance Resonant Frequency 7.3 60 Hz 1 minute, from Pins 1-4 to Pins 5-10 Between Pins 1-4 All windings open All windings open 3000 VAC 6.4 mm (Min.) 978 µH ±10% 1.0 MHz (Min.) Transformer Construction Pin Side 9 5 10 8 +5 V & 12 V Tape 1 Primary 4 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 10 of 32 03-April-2001 7.4 Transformer Materials Item [1] [2] [3] [4] [5] [6] 7.5 5 W Universal Input Dual Output Isolated TNY266 Description 2 Core: PC40 EE16, (YING CHIN YC1607) gapped for Alg=168 nH/T Bobbin: BE-16 (NICERA FEE16) Magnet Wire: # 34 AWG Heavy Nyleze Triple Insulated Wire: # 28 AWG Tape: 3M #10 Reinforced Epoxy Film (Cream) 1.5 mm wide by 5 mils thick Tape: 3M 1298 Polyester Film (white) 8.2 mm wide by 2.2 mils thick Transformer Winding Instructions Primary Margins Primary Layer Basic Insulation +5 V and +12 V Interleaved Winding Basic Insulation Final Assembly Page 11 of 32 Tape Margins with item [5] on one side at pins. Match height with Primary windings Start at Pin 4. Wind 26 turns of item [3] from left to right. Wind 25 turns of item [3] from right to left. Then wind the remaining 25 turns in the next layer from left to right. Finish on Pin 1. 1 Layer of tape [6] for basic insulation. Start +5 V winding at Pin 8 (2 wires) of item [4] and +12 V winding at Pin 10 (1 wire) of item [4]. Wind together (3 wires) 7 turns of item [4] from right to left. Wind uniformly, in a single layer, across entire width of bobbin. Finish 5 V winding on Pin 5. Continue +12 V winding with 10 more turns, from left to right and finish at pin 9. 3 Layer of tape [6] for basic insulation. Assemble and secure core halves. Impregnate uniformly [7]. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 7.6 03-April-2001 Transformer Bobbin Dimensions Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 12 of 32 03-April-2001 5 W Universal Input Dual Output Isolated TNY266 7.7 Transformer Spreadsheet Design Warning Power Supply Input VACMIN Volts VACMAX FL TC Z N Volts Hertz mSeconds 85 Minimum AC Input Voltage 265 50 2.48 0.61 71.0 % Maximum AC Input Voltage AC Main Frequency Bridge Rectifier Conduction Time Estimate Loss Allocation Factor Efficiency Estimate Power Supply Outputs VOx Volts 5.00 IOx Amps 0.500 12.00 Output Voltage 0.208 Power Supply Output Current Device Variables Device TNY266 Device Name PO VDRAIN Watts Volts 5.00 521 VDS Volts 4.7 FSnom Hertz 132000 TinySwitch-II Switching Frequency FSmin Hertz 120000 TinySwitch-II Minimum Switching Frequency (inc. Jitter) FSmax Hertz 144000 KRPKDP ILIMITMIN ILIMITMAX Amps Amps 0.79 0.33 0.38 TinySwitch-II Maximum Switching Frequency (inc. Jitter) Ripple to Peak Current Ratio Device Current Limit, Minimum Device Current Limit, Maximum 0.15 0.44 Primary RMS Current Maximum Duty Cycle IRMS DMAX Amps Total Output Power Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Device On-State Drain to Source Voltage Power Supply Components Selection CIN uFarads 13.6 Input Filter Capacitor VMIN VMAX VCLO PZ Volts Volts Volts W 82 375 130 0.3 Minimum DC Input Voltage Maximum DC Input Voltage Clamp Zener Voltage Estimated Primary Zener Clamp Loss Power Supply Output Parameters VDx PIVSx Volts Volts 0.5 39 ISPx ISRMSx IRIPPLEx Amps Amps Amps 1.78 0.86 0.70 Page 13 of 32 0.7 Output Winding Diode Forward Voltage Drop 91 Output Rectifier Maximum Peak Inverse Voltage 0.74 Peak Secondary Current 0.36 Secondary RMS Current 0.29 Output Capacitor RMS Ripple Current Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 03-April-2001 Transformer Construction Parameters Core/Bobbin EE16 Core and Bobbin Type Core Manuf. Bobbin Manuf. Generic Generic Core Manufacturing Bobbin Manufacturing LPmin NP AWG uHenries AWG 978 76 30 Minimum Primary Inductance Primary Winding Number of Turns Primary Wire Gauge (Rounded to next smaller standard AWG value) Primary Winding Current Capacity (200 < CMA < 500). Warning! Primary circular mils per amp (CMA) is too high. Decrease transformer size, decrease L, increase NS, decrease VACmin, increase VOR, increase KrpKdp. Reflected Output Voltage Bobbin Physical Winding Width Safety Margin Width Number of Primary Layers Core Effective Cross Section Area Gapped Core Effective Inductance CMA Cmils/A 696 VOR BW M L AE ALG Volts mm mm cm^2 nH/T^2 60.00 8.50 0.0 3.0 0.19 168 BM BAC LG Gauss Gauss mm 2611 900 0.12 Maximum Operating Flux Density AC Flux Density Gap Length (Lg > 0.051 for TOP22X, Lg > 0.1 for TOP23X) LL LSEC uH nH 19.6 20 Estimated Transformer Primary Leakage Inductance Estimated Secondary Trace Inductance Secondary Parameters NSx 7.00 16.16 Secondary Number of Turns Rounded Down NSx 16 Rounded to Integer Secondary Number of Turns Rounded Down Volts Vox 11.87 Auxiliary Output Voltage for Rounded to Integer NSx Rounded Up NSx Rounded Up Vox 17 Rounded to Next Integer Secondary Number of Turns Volts AWGSx Range AWG 12.66 Auxiliary Output Voltage for Rounded to Next Integer NSx 24 - 28 28 - 32 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Secondary Wire Gauge Range (CMA range 500 - 200). Wire gauge (AWG) is less than 26 AWG. Consider parallel winding (see AN-18, AN-22). Page 14 of 32 03-April-2001 5 W Universal Input Dual Output Isolated TNY266 8 Performance Data TEST EQUIPMENT INPUT: VOLTECH (PM1000) AC POWER ANALYZER. OUTPUT: KIKUSUI (PLZ153W) ELECTRONIC LOAD. 8.1 Efficiency Efficiency vs load @ 25 °C ambient 90 80 70 60 50 40 30 20 10 0 0.00 % 85 VAC, I12=0 85 VAC, I12=full load 265 VAC, I12=0 265 VAC, I12=full load Stand by power: Pin =0.248 W @ 85 VAC Pin = 0.383 W @ 265 VAC 0.10 0.20 0.30 0.40 0.50 5 V output load (A) Figure 8.1.1 - Efficiency vs. Output Power @ 25 °C Ambient. E ffic ie n c y @ fu ll lo a d 77 76 % 75 74 73 72 71 70 85 105 125 145 165 185 205 225 245 265 In p u t V o lta g e Figure 8.1.2 - Efficiency vs. Line Voltage @ 25 °C Ambient. Page 15 of 32 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 03-April-2001 Regulation @ 25 °C Ambient 8.2 Load regulation @ 25 C ambient 108 106 V/VnomX100 104 5 VDC @ 85 VAC 102 12 VDC @ 85 VAC 100 5 VDC @ 265 VAC 98 12 VDC @ 265 VAC 96 94 92 0.00 0.10 0.20 0.30 0.40 0.50 5 VDC output load (A) Figure 8.2.1 - Line Regulation @ Full Load, 25° C Ambient. L in e r e g u la t io n @ f u ll lo a d , 2 5 C a m b ie n t 108 Vout/VnomX100 106 104 5 V D C o u tp u t 102 1 2 V D C o u tp u t 100 98 96 94 92 85 105 125 145 165 185 205 225 245 265 V IN (V A C , 6 0 H z ) Figure 8.2.2 - Load Regulation @ 25° C Ambient Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 16 of 32 03-April-2001 Temperature 13 12 11 10 9 8 7 6 5 4 Vout(12VDC@ 0.2A) Vout([email protected]) 66 70 74 78 82 86 90 94 98 102 T ambient (C) Figure 8.3.1 - VOUT vs. Ambient Temperature. Page 17 of 32 Pout(W) VDC 8.3 5 W Universal Input Dual Output Isolated TNY266 5.0 4.5 4.0 3.5 3.0 2.5 2.0 With heat sink Witout heat sink 25 30 35 40 45 50 55 60 65 70 75 80 85 T ambient (C) Figure 3.3.2 - Max Power. (Source Pin Temperature ≤110 °C.) Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 8.4 03-April-2001 Waveforms (2 kV config.”1”) 8.4.1 Turn-on Delay/Hold-up Time CH4 CH4 CH2 Figure 8.4.1.1 – Turn-on Delay – First Current Pulse. CH4: IN_MAINS (0.5 A/div), CH2: VOUT (1 V/div). CH4 CH2 Figure 8.4.2.1 - ID and VDS @VIN=85VAC. CH4: ID (0.2 A/div), CH2: VDS (100V/div) Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com CH2 Figure 8.4.1.2 – Hold-up Time – Last Current Pulse. CH4: IIN_MAINS (0.2 A/div), CH2: VOUT (1 V/div). CH4 CH2 Figure 8.4.2.2 - ID and VDS @ VIN=265VAC CH4: ID (0.2 A/div), CH2: VDS 100 V/div) Page 18 of 32 03-April-2001 5 W Universal Input Dual Output Isolated TNY266 CH4 CH4 CH2 CH2 Figure 8.4.2.3 - ID and VDS @ 85 VAC. CH4: ID (0.2 A/div), CH2: VDS (100 V/div) Figure 8.4.2.4 - ID and VDS @ 265 VAC. CH4: ID (0.2 A/div), CH2: VDS (100 V/div) 8.4.2 Auto-Restart Maximum load, before power limiting (entering auto-restart) @ 25 °C VIN (VAC, 60 Hz) 85 85 Load condition 1 2 5 VDC output 1.09 A @ 4.74 V 0.5 A @ 4.89 V 12 VDC output 0.2 A @ 13.04 V 0.45 A @ 12.46 V Total output (W) 7.8 8.05 Load condition 1: 5 V output overloaded; 12 VOUT full load. Load condition 2: 12 V output overloaded; 5 VOUT full load. Because of higher efficiency on the 12 V output, the maximum power output occurs when the 12 V output is overloaded. Figure 8.4.3 – Auto restart @ 85 VAC. CH4: ID (0.2 A/div), CH3: VDS (100 V/div) Page 19 of 32 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 CH4 CH1 Figure 8.4.4.1 - Output Voltage Ripple at Full Load 5 VDC at 85 VAC. CH4: IOUT (0.2 A/div), CH1: VOUT (50 mV/div) CH4 CH1 Figure 8.4.4.3 - Output Voltage Ripple at Full Load 12 VDC at 85 VAC. CH4: IOUT (0.2 A/div), CH1: VOUT (200 mV/div) Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 03-April-2001 CH4 CH1 Figure 8.4.4.2 - Output Voltage Ripple at Full Load 5 VDC at 265 VAC. CH4: IOUT (0.5 A/div), CH1: VOUT (50 mV/div) CH4 CH1 Figure 8.4.4.4 - Output Voltage Ripple at Full Load 12 VDC at 265 VAC. CH4: IOUT (0.2 A/div), CH1: VOUT (200 mV/div) Page 20 of 32 03-April-2001 8.5 5 W Universal Input Dual Output Isolated TNY266 Transient Response CH1 CH1 CH4 CH4 Figure 8.5.1 - Transient Response – 5 V Output @ VIN = 115 VAC 20-80% Load Change. CH4: IOUT (0.2 A/div), CH1: VOUT (100 mV/div) CH1 CH4 Figure 8.5.3 - Transient Response – 5 V Output @ VIN = 115 VAC 20-80% Load Change. CH4: IOUT (0.1 A/div), CH1: VOUT (1 V/div) Page 21 of 32 Figure 8.5.2 - Transient Response – 5 V Output @ VIN = 230 VAC 20-80% Load Change. CH4: IOUT (0.2 A/Div). CH1: VOUT (100 mV/Div) CH1 CH4 Figure 8.5.4 - Transient Response – 5 V Output @ VIN = 230 20-80% Load Change. CH4: IOUT (0.1 A/Div), CH1: VOUT (1 V/Div) Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 8.6 03-April-2001 Conducted EMI Scans The attached plots show worst-case EMI performance for EP8 as compared to CISPR22B conducted emissions limits. Peak detection is commonly used for initial diagnosis of EMI, as full frequency range results can be quickly obtained, using a common spectrum analyzer. This is also a worst-case form of analysis, as the CISPR22B limits are based on quasi-peak and average detection, both of which give lower amplitude results than peak detection. For EMI and safety techniques refer to PI application note AN15 (Figure 6 shows a typical test set up). Quasi-peak Average Figure 8.6.1 - EP9, TNY266, L, N, 120 VAC, Full Load, CISPR Limits. Figure 8.6.2 - EP9, TNY266, L, N, 230 VAC, Full Load, CISPR Limits. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 22 of 32 03-April-2001 8.7 5 W Universal Input Dual Output Isolated TNY266 Surge Voltage Immunity (2 kV and 6 kV, 1.2/50 µs per IEC1000-4-5) The surge protection for configuration ”1” (2 kV) and configuration ”2” (6 kV) is illustrated in the schematics (pages 4 and 5). R7, R8 limit the maximum surge current to approximately 50 A, the value at which the clamping voltage of the varistor is characterized.(< 800 V). This voltage level was selected to ensure enough margin for the diode bridge D1-D4. The 6 kV, 1.2/50 µs pulse at 800 V clipping level is approximately 100 µs (see Fig. 8.7.2). From the graph in Fig.8.7.1 it can be inferred that the unit will survive 10 k surges of 6 kV. Reducing the value of R7, R8 would reduce the total number of 6 kV pulses the unit can survive. Figure 8.7.1 - Varistor Life (Number of Surges) as a Function of the Rectangular Pulse Amplitude and its Duration. VRV1 Varistor Clamp Voltage Instantaneous Line Voltage VAC Figure 8.7.2 - Varistor Clamping Voltage. Page 23 of 32 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 8.8 03-April-2001 Acoustic Emissions The power supply was subjected to acoustic emissions measurement. The worst-case noise was measured for variations of both AC line and output loading conditions and is presented in Figure. 8.8.1. The test unit was placed in an anechoic acoustic chamber, with a microphone located approximately 1” (25 mm) above the transformer (T1). The power supply was oriented in a horizontal position with the power supply output loaded via an external Kikusui electronic load. The microphone output was fed to an Audio Precision audio analyzer to provide the measurements shown. The curves shown indicate the spectral content of the noise generated by the supply once the ANSI-A weighting factor has been applied. The audio limit line (Figure 8.8.1) visible at +35 dB represents the generally accepted threshold for power supply audio noise. A discrete audio frequency amplitude was used rather than a dBA value (dBA represents the whole audio spectrum). Large peaks may not raise the dBA value yet can result in unacceptable perceived noise. As a reference, the approximate dBA background noise floor level is 30 dBA. The microphone sensitivity is such that 20 µP = 0 dB SPL. Up to a further 20 dB reduction can be expected from the measurement shown, once the power supply is sealed inside an enclosure. Audio Precision FFT SPECTRUM ANALYSIS 04/18/01 10:47:42 +80 +70 +60 +50 +40 d B r +35 dB=Audio Noise +30 +20 A +10 +0 -10 -20 -30 0 Ambient Noise 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k Hz Figure 8.8.1 - Worst Case Audio Level, 120 VAC Input, Full Load. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 24 of 32 03-April-2001 5 W Universal Input Dual Output Isolated TNY266 Appendix A Example of 24 V Output Design Appendix A1.1 Schematic of 24 V Design Page 25 of 32 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 03-April-2001 Appendix A1.2 Bill of Materials (5 W, 5 VDC, 24 VDC PS) Configuration ”2”, 6 kV Item Qty. Ref. Description Manufacturer Part Number 1 6.8 µF, 400 V, 105 °C Rubycon 400BXA6R8M10 x16 0.1 µF, 50 V, ceramic 2.2 nF, Y1-Safety 180 µF, 35 V (0.12 Ω) 82 µF, 35 V 100 µF, 10 V Panasonic Panasonic Panasonic Panasonic ECK-DNA222ME 2 C1, C2 2 1 C3 3 1 C4 4 1 C5 5 1 C6 6 1 C7 7 8 4 D1- D4 9 1 D5 10 1 D6 11 1 D7 12 1 F1 13 2 **J1,J2 14 2 *LED1,LED2 15 1 L1 16 1 L2 17 1 R2 18 1 R3 19 1 R4 20 1 *R5 21 1 *R6 22 2 R7, R8 23 1 T1 24 1 U1 25 1 U2 26 1 VR1 27 1 VR2 28 1 RV1 *Optional **Remove middle pin for J1 Glass Passivated Diode 600 V, 1 A, 150 ns 60 V, 1.1 A, Schottky 400 V, 1 A, ultrafast 0.5 A, 250 V, fast-acting fuse Header, 3 pos.,0.156 spacing low current 2.2 mH ±5%, 10.9 Ω, 128 mA 18 µH, 10%, 2.2 A 4.7 kΩ, 1/8 W 100 Ω, 1/8 W 1 kΩ, 1/8 W 13 kΩ, 1/4 W 2.4 kΩ, 1/4 W 47 Ω, 1 W Transformer Off-line Switcher Optocoupler 200 V Transient suppressor Zener, 4.3 V ±2% Varistor, 275 VAC, 14 mm Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Fagor ON ON Littelfuse Siemens Bosung Toko Ohmite EE16 Custom Power Integrations Harris/Littlefuse 1N4005GP 1N4937 11DQ6 MUR140 Series 263 LG3369 622LY-180k OX470K TNY266P PC817A BZY-97C200 1N5991C V275LA20A Page 26 of 32 03-April-2001 5 W Universal Input Dual Output Isolated TNY266 Appendix A1.3 Transformer Spreadsheet Design Warning Power Supply Input VACMIN Volts VACMAX FL TC Volts Hertz mSeconds 265 50 2.46 85 Maximum AC Input Voltage AC Main Frequency Bridge Rectifier Conduction Time Estimate Minimum AC Input Voltage Z N % 0.61 72.0 Loss Allocation Factor Efficiency Estimate Power Supply Outputs VOx Volts 5.00 IOx Amps 0.500 24.00 Output Voltage 0.104 Power Supply Output Current Device Variables Device TNY266 PO VDRAIN Watts Volts 5.00 521 VDS FSnom FSmin FSmax Volts Hertz Hertz Hertz 4.5 132000 120000 144000 KRPKDP ILIMITMIN ILIMITMAX IRMS DMAX Amps Amps Amps 0.83 0.33 0.38 0.14 0.42 Device Name Total Output Power Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Device On-State Drain to Source Voltage TinySwitch-II Switching Frequency TinySwitch-II Minimum Switching Frequency (inc. Jitter) TinySwitch-II Maximum Switching Frequency (inc. Jitter) Ripple to Peak Current Ratio Device Current Limit, Minimum Device Current Limit, Maximum Primary RMS Current Maximum Duty Cycle Power Supply Components Selection CIN uFarads 15.0 Input Filter Capacitor VMIN VMAX VCLO PZ Volts Volts Volts W 86 375 130 0.3 Minimum DC Input Voltage Maximum DC Input Voltage Clamp Zener Voltage Estimated Primary Zener Clamp Loss Power Supply Output Parameters VDx PIVSx ISPx ISRMSx IRIPPLEx Volts Volts Amps Amps Amps Page 27 of 32 0.5 39 1.78 0.86 0.69 1.0 180 0.37 0.18 0.14 Output Winding Diode Forward Voltage Drop Output Rectifier Maximum Peak Inverse Voltage Peak Secondary Current Secondary RMS Current Output Capacitor RMS Ripple Current Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 03-April-2001 Transformer Construction Parameters Core/Bobbin EE16 Core and Bobbin Type Core Manuf. Bobbin Manuf. LPmin uHenries NP Generic Generic 954 76 Core Manufacturing Bobbin Manufacturing Minimum Primary Inductance Primary Winding Number of Turns AWG AWG 30 Primary Wire Gauge (Rounded to next smaller standard AWG value) Primary Winding Current Capacity (200 < CMA < 500). Warning! Primary circular mils per amp (CMA) is too high. Decrease transformer size, decrease L, increase NS, decrease VACmin, increase VOR, increase KrpKdp. Reflected Output Voltage Bobbin Physical Winding Width CMA Cmils/A VOR BW Volts mm 60.00 8.50 M L AE mm cm^2 0.0 3.0 0.19 Safety Margin Width Number of Primary Layers Core Effective Cross Section Area ALG nH/T^2 164 Gapped Core Effective Inductance BM BAC LG Gauss Gauss mm 2553 924 0.13 Maximum Operating Flux Density AC Flux Density Gap Length (Lg > 0.051 for TOP22X, Lg > 0.1 for TOP23X) LL uH 19.1 Estimated Transformer Primary Leakage Inductance LSEC nH 20 722 Estimated Secondary Trace Inductance Secondary Parameters NSx 7.00 31.82 Secondary Number of Turns Rounded Down NSx 31 Rounded to Integer Secondary Number of Turns Rounded Down Volts Vox 23.36 Auxiliary Output Voltage for Rounded to Integer NSx Rounded Up NSx Rounded Up Vox 32 Rounded to Next Integer Secondary Number of Turns Volts AWGSx Range AWG 24.14 Auxiliary Output Voltage for Rounded to Next Integer NSx 24 - 28 31 - 35 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Secondary Wire Gauge Range (CMA range 500 - 200). Wire gauge (AWG) is less than 26 AWG. Consider parallel winding (see AN-18, AN-22). Page 28 of 32 03-April-2001 5 W Universal Input Dual Output Isolated TNY266 Revision History Date 8.16.99 11.6.99 2.7.2000 2.24.2000 3.23.2000 5.18.2000 7.12.2000 Author SL SL SL SL SL SL SL Rev 1 2 3 4 5 6 7 4.3.2001 SL 8 Page 29 of 32 Description First Draft Second Draft Third Draft 4th Draft Release Revised layout, leaded C3 Revised schematic/BOM (L1, C3, C5, replaced R1=8.2 with F1) Replaced TNY256P with TNY266P Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 03-April-2001 Notes Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 30 of 32 03-April-2001 5 W Universal Input Dual Output Isolated TNY266 Notes Page 31 of 32 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5 W Universal Input Dual Output Isolated TNY266 03-April-2001 For the latest updates, visit our website: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others. PI Logo, TOPSwitch and TinySwitch are registered trademarks of Power Integrations, Inc. © Copyright 2001, Power Integrations, Inc. WORLD HEADQUARTERS NORTH AMERICA - WEST Power Integrations, Inc. 5245 Hellyer Avenue San Jose, CA 95138 USA. Main: +1•408•414•9200 Customer Service: Phone: +1•408•414•9665 Fax: +1•408•414•9765 EUROPE & AFRICA Power Integrations (Europe) Ltd. Centennial Court Easthampstead Road Bracknell Berkshire RG12 1YQ, United Kingdom Phone: +44•1344•462•301 Fax: +44•1344•311•732 TAIWAN Power Integrations International Holdings, Inc. 2F, #508, Chung Hsiao E. Rd., Sec. 5, Taipei 105, Taiwan Phone: +886•2•2727•1221 Fax: +886•2•2727•1223 CHINA Power Integrations International Holdings, Inc. Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu Shenzhen Guangdong, 518031 Phone: +86•755•367•5143 Fax: +86•755•377•9610 KOREA Power Integrations International Holdings, Inc. Rm# 402, Handuk Building, 649-4 Yeoksam-Dong, Kangnam-Gu, Seoul, Korea Phone: +82•2•568•7520 Fax: +82•2•568•7474 JAPAN Power Integrations, K.K. Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama 2Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222, Japan Phone: +81•45•471•1021 Fax: +81•45•471•3717 INDIA (Technical Support) Innovatech #1, 8th Main Road Vasanthnagar Bangalore, India 560052 Phone: +91•80•226•6023 Fax: +91•80•228•9727 APPLICATIONS HOTLINE World Wide +1•408•414•9660 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com APPLICATIONS FAX World Wide +1•408•414•9760 Page 32 of 32