POWERINT EPR-9

Title
Engineering Prototype Report (EPR-9)
5 W, Universal Input, Dual Output, Isolated,
TNY266 (EP9)
Target
Applications
Home Appliance Market
Author
S.L.
Document
Number
EPR-9
Date
03-April-2001
Revision
8
Abstract
This document presents the specification, schematic & BOM, transformer calculation, test
data, waveforms and EMI scan for a low cost, isolated converter for a home appliance
application.
Power Integrations, Inc.
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
Table Of Contents
1
2
3
Introduction .................................................................................................................3
Power Supply Requirements Specification .................................................................3
Schematic ...................................................................................................................4
3.1
Configuration “1” 2 kV..........................................................................................4
3.2
Configuration “2” 6 kV..........................................................................................5
4 Circuit Description.......................................................................................................6
5 Layout and Picture......................................................................................................7
6 Bill Of Materials...........................................................................................................9
6.1
Configuration ”1”, 2 kV.........................................................................................9
6.2
Configuration ”2”, 6 kV.........................................................................................9
7 Transformer – T1 ......................................................................................................10
7.1
Transformer Drawing .........................................................................................10
7.2
Electrical Specifications .....................................................................................10
7.3
Transformer Construction ..................................................................................10
7.4
Transformer Materials........................................................................................11
7.5
Transformer Winding Instructions......................................................................11
7.6
Transformer Bobbin Dimensions .......................................................................12
7.7
Transformer Spreadsheet..................................................................................13
8 Performance Data.....................................................................................................15
8.1
Efficiency ...........................................................................................................15
8.2
Regulation @ 25 °C Ambient.............................................................................16
8.3
Temperature ......................................................................................................17
8.4
Waveforms (2 kV config.”1”) ..............................................................................18
8.4.1
Turn-on Delay/Hold-up Time ......................................................................18
8.4.2
Auto-Restart ...............................................................................................19
8.5
Transient Response...........................................................................................21
8.6
Conducted EMI Scans .......................................................................................22
8.7
Surge Voltage Immunity (2 kV and 6 kV, 1.2/50 µs per IEC1000-4-5)...............23
8.8
Acoustic Emissions............................................................................................24
Appendix A Example of 24 V Output Design....................................................................25
Appendix A1.1 Schematic of 24 V Design ....................................................................25
Appendix A1.2 Bill of Materials (5 W, 5 VDC, 24 VDC PS)..............................................26
Appendix A1.3 Transformer Spreadsheet ....................................................................27
9 Revision History ........................................................................................................29
Important Note:
Although the EP-9 is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore all testing should be performed
using an isolation transformer to provide the AC input to the prototype board.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
1 Introduction
This document presents the specification, schematic & BOM, transformer design, test data, waveforms and
EMI scan for a low cost, dual output (5 VDC, 12 VDC), isolated converter for a home appliance application.
The unit has to operate up to 85 °C ambient and to ride through input voltage surges up to 2 kV (config. ”1”)
or to 6 kV (config. ”2”).
The unit is also designed to meet the industry safety and EMI standards. The EMI standard is met with a
low cost transformer (without shield winding and flux band) and low cost input filter (no common mode
choke).
There are different input voltage surge withstand requirements depending upon the geographical area the
white goods are built for. The power supply designer has to choose the level of protection, the voltage level
and the number of surges the unit must survive.
For applications with elevated ambient temperature requiring full power, the heat sink (included in the kit)
has to be soldered to the board in the slot next to U1.
The board is accompanied by a kit that includes a copper heat sink (Fig. 5.2) and the input voltage surge
protection components (R7, R8, RV1) for 6 kV (config. ”2”) protection.
For applications requiring 5 VDC and 24 VDC, a schematic, BOM and transformer spreadsheet is included in
Appendix A.
2 Power Supply Requirements Specification
Description
Input
Input Voltage
Output
Output 1 Voltage
Output 1 Ripple Voltage
Output 1 Current
Output 2 Voltage
Output 2 Ripple Voltage
Output 2 Current
Power Output
Continuous Output Power
Power supply efficiency
Environmental
Temperature
Input Surge Voltage Withstand
Safety
EMI-Conducted
Symbol
Min
VAC
85
VDC OUT
VOUT RIPPLE
IOUT
VDC OUT
VOUT RIPPLE
IOUT
10.2
Max
Units
Comment
265
VAC
50/60 Hz
13.8
150
200
5.25
50
500
V
mV
mA
V
mV
mA
(12 V±15%)
@ full load
POUT
2.8
5.0
η
0.3
0.3
55
W
W
%
85° C ambient* inside box
50° C ambient* inside box
@ low line, full load
TAMB
config.”1”
config.”2”
0
±2
±6
85**
°C
kV
kV
6”x6”x4” sealed enclosure
IEC1000-4-5 (1.2/50 µs)
IEC1000-4-5 (1.2/50 µs)
IEC950
CISPR22B ***
20
4.75
20
Typ
12
100
5
40
(-5 V±5%)
@ full load
*The unit was placed in a 6” x 6” x 4” sealed box inside the temperature chamber.
**See Paragraph 4.0.
*** FCC accepts CISPR22B @ 115 VAC in place of FCC limit.
Page 3 of 32
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
3
Schematic
3.1
Configuration “1” 2 kV
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
03-April-2001
Page 4 of 32
03-April-2001
3.2
5 W Universal Input Dual Output Isolated TNY266
Configuration “2” 6 kV
Page 5 of 32
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
4 Circuit Description
This circuit was designed for Home Appliance applications. The design for this had three main drivers: low
cost, high ambient temperature operation and input voltage surge withstand.
There are two input protection configurations, "1" (2 kV surge) on page 4 and "2" (6 kV) on page 5.
Configuration "1" has a 33 Ω, 3 W fusible resistor (R1) which limits the 2 kV voltage surge current such
that the peak charging voltage on C2 does not exceed the breakdown voltage of U1 (TNY266). R1 also
functions as a fuse, opening any short that might occur on the primary side.
(Pico II, series 263, Littelfuse or TR5, series 370, Wickmann) can be used (if R1 is unavailable in low
wattage to ensure fusing).
-
Configuration "2" has two 47 Ω, energy rated resistors (R7, R8), which, along with the varistor RV1,
form a voltage divider. The life of RV1 is endless if its energy rating is not exceeded (see Fig. 8.7.1).
The energy rated resistors R7, R8 are not fusible and the short circuit current being limited (~0.9 A at
85 VAC) by R7, R8 (94 Ω), and a 0.5 A fast acting fuse
The efficiency of the 6 kV configuration can be improved at the expense of the total number of 6 kV surges
protection, by reducing the value of R7, R8 up to zero.
Downstream of the input protection circuits, the operation of the two configurations is identical.
In this Home Appliance application (refer to page 4 or 5 of this report), the AC input is rectified and filtered
by D1-D4, C1 and C2 to create a high voltage DC buss which is connected to T1. Inductor L1 forms a pifilter in conjunction with C1 and C2. The resistor R2 damps resonance in inductor L1. The frequency jitter in
U1 allows the unit to meet worldwide conducted EMI standards using a simple pi-filter in combination with a
small value Y1-capacitor C4 and a proper PCB layout. The built-in circuitry of U1 practically eliminates the
audio noise permitting the use of ordinary varnished transformers. VR1 and D5 form a clamp circuit that
limits the turn-off voltage spike to a safe level on the U1-DRAIN pin.
The secondary windings are stacked to improve the cross regulation. The 5 V winding is rectified and
filtered by D6, C5 with additional filtering provided by L2, C7 to give the 5 VDC output. The 5 VDC output
voltage is determined by the sum of the voltage drops across the optocoupler U2 and the Zener diode VR2.
Resistor R3 (AC gain of the circuit) limits the current through U2, improving its response time. Resistor R4
sets the bias current for VR2. The 12 V winding is rectified and filtered by D7, C6 to provide the 12 VDC
output. A minimum loading is necessary on the two outputs to keep them within the specified limits.
The primary-to-secondary isolation is provided by using parts/materials (opto/transformer insulation) with
the correct level of isolation and creepage distances (opto slot/transformer bobbin). Also the C4 value
(while allowing common mode noise current path) has to keep the leakage current below the standard
(IEC950) accepted value.
The 5 VDC and 12 VDC monitoring light emitting diodes (LED2, LED1) and R6, R5 are optional, and have
been included in this circuit for troubleshooting convenience.
The board has a small, secondary side prototyping area for alternate voltage regulation control.
Test points TP1 (U1-SOURCE) and TP2 (U1-DRAIN) are provided for ease of monitoring VDS.
TP2 jumper can be replaced with a longer one to allow a current probe insertion for Id monitoring.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 6 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
5 Layout and Picture
Heat Sink
Slot For 6 kV
TP1 (U1-S)
TP2 (U1-D)
Breadboard
Figure 5.1 - Footprint (3.3”X1.2”), With or Without (Derated At 85 °C Ambient) Heat Sink.
- For the drain-to-source voltage waveforms connect the high voltage probe tip to TP2 and the
probe ground to test point TP1.
- For switching current waveforms replace jumper TP2 with a wire loop and use a Tektronix
A6302 current probe and AM503 current probe amplifier (with TM501 power module) or
equivalent.
R1 60.8
Figure 5.2 - Visible Picture.
Page 7 of 32
T1 59 °C
D6 58 °C
Figure 5.3 - Infrared Picture.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
Figure 5.4 - Heat Sink.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
6 Bill Of Materials
6.1
Configuration ”1”, 2 kV
Item Qty. Ref.
Description
Manufacturer
Part Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
6.8 µF, 400 V, 105 °C
0.1 µF, 50 V, ceramic
2.2 nF, Y1-Safety
180 µF, 35 V (0.12 Ω)
82 µF, 35 V
100 µF, 10 V
Glass Passivated Diode
600 V,1 A, 150 ns
60 V, 1.1 A, Schottky
200 V, 1 A, ultrafast
Header, 3 pos., 0.156 spacing
low current
2.2 mH ±5%, 10.9 Ω, 128 mA
18 µH, 10%, 2.2 A
33 Ω, flame proof, fusible, 3 W
Rubycon
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Vishay/ Lite On
Fagor/Gen. Semi.
IR
ON/NTE
Molex
Siemens/HP
Bosung
Toko
Vitrohm (Farnell
Components)
Yageo
Yageo
Yageo
Yageo
Yageo
DT Magnetics
Power Integrations
Sharp
General Instrument
Diodes Incorporated
400BXA6R8M10x16
ECU-S1H104KBB
ECK-DNA222ME
EEUFC1V181
ECA-1VFQ820
ECA-1AFQ101
1N4005GP
1N4937
11DQ6
MUR120/NTE587
26-48-1035
LG3369/HLMP1790
2
1
1
1
1
1
4
1
1
1
2
2
1
1
1
C1, C2
C3
C4
C5
C6
C7
D1- D4
D5
D6
D7
**J1,J2
*LED1,LED2
L1
L2
R1
16
1
R2
17
1
R3
18
1
R4
19
1
*R5
20
1
*R6
21
1
T1
22
1
U1
23
1
U2
24
1
VR1
25
1
VR2
*Optional
**Remove middle pin for J1
6.2
4.7 kΩ, 1/8 W
100 Ω, 1/8 W
1 kΩ, 1/8 W
6.8 kΩ, 1/4 W
2.4 kΩ, 1/4 W
Transformer EE16 Custom
Off-line Switcher
Optocoupler
200 V Transient suppressor
Zener, 4.3 V ±2%
R622LY-180k
(08 WX7860)
TBD
TNY266P
PC817A
BZY97C200
1N5991C
Configuration ”2”, 6 kV
(Add the following items to Configuration "1")
Item Qty. Ref.
Description
26
1
F1
0.5 A, 250 V, fast-acting fuse
27
2
R7, R8
47 Ω, 1 W
28
1
RV1
Varistor, 275 VAC, 14 mm
Page 9 of 32
Manufacturer
Littelfuse
Ohmite
Harris/Littelfuse
Part Number
Series 263
OX470K
V275LA20A
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
7 Transformer – T1
7.1
Transformer Drawing
10
1
10T # 28AWG T.I Wire
WDG #3
76T #
WDG #
8,9
7T # 28AWG x 2 T.I Wire
4
WDG # 2
5
7.2
Electrical Specifications
Electrical Strength
Creepage
Primary Inductance
Resonant Frequency
7.3
60 Hz 1 minute, from Pins 1-4 to
Pins 5-10
Between Pins 1-4
All windings open
All windings open
3000 VAC
6.4 mm (Min.)
978 µH ±10%
1.0 MHz (Min.)
Transformer Construction
Pin Side
9
5
10
8
+5 V & 12 V
Tape
1
Primary
4
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 10 of 32
03-April-2001
7.4
Transformer Materials
Item
[1]
[2]
[3]
[4]
[5]
[6]
7.5
5 W Universal Input Dual Output Isolated TNY266
Description
2
Core: PC40 EE16, (YING CHIN YC1607) gapped for Alg=168 nH/T
Bobbin: BE-16 (NICERA FEE16)
Magnet Wire: # 34 AWG Heavy Nyleze
Triple Insulated Wire: # 28 AWG
Tape: 3M #10 Reinforced Epoxy Film (Cream) 1.5 mm wide by 5 mils thick
Tape: 3M 1298 Polyester Film (white) 8.2 mm wide by 2.2 mils thick
Transformer Winding Instructions
Primary Margins
Primary Layer
Basic Insulation
+5 V and +12 V
Interleaved Winding
Basic Insulation
Final Assembly
Page 11 of 32
Tape Margins with item [5] on one side at pins. Match height with Primary
windings
Start at Pin 4. Wind 26 turns of item [3] from left to right. Wind 25 turns of
item [3] from right to left. Then wind the remaining 25 turns in the next layer
from left to right. Finish on Pin 1.
1 Layer of tape [6] for basic insulation.
Start +5 V winding at Pin 8 (2 wires) of item [4] and +12 V winding at Pin 10
(1 wire) of item [4]. Wind together (3 wires) 7 turns of item [4] from right to
left. Wind uniformly, in a single layer, across entire width of bobbin. Finish
5 V winding on Pin 5. Continue +12 V winding with 10 more turns, from left
to right and finish at pin 9.
3 Layer of tape [6] for basic insulation.
Assemble and secure core halves. Impregnate uniformly [7].
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
7.6
03-April-2001
Transformer Bobbin Dimensions
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 12 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
7.7 Transformer Spreadsheet
Design Warning
Power Supply Input
VACMIN
Volts
VACMAX
FL
TC
Z
N
Volts
Hertz
mSeconds
85
Minimum AC Input Voltage
265
50
2.48
0.61
71.0
%
Maximum AC Input Voltage
AC Main Frequency
Bridge Rectifier Conduction Time Estimate
Loss Allocation Factor
Efficiency Estimate
Power Supply
Outputs
VOx
Volts
5.00
IOx
Amps
0.500
12.00 Output Voltage
0.208 Power Supply Output Current
Device Variables
Device
TNY266
Device Name
PO
VDRAIN
Watts
Volts
5.00
521
VDS
Volts
4.7
FSnom
Hertz
132000
TinySwitch-II Switching Frequency
FSmin
Hertz
120000
TinySwitch-II Minimum Switching Frequency (inc. Jitter)
FSmax
Hertz
144000
KRPKDP
ILIMITMIN
ILIMITMAX
Amps
Amps
0.79
0.33
0.38
TinySwitch-II Maximum Switching Frequency (inc.
Jitter)
Ripple to Peak Current Ratio
Device Current Limit, Minimum
Device Current Limit, Maximum
0.15
0.44
Primary RMS Current
Maximum Duty Cycle
IRMS
DMAX
Amps
Total Output Power
Maximum Drain Voltage Estimate (Includes Effect of
Leakage Inductance)
Device On-State Drain to Source Voltage
Power Supply Components
Selection
CIN
uFarads
13.6
Input Filter Capacitor
VMIN
VMAX
VCLO
PZ
Volts
Volts
Volts
W
82
375
130
0.3
Minimum DC Input Voltage
Maximum DC Input Voltage
Clamp Zener Voltage
Estimated Primary Zener Clamp Loss
Power Supply Output
Parameters
VDx
PIVSx
Volts
Volts
0.5
39
ISPx
ISRMSx
IRIPPLEx
Amps
Amps
Amps
1.78
0.86
0.70
Page 13 of 32
0.7 Output Winding Diode Forward Voltage Drop
91 Output Rectifier Maximum Peak Inverse Voltage
0.74 Peak Secondary Current
0.36 Secondary RMS Current
0.29 Output Capacitor RMS Ripple Current
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
Transformer Construction
Parameters
Core/Bobbin
EE16
Core and Bobbin Type
Core Manuf.
Bobbin Manuf.
Generic
Generic
Core Manufacturing
Bobbin Manufacturing
LPmin
NP
AWG
uHenries
AWG
978
76
30
Minimum Primary Inductance
Primary Winding Number of Turns
Primary Wire Gauge (Rounded to next smaller
standard AWG value)
Primary Winding Current Capacity (200 < CMA <
500). Warning! Primary circular mils per amp (CMA)
is too high. Decrease transformer size, decrease L,
increase NS, decrease VACmin, increase VOR,
increase KrpKdp.
Reflected Output Voltage
Bobbin Physical Winding Width
Safety Margin Width
Number of Primary Layers
Core Effective Cross Section Area
Gapped Core Effective Inductance
CMA
Cmils/A
696
VOR
BW
M
L
AE
ALG
Volts
mm
mm
cm^2
nH/T^2
60.00
8.50
0.0
3.0
0.19
168
BM
BAC
LG
Gauss
Gauss
mm
2611
900
0.12
Maximum Operating Flux Density
AC Flux Density
Gap Length (Lg > 0.051 for TOP22X, Lg > 0.1 for
TOP23X)
LL
LSEC
uH
nH
19.6
20
Estimated Transformer Primary Leakage Inductance
Estimated Secondary Trace Inductance
Secondary
Parameters
NSx
7.00
16.16 Secondary Number of Turns
Rounded Down
NSx
16 Rounded to Integer Secondary Number of Turns
Rounded Down Volts
Vox
11.87 Auxiliary Output Voltage for Rounded to Integer NSx
Rounded Up
NSx
Rounded Up
Vox
17 Rounded to Next Integer Secondary Number of Turns
Volts
AWGSx Range AWG
12.66 Auxiliary Output Voltage for Rounded to Next Integer
NSx
24 - 28
28 - 32
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Secondary Wire Gauge Range (CMA range 500 - 200).
Wire gauge (AWG) is less than 26 AWG. Consider
parallel winding (see AN-18, AN-22).
Page 14 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
8 Performance Data
TEST EQUIPMENT
INPUT: VOLTECH (PM1000) AC POWER ANALYZER.
OUTPUT: KIKUSUI (PLZ153W) ELECTRONIC LOAD.
8.1
Efficiency
Efficiency vs load @ 25 °C ambient
90
80
70
60
50
40
30
20
10
0
0.00
%
85 VAC, I12=0
85 VAC, I12=full load
265 VAC, I12=0
265 VAC, I12=full load
Stand by power:
Pin =0.248 W @ 85 VAC
Pin = 0.383 W @ 265 VAC
0.10
0.20
0.30
0.40
0.50
5 V output load (A)
Figure 8.1.1 - Efficiency vs. Output Power @ 25 °C Ambient.
E ffic ie n c y @ fu ll lo a d
77
76
%
75
74
73
72
71
70
85
105
125
145
165
185
205
225
245
265
In p u t V o lta g e
Figure 8.1.2 - Efficiency vs. Line Voltage @ 25 °C Ambient.
Page 15 of 32
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
Regulation @ 25 °C Ambient
8.2
Load regulation @ 25 C ambient
108
106
V/VnomX100
104
5 VDC @ 85 VAC
102
12 VDC @ 85 VAC
100
5 VDC @ 265 VAC
98
12 VDC @ 265 VAC
96
94
92
0.00
0.10
0.20
0.30
0.40
0.50
5 VDC output load (A)
Figure 8.2.1 - Line Regulation @ Full Load, 25° C Ambient.
L in e r e g u la t io n @ f u ll lo a d , 2 5 C a m b ie n t
108
Vout/VnomX100
106
104
5 V D C o u tp u t
102
1 2 V D C o u tp u t
100
98
96
94
92
85
105
125
145
165
185
205
225
245
265
V IN (V A C , 6 0 H z )
Figure 8.2.2 - Load Regulation @ 25° C Ambient
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 16 of 32
03-April-2001
Temperature
13
12
11
10
9
8
7
6
5
4
Vout(12VDC@ 0.2A)
Vout([email protected])
66 70 74 78 82 86 90 94 98 102
T ambient (C)
Figure 8.3.1 - VOUT vs. Ambient Temperature.
Page 17 of 32
Pout(W)
VDC
8.3
5 W Universal Input Dual Output Isolated TNY266
5.0
4.5
4.0
3.5
3.0
2.5
2.0
With heat sink
Witout heat sink
25 30 35 40 45 50 55 60 65 70 75 80 85
T ambient (C)
Figure 3.3.2 - Max Power.
(Source Pin Temperature ≤110 °C.)
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
8.4
03-April-2001
Waveforms (2 kV config.”1”)
8.4.1 Turn-on Delay/Hold-up Time
CH4
CH4
CH2
Figure 8.4.1.1 – Turn-on Delay – First Current
Pulse. CH4: IN_MAINS (0.5 A/div),
CH2: VOUT (1 V/div).
CH4
CH2
Figure 8.4.2.1 - ID and VDS @VIN=85VAC.
CH4: ID (0.2 A/div),
CH2: VDS (100V/div)
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
CH2
Figure 8.4.1.2 – Hold-up Time – Last Current
Pulse. CH4: IIN_MAINS (0.2 A/div),
CH2: VOUT (1 V/div).
CH4
CH2
Figure 8.4.2.2 - ID and VDS @ VIN=265VAC
CH4: ID (0.2 A/div),
CH2: VDS 100 V/div)
Page 18 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
CH4
CH4
CH2
CH2
Figure 8.4.2.3 - ID and VDS @ 85 VAC.
CH4: ID (0.2 A/div),
CH2: VDS (100 V/div)
Figure 8.4.2.4 - ID and VDS @ 265 VAC.
CH4: ID (0.2 A/div),
CH2: VDS (100 V/div)
8.4.2 Auto-Restart
Maximum load, before power limiting (entering auto-restart) @ 25 °C
VIN (VAC, 60 Hz)
85
85
Load condition
1
2
5 VDC output
1.09 A @ 4.74 V
0.5 A @ 4.89 V
12 VDC output
0.2 A @ 13.04 V
0.45 A @ 12.46 V
Total output (W)
7.8
8.05
Load condition 1: 5 V output overloaded; 12 VOUT full load.
Load condition 2: 12 V output overloaded; 5 VOUT full load.
Because of higher efficiency on the 12 V output, the maximum power output occurs when the 12 V output
is overloaded.
Figure 8.4.3 – Auto restart @ 85 VAC.
CH4: ID (0.2 A/div),
CH3: VDS (100 V/div)
Page 19 of 32
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
CH4
CH1
Figure 8.4.4.1 - Output Voltage Ripple
at Full Load
5 VDC at 85 VAC.
CH4: IOUT (0.2 A/div),
CH1: VOUT (50 mV/div)
CH4
CH1
Figure 8.4.4.3 - Output Voltage Ripple
at Full Load
12 VDC at 85 VAC.
CH4: IOUT (0.2 A/div),
CH1: VOUT (200 mV/div)
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
03-April-2001
CH4
CH1
Figure 8.4.4.2 - Output Voltage Ripple
at Full Load
5 VDC at 265 VAC.
CH4: IOUT (0.5 A/div),
CH1: VOUT (50 mV/div)
CH4
CH1
Figure 8.4.4.4 - Output Voltage Ripple
at Full Load
12 VDC at 265 VAC.
CH4: IOUT (0.2 A/div),
CH1: VOUT (200 mV/div)
Page 20 of 32
03-April-2001
8.5
5 W Universal Input Dual Output Isolated TNY266
Transient Response
CH1
CH1
CH4
CH4
Figure 8.5.1 - Transient Response – 5 V Output
@ VIN = 115 VAC 20-80%
Load Change.
CH4: IOUT (0.2 A/div),
CH1: VOUT (100 mV/div)
CH1
CH4
Figure 8.5.3 - Transient Response – 5 V Output
@ VIN = 115 VAC 20-80%
Load Change.
CH4: IOUT (0.1 A/div),
CH1: VOUT (1 V/div)
Page 21 of 32
Figure 8.5.2 - Transient Response – 5 V Output
@ VIN = 230 VAC 20-80%
Load Change.
CH4: IOUT (0.2 A/Div).
CH1: VOUT (100 mV/Div)
CH1
CH4
Figure 8.5.4 - Transient Response – 5 V Output
@ VIN = 230 20-80%
Load Change.
CH4: IOUT (0.1 A/Div),
CH1: VOUT (1 V/Div)
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
8.6
03-April-2001
Conducted EMI Scans
The attached plots show worst-case EMI performance for EP8 as compared to CISPR22B conducted
emissions limits. Peak detection is commonly used for initial diagnosis of EMI, as full frequency range
results can be quickly obtained, using a common spectrum analyzer. This is also a worst-case form of
analysis, as the CISPR22B limits are based on quasi-peak and average detection, both of which give lower
amplitude results than peak detection.
For EMI and safety techniques refer to PI application note AN15 (Figure 6 shows a typical test set up).
Quasi-peak
Average
Figure 8.6.1 - EP9, TNY266, L, N, 120 VAC, Full Load, CISPR Limits.
Figure 8.6.2 - EP9, TNY266, L, N, 230 VAC, Full Load, CISPR Limits.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 22 of 32
03-April-2001
8.7
5 W Universal Input Dual Output Isolated TNY266
Surge Voltage Immunity (2 kV and 6 kV, 1.2/50 µs per IEC1000-4-5)
The surge protection for configuration ”1” (2 kV) and configuration ”2” (6 kV) is illustrated in the schematics
(pages 4 and 5).
R7, R8 limit the maximum surge current to approximately 50 A, the value at which the clamping voltage of
the varistor is characterized.(< 800 V). This voltage level was selected to ensure enough margin for the
diode bridge D1-D4. The 6 kV, 1.2/50 µs pulse at 800 V clipping level is approximately 100 µs (see Fig.
8.7.2). From the graph in Fig.8.7.1 it can be inferred that the unit will survive 10 k surges of 6 kV. Reducing
the value of R7, R8 would reduce the total number of 6 kV pulses the unit can survive.
Figure 8.7.1 - Varistor Life (Number of Surges) as a Function of the Rectangular Pulse Amplitude
and its Duration.
VRV1
Varistor Clamp Voltage
Instantaneous Line Voltage
VAC
Figure 8.7.2 - Varistor Clamping Voltage.
Page 23 of 32
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
8.8
03-April-2001
Acoustic Emissions
The power supply was subjected to acoustic emissions measurement. The worst-case noise was
measured for variations of both AC line and output loading conditions and is presented in Figure. 8.8.1.
The test unit was placed in an anechoic acoustic chamber, with a microphone located approximately 1”
(25 mm) above the transformer (T1). The power supply was oriented in a horizontal position with the
power supply output loaded via an external Kikusui electronic load. The microphone output was fed to an
Audio Precision audio analyzer to provide the measurements shown. The curves shown indicate the
spectral content of the noise generated by the supply once the ANSI-A weighting factor has been applied.
The audio limit line (Figure 8.8.1) visible at +35 dB represents the generally accepted threshold for power
supply audio noise. A discrete audio frequency amplitude was used rather than a dBA value (dBA
represents the whole audio spectrum). Large peaks may not raise the dBA value yet can result in
unacceptable perceived noise.
As a reference, the approximate dBA background noise floor level is 30 dBA. The microphone sensitivity is
such that 20 µP = 0 dB SPL.
Up to a further 20 dB reduction can be expected from the measurement shown, once the power supply is
sealed inside an enclosure.
Audio Precision
FFT SPECTRUM ANALYSIS
04/18/01 10:47:42
+80
+70
+60
+50
+40
d
B
r
+35 dB=Audio Noise
+30
+20
A
+10
+0
-10
-20
-30
0
Ambient Noise
2k
4k
6k
8k
10k
12k
14k
16k
18k
20k
22k
Hz
Figure 8.8.1 - Worst Case Audio Level, 120 VAC Input, Full Load.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 24 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
Appendix A Example of 24 V Output Design
Appendix A1.1 Schematic of 24 V Design
Page 25 of 32
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
Appendix A1.2 Bill of Materials (5 W, 5 VDC, 24 VDC PS)
Configuration ”2”, 6 kV
Item
Qty.
Ref.
Description
Manufacturer
Part Number
1
6.8 µF, 400 V, 105 °C
Rubycon
400BXA6R8M10
x16
0.1 µF, 50 V, ceramic
2.2 nF, Y1-Safety
180 µF, 35 V (0.12 Ω)
82 µF, 35 V
100 µF, 10 V
Panasonic
Panasonic
Panasonic
Panasonic
ECK-DNA222ME
2
C1, C2
2
1
C3
3
1
C4
4
1
C5
5
1
C6
6
1
C7
7
8
4
D1- D4
9
1
D5
10
1
D6
11
1
D7
12
1
F1
13
2
**J1,J2
14
2
*LED1,LED2
15
1
L1
16
1
L2
17
1
R2
18
1
R3
19
1
R4
20
1
*R5
21
1
*R6
22
2
R7, R8
23
1
T1
24
1
U1
25
1
U2
26
1
VR1
27
1
VR2
28
1
RV1
*Optional
**Remove middle pin for J1
Glass Passivated Diode
600 V, 1 A, 150 ns
60 V, 1.1 A, Schottky
400 V, 1 A, ultrafast
0.5 A, 250 V, fast-acting fuse
Header, 3 pos.,0.156 spacing
low current
2.2 mH ±5%, 10.9 Ω, 128 mA
18 µH, 10%, 2.2 A
4.7 kΩ, 1/8 W
100 Ω, 1/8 W
1 kΩ, 1/8 W
13 kΩ, 1/4 W
2.4 kΩ, 1/4 W
47 Ω, 1 W
Transformer
Off-line Switcher
Optocoupler
200 V Transient suppressor
Zener, 4.3 V ±2%
Varistor, 275 VAC, 14 mm
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Fagor
ON
ON
Littelfuse
Siemens
Bosung
Toko
Ohmite
EE16 Custom
Power Integrations
Harris/Littlefuse
1N4005GP
1N4937
11DQ6
MUR140
Series 263
LG3369
622LY-180k
OX470K
TNY266P
PC817A
BZY-97C200
1N5991C
V275LA20A
Page 26 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
Appendix A1.3 Transformer Spreadsheet
Design Warning
Power Supply Input
VACMIN
Volts
VACMAX
FL
TC
Volts
Hertz
mSeconds
265
50
2.46
85
Maximum AC Input Voltage
AC Main Frequency
Bridge Rectifier Conduction Time Estimate
Minimum AC Input Voltage
Z
N
%
0.61
72.0
Loss Allocation Factor
Efficiency Estimate
Power Supply
Outputs
VOx
Volts
5.00
IOx
Amps
0.500
24.00 Output Voltage
0.104 Power Supply Output Current
Device Variables
Device
TNY266
PO
VDRAIN
Watts
Volts
5.00
521
VDS
FSnom
FSmin
FSmax
Volts
Hertz
Hertz
Hertz
4.5
132000
120000
144000
KRPKDP
ILIMITMIN
ILIMITMAX
IRMS
DMAX
Amps
Amps
Amps
0.83
0.33
0.38
0.14
0.42
Device Name
Total Output Power
Maximum Drain Voltage Estimate (Includes Effect of
Leakage Inductance)
Device On-State Drain to Source Voltage
TinySwitch-II Switching Frequency
TinySwitch-II Minimum Switching Frequency (inc. Jitter)
TinySwitch-II Maximum Switching Frequency (inc.
Jitter)
Ripple to Peak Current Ratio
Device Current Limit, Minimum
Device Current Limit, Maximum
Primary RMS Current
Maximum Duty Cycle
Power Supply Components
Selection
CIN
uFarads
15.0
Input Filter Capacitor
VMIN
VMAX
VCLO
PZ
Volts
Volts
Volts
W
86
375
130
0.3
Minimum DC Input Voltage
Maximum DC Input Voltage
Clamp Zener Voltage
Estimated Primary Zener Clamp Loss
Power Supply Output
Parameters
VDx
PIVSx
ISPx
ISRMSx
IRIPPLEx
Volts
Volts
Amps
Amps
Amps
Page 27 of 32
0.5
39
1.78
0.86
0.69
1.0
180
0.37
0.18
0.14
Output Winding Diode Forward Voltage Drop
Output Rectifier Maximum Peak Inverse Voltage
Peak Secondary Current
Secondary RMS Current
Output Capacitor RMS Ripple Current
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
Transformer Construction
Parameters
Core/Bobbin
EE16
Core and Bobbin Type
Core Manuf.
Bobbin Manuf.
LPmin
uHenries
NP
Generic
Generic
954
76
Core Manufacturing
Bobbin Manufacturing
Minimum Primary Inductance
Primary Winding Number of Turns
AWG
AWG
30
Primary Wire Gauge (Rounded to next smaller
standard AWG value)
Primary Winding Current Capacity (200 < CMA <
500). Warning! Primary circular mils per amp (CMA)
is too high. Decrease transformer size, decrease L,
increase NS, decrease VACmin, increase VOR,
increase KrpKdp.
Reflected Output Voltage
Bobbin Physical Winding Width
CMA
Cmils/A
VOR
BW
Volts
mm
60.00
8.50
M
L
AE
mm
cm^2
0.0
3.0
0.19
Safety Margin Width
Number of Primary Layers
Core Effective Cross Section Area
ALG
nH/T^2
164
Gapped Core Effective Inductance
BM
BAC
LG
Gauss
Gauss
mm
2553
924
0.13
Maximum Operating Flux Density
AC Flux Density
Gap Length (Lg > 0.051 for TOP22X, Lg > 0.1 for
TOP23X)
LL
uH
19.1
Estimated Transformer Primary Leakage Inductance
LSEC
nH
20
722
Estimated Secondary Trace Inductance
Secondary
Parameters
NSx
7.00
31.82 Secondary Number of Turns
Rounded Down
NSx
31 Rounded to Integer Secondary Number of Turns
Rounded Down Volts
Vox
23.36 Auxiliary Output Voltage for Rounded to Integer NSx
Rounded Up
NSx
Rounded Up
Vox
32 Rounded to Next Integer Secondary Number of Turns
Volts
AWGSx Range AWG
24.14 Auxiliary Output Voltage for Rounded to Next Integer
NSx
24 - 28
31 - 35
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Secondary Wire Gauge Range (CMA range 500 - 200).
Wire gauge (AWG) is less than 26 AWG. Consider
parallel winding (see AN-18, AN-22).
Page 28 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
Revision History
Date
8.16.99
11.6.99
2.7.2000
2.24.2000
3.23.2000
5.18.2000
7.12.2000
Author
SL
SL
SL
SL
SL
SL
SL
Rev
1
2
3
4
5
6
7
4.3.2001
SL
8
Page 29 of 32
Description
First Draft
Second Draft
Third Draft
4th Draft
Release
Revised layout, leaded C3
Revised schematic/BOM (L1, C3, C5,
replaced R1=8.2 with F1)
Replaced TNY256P with TNY266P
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
Notes
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 30 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
Notes
Page 31 of 32
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or
manufacturability. Power Integrations does not assume any liability arising from the use of any device or
circuit described herein, nor does it convey any license under its patent rights or the rights of others.
PI Logo, TOPSwitch and TinySwitch are registered trademarks of Power Integrations, Inc.
© Copyright 2001, Power Integrations, Inc.
WORLD HEADQUARTERS
NORTH AMERICA - WEST
Power Integrations, Inc.
5245 Hellyer Avenue
San Jose, CA 95138 USA.
Main:
+1•408•414•9200
Customer Service:
Phone: +1•408•414•9665
Fax:
+1•408•414•9765
EUROPE & AFRICA
Power Integrations (Europe)
Ltd.
Centennial Court
Easthampstead Road
Bracknell
Berkshire RG12 1YQ,
United Kingdom
Phone: +44•1344•462•301
Fax:
+44•1344•311•732
TAIWAN
Power Integrations International
Holdings, Inc.
2F, #508, Chung Hsiao E. Rd.,
Sec. 5,
Taipei 105, Taiwan
Phone: +886•2•2727•1221
Fax:
+886•2•2727•1223
CHINA
Power Integrations International
Holdings, Inc.
Rm# 1705, Bao Hua Bldg.
1016 Hua Qiang Bei Lu
Shenzhen Guangdong, 518031
Phone: +86•755•367•5143
Fax:
+86•755•377•9610
KOREA
Power Integrations
International
Holdings, Inc.
Rm# 402, Handuk Building,
649-4 Yeoksam-Dong,
Kangnam-Gu,
Seoul, Korea
Phone: +82•2•568•7520
Fax:
+82•2•568•7474
JAPAN
Power Integrations, K.K.
Keihin-Tatemono 1st Bldg.
12-20 Shin-Yokohama 2Chome,
Kohoku-ku, Yokohama-shi,
Kanagawa 222, Japan
Phone: +81•45•471•1021
Fax:
+81•45•471•3717
INDIA (Technical Support)
Innovatech
#1, 8th Main Road
Vasanthnagar
Bangalore, India 560052
Phone: +91•80•226•6023
Fax:
+91•80•228•9727
APPLICATIONS HOTLINE
World Wide +1•408•414•9660
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
APPLICATIONS FAX
World Wide +1•408•414•9760
Page 32 of 32