CDB53L30 Evaluation Board for the CS53L30 Features Description • Analog or digital Inputs The CDB53L30 board is a dedicated platform for testing and evaluating the CS53L30, a low-power, quad-channel microphone ADC with TDM output. — Analog microphone or line inputs via TRS 1/8” jacks — Digital microphone inputs via stake headers To allow comprehensive testing of CS53L30 features and performance, extensive software-configurable options are available on the CDB53L30. • Two CS53L30 devices support up to eight channels of phase-aligned audio • Onboard master clock generator Software options, such as register settings for the CS53L30, are configured with the FlexGUI software, which communicates with the CDB53L30 via USB from a Windows®-compatible computer. In addition, digital I/O headers on the CDB53L30 allow external control signals (from a host processor, for example) to configure and interface with the CS53L30 directly without the use of FlexGUI. • S/PDIF transmitter interface via RCA and optical jacks • External digital I/O via stake headers — Serial audio port I/O — Control signal I/O — External I²C™ control port I/O • Flexible power-supply configuration The CDB53L30 also serves as the component and layout reference for the CS53L30. — USB or external power supply • FlexGUI software control Ordering information — Windows® compatible CDB53L30 — Predefined and user-configurable scripts +5V, GND (Binding Post) USB VBUS Evaluation Board VA, VP (Binding Post) Regulators Power Source Selection (Headers) MicroController Control Current Sense Resistors for Power Measurement (Bypassable) I2C and Control I/O (Header) Control Power MCLK Generator MCLK Serial Audio CS53L30 #1 S/PDIF Out (Optical) CS8406 Power Serial Audio I/O (Header) Control CS53L30 #2 Mux S/PDIF Out (RCA) Digital Mic In (Header) http://www.cirrus.com Analog In (1/8" TRS, Header) Copyright Cirrus Logic, Inc. 2013 (All Rights Reserved) Digital Mic In (Header) Analog In (1/8" TRS, Header) DS963DB2 JUN '13 CDB53L30 Table of Contents 1 CDB53L30 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Power Supply Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Digital Mic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Serial Audio I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 S/PDIF Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Master Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7 Synchronization I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 Control Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9 Layout Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Quick-Start Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 3 3 3 4 4 4 5 5 5 6 3 System Connections and Jumper Settings . . . . . . . . . . . . . . . 7 4 Software Control Using FlexGUI . . . . . . . . . . . . . . . . . . . . . . . 10 4.1 Installation and First-Time Setup . . . . . . . . . . . . . . . . . . . . . 10 4.2 Working with Register Settings . . . . . . . . . . . . . . . . . . . . . . 10 4.3 Using the FlexGUI Tabs . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.4 Register Maps Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5 Performance Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6 Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 8 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 DS963DB2 CDB53L30 1 CDB53L30 System Overview 1 CDB53L30 System Overview The CDB53L30 evaluation board is a convenient platform for evaluating the CS53L30 low-power, quad-channel microphone ADC with TDM output. It supports multiple power supply and signal I/O configurations, including the option to connect directly to the CS53L30 from an external system such as a host processor (while bypassing the onboard control circuitry). The CDB53L30 has two CS53L30 devices, providing the ability to evaluate the multichip synchronization protocol. To evaluate the synchronization protocol using four devices, two CDB53L30s can be linked using the SYNC I/O header. The CDB53L30 also serves as the component and layout reference for the CS53L30. The following subsections describe the features of the CDB53L30 evaluation board in detail. 1.1 Power Supply Circuitry The CDB53L30 requires a +5-V power source, supplied either by a +5-V external DC power supply connected to the +5V_ EXT and GND binding posts, or by the VBUS connection from a powered USB port. The +5-V source is selectable via jumper pin block J31. Low-dropout regulators (LDOs) step down the +5-V supply to provide clean and stable +3.3-, +3.6-, and +1.8-V rails to all the onboard circuitry and the CS53L30. Jumper pin block J2 selects the VA power supply source for the CS53L30 supply pins (either the VA_EXT binding post or the onboard +1.8-V LDO). Jumper pin block J13 selects the VP power supply source for the CS53L30 supply pins (either the VP_EXT binding post or the onboard +3.6-V LDO). 1.2 Analog Inputs The CDB53L30 has eight analog input connectors, four per CS53L30 device. The four 1/8” TRS jacks labeled “1.AIN1," “1.AIN2," “1.AIN3," and “1.AIN4” are connected to analog inputs 1–4, respectively, of device #1. The four 1/8” TRS jacks labeled “2.AIN1," “2.AIN2," “2.AIN3," and “2.AIN4” are connected to analog inputs 1–4, respectively, of device #2. For fully differential input sources, no jumper should be placed at the position marked “IN–” at the Sleeve/AIN– jumper pin block (J36 on channel 1.AIN1). For single-ended or pseudodifferential input sources, AIN– should be shunted to ground by placing a jumper at the “IN–” position (Pins 1 and 2). In addition to the 1/8” TRS jacks, the input source may also be connected directly to the input header (J6 on channel 1.AIN1). The AIN+ and AIN– pins are connected directly to the “tip” and “ring” conductors of the 1/8” TRS jack, respectively. By factory default, the sleeve conductor of the TRS cable is shunted to ground by the jumper at the position labeled “Sleeve”. When using a fully differential input source, it may be desirable for noise reasons to float the sleeve connection by removing the “Sleeve” jumper. In some cases, this can reduce noise induced by ground loops. For microphone applications, the CS53L30 microphone bias signals are available at the input headers. Bias can also be connected to the AIN+ inputs through 1.8-k series bias resistors according to the instructions below: 1. For two-pin microphones (bias connected to AIN+ through a bias resistor): the “Bias to AIN+” jumper should be shunted and the “Rbias SHORT” jumper should be open. 2. For three-pin microphones (bias not connected to AIN+): the “Bias to AIN+” jumper should be open and the “Rbias SHORT” jumper should be shunted. DC blocking capacitors are located between the AIN+/AIN– input connectors and the CS53L30 IN± input pins. These caps are 0.1 F, providing a typical –3-dB corner frequency of 31.8 Hz when the microphone preamplifier is bypassed (50 k input impedance) or 1.6 Hz when the the preamplifier is enabled (1-Minput impedance). 1.3 Digital Mic Inputs The CS53L30 can be configured to accept digital microphone inputs on channels 1 and 3. The digital microphone signals should be connected directly to the input header (J6 on input 1.AIN1) as described in Table 1-1. 3 DS963DB2 CDB53L30 1.4 Serial Audio I/O Table 1-1. Digital Microphone Connections to the Input Header Header Pin Direction Description 1.SCLK1 Output Digital mic 1 serial clock from CS53L30 #1 1.SCLK2 Output Digital mic 2 serial clock from CS53L30 #1 2.SCLK1 Output Digital mic 1 serial clock from CS53L30 #2 2.SCLK2 Output Digital mic 2 serial clock from CS53L30 #2 1.DATA1 Input Digital mic 1 data to CS53L30 #1 1.DATA2 Input Digital mic 2 data to CS53L30 #1 2.DATA1 Input Digital mic 1 data to CS53L30 #2 2.DATA2 Input Digital mic 2 data to CS53L30 #2 1.BIAS1 Output Mic bias 1 from CS53L30 #1 (To supply bias directly to the pin with no series bias resistor, the “Rbias SHORT” pin jumper should be shunted) 1.BIAS3 Output Mic bias 3 from CS53L30 #1 (To supply bias directly to the pin with no series bias resistor, the “Rbias SHORT” pin jumper should be shunted) 2.BIAS1 Output Mic bias 1 from CS53L30 #2 (To supply bias directly to the pin with no series bias resistor, the “Rbias SHORT” pin jumper should be shunted) 2.BIAS3 Output Mic bias 3 from CS53L30 #2 (To supply bias directly to the pin with no series bias resistor, the “Rbias SHORT” pin jumper should be shunted) 1.4 Serial Audio I/O Header J29 provides an interface for the I2S and TDM serial audio clocks and data. The header signals are described in Table 1-2. MCLK routing is controlled by the settings on the “Board Config” tab in the FlexGUI. The direction of the LRCK/ FSYNC and SCLK pins is configured by the “Serial Header Direction” control on the “Board Config” tab. When configured as Master, LRCK/FSYNC and SCLK are outputs from the CDB53L30. When configured as Slave, LRCK/FSYNC and SCLK are inputs to the CDB53L30. The logic level for all serial I/O is +1.8 V. Table 1-2. Serial Header Signal Descriptions Header Pin Direction Description MCLK IN Input Master clock input MCLK OUT Output Master clock output SCLK Input/Output I2S or TDM bit clock LRCK/FSYNC Input/Output I2S left/right clock or TDM frame sync 1.ASP_SDOUT1 Output ASP_SDOUT1 I2S or TDM data from CS53L30 #1; In I2S mode, left channel corresponds to 1.AIN1, right channel corresponds to 1.AIN2. In TDM mode, channel slot location is configurable. 1.ASP_SDOUT2 Output ASP_SDOUT2 I2S data from CS53L30 #1; Left channel corresponds to 1.AIN3, right channel corresponds to 1.AIN4. 2.ASP_SDOUT1 Output ASP_SDOUT1 I2S or TDM data from CS53L30 #2; In I2S mode, left channel corresponds to 2.AIN1, right channel corresponds to 2.AIN2. In TDM mode, channel slot location is configurable. 2.ASP_SDOUT2 Output ASP_SDOUT2 I2S data from CS53L30 #2; Left channel corresponds to 2.AIN3, right channel corresponds to 2.AIN4. 1.5 S/PDIF Transmitter The CS8406 S/PDIF transmitter on the CDB53L30 provides a two-channel digital output simultaneously to both the RCA coaxial connector (J35) and the optical output connector (OPT2). To use the S/PDIF transmitter, the CS53L30 must be configured for I2S mode, and the CS53L30 MCLK/LRCK ratio must correspond to one of the four ratios supported by the CS8406: 128x, 256x, 384x, or 512x. Only one SDOUT signal may be chosen for output at any time. The CS8406 clock ratio and desired SDOUT signal are selected on the “Board Config” tab of the FlexGUI. 1.6 Master Clock The CDB53L30 includes a fixed-frequency crystal oscillator and CS2300 programmable PLL, facilitating the generation of an onboard MCLK. The MCLK frequency is configured on the “Board Config” tab of the FlexGUI. 4 DS963DB2 CDB53L30 1.7 Synchronization I/O The Serial Audio I/O header J29 provides a MCLK input pin and MCLK output pin. The MCLK IN pin can be used to provide an externally generated MCLK to the board. The MCLK OUT pin provides either a buffered version of the onboard generated MCLK or a buffered version of the MCLK IN signal. By providing a buffered version of the MCLK IN signal, the MCLK OUT pin may be used for daisy chaining an additional CDB53L30. This is useful when the external clock source does not have sufficient output drive capability to support multiple parallel loads. To enable the various MCLK routing options, use the MCLK buffer control drop-down boxes in the “Board Config” tab in the FlexGUI. 1.7 Synchronization I/O For applications requiring more than two CS53L30 devices, two CDB53L30 boards may be linked using the Sync I/O header J33. This will allow up to four CS53L30 devices to be synchronized using the multichip synchronization protocol. The direction of the sync signal is configured using jumper pin block J37. For more information on enabling the synchronization protocol, see the CS53L30 data sheet. 1.8 Control Port Interface The Cirrus Logic FlexGUI software application (downloadable from http://www.cirrus.com/msasoftware) provides users an easy and intuitive way to configure the CDB53L30. A Windows®-compatible PC with USB connectivity is required to run FlexGUI. The CDB53L30’s onboard microcontroller handles the USB communication with FlexGUI and the I2C control port interface of the CS53L30. The control port interface and the control I/O signals (INT, RST, and MUTE) are routed through jumper pin block J4. When the pin columns marked “FlexGUI CNTL” are shunted, the microcontroller handles all communication between the FlexGUI application and the CS53L30. To interface to an external system, the shunts on J4 should be removed and the external signals should be connected to the pin columns marked “EXT SYS” (note the GND pins on the right hand side of the header). The INT, RST, and MUTE control signals for the two CS53L30 devices may be ganged together using the “CONTROL SHORTS” jumper pin block J34. This allows both devices to share a single set of control signals. To enable ganging of a control, apply a shunt to the desired signal on J34. When ganging a control, remove one of the associated FlexGUI control jumpers from J4 to prevent contention between the two ganged control signals from the microcontroller. 1.9 Layout Reference The CDB53L30 utilizes a six-layer PCB that allows for optimal trace and power routing to the CS53L30 devices and surrounding circuitry. Local decoupling capacitors for the CS53L30 are placed as close as possible to the device. The CDB53L30 uses a topside-only component placement without compromise to placement of critical components, but a double-sided placement is also feasible. Ground fill is used extensively on the component layer to isolate critical nets where possible. 5 DS963DB2 CDB53L30 2 Quick-Start Guide 2 Quick-Start Guide This section describes a basic setup procedure for the CDB53L30. After completing the steps in Fig. 2-1, the CDB53L30 will be configured to accept eight single-ended or differential analog line inputs and will output four two-channel I2S streams at a sample rate of 48 kHz. 5 1 2 3 Return Returnallalljumpers jumperstotodefault the factory factory settings. See See default settings. Table 3-1.3-1. Table3-2 3-2and andFig. Figure InstallInstall the FlexGUI software. the FlexGUI See SectionSee 4.1.Section 4.1. software. Connect a +5 V power supply to the +5V_EXT and GND binding posts . Start the FlexGUI software. Using the “Quick -Setup” drop -down list on the “Board Config” tab , restore the factory register configuration called “2. Analog in – I2S – 48k FS – 12.288M MCLK – Master mode” . 4 Connect a USB cable from a Windowscompatible PC . 8 Connect Connect aa serial serial audio audio analyzer to the the Serial Serial analyzer to Header. Header . The The header header signals described signals are are described inTable in Table2-1. 2-1. 9 Optional : Connect an audio analyzer to the S/PDIF RCA or optical output . The stereo pair at these outputs corresponds to analog input pair 1.AIN1 and 1.AIN2. 6 7 Connect differential or single ended signals to any of the eight 1/8" input jacks. Fullscale input corresponds to a differential voltage of 1.48 Vpp. When using a single -ended source, shunt IN– to ground by placing a jumper at the “IN –“ position (Pins 1 and 2) on the Sleeve/IN- jumper pin block . Figure 2-1. CDB53L30 Factory Default Jumper Settings Table 2-1. Quick-Start Serial Header Signal Descriptions Header Pin MCLK IN MCLK OUT SCLK LRCK/FSYNC 1.ASP_SDOUT1 6 Direction N/A Output Output Output Output Frequency N/A 12.288 MHz 3.072 MHz 48 kHz N/A Description Not used Master clock I2S bit clock I2S left/right clock ASP_SDOUT1 I2S data from CS53L30 #1; Left channel corresponds to 1.AIN1, right channel corresponds to 1.AIN2 DS963DB2 CDB53L30 3 System Connections and Jumper Settings Table 2-1. Quick-Start Serial Header Signal Descriptions (Cont.) Header Pin 1.ASP_SDOUT2 Direction Output 2.ASP_SDOUT1 Output 2.ASP_SDOUT2 Output Frequency Description N/A ASP_SDOUT2 I2S data from CS53L30 #1; Left channel corresponds to 1.AIN3, right channel corresponds to 1.AIN4 N/A ASP_SDOUT1 I2S data from CS53L30 #2; Left channel corresponds to 2.AIN1, right channel corresponds to 2.AIN2 N/A ASP_SDOUT2 I2S data from CS53L30 #2; Left channel corresponds to 2.AIN3, right channel corresponds to 2.AIN4 3 System Connections and Jumper Settings All power and signal I/O connections are listed in Table 3-1. Jumper settings are described in Table 3-2. LED indicator states are described in Table 3-3. Factory default jumper settings are shown in Fig. 3-1. Table 3-1. External System Connections Reference Designator Connection Input/Output Description J83 +5V_EXT Input +5-V external power supply J89 GND Input Board ground J9 VA_EXT Input CS53L30 VA external supply J14 VP_EXT Input CS53L30 VP external supply J5 UC FLEX C2 Input Microcontroller programming header J94 USB Input/Output USB connection J29 SERIAL Input/Output CS53L30 Audio Serial Port (MCLK IN, MCLK OUT, LRCK/FSYNC, SCLK, ASP_ HEADER SDOUT1, ASP_SDOUT2) J4 CONTROL Input/Output CS53L30 control port connections (SDA, SCL, INT, RST, MUTE) HEADER • By default, shunts connect the columns marked “FlexGUI CNTL (JUMPER)”. This connects the onboard microcontroller to the control port of the CS53L30. • To use external control signals, remove shunts and connect the external controls to the columns marked “EXT SYS (CABLE)”. Notice the ground connections on Column 3. J35 S/PDIF OUT Output Coaxial S/PDIF digital output OPT2 S/PDIF OUT Output Optical S/PDIF digital output J53 1.AIN1 Input Analog mic/line TRS input 1 for CS53L30 #1 J12 1.AIN2 Input Analog mic/line TRS input 2 for CS53L30 #1 J16 1.AIN3 Input Analog mic/line TRS input 3 for CS53L30 #1 J20 1.AIN4 Input Analog mic/line TRS input 4 for CS53L30 #1 J7 2.AIN1 Input Analog mic/line TRS input 1 for CS53L30 #2 J23 2.AIN2 Input Analog mic/line TRS input 2 for CS53L30 #2 J26 2.AIN3 Input Analog mic/line TRS input 3 for CS53L30 #2 J30 2.AIN4 Input Analog mic/line TRS input 4 for CS53L30 #2 J6 Input header Input Analog input 1 and digital mic interface 1 for CS53L30 #1 J17 Input header Input Analog input 2 for CS53L30 #1 J19 Input header Input Analog input 3 and digital mic interface 2 for CS53L30 #1 J22 Input header Input Analog input 4 for CS53L30 #1 J11 Input header Input Analog input 1 and digital mic interface 1 for CS53L30 #2 J25 Input header Input Analog input 2 for CS53L30 #2 J28 Input header Input Analog input 3 and digital mic interface 2 for CS53L30 #2 J32 Input header Input Analog input 4 for CS53L30 #2 J33 SYNC I/O Input/Output Synchronization Input/Output for additional CDB53L30 . Table 3-2. CDB53L30 Jumper Settings Jumper Pin Block Connection Purpose J31 +5 V Select +5 V main supply J2 VA Select CS53L30 VA supply source J13 VP Select CS53L30 VP supply source 7 Position +5V_EXT 1 VBUS VA EXT +1.8 V 1 VP_EXT +3.6 V 1 Function Selected +5-V supply source from J83 +5-V supply source from USB VBUS CS53L30 VA supply from J9 CS53L30 VA supply from +1.8 V derived from LDO CDB53L30 VP supply from J14 CDB53L30 VP supply from +3.6 V derived from LDO DS963DB2 CDB53L30 3 System Connections and Jumper Settings Table 3-2. CDB53L30 Jumper Settings (Cont.) Jumper Pin Block Connection Purpose J34 CONTROL Gang control signals of SHORTS CS53L30 #1 and CS53L30 #2 J39, J44, J45, J86, Rbias Shunt across the J73, J78, J51, J46 SHORT 1.8 k bias resistor J38, J43, J42, J85, Bias to AIN+ Connect mic bias to J72, J77, J50, J41 noninverting input J36, J3, J15, J18, IN– to GND Connect inverting input J10, J21, J24, J27 to ground J36, J3, J15, J18, SLEEVE to Connect TRS sleeve J10, J21, J24, J27 GND conductor to ground J37 SYNC Configure direction of DIRECTION synchronization signal J1 VA I-SENSE CS53L30 VA current measurement J8 1. Indicates VP I-SENSE CS53L30 VP current measurement Position Shunted Open 1 Shunted Open 1 Shunted Open 1 Shunted Open 1 Shunted 1 Open SYNC IN SYNC OUT1 Shunted 1 Open Shunted 1 Open Function Selected Control signals are tied. Control signals are independent. 1.8-k bias resistor is shunted (for three-wire mic connection). 1.8-k bias resistor is not shunted (for two-wire mic connection). Mic bias tied to AIN+. Mic bias not tied to AIN+. IN– tied to ground (for pseudodifferential input). IN– not tied to ground (for true differential input). Sleeve tied to ground. Sleeve floating. Sync signal is input (from another CDB53L30). Sync signal is output (to another CDB53L30). 1- current measurement resistor is shorted. 1- current measurement resistor is in series with CS53L30 VA, allowing direct measurement of VA supply current at J1. 1- current measurement resistor is shorted. 1- current measurement resistor is in series with CS53L30 VP, allowing direct measurement of VP supply current at J8. default factory settings. Table 3-3. LED Indicators LED D4 8 Indication USB present Status On Off Function Indicates there is a USB connection to the CDB53L30. Indicates there is not a USB connection to the CDB53L30. DS963DB2 CDB53L30 3 System Connections and Jumper Settings Figure 3-1. CDB53L30 Factory Default Jumper Settings 9 DS963DB2 CDB53L30 4 Software Control Using FlexGUI 4 Software Control Using FlexGUI The Cirrus Logic FlexGUI application is a graphical user interface that allows users to easily configure software modifiable options on the CDB53L30, such as the register settings of the CS53L30 and the CS8046 S/PDIF transmitter. 4.1 Installation and First-Time Setup To set up FlexGUI for use with the CDB53L30, follow these steps: 1. Download the latest version of the FlexGUI control software from www.cirrus.com/msasoftware. Follow the installation instructions on the download page. 2. Connect the CDB53L30 to the host PC using a USB cable. 3. Apply power to the CDB53L30. 4. Launch FlexGUI. Once the GUI is launched successfully, all registers are set to their default reset states. To start evaluating the CS53L30 immediately using one of several factory preset configurations, load the predefined register settings using the Quick Setup drop-down box on the “Board Config” tab. 4.2 Working with Register Settings Register settings can be restored automatically using factory or user-defined script files. Registers can be modified using the high-level interface controls, or they may be edited directly in the Register Maps tab of the FlexGUI. 4.2.1 Modifying Individual Register Settings There are two ways to modify individual register settings: • Using the high-level graphical interface, which features intuitive GUI elements such as sliders, check boxes, and drop-down menus. See Section 4.3 for details on using the high-level interface. • Using the low-level Register Maps tab, which displays the entire user configurable register space for each device on the CDB53L30 in table form. The Register Maps tab allows the user to modify entire registers or individual register bits. See Section 4.4 for details on the register map. 4.2.2 Save or Restore Register Settings FlexGUI allows saving the current state of all register settings to a file, which can easily be restored later. Figure 4-1. Save Register Settings Figure 4-2. Restore Register Settings To save the current register settings, click on the File menu, then click “Save Board Registers” (Fig. 4-1). Enter a suitable file name and click “Save.” To restore predefined/saved register settings, click on the File menu, then click “Restore Board Registers” (Fig. 4-2). Choose the desired register setting and click “Open.” To restore one of several standard configurations predefined at the factory, use the Quick Setup drop-down box on the “Board Config” tab, or use the Restore Board Registers... command to load any of the configurations starting with “FACTORY--” in the file name. The file names are meant to be self-explanatory. For example, the script called “FACTORY--analog_48k_12.288M_master_I2S_dual.fgs” configures the board as I2S master with a 48k sample rate and 12.288 MHz MCLK, using analog input type. 10 DS963DB2 CDB53L30 4.3 Using the FlexGUI Tabs The factory scripts are written with special consideration to proper sequencing of device settings, for example, enabling a device’s power down mode before changing its MCLK settings. Register settings saved using the method described in this section DO NOT include sequencing and may result in unexpected behavior when restored in the FlexGUI. 4.3 Using the FlexGUI Tabs The FlexGUI features a series of tabs which represent the high- and low-level controls, grouped together according to function. Fig. 4-3 shows the tabs in the FlexGUI interface. . Figure 4-3. FlexGUI Tabs • Board Config—Board controls for configuring the MCLK source, S/PDIF transmitter, serial header, and CS53L30 mute signals • CS53L30-1 Config, CS53L30-2 Config—Controls for configuring the overall operation of the CS53L30 • CS53L30-1 ADC, CS53L30-2 ADC—Controls for configuring ADC functionality of the CS53L30 (volume, noise gate, high-pass filter, etc.) • CS53L30-1 TDM, CS53L30-2 TDM—Controls for configuring TDM mode of the CS53L30 • Register Maps—Allows direct register access to all the devices on the CDB53L30 The subsequent sections, Section 4.3.1 through Section 4.3.4, describe each tab in detail. 11 DS963DB2 CDB53L30 4.3 Using the FlexGUI Tabs 4.3.1 Board Config Tab The “Board Config” tab contains the controls for configuring the MCLK source, S/PDIF transmitter, serial header, and CS53L30 mute signals. The individual functions of this tab are described below. • Quick Setup—Drop-down box for selecting a factory preset register configuration. • MCLK—Settings for onboard MCLK frequency and MCLK routing. • S/PDIF Transmitter—Settings for the CS8406 S/PDIF transmitter. See Section 1.5 for more information. • Mute Control—Configures the state of the microcontroller I/O pins which drive the CS53L30 MUTE inputs. To enable these controls, jumper pin block J4 must have the corresponding “FlexGUI CNTL” jumpers placed. • Serial Header Direction—Configures the SCLK and LRCK/FSYNC signal direction for the serial audio header, J29. When configured as Master, SCLK and LRCK/FSYNC are outputs from the CDB53L30. When configured as Slave, SCLK and LRCK/FSYNC are inputs to the CDB53L30. • Device and Revision I.D.—Displays the CS53L30 revision information. • Refresh—Reads all registers in all devices and updates the values in the FlexGUI. • Reset CS53L30-1—Sends a reset pulse to CS53L30 #1. • Reset CS53L30-2—Sends a reset pulse to CS53L30 #2. Figure 4-4. The “Board Config” Tab 12 DS963DB2 CDB53L30 4.3 Using the FlexGUI Tabs 4.3.2 CS53L30 Config Tab The “CS53L30-1 Config” and “CS53L30-2 Config” tabs contain the controls for configuring the CS53L30 power down state, serial port settings, DMIC, mic bias, input pin bias, MUTE pin power down behavior, and multichip synchronization. • Power—Configures the power down controls and supply settings. • MCLK—Controls for MCLK configuration. • ASP—Settings for Audio Serial Port configuration. • DMIC—Settings for digital mic configuration. • Multichip Sync—Enables the multichip synchronization protocol (see the CS53L30 data sheet for details on using the sync protocol). • Mic Bias—Power down and output voltage controls for the mic bias outputs. • MUTE—Configures the polarity of the MUTE input pin and the associated power down states which are active while MUTE is asserted. • Input Pin Bias—Configures the bias for each input pin. • Refresh—Reads all registers in all devices and updates the values in the FlexGUI. • Reset CS53L30-1—Sends a reset pulse to CS53L30 #1. • Reset CS53L30-2—Sends a reset pulse to CS53L30 #2. Figure 4-5. The “CS53L30 Config” Tab 13 DS963DB2 CDB53L30 4.3 Using the FlexGUI Tabs 4.3.3 CS53L30 ADC Tab The “CS53L30-1 ADC” and “CS53L30-12 ADC” tabs contain the controls for the ADC settings, including notch filter enable, high-pass filter configuration, noise gating, volume controls, and input type. The controls on the left correspond to ADC1, and the controls on the right correspond to ADC2. • Disable digital notch filter—Disables the digital notch filter (applies to both channels of the ADC). • High-Pass Filter—Controls for the high-pass filter (applies to both channels of the ADC). • Noise Gate—Controls for the noise gate. • Channel volume controls—Controls for mic preamp gain, PGA volume, digital volume, +20 dB digital boost, and signal inversion (Channel A and Channel B have independent controls). • Input channel type—Configures the CS53L30 for either analog or digital inputs (applies to all input channels). • Enable soft ramp on all digital volume changes—Enables an incremental ramp on all digital volume changes (applies to all input channels). • Refresh—Reads all registers in all devices and updates the values in the FlexGUI. • Reset CS53L30-1—Sends a reset pulse to CS53L30 #1. • Reset CS53L30-2—Sends a reset pulse to CS53L30 #2. Figure 4-6. The “CS53L30 ADC” Tab 14 DS963DB2 CDB53L30 4.3 Using the FlexGUI Tabs 4.3.4 CS53L30 TDM Tab The “CS53L30-1 TDM” and “CS53L30-2 TDM” tabs contain the controls for configuring the CS53L30 TDM output. These controls apply only when the ASP Mode is configured for TDM on the “CS53L30 Config” tab. • Shift TDM frame 1/2 SCLK left—Configures the start offset of TDM data after a rising edge of LRCK/FSYNC. • LRCK Pulse Width—Configures the LRCK/FSYNC high time in TDM mode. The pulse width can be fixed to 50% duty cycle or configured for any number of SCLK cycles. The high-level GUI allows the user to select between 1 and 8 SCLK cycles as the programmable high time. To configure the CS53L30 for a programmable high time of greater than 8 SCLK cycles, the user should write directly to the LRCK_TPWH field in registers 0x1B and 0x1C in the appropriate CS53L30 register tab. • TDM Channel Configuration—Enables TDM output from each of the four ADC channels and configures the channel’s starting TDM slot location. • TDM Slot Enable—Determines into which of the 48 available TDM time slots the CS53L30 can load data. During time slots which are not enabled, the ASP_SDOUT1 output pin is Hi-Z. • Refresh—Reads all registers in all devices and updates the values in the FlexGUI. • Reset CS53L30-1—Sends a reset pulse to CS53L30 #1. • Reset CS53L30-2—Sends a reset pulse to CS53L30 #2. Figure 4-7. The “CS53L30 TDM” Tab 15 DS963DB2 CDB53L30 4.4 Register Maps Tab 4.4 Register Maps Tab The “Register Maps” tab shows the entire user configurable register space for all programmable devices on the CDB53L30. It is especially useful for reading/writing a device’s register settings directly, one register at a time. For example, in Fig. 4-8 below, the value for register 0x10 is 0x2F. To modify register 0x10’s value, first navigate to it by locating the cell at the intersection of row “10” and column “00.” Click on the cell and simply type the desired hexadecimal value for that register, then press the return key (Enter) on the keyboard. To modify one bit of a register at a time, navigate to the desired register cell, click it, then click on the applicable bits shown in the lower part of the register map page to toggle them. Other useful controls: • Reset All—Sends a reset pulse to all devices on the CDB53L30. • Reset Device—Sends a reset pulse to the device currently in view in the register map. • Released Reset—Holds/releases the device currently in view in the register map in/from reset. • Update Register—Refreshes the current selected register value. • Update Device—Refreshes all register values of the device currently in view in the register map. Figure 4-8. The “Register Maps” Tab 16 DS963DB2 CDB53L30 5 Performance Plots 5 Performance Plots Test conditions (unless otherwise specified): FSext = 48 kHz; MCLKext = 12.2880 MHz; preamp setting: 0 dB (bypassed); PGA setting: 0 dB; high-pass filter enabled, ADCx_HPF_CF = 00; notch filter disabled; noise gate disabled; MCLK autoscale enabled; VA = 1.8 V, VP = 3.6 V. THD+N measurement bandwidth = 10 Hz to FSext/2, no weighting. Unless otherwise specified, the performance data is representative of all channels on both CS53L30 devices. G % ) 6 G % ) 6 N N N N N +] G % ) 6 N N N N N +] Figure 5-3. Output FFT, Preamp Setting: +10 dB, PGA Setting: 0 dB, 1 kHz, –1 dBFS 17 N N N N Figure 5-2. Output FFT, Preamp Setting: 0 dB, PGA Setting: +12 dB, 1 kHz, –1 dBFS N +] Figure 5-1. Output FFT, Preamp Setting: 0 dB, PGA Setting: 0 dB, 1 kHz, –1 dBFS G % ) 6 N N N N N +] Figure 5-4. Output FFT, Preamp Setting: +10 dB, PGA Setting: +12 dB, 1 kHz, –1 dBFS DS963DB2 CDB53L30 5 Performance Plots G % ) 6 G % ) 6 N N N N N +] G % ) 6 N N N N N Figure 5-7. Output FFT, 1 kHz, –60 dBFS Note: The low-frequency roll-off is due to the corner frequency set by the DC blocking cap (0.1 F) and the input impedance (50 k when the preamp setting is 0 dB). N N 7 G % ) 6 Note: The low-frequency roll-off is due to the corner frequency set by the DC blocking cap (0.1 F) and the input impedance (50 k when the preamp setting is 0 dB). N N N N N +] Figure 5-9. Frequency Response, Notch Filter Disabled, Preamp Bypassed (0 dB), –1 dBFS 18 N N 7 N Figure 5-8. Output FFT, No Input +] +] G % ) 6 N N N N Figure 5-6. Output FFT, Preamp Setting: +20 dB, PGA Setting: +12 dB, 1 kHz, –1 dBFS N +] Figure 5-5. Output FFT, Preamp Setting: +20 dB, PGA Setting: 0 dB, 1 kHz, –1 dBFS G % ) 6 N N N N N +] Figure 5-10. Frequency Response, Notch Filter Enabled, Preamp Bypassed (0 dB), –1 dBFS DS963DB2 CDB53L30 5 Performance Plots 7 G % ) 6 G % ) 6 7 N N N N N N Figure 5-11. Frequency Response, Notch Filter Disabled, Preamp Enabled (+10 or +20 dB), –1 dBFS N N 7 7 G % ) 6 Note: The low-frequency roll-off is due to the corner frequency set by the DC blocking cap (0.1 F) and the input impedance (50 k when the preamp setting is 0 dB). Note: The low-frequency roll-off is due to the corner frequency set by the DC blocking cap (0.1 F) and the input impedance (50 k when the preamp setting is 0 dB). N Figure 5-12. Frequency Response, Notch Filter Enabled, Preamp Enabled (+10 or +20 dB), –1 dBFS G % ) 6 N +] +] N N N N N N N N +] +] Figure 5-13. Frequency Response, FSext = 8 kHz, Notch Filter Figure 5-14. Frequency Response, FSext = 8 kHz, Notch Filter Disabled, Preamp Bypassed (0 dB), –1 dBFS Enabled, Preamp Bypassed (0 dB), –1 dBFS 7 G % ) 6 G % ) 6 7 +] N N N N N N N N +] Figure 5-15. Frequency Response, FSext = 8 kHz, Notch Filter Figure 5-16. Frequency Response, FSext = 8 kHz, Notch Filter Disabled, Preamp Enabled (+10 or +20 dB), –1 dBFS Enabled, Preamp Enabled (+10 or +20 dB), –1 dBFS 19 DS963DB2 CDB53L30 5 Performance Plots Note: The low-frequency distortion is dominated by the MLCC Class II DC blocking capacitor (0.1 F). To reduce this distortion, reduce the corner frequency by selecting a larger cap, or choose a different cap type such as film or MLCC Class I. G % G % PGA Setting: +12 dB PGA Setting: +12 dB PGA Setting: 0 dB PGA Setting: 0 dB N N N N N N N N N N +] +] Figure 5-17. THD+N (Relative) vs. Frequency, Preamp Setting: 0 dB, –1 dBFS Figure 5-18. THD+N (Relative) vs. Frequency, Preamp Setting: +10 dB, –1 dBFS G % G % PGA Setting: +12 dB PGA Setting: 0 dB N N N N N +] Figure 5-19. THD+N (Relative) vs. Frequency, Preamp Setting: +20 dB, –1 dBFS G % G % G%U Figure 5-21. THD+N (Relative) vs. Level, Preamp Setting: 0 dB, PGA Setting: +12 dB, 1 kHz 20 Figure 5-20. THD+N (Relative) vs. Level, Preamp Setting: 0 dB, PGA Setting: 0 dB, 1 kHz G%U G%U Figure 5-22. THD+N (Relative) vs. Level, Preamp Setting: +10 dB, PGA Setting: 0 dB, 1 kHz DS963DB2 CDB53L30 5 Performance Plots G % G % G%U G%U Figure 5-23. THD+N (Relative) vs. Level, Preamp Setting: +10 dB, PGA Setting: +12 dB, 1 kHz Figure 5-24. THD+N (Relative) vs. Level, Preamp Setting: +20 dB, PGA Setting: 0 dB, 1 kHz G % G % ) 6 G%U Figure 5-25. THD+N (Relative) vs. Level, Preamp Setting: +20 dB, PGA Setting: +12 dB, 1 kHz 21 N N N N N +] Figure 5-26. FFT, Adjacent Channel Crosstalk at 10 kHz, Preamp Setting: +20 dB, PGA Setting: +12 dB, –1 dBFS DS963DB2 CDB53L30 6 Schematics 6 Schematics CS53L30-1 TP12 1.ASP_SDOUT1 VA I2C Address: 0x90 R22 NO POP CS53L30-1.DMIC1_SCLK R34 0 R36 0 [2] 0 R62 0 CS53L30-1.ASP_SDOUT1 [4] CS53L30-1.ASP_SCLK [4] CS53L30-1.MCLK TP42 1.MCLK TP17 1.DMIC1_SCLK [2] CS53L30-1.DMIC2_SCLK/AD1 TP13 1.ASP_SCLK R59 [3] VA CS53L30.I2C.SDA [2,5] CS53L30.I2C.SCL [2,5] TP19 1.DMIC2_SCLK/AD1 R23 10K R21 NO POP CS53L30-1.IN1+ CS53L30-1.IN1CS53L30-1.IN2+ CS53L30-1.IN2CS53L30-1.IN3+ CS53L30-1.IN3CS53L30-1.IN4+ CS53L30-1.IN4- 1 2 3 4 5 6 7 8 VA PAD 0 CS53L30-1.ASP_SDOUT2/AD0 [4] 0 CS53L30-1.ASP_LRCK/FSYNC [4] R19 10K VA IN2+ SCL IN2ASP_SDOUT2/AD0 IN3+/DMIC2_SD ASP_LRCK/FSYNC U5 VA IN3GNDD IN4+ CS53L30-QFN32 SYNC IN4RESET VA INT GNDA THERM R9 R29 24 23 22 21 20 19 18 17 VA C36 X5R 0.1uF R30 10K TP20 1.SYNC CS53L30-1.SYNC [3] CS53L30-1.RESET CS53L30-1.INT [5] [5] 9 10 11 12 13 14 15 16 C30 X5R 0.1uF TP16 1.ASP_LRCK/FSYNC FILT+ VP MIC1_BIAS MIC2_BIAS MIC3_BIAS MIC4_BIAS MIC_BIAS_FILT MUTE [2] [2] [2] [2] [2] [2] [2] [2] IN1IN1+/DMIC1_SD DMIC2_SCLK/AD1 DMIC1_SCLK ASP_SDOUT1 ASP_SCLK MCLK SDA 32 31 30 29 28 27 26 25 TP15 1.ASP_SDOUT2/AD0 CS53L30-1.MUTE [5] TP5 1.MIC_BIAS_FILT TP6 1.FILT+ C29 X5R 4.7UF VP C28 X5R 2.2uF TP7 1.MIC1_BIAS C31 X5R 0.1uF CS53L30-1.MIC1_BIAS CS53L30-1.MIC2_BIAS CS53L30-1.MIC3_BIAS CS53L30-1.MIC4_BIAS C37 X5R 1uF CS53L30-2 C38 X5R 1uF C39 X5R 1uF TP10 1.MIC3_BIAS C40 X5R 1uF TP35 2.ASP_SDOUT1 VA I2C Address: 0x92 R35 NO POP CS53L30-2.DMIC1_SCLK R103 0 [2] CS53L30-2.DMIC2_SCLK/AD1 R105 0 TP36 2.ASP_SCLK R96 0 CS53L30-2.ASP_SDOUT1 [4] R98 0 CS53L30-2.ASP_SCLK [4] CS53L30-2.MCLK [3] VA TP40 2.DMIC2_SCLK/AD1 R37 10K [2] [2] [2] [2] TP11 1.MIC4_BIAS TP14 2.MCLK TP39 2.DMIC1_SCLK [2] TP9 1.MIC2_BIAS CS53L30.I2C.SDA [2,5] CS53L30.I2C.SCL [2,5] R107 10K CS53L30-2.IN1+ CS53L30-2.IN1CS53L30-2.IN2+ CS53L30-2.IN2CS53L30-2.IN3+ CS53L30-2.IN3CS53L30-2.IN4+ CS53L30-2.IN4- 1 2 3 4 5 6 7 8 VA VA IN2+ SCL IN2ASP_SDOUT2/AD0 IN3+/DMIC2_SD ASP_LRCK/FSYNC U22 VA IN3GNDD IN4+ CS53L30-QFN32 SYNC IN4RESET VA INT GNDA THERM 24 23 22 21 20 19 18 17 R101 0 CS53L30-2.ASP_SDOUT2/AD0 [4] R102 0 CS53L30-2.ASP_LRCK/FSYNC [4] R106 NO POP VA C61 X5R 0.1uF R95 10K TP41 2.SYNC CS53L30-2.SYNC CS53L30-2.RESET CS53L30-2.INT [3] [5] [5] 9 10 11 12 13 14 15 16 C60 X5R 0.1uF PAD TP38 2.ASP_LRCK/FSYNC FILT+ VP MIC1_BIAS MIC2_BIAS MIC3_BIAS MIC4_BIAS MIC_BIAS_FILT MUTE [2] [2] [2] [2] [2] [2] [2] [2] IN1IN1+/DMIC1_SD DMIC2_SCLK/AD1 DMIC1_SCLK ASP_SDOUT1 ASP_SCLK MCLK SDA 32 31 30 29 28 27 26 25 TP37 2.ASP_SDOUT2/AD0 CS53L30-2.MUTE [5] TP29 2.MIC_BIAS_FILT TP30 2.FILT+ C58 X5R 4.7UF VP C57 X5R 2.2uF TP31 2.MIC1_BIAS C59 X5R 0.1uF TP32 2.MIC2_BIAS CS53L30-2.MIC1_BIAS CS53L30-2.MIC2_BIAS CS53L30-2.MIC3_BIAS CS53L30-2.MIC4_BIAS C62 X5R 1uF C63 X5R 1uF C64 X5R 1uF C65 X5R 1uF TP33 2.MIC3_BIAS [2] [2] [2] [2] TP34 2.MIC4_BIAS Figure 6-1. CS53L30 22 DS963DB2 CDB53L30 6 Schematics CS53L30-1 Input 1 (Analog/Digital) 1.AIN1 T R Input 2 (Analog) 1.AIN2 4 2 6 CS53L30-1.MIC1_BIAS 5 3 Rbias CK-3.5-027A J53 AINSleeve J6 HDR5X2 1 2 3 4 5 6 7 8 9 10 R27 1.8K J39 J36 [2] R Rbias Short (Jumper) J38 C20 C78 0.1uF X5R 0.1uF X5R CS53L30-1.IN1+ [2] T R CS53L30-1.IN1- [2] 1.AIN4 5 3 J19 HDR5X2 1 2 3 4 5 6 7 8 9 10 Rbias Short (Jumper) Bias to AIN+ (Jumper) J43 C21 1.AIN2+ 1.AIN21.BIAS2 C22 0.1uF X5R 0.1uF X5R CS53L30-1.IN2+ [2] CS53L30-1.IN2- [2] Input 4 (Analog) CS53L30-1.MIC3_BIAS Rbias AINSleeve [2] CS53L30-1.DMIC1_SCLK [2] 4 2 6 CK-3.5-027A J16 Rbias R51 1.8K J44 J3 AINSleeve J17 HDR3X2 1 2 3 4 5 6 Input 3 (Analog/Digital) 1.AIN3 CS53L30-1.MIC2_BIAS 5 3 CK-3.5-027A J12 Bias to AIN+ (Jumper) 1.AIN1+ 1.AIN11.BIAS1 1.DATA1 1.SCLK1 4 2 6 T R56 1.8K J45 J15 [2] R Rbias Short (Jumper) 5 3 J42 C23 C24 0.1uF X5R 0.1uF X5R CS53L30-1.MIC4_BIAS Rbias CK-3.5-027A J20 Bias to AIN+ (Jumper) 1.AIN3+ 1.AIN31.BIAS3 1.DATA2 1.SCLK2 4 2 6 T CS53L30-1.IN3+ [2] CS53L30-1.IN3- [2] AINSleeve J22 HDR3X2 1 2 3 4 5 6 R68 1.8K J86 J18 [2] Rbias Short (Jumper) Bias to AIN+ (Jumper) J85 C25 1.AIN4+ 1.AIN41.BIAS4 C26 0.1uF X5R 0.1uF X5R CS53L30-1.IN4+ [2] CS53L30-1.IN4- [2] CS53L30-1.DMIC2_SCLK/AD1 [2] CS53L30-2 Input 1 (Analog/Digital) 2.AIN1 T R Input 2 (Analog) 2.AIN2 4 2 6 CS53L30-2.MIC1_BIAS 5 3 CK-3.5-027A J7 Rbias AINSleeve J11 HDR5X2 1 2 3 4 5 6 7 8 9 10 R69 1.8K J73 J10 [2] R Rbias Short (Jumper) J72 C27 C66 0.1uF X5R 0.1uF X5R CS53L30-2.IN1+ [2] T R CS53L30-2.IN1- [2] 2.AIN4 5 3 J28 HDR5X2 1 2 3 4 5 6 7 8 9 10 Rbias J24 R168 1.8K J51 [2] Rbias Short (Jumper) Bias to AIN+ (Jumper) J77 C71 1.AIN2+ 1.AIN21.BIAS2 C72 0.1uF X5R 0.1uF X5R Rbias Short (Jumper) CS53L30-2.IN2+ [2] CS53L30-2.IN2- [2] C74 CS53L30-2.MIC4_BIAS 5 3 Rbias CK-3.5-027A J30 J50 0.1uF X5R 0.1uF X5R 4 2 6 T R Bias to AIN+ (Jumper) C73 1.AIN3+ 1.AIN31.BIAS3 1.DATA2 1.SCLK2 J21 [2] Input 4 (Analog) CS53L30-2.MIC3_BIAS AINSleeve R124 1.8K J78 CS53L30-2.DMIC1_SCLK [2] 4 2 6 CK-3.5-027A J26 Rbias AINSleeve J25 HDR3X2 1 2 3 4 5 6 Input 3 (Analog/Digital) 2.AIN3 CS53L30-2.MIC2_BIAS 5 3 CK-3.5-027A J23 Bias to AIN+ (Jumper) 1.AIN1+ 1.AIN11.BIAS1 1.DATA1 1.SCLK1 4 2 6 T CS53L30-2.IN3+ [2] CS53L30-2.IN3- [2] J32 HDR3X2 1 2 3 4 5 6 AINSleeve J27 R169 1.8K J46 [2] Rbias Short (Jumper) Bias to AIN+ (Jumper) J41 C75 1.AIN4+ 1.AIN41.BIAS4 C76 0.1uF X5R 0.1uF X5R CS53L30-2.IN4+ [2] CS53L30-2.IN4- [2] CS53L30-2.DMIC2_SCLK/AD1 [2] DC Blocking Capacitors The value of the DC blocking capacitor can be modified according to the desired high-pass corner frequency, determined by the CS53L30 input impedance. Several example calculations are shown in the table below. Preamp Setting CS53L30 Input DC Blocking Impedance Capacitor High-Pass Corner Freq Bypass 50k 0.1 uF +10 or +20 1M 0.1 uF 31.8 Hz 1.6 Hz +10 or +20 1M 0.01 uF 15.9 Hz Figure 6-2. Inputs 23 DS963DB2 CDB53L30 6 Schematics Master Clock PLL +3.3V I2C Address: 0x9C +3.3V C133 X5R 0.1uF C134 X5R 1uF 6.3V R143 0 NO POP To MCLK routing buffers [3] PLL.CLK_OUT1 R74 22.1 [3] PLL.CLK_OUT2 R70 22.1 PLL_AUX_OUT +3.3V R14 U15 CS2300CP-CZZ 1 2 3 4 5 22.1 SDA/CDIN SCL/CCLK AD0/CS FILTN FILTP VD GND CLK_OUT AUX_OUT CLK_IN 10 9 8 7 6 R104 R136 0 0 C135 X5R 0.1uF UC.I2C.SDA [4,5] UC.I2C.SCL [4,5] R142 0 L1 600OHM@100MHZ R255 0 Y1 24.576MHZ 1 3 TRI-S OUT 4 VDD 2 C85 X5R 1uF 6.3V R200 22.1 R138 0402 NO POP GND C127 COG 1000pF [4]PLL.LRCK_IN Optional LRCK reference (from Serial Audio Header) Master Clock Routing All buffer inputs are 5.5V tolerant, independent of supply voltage. R127 10K To Serial Header U28 [5] 2 A1 1 OE 5 A2 7 OE HDR_MCLK_OUT_EN [3] PLL.CLK_OUT2 [5] PLL_MCLK_OUT_EN R128 10K Y1 Y2 6 R71 0 3 R72 0 R167 22.1 MCLK_OUT [4] VA 8 VCC 4 GND R67 NC7WZ241K8X NO POP +1.8V 0 R66 0 C51 X5R 0.1uF R73 0 From Serial Header [4] MCLK_IN R18 0 R129 10K U4 2 A1 1 OE 5 A2 7 OE [5] HDR_MCLK_IN_EN [3] PLL.CLK_OUT1 [5] PLL_MCLK_EN R130 10K Y1 Y2 6 R57 0 3 R58 0 8 VCC 4 GND NC7WZ241K8X VA R26 NO POP R20 R65 22.1 R99 22.1 R97 22.1 CS53L30-1.MCLK CS53L30-2.MCLK CS8406.OMCK [2] [2] [4] +1.8V 0 0 C49 X5R 0.1uF Figure 6-3. Master Clock PLL and Routing Buffers 24 DS963DB2 CDB53L30 6 Schematics Serial Audio Header VA +1.8V R85 NO POP R92 +1.8V R126 10K 0 0 R94 C56 X5R 0.1uF 0 C55 X5R 0.1uF R44 0 NO POP 3 NTR4501NT1G CS53L30-1.ASP_SCLK R76 0 [2] CS53L30-2.ASP_SCLK R77 0 [4] SPDIF_TX.SCLK R162 0 [2] CS53L30-1.ASP_LRCK/FSYNC R78 [2] CS53L30-2.ASP_LRCK/FSYNC R79 0 SPDIF_TX.LRCK R164 0 PLL.LRCK_IN R135 0 [2] [4] [3] U21 1 VCCA 2 A1 3 A2 4 GND 0 1 8 VCCB 7 B1 6 B2 5 DIR R91 R90 0 0 2 SERIAL_HDR.M/S [5] Q1 R125 10K SN74LVC2T45DCUR VA +1.8V R87 NO POP R86 +1.8V 0 0 R88 C54 X5R 0.1uF 0 To Master Clock Routing Buffers C42 X5R 0.1uF U20 [2,4] [2,4] 8 VCCB 7 B1 6 B2 5 DIR 1 VCCA 2 A1 3 A2 4 GND CS53L30-1.ASP_SDOUT1 CS53L30-1.ASP_SDOUT2/AD0 [3] MCLK_OUT [3] MCLK_IN 0 0 MCLK OUT 1 MCLK IN 3 SCLK 5 LRCK/FSYNC 7 1.ASP1_SDOUT 9 1.ASP2_SDOUT 11 2.ASP1_SDOUT 13 2.ASP2_SDOUT 15 SN74LVC2T45DCUR VA +1.8V R63 R52 NO POP Serial Header J29 R84 R75 +1.8V 0 0 R64 C41 X5R 0.1uF 2 4 6 8 10 12 14 16 0 C34 X5R 0.1uF U14 [2,4] [2,4] 8 VCCB 7 B1 6 B2 5 DIR 1 VCCA 2 A1 3 A2 4 GND CS53L30-2.ASP_SDOUT1 CS53L30-2.ASP_SDOUT2/AD0 R81 R80 0 0 SN74LVC2T45DCUR External Sync I/O VA +1.8V R93 NO POP R117 0 0 R122 C80 X5R 0.1uF 0 External Sync I/O Header U25 1 VCCA 2 A1 3 A2 4 GND [2] CS53L30-1.SYNC R123 0 [2] CS53L30-2.SYNC R155 0 8 VCCB 7 B1 6 B2 5 DIR R120 J33 SYNC I/O 0 SN74LVC2T45DCUR R119 10K R116 10K Sync Direction Jumper J37 HDR3X1 SYNC OUT SYNC IN R115 10K Figure 6-4. Serial Audio Header, Sync I/O DS963DB2 25 26 VA VA NO POP 0 0 R49 R50 NO POP 0 0 SPDIF_TX.LRCK SPDIF_TX.SCLK R82 R55 C14 X5R 0.1uF C33 X5R 0.1uF [2,4] [2,4] VA R10 R31 NO POP 0 0 C12 X5R 0.1uF CS53L30-2.ASP_SDOUT1 CS53L30-2.ASP_SDOUT2/AD0 +1.8V [2,4] CS53L30-1.ASP_SDOUT1 [2,4] CS53L30-1.ASP_SDOUT2/AD0 +1.8V [4] [4] +1.8V I2C Address: 0x28 1 VCCA 2 A1 3 A2 4 GND U10 1 VCCA 2 A1 3 A2 4 GND 1 VCCA 2 A1 3 A2 4 GND SN74LVC2T45DCUR 8 VCCB 7 B1 6 B2 5 DIR U8 SN74LVC2T45DCUR 8 VCCB 7 B1 6 B2 5 DIR SN74LVC2T45DCUR 8 VCCB 7 B1 6 B2 5 DIR U23 R160 R161 C11 X5R 0.1uF +3.3V R158 R159 C13 X5R 0.1uF +3.3V R156 R157 C32 X5R 0.1uF +3.3V 0 0 0 0 0 0 R133 1.ASP1_SDOUT 1.ASP2_SDOUT CS8406.ILRCK CS8406.ISCLK 2.ASP1_SDOUT 2.ASP2_SDOUT SPDIF Transmitter CS8406.SDIN R134 0 22.1 U12 SN74CB3Q3251PW 16 1 VCC B4 15 2 B5 B3 14 3 B6 B2 4 13 B1 B7 5 12 A B8 6 11 NC S0 7 10 OE S1 8 9 GND S2 4x1 SDIN MUX SPDIF_TX.SDIN_SEL0 SPDIF_TX.SDIN_SEL1 C79 X5R 0.1uF +3.3V [5] [5] [5] SPDIF_TX.RST R83 10K C137 X5R 0.1uF +3.3V SDIN ISCLK ILRCK TEST TEST RST TEST TEST VD TEST RXP AD2 AD0/CS U81 SDA/CDOUT TCBL TEST TEST TEST INT U OMCK GND VL H/S TXN TXP AD1/CKIN SCL/CCLK CS8406-CZZ-SOFTWARE MODE 14 13 12 11 10 9 8 7 6 5 4 3 2 1 C77 0.01UF X7R R131 UC.I2C.SCL [3,5] UC.I2C.SDA [3,5] - +3.3V - + N/C N/C N/C N/C Q2 SC979-03LF-Z + 8 7 6 5 15 16 17 18 19 NC 20 21 22 23 3 C138 X5R 0.1uF +3.3V C246 X5R 0.1uF 1 2 N.C. GND VCC IN N.C. R132 107 1 2 3 4 OPT2 DLT2180A 210 25 CS8406.OMCK [3] 0 R258 24 26 27 28 0 R137 Note: To use the CS8406 transmitter, the CS53L30 must be configured for I2S format with a MLCK/LRCK ratio of 128, 256, or 512. 5 4 C53 C0G 22pF J35 Optical S/PDIF TX Coaxial S/PDIF TX CDB53L30 6 Schematics Figure 6-5. S/PDIF Transmitter DS963DB2 CDB53L30 6 Schematics Microcontroller +3.3V +3.3V +3.3V C83 X5R 4.7UF C82 X5R 4.7UF C84 X5R 0.1uF C118 X5R 0.1uF R39 1K SERIAL_HDR.M/S [4] R38 1K U7 6 [3] HDR_MCLK_OUT_EN To MCLK [3] PLL_MCLK_OUT_EN Routing Buffers [3] HDR_MCLK_IN_EN [3] PLL_MCLK_EN [4] To SPDIF SDIN Mux R32 R33 R108 R109 R110 R111 R112 R113 SPDIF_TX.RST 18 17 16 15 14 13 12 11 0 0 0 0 0 0 0 0 REGIN P0.1 P0.0 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 10 P3.0/C2D 9 RST/C2CK [4] SPDIF_TX.SDIN_SEL0 [4] SPDIF_TX.SDIN_SEL1 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 8 VBUS 5 D4 D+ [5] UC.P3.0/C2D [5] UC.RST/C2CK [5,6] [5] [5] VDD P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 3 USB.VBUS USB.DUSB.D+ GND 7 1 2 32 31 30 29 28 27 SCL SDA R182 R183 0 0 UC.I2C.SCL UC.I2C.SDA [3,4,5] [3,4,5] MOSI NSS TX RX I2C SPI 26 SW/HW R139 25 NC 24 R60 23 R28 22 R180 21 R179 20 R177 19 R181 0 UC.SW/HW [5] 0 0 0 0 0 0 UC.CS53L30-1.RESET UC.CS53L30-1.INT UC.CS53L30-1.MUTE UC.CS53L30-2.RESET UC.CS53L30-2.INT UC.CS53L30-2.MUTE [5] [5] [5] [5] [5] [5] C8051F320-GQ FlexGUI USB Connection R89 0 R100 0 C140 0402 NO POP USB.D+ [5] USB.D- [5] C146 0402 NO POP J94 5 600OHM@100MHZ 1 2 L2 C90 X5R 0.1uF C96 X5R 10uF C196 X5R 10uF NO POP 2 4 C139 C0G 22pF R435 D6 1 292304-1 3 C93 COG 1000pF 6 GND R163 0 USB.VBUS [5,6] 2 1 +5V 2 D3 D+ 4 GND C198 X5R 0.1uF C211 COG 1000pF D4 GREEN 1 GND USB PRESENT 0 R5 1K 1% SP0503BAHTG Reset and C2 Header +3.3V R46 1K R47 1K S11 1 3 5 UC FLEX RESET C123 X5R 1uF J5 UC FLEX C2 1 2 3 4 5 6 7 8 9 10 R48 1K C97 X5R 0.1uF UC.P3.0/C2D [5] UC.RST/C2CK [5] Board ID EEPROM +3.3V C35 [3,4,5] UC.I2C.SCL 1 R114 0 2 [3,4,5] UC.I2C.SDA 3 R121 0 0.1uF X5R SCL VCC VSS NC 5 4 SDA U13 24LC00-I/OT Figure 6-6. Microcontroller DS963DB2 27 CDB53L30 6 Schematics Level Shifters and Control I/O Header VA R153 11.5K 1% NO POP [5] UC.SW/HW OE1 [5] 2 UC.CS53L30-1.RESET +1.8V 1 A1 Y1 6 R145 0 R147 NO POP Optional Voltage Supervisor R144 11.5K 1% +3.3V +3.3V U24 MIC2774L-31YM5 0 R151 10K U27-B 1 NC7WZ126K8X 4 VDD RST MR IN [5] UC.SW/HW 5 3 GND OE2 5 [5] UC.CS53L30-2.RESET 7 A2 Y2 3 R146 0 R148 NO POP R154 2.49K 1% 0 U27-C 0805 VTH= 1.69V NC7WZ126K8X +1.8V +3.3V V 8 C81 X5R 0.1uF R152 NO POP 2 R54 0 U27-A +3.3V NC7WZ126K8X VA R140 0 NO POP G4 C45 X5R 0.1uF +1.8V U19 VA R42 0 +3.3V C46 X5R 0.1uF R43 0 NO POP C43 X5R 0.1uF 8 VCCB 7 B1 6 B2 5 DIR 1 VCCA 2 A1 3 A2 4 GND R118 10K R141 10K SN74LVC2T45DCUR C44 X5R 0.1uF R149 10K R150 10K U11 8 VCCB 7 B1 6 B2 5 DIR 1 VCCA 2 A1 3 A2 4 GND [5] UC.CS53L30-1.INT [5] UC.CS53L30-2.INT SN74LVC2T45DCUR Place jumpers for FlexGUI control J4 +1.8V 1.RESET VA TP21 1.RESETb TP22 1.INTb TP23 1.MUTE 1.INT 1.MUTE +3.3V R1 0 2.RESET R2 0 NO POP 2.INT 2.MUTE C47 X5R 0.1uF SDA C48 X5R 0.1uF TP24 2.RESETb SCL TP25 2.INTb CS53L30-1.RESET [2,5] CS53L30-1.INT [2,5] CS53L30-1.MUTE [2,5] CS53L30-2.RESET [2,5] CS53L30-2.INT [2,5] CS53L30-2.MUTE [2,5] TP26 2.MUTE U6 [5] UC.CS53L30-1.MUTE [5] UC.CS53L30-2.MUTE 8 VCCB 7 B1 6 B2 5 DIR 1 VCCA 2 A1 3 A2 4 GND Attach ribbon cable for external system connection VA VA SN74LVC2T45DCUR +1.8V R166 1K NO POP VA R165 1K NO POP TP27 SDA R45 0 +3.3V R53 0 NO POP Optional pull-ups for external bus master CS53L30.I2C.SDA [2] CS53L30.I2C.SCL [2] TP28 SCL +3.3V C7 X5R 0.1uF [3,4,5] UC.I2C.SDA [3,4,5] UC.I2C.SCL C8 X5R 0.1uF 8 1 VCCB VCCA 6 SDAB 7 SCLB R24 1K R25 1K R40 10K 3 SDAA 2 SCLA 5 EN [2,5] [2,5] [2,5] GND 4 U9 PCA9517DP Optional Control Signal Shorts CS53L30-1.RESET CS53L30-1.INT CS53L30-1.MUTE J34 HDR3X2 1.RESET 1 2 1.INT 3 4 1.MUTE 5 6 2.RESET 2.INT 2.MUTE CS53L30-2.RESET CS53L30-2.INT CS53L30-2.MUTE [2,5] [2,5] [2,5] R41 NO POP 0402 Figure 6-7. Level Shifters, Control I/O Header 28 DS963DB2 CDB53L30 6 Schematics Power Supply Binding Posts +5V_EXT +5V J83 1 +5V_EXT 1 J89 2 [5] TP18 +5V USB.VBUS C244 TANT 100uF 10V Z4 P6SMB6.8AT3G 6.8Vbr J31 1 GND VA_EXT J9 1 J1 2 VA +1.8V 1 VA_EXT C3 TANT 100uF 10V Z1 P6SMB6.8AT3G 6.8Vbr R3 TP1 VA 1 current sense J2 VP_EXT J14 1 J8 2 VP +3.6V 1 VP_EXT VP I-SENSE C1 TANT 100uF 10V Z3 P6SMB6.8AT3G 6.8Vbr R4 TP3 VP 1 current sense J13 +5.0V to +3.3V LDO: Digital +5V R17 10K 1% +5V U2-A LP3878SD-ADJ 4 INPUT 3 GND 2 N/C 1 BYPASS C69 X5R 10uF 5 OUTPUT 6 ADJ 7 N/C 8 SHUTDOWN +3.3V TP8 +3.3V C70 COG 1000pF C67 X7R 0.01UF R6 2.32K 1% C68 X5R 10uF 6.3V 9 THERM LP3878SD-ADJ U2-B C2 TANT 100uF 10V R7 1K 1% +5.0V to +1.8V LDO: VA +5V +5.0V to +3.6V LDO: VP +5V +5V U3-A LP3878SD-ADJ +5V U1-A LP3878SD-ADJ C6 X5R 10uF 4 INPUT 3 GND 2 N/C 1 BYPASS 5 OUTPUT 6 ADJ 7 N/C 8 SHUTDOWN C4 X7R 0.01UF 9 THERM LP3878SD-ADJ U1-B R16 10K 1% +3.6V C17 X5R 10uF C9 COG 1000pF R8 2.61K 1% C5 X5R 10uF 6.3V C10 TANT 100uF 10V R11 1K 1% 4 INPUT 3 GND 2 N/C 1 BYPASS 5 OUTPUT 6 ADJ 7 N/C 8 SHUTDOWN C15 X7R 0.01UF 9 THERM LP3878SD-ADJ U3-B R12 10K 1% +1.8V C18 COG 1000pF R13 1.62K 1% C16 X5R 10uF 6.3V C19 TANT 100uF 10V R15 1K 1% R61 1K 1% Figure 6-8. Power Supply DS963DB2 29 CDB53L30 7 Layout 7 Layout Figure 7-1. Assembly Drawing (Top Side) 30 DS963DB2 CDB53L30 7 Layout Figure 7-2. Layer 1 (Component, Signal—Top) DS963DB2 31 CDB53L30 7 Layout Figure 7-3. Layer 2 (Ground) 32 DS963DB2 CDB53L30 7 Layout Figure 7-4. Layer 3 (+3.3 V, +1.8 V, VP) DS963DB2 33 CDB53L30 7 Layout Figure 7-5. Layer 4 (Signal) 34 DS963DB2 CDB53L30 7 Layout Figure 7-6. Layer 5 (VA) DS963DB2 35 CDB53L30 7 Layout Figure 7-7. Layer 6 (Signal—Bottom) 36 DS963DB2 CDB53L30 8 Revision History 8 Revision History Revision Changes DB1 Initial release DB2 Updated pin name references to match CS53L30 data sheet Rev F1. Updated Fig. 2-1 and Fig. 3-1 to match CDB53L30 Rev B. Updated GUI tab figures in Section 4. Updated schematic figures in Section 6 to match CDB53L30 Rev B. Updated Fig. 7-1 and Fig. 7-7 to match CDB53L30 Rev B. Contacting Cirrus Logic Support For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com. IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. I2C is a trademark of Philips Semiconductor. Windows is a registered trademark of Microsoft Corporation. DS963DB2 37