CS42L56 Product Data Sheet

CS42L56
Ultralow Power, Stereo Codec with Class H Headphone Amp
DIGITAL to ANALOG FEATURES
ANALOG to DIGITAL FEATURES
 5 mW Stereo Playback Power Consumption
 3.5 mW Stereo Record Power Consumption
 99 dB Dynamic Range (A-wtd)
 95 dB Dynamic Range (A-wtd)
 -86 dB THD+N

-87 dB THD+N
 Configurable Analog Inputs
– Two Pseudo-differential Stereo Inputs or
– One Pseudo-differential Stereo Inputs +
One Standard Stereo Input + One Standard
Mono Input or
– Three Standard Stereo Inputs
– Pseudo-differential Inputs Reduce
Common Mode Signal Noise
– 3:1 Stereo Input MUX for ADC or
Passthrough
 Digital Signal Processing Engine
–
–
–
–
–
Bass & Treble Tone Control, De-emphasis
Master Volume Control (+12 to -102 dB in
0.5 dB steps)
Soft-ramp & Zero-cross Transitions
Programmable Peak-detect and Limiter
Beep Generator with Full Tone Control
Stereo Headphone and Line Amplifiers
 Step-down/Inverting Charge Pump
 Analog Programmable Gain Amplifier (PGA)
 Class H Amplifier - Automatic Supply Adj.
–
–
–
–
High Efficiency
Low EMI
 Pseudo-differential Ground-centered Outputs
 Programmable, Low-noise MIC Bias Output
 High HP Power Output at -75 dB THD+N
–
+12 to -6 dB in 0.5 dB steps
+10 dB or +20 dB Additional Gain for
Microphone Inputs
 Programmable Automatic Level Control (ALC)
2 x 20 mW Into 16  @ 1.8 V
–
–
 1 VRMS Line Output @ 1.8 V
 Analog Vol. Ctl. (+12 to -60 dB in 1 dB steps)
Noise Gate for Noise Suppression
Programmable Threshold &
Attack/Release Rates
 Analog In to Analog Out Passthrough
 Independent ADC Channel Control
 Pop and Click Suppression
 High-pass Filter Disable for DC Measurements
Analog Supply (VA)
+1.62 V to +2.75 V
Charge Pump Supply (VCP)
+1.62 V to +2.75 V
Digital Supply (VLDO)
+1.62 V to +2.75 V
Step-Down
LDO Regulator
ALC
Left Input 1
Beep
0, +10, or
+20 dB
-6 to +12 dB
0.5 dB Steps
Left Input 2
Multi-bit
 ADC
Mono mix,
Limiter, Bass,
Treble Adjust
Attenuator,
Boost, Mix
-VHP
+
Pseudo Diff. Input /
Left Input 3
Right Input 1
Inverting
+VHP
Pseudo Diff. Input
Multi-bit
 DAC
+
-
Pseudo Diff. Input /
Right Input 3
Right Input 2
ALC
-
Programmable Mic Bias
Control Port
Level Shifter
http://www.cirrus.com
I²C or SPI
Control
I²S or Left Justified
Serial Audio Input/
Output
Copyright  Cirrus Logic, Inc. 2014
(All Rights Reserved)
Left Line Output
Pseudo Diff. Input
Serial Audio Port
+
+1.62 V to +3.63 V
Interface Supply
Right Headphone Output
HPF
+
Mic Bias Output
Left Headphone Output
-
Right Line Output
Ground-Centered
Amplifiers
FEB '14
DS851F2
CS42L56
SYSTEM FEATURES
 Audio (11.2896 MHz or 12.288 MHz) or USB










(12 MHz) Master Clock Input
Low-power Operation
– Stereo Anlg. Passthrough: 3.3 mW @1.8 V
– Stereo Rec. and Playback: 8.3 mW @1.8 V
Headphone Detect Input
High Performance 24-bit Converters
– Multi-bit Delta–Sigma Architecture
Integrated High Efficient Power Management
Reduces Power Consumption
– Step-down Charge Pump Improves
Efficiency
– Inverting Charge Pump Accommodates
Low System Voltage by Providing Negative
Rail for HP/Line Amp
– LDO Reg. Provides Low Digital Supply
Voltage
Digital Power Reduction
– Very Low ADC/DAC Oversampling Rate
– Bursted Serial Clock Providing up to 24 Bits
per Sample
Power Down Management
– ADC, DAC, CODEC, PGA, DSP
Analog & Digital Routing/Mixes
– Line/Headphone Out = Analog In (ADC
Bypassed)
– Line/Headphone Out = ADC Out
– Internal Digital Loopback
– Mono Mixes
I²C or SPI™ Control Port
I²S or Left-justified Digital Interface Format
Flexible Clocking Options
– Master or Slave Operation
– Wide Range of Sample Rates Supported
APPLICATIONS
 HDD and Flash-based Portable Audio Players
 PDAs
 Personal Media Players
 Portable Game Consoles
 Digital Voice Recorders
 MD Players/Recorders
 Digital Camcorders
 Digital Cameras
GENERAL DESCRIPTION
The CS42L56 is a highly integrated, 24-bit, ultra-lowpower stereo CODEC based on multi-bit delta-sigma
modulation. Both the ADC and DAC offer many features
suitable for low power portable system applications.
The analog input path allows independent channel
control of a variety of features. The Programmable Gain
Amplifier (PGA) provides analog gain with zero cross
transitions. The ADC path includes a digital volume attenuator with soft ramp transitions and a programmable
ALC and noise gate monitor the input signals and adjust
the volume appropriately. An analog passthrough also
exists, accommodating a lower noise, lower power analog in to analog out path to the headphone and line
amplifiers, bypassing the ADC and DAC.
The DAC output path includes a fixed-function digital
signal processing engine. Tone control provides bass
and treble adjustment at four selectable corner frequencies. The digital mixer provides independent volume
control for both the ADC output and PCM input signal
paths, as well as a master volume control. Digital volume controls may be configured to change on soft ramp
transitions while the analog controls can be configured
to occur on every zero crossing. The DAC path also includes de-emphasis, limiting functions and a beep
generator delivering tones selectable across a range of
two full octaves.
The Class H stereo headphone amplifier combines the
efficiency of an integrated step-down and inverting
charge pump with the linearity and low EMI of a Class
AB amplifier. A step-down/inverting charge pump operates in two modes: ±VCP mode or ±VCP/2) mode.
Based on the amplifier’s output signal, internal logic automatically adjusts the output of the charge pump,
+VHPFILT and –VHPFILT, to optimize efficiency. With
these features, the amplifier delivers a ground-centered
output with a large signal swing even at low voltages
and eliminates the need for external DC-blocking
capacitors.
These features make the CS42L56 the ideal solution for
portable applications which require extremely low power consumption in a minimal amount of space.
The CS42L56 is available in a 40-pin QFN package for
the Commercial (-40 to +85° C) grade. The CDB42L56
Customer Demonstration board is also available for device evaluation and implementation suggestions.
Please see “Ordering Information” on page 93 for complete details.
 Smart Phones
2
DS851F2
CS42L56
TABLE OF CONTENTS
1. PIN DESCRIPTIONS .............................................................................................................................. 8
1.1 I/O Pin Characteristics .................................................................................................................... 10
2. TYPICAL CONNECTION DIAGRAMS ................................................................................................. 11
3. CHARACTERISTIC AND SPECIFICATION TABLES ......................................................................... 14
RECOMMENDED OPERATING CONDITIONS ................................................................................... 14
ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 14
ANALOG INPUT CHARACTERISTICS ................................................................................................ 14
ADC DIGITAL FILTER CHARACTERISTICS ....................................................................................... 17
HP OUTPUT CHARACTERISTICS ...................................................................................................... 18
LINE OUTPUT CHARACTERISTICS ................................................................................................... 19
ANALOG PASSTHROUGH CHARACTERISTICS ............................................................................... 21
COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ...............................21
SWITCHING SPECIFICATIONS - SERIAL PORT ............................................................................... 22
SWITCHING SPECIFICATIONS - I²C CONTROL PORT ..................................................................... 23
SWITCHING CHARACTERISTICS - SPI CONTROL PORT ................................................................ 24
ANALOG OUTPUT ATTENUATION CHARACTERISTICS .................................................................. 25
DC CHARACTERISTICS ...................................................................................................................... 26
DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS ..................................................... 27
POWER CONSUMPTION - ALL SUPPLIES = 1.8 V ............................................................................ 28
POWER CONSUMPTION - ALL SUPPLIES = 2.5 V ........................................................................... 29
4. APPLICATIONS ................................................................................................................................... 30
4.1 Overview ......................................................................................................................................... 30
4.1.1 Basic Architecture ................................................................................................................. 30
4.1.2 Line Inputs ............................................................................................................................. 30
4.1.3 Line and Headphone Outputs (Class H, Ground-Centered Amplifiers) ................................. 30
4.1.4 Fixed-function DSP Engine ................................................................................................... 30
4.1.5 Beep Generator ..................................................................................................................... 30
4.1.6 Power Management .............................................................................................................. 30
4.2 Analog Inputs .................................................................................................................................. 31
4.2.1 Pseudo-differential Inputs ...................................................................................................... 32
4.2.2 Large-scale Inputs ................................................................................................................. 32
4.2.3 Microphone Inputs ................................................................................................................. 34
4.2.3.1 External Passive Components ................................................................................... 34
4.2.4 Optional VCM Buffer ............................................................................................................. 34
4.2.5 Automatic Level Control (ALC) .............................................................................................. 34
4.2.5.1 Attack/Release Time Calculations: ............................................................................ 36
4.3 Analog In to Analog Out Passthrough ............................................................................................ 36
4.4 Analog Outputs .............................................................................................................................. 37
4.5 Class H Amplifier ............................................................................................................................ 38
4.5.1 Power Control Options .......................................................................................................... 39
4.5.1.1 Standard Class AB Mode (setting 01 and 10) ........................................................... 39
4.5.1.2 Adapt to Volume Mode (setting 00) ........................................................................... 39
4.5.1.3 Adapt to Output Mode (setting 11) ............................................................................. 42
4.5.2 Power Supply Transitions ...................................................................................................... 42
4.5.3 Efficiency ............................................................................................................................... 43
4.6 Beep Generator .............................................................................................................................. 44
4.7 Limiter ............................................................................................................................................. 45
4.8 Serial Port Clocking ........................................................................................................................ 46
4.9 Digital Interface Format .................................................................................................................. 49
4.10 Initialization ................................................................................................................................... 49
4.11 Recommended DAC to HP or Line Power Sequence .................................................................. 49
4.11.1 Power-Up Sequence ........................................................................................................... 49
DS851F2
3
CS42L56
4.11.2 Power-Down Sequence ....................................................................................................... 50
4.12 Recommended PGA to HP or Line Power Sequence (Analog Passthrough) .............................. 51
4.12.1 Power-Up Sequence ........................................................................................................... 51
4.12.2 Power-Down Sequence ....................................................................................................... 52
4.13 Control Port Operation .................................................................................................................. 53
4.13.1 SPI Control .......................................................................................................................... 53
4.13.2 I²C Control ........................................................................................................................... 53
4.13.3 Memory Address Pointer (MAP) .......................................................................................... 54
4.13.3.1 Map Increment (INCR) ............................................................................................. 54
5. REGISTER QUICK REFERENCE ........................................................................................................ 55
6. REGISTER DESCRIPTION .................................................................................................................. 57
6.1 Device I.D. Register (Address 01h) (Read Only) ............................................................................ 57
6.1.1 Device I.D. (Read Only) ........................................................................................................ 57
6.2 Device Revision Register (Address 02h) (Read Only) ................................................................... 57
6.2.1 Alpha Revision (Read Only) .................................................................................................. 57
6.2.2 Numeric Revision (Read Only) .............................................................................................. 57
6.3 Power Control 1 (Address 03h) ...................................................................................................... 57
6.3.1 Power Down VCM Bias Buffer .............................................................................................. 57
6.3.2 Power Down MIC Bias .......................................................................................................... 58
6.3.3 Power Down ADC Charge Pump .......................................................................................... 58
6.3.4 Power Down ADC x ............................................................................................................... 58
6.3.5 Power Down .......................................................................................................................... 58
6.4 Power Control 2 (Address 04h) ...................................................................................................... 58
6.4.1 Headphone Power Control .................................................................................................... 58
6.4.2 Line Power Control ................................................................................................................ 59
6.5 Clocking Control 1 (Address 05h) ................................................................................................... 59
6.5.1 Master/Slave Mode ............................................................................................................... 59
6.5.2 SCLK Polarity ........................................................................................................................ 59
6.5.3 SCLK Equals MCLK .............................................................................................................. 59
6.5.4 MCLK Pre-Divide ................................................................................................................... 59
6.5.5 MCLK Divide ......................................................................................................................... 60
6.5.6 MCLK Disable ....................................................................................................................... 60
6.6 Clocking Control 2 (Address 06h) ................................................................................................... 60
6.6.1 Clock Ratio Auto-Detect ........................................................................................................ 60
6.6.2 Clock Ratio ............................................................................................................................ 61
6.7 Serial Format (Address 07h) .......................................................................................................... 61
6.7.1 CODEC Digital Interface Format ........................................................................................... 61
6.8 Class H Control (Address 08h) ....................................................................................................... 62
6.8.1 Adaptive Power Adjustment .................................................................................................. 62
6.8.2 Charge Pump Frequency ...................................................................................................... 62
6.9 Misc. Control (Address 09h) ........................................................................................................... 62
6.9.1 Digital MUX ........................................................................................................................... 62
6.9.2 Analog Soft Ramp ................................................................................................................. 63
6.9.3 Analog Zero Cross ................................................................................................................ 63
6.9.4 Digital Soft Ramp .................................................................................................................. 63
6.9.5 Freeze Registers ................................................................................................................... 63
6.10 Status (Address 0Ah) (Read Only) ............................................................................................... 64
6.10.1 HPDETECT Pin Status (Read Only) ................................................................................... 64
6.10.2 Serial Port Clock Error (Read Only) .................................................................................... 64
6.10.3 DSP Engine Overflow (Read Only) ..................................................................................... 64
6.10.4 MIXx Overflow (Read Only) ................................................................................................. 64
6.10.5 ADCx Overflow (Read Only) ............................................................................................... 64
6.11 Playback Control (Address 0Bh) .................................................................................................. 65
6.11.1 Power Down DSP ................................................................................................................ 65
4
DS851F2
CS42L56
6.11.2 HP/Line De-Emphasis ......................................................................................................... 65
6.11.3 Playback Channels B=A ...................................................................................................... 65
6.11.4 Invert PCM Signal Polarity .................................................................................................. 65
6.12 DSP Mute Controls (Address 0Ch) ............................................................................................... 66
6.12.1 ADC Mixer Channel x Mute ................................................................................................. 66
6.12.2 PCM Mixer Channel x Mute ................................................................................................ 66
6.12.3 Master Playback Mute ......................................................................................................... 66
6.13 ADCx Mixer Volume: ADCA (Address 0Dh) & ADCB (Address 0Eh) ........................................... 66
6.13.1 ADC Mixer Channel x Volume ............................................................................................. 66
6.14 PCMx Mixer Volume: PCMA (Address 0Fh) & PCMB (Address 10h) .......................................... 67
6.14.1 PCM Mixer Channel x Volume ............................................................................................ 67
6.15 Analog Input Advisory Volume (Address 11h) .............................................................................. 68
6.15.1 Analog Input Advisory Volume ............................................................................................ 68
6.16 Digital Input Advisory Volume (Address 12h) ............................................................................... 68
6.16.1 Digital Input Advisory Volume ............................................................................................. 68
6.17 Master Volume Control:
MSTA (Address 13h) & MSTB (Address 14h) ...................................................................................... 69
6.17.1 Master Volume Control ........................................................................................................ 69
6.18 Beep Frequency & On Time (Address 15h) ................................................................................. 69
6.18.1 Beep Frequency .................................................................................................................. 69
6.18.2 Beep On Time ..................................................................................................................... 70
6.19 Beep Volume & Off Time (Address 16h) ...................................................................................... 70
6.19.1 Beep Off Time ..................................................................................................................... 70
6.19.2 Beep Volume ....................................................................................................................... 71
6.20 Beep & Tone Configuration (Address 17h) ................................................................................... 71
6.20.1 Beep Configuration .............................................................................................................. 71
6.20.2 Treble Corner Frequency .................................................................................................... 71
6.20.3 Bass Corner Frequency ...................................................................................................... 72
6.20.4 Tone Control Enable ........................................................................................................... 72
6.21 Tone Control (Address 18h) ......................................................................................................... 72
6.21.1 Treble Gain .......................................................................................................................... 72
6.21.2 Bass Gain ............................................................................................................................ 72
6.22 ADC & PCM Channel Mixer (Address 19h) .................................................................................. 73
6.22.1 PCM Mix Channel Swap ..................................................................................................... 73
6.22.2 ADC Mix Channel Swap ...................................................................................................... 73
6.23 AIN Reference Configuration, ADC MUX (Address 1Ah) ............................................................. 73
6.23.1 Analog Input 2 x Reference Configuration .......................................................................... 73
6.23.2 Analog Input 1 x Reference Configuration .......................................................................... 73
6.23.3 ADC x Input Select .............................................................................................................. 74
6.24 HPF Control (Address 1Bh) .......................................................................................................... 74
6.24.1 ADCx High-Pass Filter ........................................................................................................ 74
6.24.2 ADCx High-Pass Filter Freeze ............................................................................................ 74
6.24.3 HPF x Corner Frequency .................................................................................................... 74
6.25 Misc. ADC Control (Address 1Ch) ................................................................................................ 75
6.25.1 ADC Channel B=A .............................................................................................................. 75
6.25.2 PGA Channel B=A .............................................................................................................. 75
6.25.3 Digital Sum .......................................................................................................................... 75
6.25.4 Invert ADC Signal Polarity ................................................................................................... 75
6.25.5 ADC Mute ............................................................................................................................ 75
6.26 Gain & Bias Control (Address 1Dh) .............................................................................................. 76
6.26.1 PGA x Preamplifier Gain ..................................................................................................... 76
6.26.2 Boostx ................................................................................................................................. 76
6.26.3 Microphone Bias Output Level ............................................................................................ 76
6.27 PGA x MUX, Volume: PGA A (Address 1Eh) & PGA B (Address 1Fh) ........................................ 76
DS851F2
5
CS42L56
6.27.1 PGA x Input Select .............................................................................................................. 76
6.27.2 PGAx Volume ...................................................................................................................... 77
6.28 ADCx Attenuator Control: ADCAATT (Address 20h) & ADCBATT (Address 21h) ....................... 77
6.28.1 ADCx Volume ...................................................................................................................... 77
6.29 ALC Enable & Attack Rate (Address 22h) .................................................................................... 78
6.29.1 ALCx .................................................................................................................................... 78
6.29.2 ALC Attack Rate .................................................................................................................. 78
6.30 ALC Release Rate (Address 23h) ................................................................................................ 78
6.30.1 ALC Limit All Channels ........................................................................................................ 78
6.30.2 ALC Release Rate ............................................................................................................... 79
6.31 ALC Threshold (Address 24h) ...................................................................................................... 79
6.31.1 ALC Maximum Threshold .................................................................................................... 79
6.31.2 ALC Minimum Threshold ..................................................................................................... 80
6.32 Noise Gate Control (Address 25h) ............................................................................................... 80
6.32.1 Noise Gate All Channels ..................................................................................................... 80
6.32.2 Noise Gate Enable .............................................................................................................. 80
6.32.3 Noise Gate Threshold and Boost ........................................................................................ 81
6.32.4 Noise Gate Delay Timing .................................................................................................... 81
6.33 ALC and Limiter Soft Ramp, Zero Cross Disables (Address 26h) ................................................ 81
6.33.1 ALCx Soft Ramp Disable ..................................................................................................... 81
6.33.2 ALCx Zero Cross Disable .................................................................................................... 81
6.33.3 Limiter Soft Ramp Disable ................................................................................................... 81
6.34 Automute, Line & HP MUX (Address 27h) ................................................................................... 82
6.34.1 Auto Mute ............................................................................................................................ 82
6.34.2 Line Input Select .................................................................................................................. 82
6.34.3 Headphone Input Select ...................................................................................................... 82
6.35 Headphone Volume Control: HPA (Address 28h) & HPB (Address 29h) ..................................... 82
6.35.1 Headphone Channel x Mute ................................................................................................ 82
6.35.2 Headphone Volume Control ................................................................................................ 83
6.36 Line Volume Control: LINEA (Address 2Ah) & LINEB (Address 2Bh) .......................................... 83
6.36.1 Line Channel x Mute ........................................................................................................... 83
6.36.2 Line Volume Control ............................................................................................................ 83
6.37 Limiter Min/Max Thresholds (Address 2Ch) ................................................................................. 84
6.37.1 Limiter Maximum Threshold ................................................................................................ 84
6.37.2 Limiter Cushion Threshold .................................................................................................. 84
6.38 Limiter Control, Release Rate (Address 2Dh) .............................................................................. 85
6.38.1 Peak Detect and Limiter ...................................................................................................... 85
6.38.2 Peak Signal Limit All Channels ........................................................................................... 85
6.38.3 Limiter Release Rate ........................................................................................................... 85
6.39 Limiter Attack Rate (Address 2Eh) ............................................................................................... 86
6.39.1 Limiter Attack Rate .............................................................................................................. 86
7. PCB LAYOUT CONSIDERATIONS ..................................................................................................... 87
7.1 Power Supply ................................................................................................................................. 87
7.2 Grounding ....................................................................................................................................... 87
7.3 QFN Thermal Pad .......................................................................................................................... 87
8. ANALOG VOLUME NON-LINEARITY (DNL & INL) ............................................................................ 88
9. ADC & DAC DIGITAL FILTERS .......................................................................................................... 89
10. PARAMETER DEFINITIONS .............................................................................................................. 90
11. PACKAGE DIMENSIONS .................................................................................................................. 91
THERMAL CHARACTERISTICS .......................................................................................................... 91
12. ORDERING INFORMATION .............................................................................................................. 92
13. REFERENCES .................................................................................................................................... 92
14. REVISION HISTORY .......................................................................................................................... 92
6
DS851F2
CS42L56
LIST OF FIGURES
Figure 1.Typical Connection Diagram - Four Pseudo-Differential Analog Inputs ...................................... 11
Figure 2.Typical Connection Diagram - Two Pseudo-Differential / Three Single-Ended Analog Inputs ... 12
Figure 3.Typical Connection Diagram - Six Single-Ended Analog Inputs ................................................. 13
Figure 4.CMRR Test Configuration ........................................................................................................... 16
Figure 5.AINxREF Input Voltage Test Configuration ................................................................................ 16
Figure 6.HP Output Test Configuration ..................................................................................................... 20
Figure 7.Line Output Test Configuration ................................................................................................... 20
Figure 8.Serial Port Timing (Slave Mode) ................................................................................................. 22
Figure 9.Serial Port Timing (Master Mode) ............................................................................................... 22
Figure 10.I²C Control Port Timing ............................................................................................................. 23
Figure 11.Control Port Timing - SPI Format .............................................................................................. 24
Figure 12.Power Consumption Test Configuration ................................................................................... 27
Figure 13.Analog Input Signal Flow .......................................................................................................... 31
Figure 14.Stereo Pseudo-Differential Input ............................................................................................... 32
Figure 15.Analog Input Attenuation ........................................................................................................... 33
Figure 16.Example Analog Input Attenuation ............................................................................................ 33
Figure 17.MIC Input Mix w/Common Mode Rejection ............................................................................... 34
Figure 18.ALC Operation .......................................................................................................................... 35
Figure 19.DSP Engine Signal Flow ........................................................................................................... 37
Figure 20.Analog Output Stage ................................................................................................................. 38
Figure 21.Class H Volume-Adapt Paths ................................................................................................... 39
Figure 22.Volume Sum Effects ................................................................................................................. 40
Figure 23.Channel/Amp Effect .................................................................................................................. 40
Figure 24.HP/Line Channel Effects ........................................................................................................... 41
Figure 25.VHPFILT Transitions ................................................................................................................. 42
Figure 26.VHPFILT Hysteresis ................................................................................................................. 43
Figure 27.Class H Power to Load vs. Power from VCP Supply - 32 W .................................................... 43
Figure 28.Class H Power to Load vs. Power from VCP Supply - 16 W .................................................... 44
Figure 29.Beep Configuration Options ...................................................................................................... 45
Figure 30.Peak Detect & Limiter ............................................................................................................... 46
Figure 31.Serial Port Timing in Master Mode ............................................................................................ 48
Figure 32.I²S Format ................................................................................................................................. 49
Figure 33.Left-Justified Format ................................................................................................................. 49
Figure 34.Control Port Timing in SPI Mode .............................................................................................. 53
Figure 35.Control Port Timing, I²C Write ................................................................................................... 54
Figure 36.Control Port Timing, I²C Read ................................................................................................... 54
Figure 37.PGA Step Size vs. Volume Setting ........................................................................................... 88
Figure 38.PGA Output Volume vs. Volume Setting .................................................................................. 88
Figure 39.HP/Line Step Size vs. Volume Setting ...................................................................................... 88
Figure 40.HP/Line Output Volume vs. Volume Setting ............................................................................. 88
Figure 41.ADC Frequency Response ....................................................................................................... 89
Figure 42.ADC Stopband Rejection .......................................................................................................... 89
Figure 43.ADC Transition Band ................................................................................................................ 89
Figure 44.ADC Transition Band Detail ...................................................................................................... 89
Figure 45.DAC Frequency Response ....................................................................................................... 89
Figure 46.DAC Stopband .......................................................................................................................... 89
Figure 47.DAC Transition Band ................................................................................................................ 89
Figure 48.DAC Transition Band (Detail) .................................................................................................... 89
DS851F2
7
CS42L56
Pin Name
SDIN
SCLK
MCLK
SDOUT
VL
VDFILT
VLDO
RESET
HPDETECT
AIN2B
AIN2REF/AIN3B
40
39
38
37
36
35
34
33
32
31
1. PIN DESCRIPTIONS
SDIN
1
30
AIN2A
LRCK
2
29
AIN1B
SDA/CDIN
3
28
AIN1REF/AIN3A
SCL/CCLK
4
27
AIN1A
AD0/CS
5
26
MICBIAS
VCP
6
25
AFILTB
FLYP
7
24
AFILTA
+VHPFILT
8
23
VQ
22
FILT+
21
AGND
#
1
19
20
LINEOUTB
VA
16
TSTN
LINEREF
15
TSTN
18
14
HPOUTB
17
13
HPREF
LINEOUTA
12
10
HPOUTA
FLYN
11
9
Top-Down (Through-Package) View
40-Pin QFN Package
-VHPFILT
FLYC
GND/Thermal Pad
Pin Description
Serial Audio Data Input (Input) - Input for two’s complement serial audio data.
Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the
serial audio data lines.
Serial Control Data (Input/Output) - SDA is the bidirectional data pin for the I²C control interface.
CDIN is the input data pin for the SPI control interface.
Serial Control Port Clock (Input) - Serial clock for the I²C and SPI control interfaces.
Chip Address (I²C) / Chip Select (SPI) (Input) - For I²C operation, this pin must remain static high
or low. For SPI, CS is the chip-select pin.
LRCK
2
SDA/CDIN
3
SCL/CCLK
4
AD0/CS
5
VCP
6
Step-Down Charge Pump Power (Input) - Power supply for the step-down charge pump.
FLYP
7
Charge Pump Cap Positive Node (Output) - Positive node for the step-down charge pump’s flying
capacitor.
+VHPFILT
8
Step-Down Charge Pump Filter Connection (Output) - Power supply from the step-down charge
pump that provides the positive rail for the headphone and line amplifiers
FLYC
9
Charge Pump Cap Common Node (Output) - Common positive node for the step-down and inverting charge pumps’ flying capacitors.
FLYN
10
Charge Pump Cap Negative Node (Output) - Negative node for the inverting charge pump’s flying
capacitor.
8
DS851F2
CS42L56
-VHPFILT
11
Inverting Charge Pump Filter Connection (Output) - Power supply from the inverting charge
pump that provides the negative rail for the headphone and line amplifiers.
HPOUTA
HPOUTB
12
14
Headphone Audio Output (Output) - The full-scale output level is specified in “HP Output Characteristics” on page 19.
HPREF
13
Pseudo Diff. Headphone Output Reference (Input) - Ground reference for the headphone amplifiers
TSTN
15
16
Test Input (Input) - This pin is an input used for test purposes only and should be tied to ground for
normal operation.
LINEOUTA
LINEOUTB
17
19
Line Audio Output (Output) - The full-scale output level is specified in “Line Output Characteristics”
on page 20.
LINEREF
18
Pseudo Diff. Line Output Reference (Input) - Ground reference for the line amplifiers.
VA
20
Analog Power (Input) - Power supply for the internal analog section.
AGND
21
Analog Ground (Input) - Ground reference for the internal analog section.
FILT+
22
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.
VQ
23
Quiescent Voltage (Output) - Filter connection for the internal quiescent voltage.
AFILTA
AFILTB
24
25
Antialias Filter Connection (Output) - Antialias filter connection for the ADC inputs.
26
Microphone Bias (Output) - Low noise bias supply for an external microphone. Electrical characteristics are specified in the DC Electrical Characteristics table.
AIN1A
AIN1B
AIN2A
AIN2B
27
29
30
32
Analog Inputs 1 & 2 (Input) - The full-scale level is specified in “Analog Input Characteristics” on
page 14.
AIN1REF/AIN3A
AIN2REF/AIN3B
28
31
Pseudo Differential Analog Input Reference/Analog Input 3 (Input) - Configurable as the ground
reference for the programmable gain amplifiers (PGA) or as additional analog inputs. The full-scale
level is specified in “Analog Input Characteristics” on page 14.
HPDETECT
33
Headphone Detect (Input) - The HPDETECT circuit can be set to control the power down of the left
and/or right channel of the line and/or headphone outputs as described in “Headphone Power Control” on page 59 and “Line Power Control” on page 60 and/or cause an interrupt. This pin is
debounced such that the signal must remain stable in the new state for approximately 10 ms before
a change is passed on to the internal HPDETECT circuit.
RESET
34
Reset (Input) - The device enters a low power mode when this pin is driven low.
VLDO
35
Low Dropout Regulator (LDO) Power (Input) - Power supply for the LDO regulator.
VDFILT
36
Low Dropout Regulator (LDO) Filter Connection (Output) - Power supply from the LDO regulator
that provides the low voltage power to the digital section.
VL
37
Digital Interface Power (Input) - Determines the required signal level for the serial audio interface
and I²C control port.
MICBIAS
SDOUT
38
Serial Audio Data Output (Output) - Output for two’s complement serial audio data.
MCLK
39
Master Clock (Input) - Clock source for the delta-sigma modulators.
SCLK
40
Serial Clock (Input/Output) - Serial clock for the serial audio interface.
GND/
Thermal Pad
DS851F2
-
Ground reference for the internal charge pump and digital section; thermal relief pad.
9
CS42L56
1.1
I/O Pin Characteristics
Input and output levels and associated power supply voltage are shown in the table below. Logic levels
should not exceed the corresponding power supply voltage.
Power
Supply
VL
VA
10
Pin Name
I/O
RESET
SCL
SDA
AD0
CCLK
CDIN
CS
MCLK
Input
Input
Input/Output
Input
Input
Input
Input
Input
LRCK
Input/Output
SCLK
Input/Output
SDOUT
Output
SDIN
HPDETECT
Input
Input
Internal
Connections
Weak Pull-up
(~1 M
Weak Pull-up
(~1 M
Weak Pull-up
(~1 M
-
Driver
Receiver
CMOS/Open Drain
-
1.8 V - 3.3 V, with Hysteresis
1.8 V - 3.3 V, with Hysteresis
1.8 V - 3.3 V, with Hysteresis
1.8 V - 3.3 V, with Hysteresis
1.8 V - 3.3 V, with Hysteresis
1.8 V - 3.3 V, with Hysteresis
1.8 V - 3.3 V, with Hysteresis
1.8 V - 3.3 V
1.8 V - 3.3 V, CMOS
1.8 V - 3.3 V
1.8 V - 3.3 V, CMOS
1.8 V - 3.3 V
1.8 V - 3.3 V, CMOS
-
-
1.8 V - 3.3 V
1.8 V - 2.5 V, with Hysteresis
DS851F2
CS42L56
2. TYPICAL CONNECTION DIAGRAMS
1 µF
**
**
VDFILT
0.1 µF
VLDO
**
+1.65 V to +2.75 V
0.1 µF
VA
47 k
HPREF
Note 1
+VHPFILT
**
2.2 µF
HPOUTB
HPOUTA
**
33 
Headphone Out
Left & Right
33 
**
0.1 µF
Note 1
+1.65 V to +2.75 V
HPDETECT
VCP
2.2 µF
0.1 µF
**
CS42L56
Note 2
2.2 µF **
2. 2 µF **
FLYP
LINEOUTA
FLYC
LINEOUTB
Note 1
**
3300 pF
Rext
LPF is Optional
*
LINEREF
FLYN
2.2 µF
562 
Rex t
*
3300 pF
Line Level Out
Left & Right
562 
-VHPFILT
Note 4
AIN1A
AIN1REF
1800 pF
1 µF
**
MCLK
**
1 µF
*
**
1800 pF
AIN1B
SCLK
*
100 
100 k
100 
100 k
100 
100 k
Analog
Input 1
1 µF
LRCK
SDIN
Digital Audio
Processor
SDOUT
RESET
SCL\CCLK
**
AIN2A
1 µF
1800 pF
*
1 µF
AIN2REF
SDA\CDIN
**
AIN2B
1800 pF
*
**
100 
Analog
Input 2
100 k
1 µF
AD0\CS
Rp
Rp
+1.65 V to +3.63 V
VL
**
Note 3
AGND
0.1 µF
*
1000 pF
TSTN
TSTN
GND/Thermal Pad
AFILTA
AFILTB
VQ
FILT+
*
1000 pF
**
**
2.2 µF
2.2 µF
* NPO /C0G dielectric capacitors.
** Low ESR, X7R/X5R dielectric capacitors.
Notes:
Notes:
1. The headphone amplifier’s output
power
and distortion
are rated
the nominal
shown.
Largershown
capacitance
reduces the ripple on the internal
1. The
headphone
amplifier’s output
powerusing
and distortion
are ratedcapacitance
using the nominal
capacitance
. Larger capacitance
amplifiers’ supplies and in turn reduces
distortion
at high
output
Smaller
capacitance
not sufficiently
reducesthe
the amplifier’s
ripple on the internal
amplifiers’
supplies
andpower
in turn levels.
reduces the
amplifier’s
distortion atmay
high output
power levels.reduce ripple to achieve the
Smaller
capacitance
may
not
sufficiently
reduce
ripple
to
achieve
the
rated
output
power
and
distortion
.
Since
the
actual
value
rated output power and distortion. Since the actual value of typical X7R/X5R ceramic capacitors deviates from the nominal value by
a percentage specified in the
of typical
X7R/Xbe
5Rselected
ceramic capacitors
deviates
from the nominal
value
by a and
percentage
specified
in the manufacturer’s
manufacturer’s data sheet, capacitors
should
based on
the minimum
output
power
maximum
distortion
required. data
sheet,
capacitors
should be selected
based
on the
minimum
output
power and maximum
distortion
required
2. The headphone amplifier’s output
power
and distortion
are rated
using
the
nominal
capacitance
shown and
using
the .default charge pump switching frequency.
2. The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown and using the default
The required capacitance follows an
inverse relationship with the charge pump’s switching frequency. When increasing the switching frequency, the capacitance
charge pump switching frequency. The required capacitance follows an inverse relationship with the charge pump’s switching
may decrease; when lowering thefrequency.
switching
frequency,
mustthe
increase.
Since
the actual
value
of typical
X7R/X5R
ceramic capacitors deviates
When
increasingthe
the capacitance
switching frequency,
capacitance
may decrease;
when
lowering
the switching
frequency,
from the nominal value by a percentage
specified
in increase
the manufacturer’s
capacitors
shouldcapacitors
be selected
based
on nominal
the minimum
output power, maximum
the capacitance
must
. Since the actualdata
valuesheet,
of typical
X7R/X5R ceramic
deviates
from the
value
by a percentage
in therequired.
manufacturer’s data sheet, capacitors should be selected based on the minimum output
distortion and maximum charge pump
switchingspecified
frequency
, maximum
distortion and
maximum
charge
pump switching frequency required.
3. Additional bulk capacitance maypower
be added
to improve
PSRR
at low
frequencies.
3. Additional bulk capacitance may be added to improve PSRR at low frequencies.
4. These capacitors serve as a charge
reservoir for the internal switched capacitor ADC modulators and should be placed as close as possible to the inputs. They
4. These capacitors serve as a charge reservoir for the internal switched capacitor ADC modulators and should be placed as
are only needed when the PGA (Programmable
Gain
Amplifier)
is bypassed.
close as possible to
the inputs.
They are
only needed when the PGA (Programmable Gain Amplifier ) is bypassed.
Figure 1. Typical Connection Diagram - Four Pseudo-Differential Analog Inputs
DS851F2
11
CS42L56
1 µF
1 µF
**
**
**
VDFILT
VDFILT
0.1 µF
**0.1 µF
**
VLDO
VLDO
VA
+1.65 V to +2.75 V
0.1 µF
+1.65 V to +2.75 V
** µF
0.1
VA
47 k
HPREF
HPREF
Note 1
Note
1
2.2 µF
0.1 µF 0.1 µF
+VHPFILT
+VHPFILT
**
**
2.2 µF
**
33 
**
HPOUTB
HPOUTB
HPOUTA
HPOUTA
**
+1.65 V to +2.75 V
CS42L56
LINEOUTA
2.2 µF **
2.2 µF **
2. 2 µF **
FLYP
FLYP
2.2 µF
**
3300 pF
FLYC
FLYN
LINEOUTB
MICBIAS
-VHPFILT
-VHPFILT
1 µF
562
Note 4
1 µF
1800 pF
1 µF
1 µF
AIN1B
**
*
*
1800 pF
SDOUT
SDOUT
RESET
RESET
SCL\CCLK
SCL\CCLK
AD0\CS
Analog
Input 1
100 k
100 
Microphone 2
Note 5
**
*
1 µF
1800 pF
AIN2REF
*
AIN2B
100 
**
1800 pF
*
**
1800 pF
AIN2B
100 
1 µF
1 µF
*
**
Left
100
k Analog
Analog
Input 2
100 k
100 k
100 
Note 4
AIN3B
1800 pF
1 µF
**
*
Rp
1 µF
VL
100 
Input 2
100 k
100 
1 µF
Rp
**
**
RL
Note1800
4
pF**
AIN2A
SDA\CDIN
AD0\CS
0.1 µF
100 k
Note 6
1 µF
AIN2A
SDA\CDIN
0.1 µF
Microphone 1
100 
1 µF
1 µF
SDIN
SDIN
**
Line Level Out
Left & Right
RL
AIN1B
LRCK
LRCK
+1.65 V to +3.63 V
Rex t

**
SCLK
SCLK
Rp
Rext
Note 5
MCLK
MCLK
+1.65 V to +3.63 V
Line Level Out
Left & Right
*
3300 pF
AIN1A
AIN1REF
AIN1REF
Rp
Rext
LINEREF
AIN1A
DigitalAudio
Audio
Digital
Processor
Processor
Rext
LPF is Optional
*
562*3300
 pF
LINEOUTA
LINEOUTB
3300 pF
562 
LPF is Optional
*
FLYC
Note 1
Note 1**
562 
LINEREF
FLYN
2.2 µF
33 
**
0.1 µF
HPDETECT
VCP
**
Note 2
2.2
µF **
Note
2
Headphone
Out
Headphone
Out
Left & Right
Left & Right
HPDETECT
VCP
2.2 µF
2.2 µF **
33 
33 
0.1 µF
Note 1
Note 1
+1.65 V to +2.75 V
47 k
100 k
Right Analog
Input 2
Analog
Input 3
Note 3
VL
Note 3
AGND
AGND
AFILTA
AFILTA
AFILTB
VQ
AFILTB
FILT+ VQ
TSTN
TSTN
TSTN
TSTN
GND/Thermal Pad
GND/Thermal Pad
FILT+
*
**
*
1000 pF *
1000 pF
1000 pF
*
1000 pF
2.2 µF
**
** 2.2 µF
**
2.2 µF
2.2 µF
* NPO /C0G dielectric capacitors.
** Low ESR, X7R/X5R dielectric capacitors.
* NPO /C0G dielectric capacitors.
** Low ESR, X7R/X5R dielectric capacitors.
Notes:
1. The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown. Larger capacitance
reduces the ripple on the internal amplifiers’ supplies and in turn reduces the amplifier’s distortion at high output power levels.
Notes:
Smaller capacitanceNotes:
may not sufficiently reduce ripple to achieve the rated output power and distortion
. Since the actual value
of typical X7 R/X5R
ceramic
capacitors
deviates
from
the nominal
value
bythe
a percentage
specified
thenominal
manufacturer’s
data shown
1.
The
headphone
amplifier’s
output
powerusing
and distortion
are rated
usinginthe
capacitance
. Larger capacitance
1. The headphone amplifier’s
output
power
and distortion
are
rated
nominal
capacitance
shown.
Larger
capacitance
reduces the ripple on the internal
sheet, capacitors should
be selected
based
on internal
the minimum
output supplies
power andand
maximum
distortion
required
.
reduces
the
ripple
on
the
amplifiers’
in
turn
reduces
the
amplifier’s
distortion atmay
high output
power levels.reduce ripple to achieve the
amplifiers’ supplies and
in turn reduces the
amplifier’s
distortion
at high
output
power
levels.shown
Smaller
capacitance
not sufficiently
2. The headphone amplifier’s
output powermay
and distortion
are rated
using ripple
the nominal
capacitance
and power
using the
default
Smaller capacitance
not sufficiently
reduce
to achieve
the rated output
and
distortion
. Since the actual value
rated output power and
distortion.
Since
the
actual
value
of typicaldeviates
X7R/X5R
ceramic
capacitors
deviates
from the nominal value by a percentage specified in the
charge
pump switching
frequency.
The
capacitance
an inverse
relationship
pump’s switching
of typical
X7R/X
5Rrequired
ceramic
capacitorsfollows
from the
nominal with
valuethe
bycharge
a percentage
specified in the manufacturer’s data
When increasing
the switching
frequency,based
the capacitance
may
decrease; output
when lowering
the and
switching
frequency, distortion required.
manufacturer’s datafrequency.
sheet, capacitors
beshould
selected
on the
minimum
power
maximum
sheet,should
capacitors
be selected based
on the
minimum output power
and maximum
distortion required.
the
capacitance
must
increase
.
Since
the
actual
value
of
typical
X
7R/X5
R
ceramic
capacitors
deviates
from
the
nominal
value
2. The headphone amplifier’s output
power
and distortion
are rated
the nominal
capacitance
shown
and
using
theand
default
charge
2. The
headphone
amplifier’s output
powerusing
and distortion
are rated
using the nominal
capacitance
shown
using the
defaultpump switching frequency.
by a percentage specified in the manufacturer’s data sheet, capacitors should be selected based on the minimum output
charge
pump
switching
frequency.
The
capacitance
follows an inverse
relationship
with
the charge pump’s
switchingfrequency, the capacitance
The required capacitance
followsdistortion
an
inverse
relationship
withswitching
the required
charge
pump’s
frequency.
When
increasing
the switching
power, maximum
and maximum
charge pump
frequency
requiredswitching
.
frequency.
When
increasing
the
switching
frequency,
the
capacitance
may
decrease;
when
lowering
the
switching
frequency,
capacitance
mayfrequency,
be added to improve
PSRR at low frequencies.
may decrease; when3. Additional
loweringbulk
the
switching
the capacitance
must increase. Since the actual value of typical X7R/X5R ceramic capacitors deviates
the
capacitance
must
. Since
theswitched
actual value
of typical
X7R/X5R ceramic
capacitors
deviates
from the nominal value
4. These
serve
as
a charge
reservoir
the
internal
capacitor
ADC
modulators
and
should
be placed
as
from the nominal value
by acapacitors
percentage
specified
in increase
the for
manufacturer’s
data
sheet,
capacitors
should
be
selected
based
on the minimum output power, maximum
a inputs
percentage
specified
in thewhen
manufacturer’s
data sheet, capacitors
should
be selected based on the minimum output
close as possible tobythe
. They are
only needed
the PGA (Programmable
Gain Amplifier
) is bypassed.
distortion and maximum
charge pump
switching
frequency
required.
, maximum
distortion
charge microphones,
pump switching
frequency
required
.
5. The value of RL, apower
current-limiting
resistor
used and
with maximum
electret condenser
is dictated
by the
microphone
3. Additional bulk capacitance
may3. be
addedbulk
to capacitance
improve PSRR
low to
frequencies.
cartridge.
Additional
may beat
added
improve PSRR at low frequencies.
The negative
terminal
ofreservoir
thecapacitors
microphone
inputs
to reservoir
the ground
pinthe
of the
microphone
cartridge
. Gain
is applied
onlybe placed
4. These
asconnects
a charge
for
internal
switched
capacitor
ADC
modulators
and should
placedas
aspossible to the inputs. They
4. These capacitors 6.serve
as a charge
forserve
the
internal
switched
capacitor
ADC
modulators
and
should
asbeclose
to the positive terminal
. as possible to the inputs. They are only needed when the PGA (Programmable Gain Amplifier ) is bypassed.
close
are only needed when the PGA (Programmable Gain Amplifier) is bypassed.
5. The value of RL, a current-limiting resistor used with electret condenser microphones, is dictated by the microphone cartridge.
6. The negative terminal of the microphone inputs connects to the ground pin of the microphone cartridge. Gain is applied only to the positive terminal.
Figure 2. Typical Connection Diagram - Two Pseudo-Differential / Three Single-Ended Analog Inputs
12
DS851F2
CS42L56
1 µF
**
**
VDFILT
0.1 µF
VLDO
**
+1.65 V to +2.75 V
0.1 µF
VA
47 k
HPREF
0.1 µF
+VHPFILT
Note 1
**
2.2 µF
HPOUTB
HPOUTA
**
33 
Headphone Out
Left & Right
33 
**
0.1 µF
Note 1
+1.65 V to +2.75 V
VCP
2.2 µF
**
HPDETECT
CS42L56
LINEOUTA
Note 2
2.2 µF **
2.2 µF **
562 
3300 pF
FLYP
LINEOUTB
FLYC
R ext
LPF is Optional
*
LINEREF
R ext
*
3300 pF
Line Level Out
Left & Right
562 
FLYN
2.2 µF
**
Note 4
AIN1A
Note 1
1800 pF
-VHPFILT
*
**
1 µF
*
**
1800 pF
AIN1B
100 
100 k
100 k
100 
1 µF
Note 4
AIN2A
1800 pF
MCLK
**
*
*
AIN2B
SCLK
**
1800 pF
100 
100 k
100 k
100 
1 µF
LRCK
SDIN
Digital Audio
Processor
1 µF
SDOUT
Left Analog
Input 1
Right Analog
Input 1
Left Analog
Input 2
Right Analog
Input 2
Microphone 1
AIN3A
1 µF
RESET
SCL\CCLK
SDA\CDIN
MICBIAS
RL
1 µF
AD0\CS
Note 5
RL
AIN3B
1 µF
Rp
Rp
+1.65 V to +3.63 V
Microphone 2
Note 6
VL
**
0.1 µF
Note 3
AGND
TSTN
*
TSTN
1000 pF
GND/Thermal Pad
AFILTA
AFILTB
VQ
FILT+
*
1000 pF
**
**
2.2 µF
2.2 µF
* NPO /C0G dielectric capacitors.
** Low ESR, X7R/X5R dielectric capacitors.
Notes:
1.
The
headphone
amplifier’s
output
power
and
distortion
are
rated
using
the
nominal
capacitance
shown.
Larger
capacitance
Notes:
reduces the ripple on the internal amplifiers’ supplies and in turn reduces the amplifier’s distortion at high output power levels.
1. The headphoneSmaller
amplifier’s
output
and distortion
are
ratedtheusing
the nominal
capacitance
Larger capacitance reduces the ripple on the internal
capacitance
may power
not sufficiently
reduce ripple to
achieve
rated output
power and distortion
. Since theshown.
actual value
amplifiers’ suppliesof and
the amplifier’s
distortion
atvalue
highbyoutput
power
levels.
Smaller
capacitance
may not sufficiently reduce ripple to achieve the
typicalinX7turn
R/X5Rreduces
ceramic capacitors
deviates from
the nominal
a percentage
specified
in the
manufacturer’s
data
sheet,
capacitors
should
be
selected
based
on
the
minimum
output
power
and
maximum
distortion
required
.
rated output power and distortion. Since the actual value of typical X7R/X5R ceramic capacitors deviates from the nominal value by a percentage specified in the
2. The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown and using the default
manufacturer’s data
sheet, capacitors should be selected based on the minimum output power and maximum distortion required.
charge pump switching frequency. The required capacitance follows an inverse relationship with the charge pump’s switching
2. The headphonefrequency.
amplifier’s
power
and distortion
are
rated using
the nominal
capacitance
shown
and using the default charge pump switching frequency.
Whenoutput
increasing
the switching
frequency, the
capacitance
may decrease
; when lowering
the switching
frequency,
the
capacitance
mustan
increase
. Sincerelationship
the actual value with
of typical
R ceramic
capacitors
deviates
from the nominal
valueincreasing the switching frequency, the capacitance
The required capacitance
follows
inverse
theX7R/X5
charge
pump’s
switching
frequency.
When
by a percentage specified in the manufacturer’s data sheet, capacitors should be selected based on the minimum output
may decrease; when
lowering the switching frequency, the capacitance must increase. Since the actual value of typical X7R/X5R ceramic capacitors deviates
power, maximum distortion and maximum charge pump switching frequency required.
from the nominal value
by abulk
percentage
intothe
manufacturer’s
data sheet, capacitors should be selected based on the minimum output power, maximum
3. Additional
capacitance specified
may be added
improve
PSRR at low frequencies.
4. These charge
capacitorspump
serve asswitching
a charge reservoir
for the internal
switched capacitor ADC modulators and should be placed as
distortion and maximum
frequency
required.
close as possible to the inputs. They are only needed when the PGA (Programmable Gain Amplifier ) is bypassed.
3. Additional bulk capacitance
may
be
added
to
improve
PSRR
at
low
frequencies.
5. The value of RL, a current-limiting resistor used with electret condenser microphones, is dictated by the microphone
4. These capacitors
serve as a charge reservoir for the internal switched capacitor ADC modulators and should be placed as close as possible to the inputs. They
cartridge.
are only needed when
PGA
(Programmable
is bypassed.
6. The the
negative
terminal
of the microphoneGain
inputsAmplifier)
connects to the
ground pin of the microphone cartridge. Gain is applied only
positive terminal. resistor used with electret condenser microphones, is dictated by the microphone cartridge.
5. The value of R ,toathecurrent-limiting
L
6. The negative terminal of the microphone inputs connects to the ground pin of the microphone cartridge. Gain is applied only to the positive terminal.
Figure 3. Typical Connection Diagram - Six Single-Ended Analog Inputs
DS851F2
13
CS42L56
3. CHARACTERISTIC AND SPECIFICATION TABLES
RECOMMENDED OPERATING CONDITIONS
GND = AGND = 0 V; all voltages with respect to ground.
Parameters
DC Power Supply
Analog
Charge Pump
LDO Regulator for Digital
Serial/Control Port Interface
Ambient Temperature
(Note 1)
(Note 1)
Commercial - CNZ
Symbol
Min
Max
Units
VA
VCP
VLDO
VL
TA
1.62
1.62
1.62
1.62
-40
2.75
VA
2.75
3.63
+85
V
V
V
V
C
ABSOLUTE MAXIMUM RATINGS
GND = AGND = 0 V; all voltages with respect to ground.
Parameters
Symbol
DC Power Supply
Analog, Charge Pump, LDO VA, VCP, VLDO
Serial/Control Port Interface
VL
Input Current
(Note 2)
Iin
External Voltage Applied to Analog Input
(Note 3)
VIN
Min
Max
Units
-0.3
-0.3
AGND-0.3
3.0
4.0
±10
VA+0.3
V
V
mA
V
External Voltage Applied to Analog Output
(Note 4)
VIN
-VHPFILT - 0.3
+VHPFILT + 0.3
V
External Voltage Applied to Digital Input
Ambient Operating Temperature (power applied)
Storage Temperature
(Note 3)
VIND
TA
Tstg
-0.3
-50
-65
VL+ 0.3
+115
+150
V
°C
°C
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
Notes:
1. Due to the existence of parasitic body diodes between VCP and VA, current flows from VCP to VA whenever the VA power supply is lower than VCP. This causes a “back-powering” effect on the VA power
supply rails internal to the part; therefore, VA should be maintained at an equal or greater voltage than
VCP at all times. While “back-powering” does not have any adverse effects on device operation with
respect to performance and reliability, it does lead to extra power consumption and therefore should be
avoided.
2. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause
SCR latch-up.
3. The maximum over/under voltage is limited by the input current.
4. VHPFILT is specified in “DC Characteristics” on page 27.
ANALOG INPUT CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; Input test signal is a 1 kHz sine wave through the passive input filter, PGA = 0 dB; All Supplies = VA;
GND = AGND = 0 V; TA = +25C; Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz. Measurement signal path is AINxx to SDOUT.
VA = 2.5 V
Parameter
Min
Typ
VA = 1.8 V
Max
Min
Typ
Max
Unit
Analog In to ADC (PGA bypassed)
14
DS851F2
CS42L56
ANALOG INPUT CHARACTERISTICS (CONTINUED)
Test Conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; Input test signal is a 1 kHz sine wave through the passive input filter, PGA = 0 dB; All Supplies = VA;
GND = AGND = 0 V; TA = +25C; Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz. Measurement signal path is AINxx to SDOUT.
Dynamic Range
A-weighted
89
95
unweighted
86
92
Total Harmonic Distortion + Noise
-1 dBFS
-85
-79
-20 dBFS
-72
-60 dBFS
-32
-26
Analog In to PGA to ADC, PREAMPx[1:0]=00 (0 dB Gain + PGA Setting)
Dynamic Range
PGA Setting: 0 dB
A-weighted
88
94
unweighted
85
91
PGA Setting: +12 dB
A-weighted
81
87
unweighted
78
84
Total Harmonic Distortion + Noise
-87
-81
PGA Setting: 0 dB
-1 dBFS
-60 dBFS
-31
-25
PGA Setting: +12 dB
-1 dBFS
-83
-77
Common Mode Rejection
(Note 5)
66
Analog In to PGA to ADC, PREAMPx[1:0]=01 (+10 dB Gain + PGA Setting)
Dynamic Range
PGA Setting: 0 dB
A-weighted
91
unweighted
88
PGA Setting: +12 dB
A-weighted
81
unweighted
78
Total Harmonic Distortion + Noise
PGA Setting: 0 dB
-1 dBFS
-77
PGA Setting: +12 dB
-1 dBFS
-64
Common Mode Rejection
(Note 5)
66
Analog In to PGA to ADC, PREAMPx[1:0]=10 (+20 dB Gain + PGA Setting)
Dynamic Range
PGA Setting: 0 dB
A-weighted
85
unweighted
82
PGA Setting: +12 dB
A-weighted
73
unweighted
70
Total Harmonic Distortion + Noise
PGA Setting: 0 dB
-1 dBFS
-71
PGA Setting: +12 dB
-1 dBFS
-63
Common Mode Rejection
(Note 5)
58
DC Accuracy
Interchannel Gain Mismatch
0.2
Gain Drift
±100
Offset Error
(Note 6)
352
Input
Interchannel Isolation (1 kHz)
(Note 7)
90
HP Amp to Analog Input Isolation
RL = 3 k
90
83
RL = 16 
Full-scale Input Voltage
DS851F2
86
83
-
92
89
-85
-69
-29
-79
-23
dB
dB
dB
dB
dB
85
82
78
75
91
88
84
81
-
dB
dB
dB
dB
-
-85
-28
-81
66
-79
-22
-75
-
dB
dB
dB
dB
-
88
86
78
75
-
dB
dB
dB
dB
-
-77
-64
66
-
dB
dB
dB
-
82
79
70
67
-
dB
dB
dB
dB
-
-71
-63
58
-
dB
dB
dB
-
0.2
±100
352
-
dB
ppm/°C
LSB
-
90
90
83
-
dB
dB
dB
ADC 0.76•VA 0.80•VA 0.84•VA 0.76•VA 0.80•VA 0.84•VA
PGA (-1.5 dB)
0.95•VA
0.95•VA
PGA (0 dB) 0.78•VA 0.82•VA 0.86•VA 0.78•VA 0.82•VA 0.86•VA
PGA (+12 dB)
0.198•VA
0.198•VA
Vpp
Vpp
Vpp
15
CS42L56
ANALOG INPUT CHARACTERISTICS (CONTINUED)
Test Conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; Input test signal is a 1 kHz sine wave through the passive input filter, PGA = 0 dB; All Supplies = VA;
GND = AGND = 0 V; TA = +25C; Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz. Measurement signal path is AINxx to SDOUT.
Full-scale Signal Input Voltage
(Note 8)
ADC 0.76•VA 0.80•VA 0.84•VA 0.76•VA 0.80•VA 0.84•VA
PGA=-1.5 dB, PREAMPx[1:0]=00
0.95•VA
0.95•VA
PGA=0 dB, PREAMPx[1:0]=00 0.78•VA 0.82•VA 0.86•VA 0.78•VA 0.82•VA 0.86•VA
PGA=+12 dB, PREAMPx[1:0]=00
0.198•VA
0.198•VA
PGA=0 dB, PREAMPx[1:0]=01
0.259•VA
0.259•VA
PGA=0 dB, PREAMPx[1:0]=10
0.082•VA
0.082•VA
PGA=+12 dB, PREAMPx[1:0]=01
0.064•VA
0.064•VA
PGA=+12 dB, PREAMPx[1:0]=10
0.020•VA
0.020•VA
AINxREF Input Voltage (Pseudo-Diff Mode)(Note 10)
0.300
0.300
Input Impedance (Note 9)
ADC
60
60
PGA, PREAMPx[1:0]=00
40
40
PGA, PREAMPx[1:0]=01
12.65
12.65
PGA, PREAMPx[1:0]=10
4
4
DC Voltage at Analog Input (Pin Floating)
VA/2
VA/2
-
Vpp
Vpp
Vpp
Vpp
Vpp
Vpp
Vpp
Vpp
Vpp
k
k
k
k
V
Notes:
5. See Figure 4.
6. SDOUT Code with HPFx=1 and HPFRZx=0.
7. See “Parameter Definitions” on page 91.
8. The full scale input voltage values given in the table refers to the maximum voltage difference between
the AINxx and AINxREF pins. Providing an input signal at these pins that exceeds the full scale input
voltage may result in clipping the analog input.
9. Measured between AINxx and AGND.
10. Providing a signal level higher than 300 mVpp on the AINxREF pin may degrade the PGA linearity and
adversely affect analog input performance. See Figure 5.
100 mVPP,
25 Hz
100 
AINxA
1 F
AINxREF
Figure 4. CMRR Test Configuration
AINxx
100 
300 mVPP,
1 kHz
1 µF
1 µF
AINxREF
Figure 5. AINxREF Input Voltage Test Configuration
16
DS851F2
CS42L56
ADC DIGITAL FILTER CHARACTERISTICS
Parameter (Note 11)
Frequency Response (20 Hz to 20 kHz)
Passband
to -0.05 dB corner
to -3 dB corner
Stopband
Stopband Attenuation
Total Group Delay
High-Pass Filter Characteristics (48 kHz Fs) (Note 12)
Passband
to -3.0 dB corner
to -0.05 dB corner
Frequency Response
Phase Deviation @ 20 Hz
Filter Settling Time (Note 13)
Min
Typ
Max
Unit
-0.07
0.52
33
-
0.421
0.495
4.3/Fs
+0.02
-
dB
Fs
Fs
Fs
dB
s
-
1.87
17.15
5.3
0.15
-
Hz
Hz
dB
Deg
s
105/Fs
Notes:
11. Response is clock-dependent and will scale with Fs. Note that the response plots (Figures 41 to Note 44
on page 90) have been normalized to Fs and can be denormalized by multiplying the X-axis scale by Fs.
HPF parameters are for Fs = 48 kHz.
12. Characteristics are based on the default setting in register “HPF Control (Address 1Bh)” on page 75.
13. Settling time decreases at higher corner frequency settings.
DS851F2
17
CS42L56
HP OUTPUT CHARACTERISTICS
Test conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; Input test signal is a full-scale 997 Hz sine wave; All Supplies = VA, VCP Mode; GND = AGND = 0 V; TA = +25C;
Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz; Test load RL = 10 k CL = 150 pFfor a line load,
and test load RL = 16  CL = 150 pF for a headphone load (See Figure 6 on page 21); Measurement signal path is SDIN to
HPOUTx.
VA = 2.5 V
Parameter (Note 15)
Min
Typ
VA = 1.8 V
Max
Min
Typ
Max
Unit
Line Load RL = 10 k(+2 dB Analog Gain) (Note 14)
Dynamic Range
18 to 24-Bit
A-weighted
98
90
96
92
unweighted
89
95
87
93
16-Bit
A-weighted
96
94
unweighted
94
92
Total Harmonic Distortion + Noise
(Note 16)
18 to 24-Bit
0 dB
-84
-78
-85
-79
-20 dB
-75
-73
-60 dB
-35
-30
-33
-28
16-Bit
0 dB
-82
-83
-20 dB
-74
-72
-60 dB
-34
-32
Full-scale Output Voltage
(Note 17) 1.56•VA 1.64•VA 1.73•VA 1.56•VA 1.64•VA 1.73•VA
HP Load RL = 16 (-4 dB Analog Gain) (Note 14)
Dynamic Range
18 to 24-Bit
A-weighted
89
95
88
94
unweighted
92
85
91
86
16-Bit
A-weighted
93
92
unweighted
90
89
Total Harmonic Distortion + Noise
(Note 16)
-75
-69
-75
-69
Full-scale Output Voltage
(Note 17) 0.76•VA 0.82•VA 0.88•VA 0.76•VA 0.82•VA 0.88•VA
Output Power
(Note 16)
32
17
Other Characteristics for RL = 16  or 10 k
Interchannel Isolation
(Note 17)
Interchannel Gain Mismatch
Output Offset
(Note 17)
Gain Drift
Load Resistance (RL)
Load Capacitance (CL)
18
10 k
16 
(Note 17)
Mute
0 dB Analog Gain
(Note 17)
(Note 17)
(Note 17)
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
VPP
dB
dB
dB
dB
dB
VPP
mW
16
90
90
0.1
0.5
3.9
±100
-
0.28
1.0
±15.1
-
16
90
90
0.1
0.5
3.1
±100
-
0.28
1.0
±11.4
-
dB
dB
dB
mV
mV
ppm/°C

-
-
150
-
-
150
pF
DS851F2
CS42L56
LINE OUTPUT CHARACTERISTICS
Test conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; Input test signal is a full-scale 997 Hz sine wave; All Supplies = VA, VCP Mode; GND = AGND = 0 V; TA = +25C;
Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz; Test load RL = 10 k CL = 150 pF (see Figure 6 on
page 21); Measurement signal path is SDIN to LINEOUTx.
VA = 2.5 V
Parameter (Note 15)
(+2 dB Analog Gain) (Note 14)
Dynamic Range
18 to 24-Bit
16-Bit
Total Harmonic Distortion + Noise
18 to 24-Bit
16-Bit
Full-scale Output Voltage
Other Characteristics
Interchannel Isolation
Interchannel Gain Mismatch
Output Offset
(Note 17)
Gain Drift
Output Impedance
Load Resistance (RL)
Load Capacitance (CL)
Min
Typ
VA = 1.8 V
Max
Min
Typ
Max
A-weighted
93
99
91
97
unweighted
90
96
88
94
A-weighted
96
94
unweighted
94
92
(Note 16)
0 dB
-84
-78
-86
-80
-20 dB
-76
-74
-60 dB
-36
-30
-34
-28
0 dB
-82
-84
-20 dB
-74
-72
-60 dB
-34
-32
(Note 17) 1.50•VA 1.58•VA 1.71•VA 1.50•VA 1.58•VA 1.71•VA
(Note 17)
(Note 17)
Mute
0 dB Analog Gain
(Note 17)
Unit
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
VPP
(Note 17)
10
90
0.1
0.5
3.6
±100
100
-
0.32
1.0
±14.6
-
10
90
0.1
0.5
2.8
±100
100
-
0.32
1.0
±10.6
-
dB
dB
mV
mV
ppm/°C

k
(Note 17)
-
-
150
-
-
150
pF
Notes:
14. The analog gain setting (“Headphone Volume Control” on page 84 or “Line Volume Control” on
page 84) must be configured as indicated to achieve the specified output characteristics.
15. One LSB of triangular PDF dither is added to data.
16. VCP settings lower than VA reduces the headroom of the headphone amplifier. As a result, the specified THD+N performance at full-scale output voltage and power may not be achieved.
17. See Figure 6 and Figure 7. Refer to “Parameter Definitions” on page 91.
18. Response is clock dependent and will scale with Fs. Note that the response plots (Figures 45 to Note 48
on page 90) have been normalized to Fs and can be denormalized by multiplying the X-axis scale by Fs.
19. Measurement bandwidth is from Stopband to 3 Fs.
DS851F2
19
CS42L56
Test Load
Symbolized component values are specified in table “HP
Output Characteristics” on page 19
HPOUTx
HPREF
GND/AGND
33 
CL
RL
0.1 µF
+
Measurement
Device
Figure 6. HP Output Test Configuration
Symbolized component values are specified in table “Line
Output Characteristics” on page 20
Test Load
LINEOUTx
CL
RL
LINEREF
GND/AGND
+
Measurement
Device
Figure 7. Line Output Test Configuration
20
DS851F2
CS42L56
ANALOG PASSTHROUGH CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; Input test signal is a 1 kHz sine wave through the passive input filter shown in Figure 1, PGA and HP/Line gain = 0 dB;
All Supplies = VA, VCP Mode; GND = AGND = 0 V; TA = +25C; Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz; Measurement signal path is AINxx to HPOUTx or LINEOUTx.
Parameter
Analog In to HP Amp (ADC is powered down)
RL = 10 k(+2 dB Output Analog Gain) (Note 14)
Dynamic Range
A-weighted
unweighted
Total Harmonic Distortion + Noise
(Note 16)
-1 dB
-20 dB
-60 dB
Full-scale Input Voltage
(Note 8)
Full-scale Output Voltage
(Note 17)
Frequency Response
RL = 16 (-4 dB Output Analog Gain) (Note 14)
Dynamic Range
A-weighted
unweighted
Total Harmonic Distortion + Noise
(Note 16)
-1 dB
-20 dB
-60 dB
Full-scale Input Voltage
(Note 8)
Output Power
(Note 16)
Frequency Response
Analog In to Line Amp (ADC is powered down)
RL = 10 k(+2 dB Output Analog Gain) (Note 14)
Dynamic Range
A-weighted
unweighted
Total Harmonic Distortion + Noise
(Note 16)
-1 dB
-20 dB
-60 dB
Full-scale Input Voltage
(Note 8)
Full-scale Output Voltage
(Note 17)
Frequency Response
Min
VA = 2.5 V
Typ
Max
Min
VA = 1.8 V
Typ
Max
Unit
-
94
91
-
-
91
88
-
dB
dB
-
-70
-71
-31
0.80•VA
0.93•VA
0/-0.3
-
-
-80
-68
-28
0.80•VA
0.93•VA
0/-0.3
-
dB
dB
dB
Vpp
Vpp
dB
-
94
91
-
-
91
88
-
dB
dB
-
-70
-71
-31
0.80•VA
12
0/-0.3
-
-
-80
-68
-28
0.80•VA
6.5
0/-0.3
-
dB
dB
dB
Vpp
mW
dB
-
94
91
-
-
91
88
-
dB
dB
-
-70
-71
-31
0.80•VA
0.89•VA
0/-0.3
-
-
-80
-68
-28
0.80•VA
0.89•VA
0/-0.3
-
dB
dB
dB
Vpp
Vpp
dB
COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
Parameter (Note 18)
Frequency Response 20 Hz to 20 kHz
Passband
Stopband
Stopband Attenuation
Total Group Delay
De-emphasis Error
DS851F2
Fs = 48.000 kHz
Fs = 44.118 kHz
to -0.05 dB corner
to -3 dB corner
(Note 19)
Fs = 44.118 kHz
Min
Typ
Max
Unit
-0.007
-0.081
0.55
49
-
0.48
0.49
6.5/Fs
-
+0.007
+0.081
+0.05/-0.25
dB
dB
Fs
Fs
Fs
dB
s
dB
21
CS42L56
SWITCHING SPECIFICATIONS - SERIAL PORT
Inputs: Logic 0 = GND = AGND, Logic 1 = VL, LRCK, SCLK, SDOUT CLOAD = 15 pF.
Parameters
Symbol
RESET pin Low Pulse Width
(Note 20)
Min
Max
Units
1
(See “Serial Port Clocking”
on page 47)
45
55
MCLK Frequency
MCLK Duty Cycle
Slave Mode (Figure 8)
(See “Serial Port Clocking”
on page 47)
45
55
68•Fs
1/tPs
45
55
40
tss(LK-SK)
20
tss(SDO-SK)
30
ths(SK-SDO)
20
tss(SD-SK)
20
ths
Input Sample Rate (LRCK)
Fs
LRCK Duty Cycle
SCLK Frequency
SCLK Duty Cycle
LRCK Setup Time Before SCLK Rising Edge
SDOUT Setup Time Before SCLK Rising Edge
SDOUT Hold Time After SCLK Rising Edge
SDIN Setup Time Before SCLK Rising Edge
SDIN Hold Time After SCLK Rising Edge
Master Mode (Figure 9)
Output Sample Rate (LRCK)
LRCK Duty Cycle
SCLK Frequency
SCLK = MCLK mode
All Other Modes
RATIO[4:0] = ‘xxx00’ or ‘xxx11’
RATIO[4:0] = ‘xxx01’ (Note 21)
SCLK Duty Cycle
(See “Serial Port Clocking”
on page 47)
45
55
1/tPm
12.0000
68•Fs
1/tPm
45
55
33
66
±2
tsm(LK-SK)
20
tsm(SDO-SK)
30
thm(SK-SDO)
20
tsm(SD-SK)
20
thm
Fs
LRCK Time Before SCLK Falling Edge
SDOUT Setup Time Before SCLK Rising Edge
SDOUT Hold Time After SCLK Rising Edge
SDIN Setup Time Before SCLK Rising Edge
SDIN Hold Time After SCLK Rising Edge
ms
MHz
%
kHz
%
Hz
%
ns
ns
ns
ns
ns
Hz
%
MHz
Hz
%
%
ns
ns
ns
ns
ns
Notes:
20. After powering up the CS42L56, RESET should be held low after the power supplies and clocks are
settled. This specification is valid with the recommended capacitor on VDFILT.
21. When the RATIO[1:0] = ‘01’, the device will periodically extend the SCLK high time to compensate for
the resulting fractional MCLK/SCLK ratio.
//
LRCK
tss(LK-SK)
SCLK
//
SDIN
//
//
//
//
//
//
tss(SD-SK)
//
ths(SK-SDO)
//
MSB
//
SCLK
MSB
//
tsm(LK-SK)
tPm
//
//
//
//
tsm(SDO-SK)
SDOUT
//
//
ths
Figure 8. Serial Port Timing (Slave Mode)
22
//
tP
//
tss(SDO-SK)
SDOUT
//
LRCK
SDIN
//
tsm(SD-SK)
//
thm(SK-SDO)
//
MSB
//
thm
MSB
//
Figure 9. Serial Port Timing (Master Mode)
DS851F2
CS42L56
SWITCHING SPECIFICATIONS - I²C CONTROL PORT
Inputs: Logic 0 = GND = AGND, Logic 1 = VL (Note 22) .
Parameter
Symbol
Min
Max
Unit
tirs
500
-
ns
RESET Rising Edge to Start
SCL Clock Frequency
fscl
-
550
kHz
Start Condition Hold Time (prior to first clock pulse)
thdst
0.6
-
µs
Clock Low Time
tlow
1.3
-
µs
Clock High Time
thigh
0.6
-
µs
tsust
0.6
-
µs
thddi
0
0.9
µs
Setup Time for Repeated Start Condition
SDA Input Hold Time from SCL Falling
(Note 23)
SDA Output Hold Time from SCL Falling
thddo
0.2
0.9
µs
SDA Setup Time to SCL Rising
tsud
100
-
ns
Rise Time of SCL and SDA
trc
-
300
ns
Fall Time SCL and SDA
tfc
-
300
ns
Setup Time for Stop Condition
tsusp
0.6
-
µs
Bus Free Time Between Transmissions
tbuf
1.3
-
µs
SDA Bus Capacitance
CL
-
400
pF
SDA Pull-Up Resistance
Rp
500
-

Notes:
22. All specifications are valid for the signals at the pins of the CS42L56 with the specified load capacitance.
23. Data must be held for sufficient time to bridge the transition time, tf, of SCL.
RESET
t irs
Stop
Repeated
Start
Start
Stop
SDA
t buf
t
t high
t hdst
tf
hdst
t susp
SCL
t
low
t
hdd
t sud
t sust
tr
Figure 10. I²C Control Port Timing
DS851F2
23
CS42L56
SWITCHING CHARACTERISTICS - SPI CONTROL PORT
Inputs: Logic 0 = GND = AGND, Logic 1 = VL, SDA CL = 30 pF.
Parameter
Symbol
Min
Max
Units
CCLK Clock Frequency
fsck
0
6.0
MHz
RESET Rising Edge to CS Falling
tsrs
20
-
ns
CS Falling to CCLK Edge
tcss
20
-
ns
CS High Time Between Transmissions
tcsh
1.0
-
s
CCLK Low Time
tscl
66
-
ns
CCLK High Time
tsch
66
-
ns
CDIN to CCLK Rising Setup Time
tdsu
40
-
ns
CCLK Rising to DATA Hold Time
(Note 24)
tdh
15
-
ns
Rise Time of CCLK and CDIN
(Note 25)
tr2
-
100
ns
Fall Time of CCLK and CDIN
(Note 25)
tf2
-
100
ns
Notes:
24. Data must be held for sufficient time to bridge the transition time of CCLK.
25. For fsck <1 MHz.
RESET
tsrs
CS
tcsh
tcss
tsch
tscl
tr2
CCLK
tf2
tdsu
tdh
CDIN
Figure 11. Control Port Timing - SPI Format
24
DS851F2
CS42L56
ANALOG OUTPUT ATTENUATION CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; GND = AGND = 0 V. Attenuation is referenced to the full-scale voltage for the given output. Test load RL = 3 k
CL = 150 pFfor a line load, and test load RL = 16  CL = 150 pF for a headphone load (See Figure 6 and Figure 7 on page 21).
Power Status
Parameters
Headphone
Line
Min
Typ
Max
Units
Headphone Mute Attenuation (HPxMUTE=1) (Note 26)
OFF
OFF
ON
ON
OFF
ON
OFF
ON
-
90
90
90
90
-
dB
dB
dB
dB
Line Mute Attenuation (LINExMUTE=1) (Note 26)
OFF
OFF
ON
ON
OFF
ON
OFF
ON
-
90
90
90
90
-
dB
dB
dB
dB
Notes:
26. Assumes no external impedance on HPREF or LINEREF. External impedance on HPREF or LINEREF
will impact the attenuation.
DS851F2
25
CS42L56
DC CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; GND = AGND = 0 V; all voltages with respect to ground.
Parameters
Min
Typ
Max
Units
VHPFILT Characteristics (Note 27)
VCP Mode
+VHPFILT
-VHPFILT
-
VCP
-VCP
-
V
V
VCP/2 Mode
+VHPFILT
-VHPFILT
-
VCP/2
-VCP/2
-
V
V
BIAS_LVL[1:0] = 00
BIAS_LVL[1:0] = 01
BIAS_LVL[1:0] = 10
BIAS_LVL[1:0] = 11
-
0.9•VA
0.8•VA
0.7•VA
0.6•VA
-
V
V
V
V
MIC BIAS Characteristics
Nominal Voltage
DC Output Current (Note 28)
-
-
1.22
mA
BIAS_LVL[1:0] = 00
BIAS_LVL[1:0] = 01
BIAS_LVL[1:0] = 10
BIAS_LVL[1:0] = 11
-
45
50
50
50
-
dB
dB
dB
dB
FILT+
VQ
VDFILT
-
VA
VA/2
0.9
-
V
V
V
PGA to ADC
PGA (Pseudo Differential) to ADC
ADC
PGA to HP & Line Amps
PGA (Pseudo Differential) to HP & Line Amps
DAC to HP & Line Amps
-
47
58
57
44
54
56
-
dB
dB
dB
dB
dB
dB
-
35
25
50
60
-
dB
dB
dB
dB
Power Supply Rejection Ratio (PSRR) @ 1 kHz
Misc. DC Filter Characteristics
Power Supply Rejection Ratio (PSRR) Characteristics
PSRR with 100 mVpp, 1 kHz signal (Note 29)
PSRR with 100 mVpp, 60 Hz signal (Notes 29, 30)
PGA to ADC
ADC
PGA to HP & Line Amps
DAC to HP & Line Amps
Notes:
27. No load connected to HPOUTx and LINEOUTx.
28. VA = 2.71 V, BIAS_LVL[1:0] = 00, total equivalent external impedance to ground = 2 k.
29. Valid with the recommended capacitor values on FILT+ and VQ, no load on HP and Line. Increasing
the capacitance on FILT+ and VQ will also increase the PSRR.
30. The PGA is biased with VQ, created by a resistor divider from the VA supply. Increasing the capacitance
on FILT+ and VQ will also increase the PSRR at low frequencies. A 10 µF capacitor on VQ improves
the PSRR to 42 dB.
26
DS851F2
CS42L56
DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS
Parameters (Note 31)
Symbol
Min
Max
Units
Iin
-
±10
10
A
pF
1.8 V - 3.3 V Logic
High-Level Output Voltage (IOH = -100 A)
VOH
VL - 0.2
-
V
Low-Level Output Voltage (IOL = 100 A)
VOL
-
0.2
V
0.30•VL
V
V
0.35•VA
V
V
Input Leakage Current
Input Capacitance
High-Level Input Voltage
VL = 1.65 V
VL = 1.8 V
VL = 2.0 V
VL > 2.0 V
Low-Level Input Voltage
VIL
0.83•VL
0.76•VL
0.68•VL
0.65•VL
-
HPDETECT Input
High-Level Input Voltage
Low-Level Input Voltage
HPDVIH
HPDVIL
0.65•VA
-
VIH
31. See “I/O Pin Characteristics” on page 10 for serial and control port power rails.
1
Power Supply
VCP
2.2 µF
1
+
-
VA
0.1 µF
1
VLDO
0.1 µF
1
+
Voltmeter
+
-
VL
GND/AGND
0.1 µF
+
-
Note: Current is derived from the voltage drop across
a 1  resistor in series with each supply input.
Figure 12. Power Consumption Test Configuration
DS851F2
27
CS42L56
POWER CONSUMPTION - ALL SUPPLIES = 1.8 V
ADC
PGA to ADC
4
Stereo Record (Note 35)
ADC
PGA to ADC
5
Mono Play to HP
No Effects
Effects
6
Mono Play to Line
No Effects
Effects
7
8
Stereo Play to HP
Stereo Play to Line
No Effects
x
1
1
1
0
0
0
0
0
ADCAMUX[1:0]
Mono Record (Note 35)
x
x
x
x
0
0
0
0
1
ADCBMUX[1:0]
(Note 34) MCLKDIS=x
3
x
x
x
x
1
1
0
0
1
PDN_LINA[1:0]
MCLKDIS=0
x
x
x
x
0
0
0
0
1
PDN_LINB[1:0]
Standby (Note 33) MCLKDIS=1
Typical Current (mA)
08h page 74
PDN_HPA[1:0]
Off (Note 32)
03h page 59
PDN_HPB[1:0]
1
2
02h
page 58
PDN_CHRG
PDN_ADCB
PDN_ADCA
PDN
Operation Test Conditions (unless otherwise
specified): All zeros input,
slave mode, sample rate =
48 kHz; No load. Refer to
Figure 12 on page 28.
ADC, Line, HP
Sel. Registers
LINEBMUX
LINEAMUX
HPBMUX
HPAMUX
PDN_DSP - 0Fh page 66
Power Ctl. Registers
x
x
x
x
11
11
11
11
11
x
x
x
x
11
11
11
11
10
x
x
x
x
11
11
11
11
11
x
x
x
x
11
11
11
11
11
x
x
x
x
xx
xx
01
00
xx
x
x
x
x
01
00
01
00
xx
1 1 1 0 11 10 11 11 xx
1 1 1 0 11 11 11 10 xx
1 1 1 0 11 11 11 10 xx
1 1 1 0 10 10 11 11 xx
Effects
1 1 1 0 10 10 11 11 xx
No Effects
1 1 1 0 11 11 10 10 xx
Effects
1 1 1 0 11 11 10 10 xx
iVCP
iVA
iVLDO
Class
H
Mode
page
63
0.001 0.001 0.007
0.002
0.001 0.001 0.053
0.007
0.11
0.001 0.010 0.292
0.007
0.56
0.001 0.001 0.020
0.001
0.04
0.001 0.915 0.671
0.018
2.89
0.001 1.056 0.672
0.017
3.14
0.001 1.207 0.824
0.023
3.70
0.002 1.469 0.826
0.022
4.17
0.407 1.100 0.718
0.007
4.02
VCP 0.949 1.107 0.718
xx x x x 0 0 VCP/2 0.407 1.100 1.050
VCP 0.948 1.107 1.050
xx x 0 x x 1 VCP/2 0.392 1.101 0.719
VCP 0.844 1.107 0.717
xx x 0 x x 0 VCP/2 0.392 1.101 1.046
VCP 0.844 1.107 1.046
xx x x 0 0 1 VCP/2 0.604 1.587 0.720
0.007
5.01
0.007
4.62
0.007
5.60
0.007
3.99
0.007
4.82
0.007
4.58
0.007
5.41
0.007
5.25
VCP 1.420 1.594 0.717
xx x x 0 0 0 VCP/2 0.604 1.587 1.090
VCP 1.419 1.594 1.090
xx 0 0 x x 1 VCP/2 0.570 1.589 0.718
VCP 1.205 1.597 0.719
xx 0 0 x x 0 VCP/2 0.570 1.589 1.089
VCP 1.205 1.597 1.088
xx x x 1 1 x VCP/2 0.565 1.180 0.213
0.007
6.73
0.007
5.92
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
1 VCP/2
4.69
3.55
0 1 0 0 11 10 11 11 xx
PGA In, HP Out
Effects
0 1 0 0 11 10 11 11 xx
No Effects
0 0 0 0 10 10 11 11 00
PGA In, HP Out
13
Stereo Play to HP
6.35
5.86
0.007
VCP 1.198 1.188 0.213
Effects
0.007
0.007
0 1 1 0 11 11 10 10 xx xx 1 1 x x x VCP/2 0.571 1.183 0.213 0.007
Stereo Passthrough to Line
Stereo Rec. & Play
7.40
5.19
7.01
10
12
0.007
0.007
3.54
0 1 1 0 10 10 11 11 xx
No Effects
0.02
0.007
Stereo Passthrough to HP
Mono Rec. & Play
Total
Power
(mW)
0.007
9
11
iVL
0 0 0 0 10 10 11 11 00
VCP 1.205 1.190 0.213
00 x x x 0 1 VCP/2 0.408 1.921 1.084
VCP 0.950 1.928 1.089
00 x x x 0 0 VCP/2 0.408 1.921 1.415
VCP 0.952 1.928 1.412
00 x x 0 0 1 VCP/2 0.604 2.820 1.239
VCP 1.422 2.827 1.240
00 x x 0 0 0 VCP/2 0.604 2.820 1.613
0.007
4.71
0.018
6.18
0.018
7.17
0.018
6.77
0.018
7.76
0.023
8.43
0.023
9.92
0.023
VCP 1.424 2.827 1.612 0.023
No Effects 1 1 1 0 10 10 11 11 xx xx x x 0 0 1 VCP/2 2.725 1.579 0.737 0.008
9.11
10.59
9.09
16 load (Note 36)
28
DS851F2
CS42L56
POWER CONSUMPTION - ALL SUPPLIES = 2.5 V
4
Stereo Record (Note 35)
ADC
PGA to ADC
5
6
7
8
Mono Play to HP
Mono Play to Line
Stereo Play to HP
Stereo Play to Line
No Effects
ADCAMUX[1:0]
ADC
PGA to ADC
x
1
1
1
0
0
0
0
0
ADCBMUX[1:0]
Mono Record (Note 35)
x
x
x
x
0
0
0
0
1
PDN_LINA[1:0]
3
x
x
x
x
1
1
0
0
1
PDN_LINB[1:0]
MCLKDIS=0
(Note 34) MCLKDIS=x
x
x
x
x
1
1
1
1
1
PDN_HPA[1:0]
Off (Note 32)
Standby (Note 33) MCLKDIS=1
x
x
x
x
11
11
11
11
11
x
x
x
x
11
11
11
11
10
x
x
x
x
11
11
11
11
11
x
x
x
x
11
11
11
11
11
x
x
x
x
xx
xx
01
00
xx
x
x
x
x
01
00
01
00
xx
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
1
Effects
1 1 1 0 11 10 11 11 xx xx x x x 0 0
No Effects
1 1 1 0 11 11 11 10 xx xx x 0 x x 1
Effects
1 1 1 0 11 11 11 10 xx xx x 0 x x 0
No Effects
1 1 1 0 10 10 11 11 xx xx x x 0 0 1
Effects
1 1 1 0 10 10 11 11 xx xx x x 0 0 0
No Effects
1 1 1 0 11 11 10 10 xx xx 0 0 x x 1
Effects
1 1 1 0 11 11 10 10 xx xx 0 0 x x 0
9
Stereo Passthrough to HP
1 1 1 0 10 10 11 11 xx xx x x 1 1 x
10
Stereo Passthrough to Line
1 1 1 0 11 11 10 10 xx xx 1 1 x x x
11
Mono Rec. & Play
PGA In, HP Out
1 1 0 0 11 10 11 11 xx 00 x x x 0 1
No Effects
Effects
12
Stereo Rec. & Play
PGA In, HP Out
No Effects
Typical Current (mA)
08h page 74
PDN_HPB[1:0]
1
2
03h page 59
PDN_CHRG
PDN_ADCB
PDN_ADCA
PDN
Operation Test Conditions
(unless otherwise specified):
All zeros input, slave mode,
sample rate = 48 kHz; No
load. Refer to Figure 12 on
page 28.
MUX Registers
LINEBMUX
LINEAMUX
HPBMUX
HPAMUX
PDN_DSP - 0Fh page 66
Power Ctl. Registers
02h
page 58
iVCP
Class
H
Mode
page
63
VCP/2
VCP
VCP/2
VCP
VCP/2
VCP
VCP/2
VCP
VCP/2
VCP
VCP/2
VCP
VCP/2
VCP
VCP/2
VCP
VCP/2
VCP
VCP/2
VCP
VCP/2
iVA
iVLDO
iVL
Total
Power
(mW)
0.004
0.012
0.012
0.003
0.026
0.026
0.033
0.033
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.05
0.26
1.25
0.10
3.91
4.35
5.11
5.94
7.35
10.53
8.19
11.36
7.28
10.11
8.12
10.95
9.46
13.48
10.39
14.40
9.31
12.65
10.24
13.58
5.78
9.15
5.80
9.14
0.723 2.148 1.157 0.026
10.14
VCP 1.981 2.160 1.162 0.026
13.32
10.97
14.15
0.002
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.723
1.984
0.723
1.982
0.693
1.819
0.693
1.819
0.936
2.530
0.934
2.526
0.873
2.197
0.873
2.196
0.870
2.202
0.874
2.196
0.002
0.003
0.017
0.003
0.789
0.963
1.089
1.419
1.469
1.480
1.468
1.480
1.469
1.481
1.469
1.481
2.099
2.113
2.099
2.113
2.102
2.115
2.102
2.115
1.203
1.218
1.206
1.220
0.013
0.084
0.466
0.032
0.744
0.748
0.919
0.922
0.734
0.736
1.071
1.069
0.736
0.732
1.073
1.069
0.737
0.736
1.109
1.109
0.737
0.736
1.110
1.108
0.228
0.228
0.228
0.228
1 1 0 0 11 10 11 11 xx 00 x x x 0 0 VCP/2 0.723 2.148 1.491 0.026
VCP 1.983 2.160 1.489 0.027
VCP/2
1 0 0 0 10 10 11 11 00 00 x x 0 0 1
0.936 3.233 1.335 0.033
VCP 2.532 3.247 1.336 0.033
Effects
1 0 0 0 10 10 11 11 00 00 x x 0 0 0 VCP/2 0.936 3.233 1.710 0.033
No Effects
1 1 1 0 10 10 11 11 xx xx x x 0 0 1 VCP/2 3.032 2.081 0.754 0.012
VCP 2.534 3.247 1.710 0.033
13
Stereo Play to HP
13.84
17.87
14.78
18.81
14.70
16 load (Note 36)
Notes:
32.
33.
34.
35.
36.
DS851F2
RESET pin and clock/data lines held LO, PDN=x.
RESET pin held HI, PDN=1.
Clock/data lines held HI.
Either inputs 1 or 2 may be selected. Input 1 is shown for simplicity.
In accordance with the JEITA CP-2905B standard, 0.1 mW (per channel) is delivered to the headphone load.
29
CS42L56
4. APPLICATIONS
4.1
4.1.1
Overview
Basic Architecture
The CS42L56 is a highly integrated, ultra-low power, 24-bit audio CODEC comprised of stereo A/D and
D/A converters with pseudo-differential stereo input and output amplifiers. The ADC and DAC are designed using multi-bit delta-sigma techniques; both converters operate at a low oversampling ratio of
64xFs, maximizing power savings while maintaining high performance. The CODEC accepts and is capable of generating serial audio clocks (SCLK, LRCK) derived from a USB or a standard audio input Master Clock (MCLK). Designed with a very low voltage digital core and low voltage Class H amplifiers
(powered from an integrated low-dropout regulator and a step-down/inverting charge pump, respectively),
the CS42L56 provides significant reduction in overall power consumption.
4.1.2
Line Inputs
The analog input portion of the CODEC allows selection from up to three stereo line-level sources into a
Programmable Gain Amplifier (PGA). The optional line pseudo-differential configuration provides common-mode noise rejection for single-ended inputs and is available on AIN1x or AIN2x. If pseudo-differential operation is not required, the pins can also be configured independently as two additional analog
inputs (AIN3x).
4.1.3
Line and Headphone Outputs (Class H, Ground-Centered Amplifiers)
The analog output portion of the CODEC includes separate pseudo-differential headphone and line out
Class H amplifiers. An on-chip step-down/inverting charge pump creates a positive and negative voltage
equal to the input or one-half the input supply for the amplifiers, allowing an adaptable, full-scale output
swing centered around ground. The inverting architecture eliminates the need for large DC-blocking capacitors and allows the amplifier to deliver more power to headphone loads at lower supply voltages. The
step-down architecture allows the amplifier’s power supply to adapt to the required output signal. This
adaptive power supply scheme converts traditional Class AB amplifiers into more power-efficient Class H
amplifiers.
4.1.4
Fixed-function DSP Engine
The fixed function digital signal processing engine processes both the PCM serial input data and ADC
output data allowing a mix between the two. Independent volume control, left/right channel swaps, mono
mixes, tone control comprise the DSP engine.
4.1.5
Beep Generator
The beep generator delivers tones at select frequencies across approximately two octave major scales.
With independent volume control, beeps may be configured to occur continuously, periodically or at single
time intervals.
4.1.6
Power Management
Several control registers and bits provide independent power down control of the ADC, PGA, DSP, headphone and line outputs, allowing operation in select applications with minimal power consumption.
30
DS851F2
CS42L56
4.2
Analog Inputs
PGAAMUX[1:0]
BOOSTA
ADCAMUTE
DIGSFT
ADCAATT[7:0]
ADCB=A
HPFRZA
HPFA
HPFA_CF[1:0]
PDN_ADCA
INV_ADCA
PDN_CHRG
AIN1A
AIN2A
PREAMPA[1:0]
Gain Adjust
ADC
AIN1REF
/ AIN3A
PGA A
ADCAMUX[1:0]
VQ
NGALL
NG
THRESH[3:0]
NGDELAY[1:0]
PDN_ADCB
PGABVOL[5:0]
PGAB=A
ANLGZC
AIN1B_REF
AIN2B_REF
Noise Gate
ALC
`
ALCARATE[5:0]
ALCRRATE[5:0]
ALCMAX[2:0]
ALCMIN[2:0]
ALCB
ALCBSRDIS
ALCBZCDIS
DIGSUM[1:0]
Swap/
Mix
DIGMUX
PCM Serial Interface
PDN_ADCA
PGAAVOL[5:0]
PGAB=A
ANLGZC
AIN1A_REF
AIN2A_REF
ALCA
ALCASRDIS
ALCAZCDIS
ADCBMUX[1:0]
AIN2REF
/ AIN3B
PGA B
Gain Adjust
ADC
PREAMPB[1:0]
AIN2B
AIN1B
PDN_ADCB
INV_ADCB
PDN_CHRG
PGABMUX[1:0]
ANALOG PASSTHRU TO
HEADPHONE, LINE AMPLIFIER MUX
HPFRZB
HPB
HPFB_CF[1:0]
BOOSTB
ADCBMUTE
DIGSFT
ADCBATT[7:0]
ADCB=A
TO DSP Engine
FROM DSP ENGINE
Figure 13. Analog Input Signal Flow
Referenced Control
Analog Front End
AIN1x_REF
AIN2x_REF
PREAMPx[1:0]
PGAxMUX[1:0]
PDN_ADCx
PGAxVOL[5:0]
PGAB=A
ANLGZCx
ADCxMUX[1:0]
INV_ADCx
PDN_CHRG
HPFRZx
HPFx
HPFx_CF[1:0]
Digital Volume
BOOSTx
ADCxMUTE
ADCxATT[7:0]
DIGSFT
ADCB=A
ALCx
ALCxSRDIS
ALCxZCDIS
ALCARATE[5:0]
ALCRRATE[5:0]
MAX[2:0]
MIN[2:0]
NGALL
NG
THRESH[3:0]
NGDELAY[1:0]
Miscellaneous
DIGSUM[1:0]
DIGMUX
DS851F2
Register Location
“Analog Input 1 x Reference Configuration” on page 74
“Analog Input 2 x Reference Configuration” on page 74
“PGA x Preamplifier Gain” on page 77
“PGA x Input Select” on page 77
“Power Down ADC x” on page 59
“PGAx Volume” on page 78
“PGA Channel B=A” on page 76
“Analog Zero Cross” on page 64
“ADC x Input Select” on page 75
“Invert ADC Signal Polarity” on page 76
“Power Down ADC Charge Pump” on page 59
“ADCx High-Pass Filter Freeze” on page 75
“ADCx High-Pass Filter” on page 75
“HPF x Corner Frequency” on page 75
“Boostx” on page 77
“ADC Mute” on page 76
“ADCx Volume” on page 78
“Digital Soft Ramp” on page 64
“ADC Channel B=A” on page 76
“ALCx” on page 79
“ALCx Soft Ramp Disable” on page 82
“ALCx Zero Cross Disable” on page 82
“ALC Attack Rate” on page 79
“ALC Release Rate” on page 80
“ALC Maximum Threshold” on page 80
“ALC Minimum Threshold” on page 81
“Noise Gate All Channels” on page 81
“Noise Gate Enable” on page 81
“Noise Gate Threshold and Boost” on page 82
“Noise Gate Delay Timing” on page 82
“Digital Sum” on page 76
“Digital MUX” on page 63
31
CS42L56
4.2.1
Pseudo-differential Inputs
The CS42L56 implements a pseudo-differential input stage. The AINxREF inputs are intended to be used
as a pseudo-differential reference signal. This feature provides common mode noise rejection with singleended signals. Figure 14 shows a basic diagram outlining the internal implementation of the pseudo-differential input stage, including a recommended stereo pseudo-differential input topology. If pseudo-differential input functionality is not required, the AINxREF pin should be AC-coupled to GND.
Common-Mode Cancellation,
Invert, and Gain
VCM
V=?
VCM
xIN
Signal+
-
DC-Block
xREF
Parallel PCB
traces from
signal source
ADC
+
Digital
Full Scale
AntiAliasing
Filter
VCM
VA
-
R
VCM
VQ
+
VCM
R
AGND
AFILTx
Figure 14. Stereo Pseudo-Differential Input
It should be noted that the AINxREF inputs are intended to be used solely to provide a low-level, pseudodifferential reference signal for the internal input amplifiers when in pseudo-differential mode. Using the
analog input pins in a fully differential configuration by providing a large signal on the AINxREF pin is not
recommended. The output of the PGA will clip if the voltage difference between AINxx and AINxREF exceeds the full-scale voltage specification (See Note 10 on page 17).
4.2.2
Large-scale Inputs
The CS42L56 allows the user to input signals that would be larger than the ADC full-scale input voltage
by using the PGA to attenuate the signal prior to going to the ADC. Table 1 shows the PGA gain setting
needed to stay under the maximum ADC input voltage.
Supply Voltage
(V)
1.8
2.5
PGA Gain Setting
(dB)
0.0
-0.5
-1.0
-1.5
0.0
-0.5
-1.0
-1.5
Maximum Input Voltage
(VPP)
(mVRMS)
509
1.44
539
1.52
571
1.62
604
1.71
707
2.00
748
2.12
793
2.24
840
2.38
Table 1. Input Voltage PGA Settings
32
DS851F2
CS42L56
If signals larger than what is shown in Table 1 are needed, an external resistor divider should be used as
shown in Table 15. When using an external resistor divider, the PGA must be configured to be in-circuit.
R1
1 µF
Input
AINxx
R3
R2
Figure 15. Analog Input Attenuation
Three parameters determine the values of resistors R1 and R2 as shown in Figure 15: source impedance,
attenuation, and input impedance. Table 2 shows the design equation used to determine these values.
• Source Impedance: Source impedance is defined as the impedance as seen from the PGA looking
back into the signal network. The PGA achieves optimal THD+N performance with a source impedance less than 5 k.
• Attenuation: The required attenuation factor depends on the magnitude of the input signal. The fullscale input voltage is specified under “Analog Input Characteristics” on page 14. The user should select values for R1 and R2 such that the magnitude of the incoming signal multiplied by the attenuation
factor is less than or equal to the full-scale input voltage of the device.
• Input Impedance: Input impedance is the impedance from the signal source to the PGA analog input
pins, including the PGA. The PGA’s input impedance (R3 in Figure 15, Table 2, and Figure 16) is given in the “Analog Input Characteristics” on page 14.
Source Impedance
 R1  R2 ----------------------- R1 + R2 
Attenuation Factor
 R2  R3 
---------------------------------------------------------------------------- R1  R2 + R2  R3 + R1  R3 
Input Impedance
--------------------------------------------------R1  R3 + R2  R3 
 R1 + R2 + R3 
Table 2. Analog Input Design Parameters
Figure 16 illustrates an example configuration with the PGA in-circuit using one 7.87 kresistor for R1
and one 4.75 k resistor for R2. Based on the discussion above, this circuit provides an optimal interface
for both the PGA and the signal source. First, consumer equipment frequently requires an approximate
input impedance of 10 kwhich the combination of the resistors provide. Second, this circuit will attenuate a typical line level voltage, 2 Vrms, to the full-scale input of the PGA, 0.7 Vrms when VA = 2.5 V. Finally, at approximately 3 kthe source impedance is within the allowable range of the PGA.
7.87 k
Input
4.75 k
1 µF
AINxx
R3
Figure 16. Example Analog Input Attenuation
DS851F2
33
CS42L56
4.2.3
Microphone Inputs
Any of the line inputs can be configured as a microphone input by using the MICBIAS pin to power the
external microphone circuit and by configuring the additional +10 or +20 dB gain in the PGA to properly
boost the low-level microphone signal.
4.2.3.1
External Passive Components
The analog inputs are internally biased to VQ. Input signals must be AC coupled using external capacitors
with values consistent with the desired high-pass filter design. The analog input resistance may be combined with an external capacitor to achieve the desired cutoff frequency. The equation below gives an example:
1
fc = -------------------------------------------- = 39.79 Hz
2  4 k   1 F 
An electrolytic capacitor must be placed such that the positive terminal is positioned relative to the side
with the greater bias voltage. The MICBIAS voltage level is controlled by the BIAS_LVL[1:0] bits.
The MICBIAS series resistor must be selected based on the requirements of the particular microphone
used.
MICBIAS
MICx+
+
//

//
+
MICx-
Figure 17. MIC Input Mix w/Common Mode Rejection
Referenced Control
Register Location
BIAS_LVL[1:0] ..................... “Microphone Bias Output Level” on page 77
4.2.4
Optional VCM Buffer
Leaving an analog input pin floating when not being used might inject distortion in the analog input signal
path. To prevent this, the analog inputs may be internally biased to VCM by using a weak internal VCM
buffer when not being used. The VCM buffer outputs a weakly buffered version of the internal commonmode voltage and biases the chip-side of the analog input AC-coupling capacitor to a constant DC level.
This prevents the analog signal from being distorted when that particular channel is not selected by either
the PGA or ADC input MUX. If an analog signal is routed to any place other than just the CS42L56, it is
recommended to set this bit to 0b. If all analog signals are only routed to the CS42L56, this bit may be left
set to 1b.
Referenced Control
Register Location
PDN_VBUF[1:0]................... “Power Down VCM Bias Buffer” on page 58
4.2.5
Automatic Level Control (ALC)
The function of the ALC is to maintain the level of the analog input signal between the maximum and minimum threshold settings programmed in the ALCMAX[2:0] and ALCMIN[2:0] registers. When enabled, the
ALC monitors the signal level after the digital volume control block in the input signal path and detects
34
DS851F2
CS42L56
whenever a threshold violation occurs. It then modifies the signal level by adjusting the gain settings in
the PGA and ADC digital volume control accordingly.
As shown in Figure 18, if the input signal level rises above the maximum threshold, the ALC first lowers
the PGA gain settings. It then decreases the ADC digital volume at a programmable “attack” rate and
maintains the resulting level below the maximum threshold. In contrast, if the input signal level falls below
the minimum threshold, the ALC first increases the ADC digital volume settings and then increases the
PGA gain settings at a programmable “release” rate. However, once an attack or release operation has
been performed on an input signal, the ALC does not change the PGA or the digital volume control settings until the next threshold violation occurs.
Input (before ALC)
ALCMAX[2:0]
below full scale
ALCMIN[2:0]
below full scale
PGA
Response
ADC Vol.
Cntrl.
Response
Total ALC
Response
Output
(after ALC)
ALCMAX[2:0]
ALCMIN[2:0]
below full scale
below full scale
ARATE[5:0]
RRATE[5:0]
ARATE[5:0]
Figure 18. ALC Operation
DS851F2
35
CS42L56
4.2.5.1
Attack/Release Time Calculations:
The time taken by the ALC to perform an attack or a release operation is a function of the PGA/ADC digital
volume control gain settings, ADC soft ramp/zero-cross settings, sample rate (Fs), maximum/minimum
threshold settings, attack/release rate settings and the signal level after the digital volume control block.
Since the PGA and the ADC digital volume control blocks perform gain increment/decrement steps at different rates, this must be taken into account to get an accurate attack/release time duration calculation.
The attack and release rates for each block is determined by the formulas given below:
1
ADC Digital Volume Attack/Release Rate = ---------------------------------------------------------------- dB/LRCK
16  ALCxRATE[5:0] + 1
0.5
PGA Attack/Release Rate = ---------------------------------------------------------------16  ALCxRATE[5:0] + 1
dB/LRCK
The maximum amount of time that can be taken by the ALC to perform an attack or release operation on
a signal with a specific maximum/minimum threshold, PGA gain and ADC digital volume setting is determined by the formulae below:
For attack operations:
PGAxVOL[5:0] – (-6)
(-ALCMAX[2:0])
Maximum Attack Time = ---------------------------------------------------------------- + ---------------------------------------------------------------- s
 PGA Attack Rate   Fs  ADC Attack Rate   Fs
For release operations:
ADCxATT[7:0] – ALCMAX[2:0]
PGAxVOL[5:0] – (-6)
Maximum Release Time = --------------------------------------------------------------------------------- + -------------------------------------------------------------------- ADC Release Rate   Fs
 PGA Release Rate   Fs
s
Recommended settings: Best level control may be realized with a fast attack and a slow release setting
with soft ramp enabled in the control registers.
It should be noted that the ALC can only apply the gain up to the amount set in the PGAxVOL and ADCxATT registers and that the ALC maintains the output signal between the ALCMIN and ALCMAX thresholds. As a result when the input signal level changes, the level-controlled output may not always be the
same but will always fall within the thresholds.
4.3
Referenced Control
Register Location
PGAxVOL[5:0] .....................
ADCxATT[7:0] ......................
ALCMAX[2:0], ALCMIN[2:0]
ALCARATE[5:0]....................
ALCRRATE[5:0]....................
“PGAx Volume” on page 78
“ADCx Volume” on page 78
“ALC Threshold (Address 24h)” on page 80
“ALC Enable & Attack Rate (Address 22h)” on page 79
“ALC Release Rate (Address 23h)” on page 79
Analog In to Analog Out Passthrough
The CS42L56 accommodates analog routing of the analog input signal directly to the headphone and line
out amplifiers. This feature is useful in applications that utilize an FM tuner where audio recovered over-theair must be transmitted to the headphone amplifier without digital conversion in the ADC and DAC. This analog passthrough path reduces power consumption and is immune to modulator switching noise that could
interfere with some tuners. This path is selected using the Line and/or HP mux bits and powering down the
ADC.
Referenced Control
Register Location
PDN_ADCx ......................... “Power Down ADC x” on page 59
HPxMUX.............................. “Headphone Input Select” on page 83
LINExMUX........................... “Line Input Select” on page 83
36
DS851F2
CS42L56
4.4
Analog Outputs
INPUTS FROM ADCA
and ADCB
Fixed Function DSP
MSTAVOL[7:0]
MSTBVOL[7:0]
AMIXAMUTE
AMIXBMUTE
AMIXAVOL[6:0]
AMIXBVOL[6:0]
VOL
PCM Serial Interface
PMIXAMUTE
PMIXBMUTE
PMIXAVOL[6:0]
PMIXBVOL[6:0]
Demph
DEEMPH
VOL
LIMARATE[7:0]
LIMRRATE[7:0]
LMAX[2:0]
CUSH[2:0]
LIMSRDIS
LIMIT
LIMIT_ALL
Channel
Swap
Chnl Vol.
Settings
Limiter
ADCASWAP[1:0]
ADCBSWAP[1:0]
Peak
Detect
PCMASWAP[1:0]
PCMBSWAP[1:0]
Channel
Swap


VOL
INV_PCMA
INV_PCMB
MSTAMUTE
MSTBMUTE
DIGSFT
BPVOL[4:0]
OFFTIME[2:0]
ONTIME[3:0]
FREQ[3:0]
BEEP[1:0]
Digital Mix to ADC
Serial Interface
Bass/
Treble/
Control
VOL
*
to HP and
Line MUX
TC_EN
BASS_CF[1:0]
TREB_CF[1:0]
BASS[3:0]
TREB[3:0]
PLYBCKB=A
Beep
Generator
DAC
PDN_DSP
*
MSTxVOL[7:0], MSTxMUTE and DIGSFT are always
available regardless of the PDN_DSP setting.
Figure 19. DSP Engine Signal Flow
Referenced Control
DSP
PDN_DSP
DEEMPH
PMIXxMUTE
PMIXxVOL[6:0]
INV_PCMx
PCMxSWAP[1:0]
AMIXxMUTE
AMIXxVOL[6:0]
ADCxSWAP[1:0]
MSTxVOL[7:0]
MSTxMUTE
DIGSFT
PLYBCKB=A
TC_EN
BASS_CF[1:0]
TREB_CF[1:0]
BASS[3:0]
TREB[3:0]
Limiter
LIMIT
LIMIT_ALL
LIMSRDIS
LMAX[2:0]
CUSH[2:0]
LIMARATE[7:0]
LIMRRATE[7:0]
Beep Generator
DS851F2
Register Location
“Power Down DSP” on page 66
“HP/Line De-Emphasis” on page 66
“PCM Mixer Channel x Mute” on page 67
“PCM Mixer Channel x Volume” on page 68
“Invert PCM Signal Polarity” on page 66
“PCM Mix Channel Swap” on page 74
“ADC Mixer Channel x Mute” on page 67
“ADC Mixer Channel x Volume” on page 67
“ADC Mix Channel Swap” on page 74
“Master Volume Control” on page 70
“Master Playback Mute” on page 67
“Digital Soft Ramp” on page 64
“Playback Channels B=A” on page 66
“Tone Control Enable” on page 73
“Bass Corner Frequency” on page 73
“Treble Corner Frequency” on page 72
“Bass Gain” on page 73
“Treble Gain” on page 73
“Peak Detect and Limiter” on page 86
“Peak Signal Limit All Channels” on page 86
“Limiter Soft Ramp Disable” on page 82
“Limiter Maximum Threshold” on page 85
“Limiter Cushion Threshold” on page 85
“Limiter Attack Rate” on page 87
“Limiter Release Rate” on page 86
Refer to “Beep Generator” on page 45 for all referenced controls
37
CS42L56
VCP
Step-down/Inverting
Charge Pump
ADPTPWR[1:0]
Class H Control
= HP and Line Supply
HP Detection
+VCP
+VCP/2
HPDETECT
PDN_HPx[1:0]
PDN_LINx[1:0]
-VCP
-VCP/2
+VHPFILT
CHGFREQ[3:0]
+HP
Supply
from PGAx
from DACx
+Line
Supply
HPOUTA
HPOUTB
-
HPxMUX
HPxVOL[6:0]
HPxMUTE
ANLGZC
PLYBCKB=A
+
HPREF
LINEOUTA
LINEOUTB
+
LINExMUX
LINExVOL[6:0]
LINExMUTE
ANLGZC
PLYBCKB=A
LINEREF
-HP
Supply
-Line
Supply
-VHPFILT
Figure 20. Analog Output Stage
4.5
Referenced Control
Register Location
Analog Output
ADPTPWR[1:0]
CHGFREQ[3:0]
PDN_HPx[1:0]
PDN_LINx[1:0]
HPxMUTE
HPxVOL[7:0]
LINExMUTE
LINExVOL[7:0]
ANLGZC
PLYBCKB=A
HPxMUX
LINExMUX
“Adaptive Power Adjustment” on page 63
“Charge Pump Frequency” on page 63
“Headphone Power Control” on page 59
“Line Power Control” on page 60
“Headphone Channel x Mute” on page 83
“Headphone Volume Control” on page 84
“Line Channel x Mute” on page 84
“Line Volume Control” on page 84
“Analog Zero Cross” on page 64
“Playback Channels B=A” on page 66
“Headphone Input Select” on page 83
“Line Input Select” on page 83
Class H Amplifier
The CS42L56 headphone and line output amplifiers use a Cirrus Logic patented Bi-Modal Class H technology. This technology maximizes operating efficiency of the typical Class AB amplifier while maintaining high
performance. In a Class H amplifier design, the rail voltages supplied to the amplifier vary with the needs of
the music passage that is being amplified. This prevents unnecessarily wasting energy during low power
passages of program material or when the program material is played back at a low volume level.
The central component of the Bi-Modal Class H technology found in the CS42L56 is the internal charge
pump, which creates the rail voltages for the headphone and line amplifiers of the device. The charge pump
receives its input voltage from the voltage present on the VCP pin of the CS42L56. From this input voltage,
the charge pump creates the differential rail voltages that are supplied to the amplifier output stages. The
charge pump is capable of supplying two sets of differential rail voltages. One set is equal to ± VCP and the
other is equal to ± VCP/2.
38
DS851F2
CS42L56
4.5.1
Power Control Options
The method by which the CS42L56 decides which set of rail voltages is supplied to the amplifier output
stages depends on the settings of the Adaptive Power bits (ADPTPWR) found in “Class H Control (Address 08h)” section on page 63. As detailed in this section, there are four possible settings for these bits:
standard Class AB mode (settings 01 and 10), adapt to volume mode (setting 00) and adapt to signal (setting 11).
Referenced Control
Register Location
ADPTPWR[1:0] ................... “Adaptive Power Adjustment” on page 63
4.5.1.1
Standard Class AB Mode (setting 01 and 10)
When the Adaptive Power bits are set to either 01 or 10, the rail voltages supplied to the amplifiers will be
held to ±VCP/2 or ±VCP, respectively. For these two settings, the rail voltages supplied to the output stages are held constant, regardless of the signal level, internal volume settings, or the settings of the AIN and
DIN advisory volume registers. In either of these two settings, the amplifiers in the CS42L56 simply operate in a traditional Class AB configuration.
4.5.1.2
Adapt to Volume Mode (setting 00)
When the Adaptive Power bits are set to 00, the Class H controller decides which set of rail voltages to
send to the amplifiers based upon the gain and attenuation levels of all active internal processing blocks.
The active processing blocks are determined by the signal path configured; the configured path then dictates which volume settings affect the controller. The paths available in the CS42L56 are (1) analog-in to
analog-out, (2) analog-in/digital-mix to analog-out and (3) digital-in to analog out.
AINADV[7:0]
0 to -102dB
MICxBOOST
+10 or +20dB
1
PDNMICx
Analog
PGAAVOL [5:0]
PGAB=A
+12 to -6dB
PDN_ADCx
ADCB=A
DIGSUM[1:0]
ADCxMUX[ 1:0]
BOOSTx
0 or +20dB
PGA
ADCxMUTE
ADCxATT[7:0]
0 to -96dB
AMIXxMUTE
AMIXxVOL [6:0]
Input Advisory
Volume
ADC
Mix/
Swap
HPxMUX
BASS[3:0]
TREB[3:0]
PMIXxSWAP[1:0]
+12 to -51.5dB
Mix/
Swap
3
BEEP[1:0]
+12 to -10.5dB
Bass/Treble
Boost/Cut
TCEN
PDN_DSP
MSTxMUTE
MSTxVOL[7:0]
HP
PLYBCKB=A
LINE
+12 to -102 dB
DAC
+12 to -60dB
LINExMUX
BPVOL [4:0]
+6 to -50dB
0 to -102dB
DINADV[7:0]
Beep
Generator
HPxVOL [6:0]
HPxMUTE
PDN_HPx[1:0]
HPDETECT (pin)
+12 to -60dB
2
PMIXxMUTE
PMIXxVOL[6:0]
Digital
ADCxSWAP[1:0]
+12 to -51.5dB
LINExVOL [6:0]
LINExMUTE
PDN_LINx[1:0]
HPDETECT (pin)
Non-volume controls (italicized ) affect how the Class H
controller interprets the various volume settings.
Figure 21. Class H Volume-Adapt Paths
Certain controls for the processing blocks in the signal path (such as B=A, mux, swap, mix and various
enables) do not directly affect the controller’s total volume sum. These controls do, however, have an indirect effect since they determine how the volume setting of the relevant processing block contributes to
the controller’s sum. These controls (italicized in Figure 21) determine whether or not the associated volDS851F2
39
CS42L56
ume setting should be factored in with the volume settings of other control blocks in the signal path.
The Class H controller can be affected by the combined effect of all the volume settings in the relevant
path or the maximum sum in each channel (A, B) and the maximum sum in each amplifier (HP, Line). To
determine the correct rail voltage for the amplifier, the controller assumes the input advisory volume is set
correctly and that the signal level in each processing block does not exceed 0 dB.
General Effect of Volume Sum in Signal Path
If the total gain and attenuation set in the volume control
registers would cause the amplifiers to clip a full- scale
signal when operating from the lower set of rail voltages,
the controller instructs the charge pump to supply the
higher set of the two rail voltages (±VCP) to the amplifiers (at this threshold, the total gain/attenuation has exceeded -10.5 dB).
If the total gain and attenuation set in the volume control
registers would not cause the amplifiers to clip a fullscale signal when operating from the lower set of rail
voltages, the controller instructs the charge pump to
supply the lower set of rail voltages (±VCP/2) to the amplifiers (at this threshold, the total gain/attenuation is
less than or equal to -10.5 dB).
+
+
=
±VCP
-10. 5 dB
±VCP/2
HP/LINE Supply
Class H
Controller
Figure 22. Volume Sum Effects
In order to adjust for external analog (line or microphone sources) or digital (DSP) input volume settings,
the Class H controller also takes into account the settings of the AIN and DIN advisory volume registers.
These volume settings do not affect the volume of the signal but serves to offset the total volume presented to the Class H controller.
of A
Path
of B
Path
=
Effect of Volume Sum in A or B Path
=
case2
HP/LINE Supply
Decision:
VCP
VCP/2
Case 2 Result
Case 1 Result
-10.5 dB
-10. 5 dB
case1
case1
case2
Class H
Controller
Figure 23. Channel/Amp Effect
40
Since amplifier channels A and B share the same supply, the
controller must consider the volume settings in the path of
both these channels before supplying the appropriate rail
voltage. For any of the three signal paths, the controller will
instruct the charge pump to supply ±VCP to the amplifiers
when the total gain/attenuation of either channel A or B exceeds the -10.5 dB threshold.
Conversely, the charge pump will supply ±VCP/2 only when
the total gain/attenuation of both channels A and B is less
than or equal to -10.5 dB.
DS851F2
CS42L56
of Line
Path =
Effect of Volume Sum in HP or Line Paths
of HP
Path =
case2
HP/LINE Supply
Decision:
VCP
VCP/2
Case 2 Result
Case 1 Result
-10.5 dB
-10. 5 dB
case1
case1
Since the HP and the Line amplifiers also share the same supply, the explanation above applies to the total gain/attenuation
set in the HP and Line amplifiers. If enabled, the volume settings in the path of both amplifiers are considered before the
charge pump supplies the appropriate rail voltage.
case2
Class H
Controller
Figure 24. HP/Line Channel Effects
DS851F2
Referenced Control
Register Location
AINADV[7:0] ........................
MICxBOOST .......................
PDNMICx ............................
PGAxVOL............................
ADCxMUX ...........................
ADCxMUTE.........................
DIGSUM[1:0] .......................
PDN_DSP ...........................
HPxVOL[7:0] .......................
LINExVOL[7:0] ....................
MSTxVOL[7:0].....................
MSTxMUTE.........................
AMIXxVOL[6:0]....................
PMIXxVOL[6:0]....................
DINADV[7:0]........................
ADCxSWP...........................
PCMxSWP ..........................
HPxMUX..............................
LINExMUX...........................
HPxMUTE ...........................
LINExMUTE ........................
PDN_HPx ............................
PDN_LINEx .........................
TREB...................................
BASS...................................
TCEN...................................
BEEP...................................
BPVOL ................................
ADCB=A ..............................
PGAB=A ..............................
BOOSTx ..............................
PLYBCKB=A........................
“Analog Input Advisory Volume” on page 69
“PGA x Preamplifier Gain” on page 77
“Power Down MIC Bias” on page 59
“PGAx Volume” on page 78
“ADC x Input Select” on page 75
“ADC Mute” on page 76
“Digital Sum” on page 76
“Power Down DSP” on page 66
“Headphone Volume Control” on page 84
“Line Volume Control” on page 84
“Master Volume Control” on page 70
“Master Playback Mute” on page 67
“ADC Mixer Channel x Volume” on page 67
“PCM Mixer Channel x Volume” on page 68
“Digital Input Advisory Volume” on page 69
“ADC Mix Channel Swap” on page 74
“PCM Mix Channel Swap” on page 74
“Headphone Input Select” on page 83
“Line Input Select” on page 83
“Headphone Channel x Mute” on page 83
“Line Channel x Mute” on page 84
“Headphone Power Control” on page 59
“Line Power Control” on page 60
“Treble Gain” on page 73
“Bass Gain” on page 73
“Tone Control Enable” on page 73
“Beep Configuration” on page 72
“Beep Volume” on page 72
“ADC Channel B=A” on page 76
“PGA Channel B=A” on page 76
“Boostx” on page 77
“Playback Channels B=A” on page 66
41
CS42L56
4.5.1.3
Adapt to Output Mode (setting 11)
When the Adaptive Power bits are set to 11, the CS42L56 decides which of the two sets of rail voltages
to send to the amplifiers based solely upon the level of the signal being sent to the amplifiers. If the signal
that is sent to the amplifiers would cause the amplifiers to clip when operating on the lower set of rail voltages, the control logic instructs the charge pump to provide the higher set of rail voltages (±VCP) to the
amplifiers. If the signal that is sent to the amplifiers would not cause the amplifiers to clip when operating
on the lower set of rail voltages, the control logic instructs the charge pump to provide the lower set of rail
voltages (±VCP/2) to the amplifiers. This mode of operation eliminates the need to advise the CS42L56
of volume settings external to the device.
Note: Signal detection is implemented using digital circuitry. This mode should, therefore, not be used
with analog passthrough (PGA to HP/Line).
4.5.2
Power Supply Transitions
Ideal Transition
+VCP
+VCP
2
Actual Transition caused
by VHPFILT Capacitor
Time
Actual Transition caused
by VHPFILT Capacitor
-VCP
2
-VCP
Ideal Transition
Figure 25. VHPFILT Transitions
Charge pump transitions from the lower set of rail
voltages to the higher set of rail voltages occur on
the next FLYN/P clock cycle. Despite the fast response time of the system, the capacitive elements on the VHPFILT pins prevent the rail
voltages from changing instantaneously. Instead,
the rail voltages ramp up from ±VCP/2 to ±VCP
based on the time constant created by the output
impedance of the charge pump and the capacitor
on the VHPFILT pin (the transition time is approximately 20 µs).
This behavior is detailed in Figure 25. During this
charging transition, a high dv/dt transient on the inputs may briefly clip the outputs before the rail
voltages charge to the full ±VCP level. This transitory clipping has been found to be inaudible in listening tests.
When the charge pump transitions from the higher set of rail voltages to the lower set, there is a one second delay before the charge pump supplies the lower rail voltages to the amplifiers. This hysteresis ensures that the charge pump does not toggle between the two rail voltages as signals approach the clip
threshold. It also prevents clipping in the instance of repetitive high level transients in the input signal. The
diagram for this transitional behavior is detailed in Figure 26.
42
DS851F2
CS42L56
Output Level
1 second
-10 dB
Time
Amplifier Rail
Voltage
VCP
VCP
2
Time
- VCP
2
- VCP
Figure 26. VHPFILT Hysteresis
4.5.3
Efficiency
As discussed in previous sections, the amplifiers internal to the CS42L56 operate from one of two sets of
rail voltages, based upon the needs of the signal being amplified or the total gain/attenuation settings. The
power curves for the two modes of operation are shown in Figure 27 and Figure 28.
This graph details the power supplied to a load versus the power drawn from the supply for each of the
three use cases.
All Supplies= 1.8 V
RL = 32 
±VCP
Class AB Amplifiers do not
conserve power with typical
headphone loads.
Class H Amplifiers automatically
switch between ±VCP and ±VCP/2
to conserve power with typical
headphone loads.
±VCP/2
Figure 27. Class H Power to Load vs. Power from VCP Supply - 32 
DS851F2
43
CS42L56
When the rail voltages are set to VCP, the amplifiers will operate in their least efficient mode. When the
rail voltages are held at ±VCP/2, the amplifiers will operate in their most efficient mode, but will be clipped
if required to amplify a full-scale signal. Note: The ±VCP/2 curve ends at the point at which the output of
the amplifiers reaches 10% THD+N.
The benefit of Bi-Modal Class H is shown in the solid trace on the graph. At lower output levels, the amplifiers operate on the ±VCP/2 curve. At higher output levels, they operate on the ±VCP curve. The duration the amplifiers will operate on either of the two curves (±VCP/2 or ±VCP) depends on both the content
and the output level of the program material being amplified. The highest efficiency operation will result
from maintaining an output level that is close to, but not exceeding, the clip threshold of the ±VCP/2 curve.
All Supplies= 1.8 V
RL = 16
Figure 28. Class H Power to Load vs. Power from VCP Supply - 16 
4.6
Beep Generator
The Beep Generator generates audio frequencies across approximately two octave major scales. It offers
three modes of operation: Continuous, multiple, and single (one-shot) beeps. Sixteen On and eight Off times
are available.
It should be noted that the beep is generated before the limiter and may affect desired limiting performance.
If the limiter function is used, it may be necessary to set the beep volume sufficiently below the threshold to
prevent the peak detect from triggering. Since the master volume control, MSTxVOL[7:0], will affect the
beep volume, the DAC volume may alternatively be controlled using the PMIXxVOL[6:0] bits.
44
DS851F2
CS42L56
BEEP[1:0] =
'11'
CONTINUOUS BEEP: Beep turns on at a configurable frequency (FREQ) and volume (BPVOL) and remains on
until REPEAT is cleared.
BEEP[1:0] =
'10'
MULTI-BEEP: Beep turns on at a configurable frequency (FREQ)
and volume (BPVOL) for the duration of ONTIME and turns off for
the duration of OFFTIME. On and off cycles are repeated until
REPEAT is cleared.
BEEP[1:0] =
'01'
SINGLE-BEEP: Beep turns on at a
configurable frequency (FREQ) and
volume (BPVOL) for the duration of
ONTIME. BEEP must be cleared
and set for additional beeps.
...
BPVOL[4:0]
FREQ[3:0]
ONTIME[3:0]
OFFTIME[2:0]
Figure 29. Beep Configuration Options
4.7
Referenced Control
Register Location
MSTxVOL[7:0].....................
PMIXxVOL[6:0]....................
OFFTIME[2:0]......................
ONTIME[3:0] .......................
FREQ[3:0] ...........................
BEEP[1:0]............................
BPVOL[4:0] .........................
“Master Volume Control: MSTA (Address 13h) & MSTB (Address 14h)” on page 70
“PCMx Mixer Volume: PCMA (Address 0Fh) & PCMB (Address 10h)” on page 68
“Beep Off Time” on page 71
“Beep On Time” on page 71
“Beep Frequency” on page 70
“Beep Configuration” on page 72
“Beep Volume” on page 72
Limiter
When enabled, the limiter monitors the digital input signal before the DAC modulators, detects when levels
exceed the maximum threshold settings and lowers the master volume at a programmable attack rate below
the maximum threshold. When the input signal level falls below the maximum threshold, the AOUT volume
returns to its original level set in the Master Volume Control register at a programmable release rate. Attack
and release rates are affected by the DAC soft ramp settings and sample rate, Fs. Limiter soft ramp dependency may be independently enabled/disabled using the LIMSRDIS.
It should be noted that the Limiter maintains the output signal between the CUSH and MAX thresholds. As
the digital input signal level changes, the level-controlled output may not always be the same but will always
fall within the thresholds
Recommended settings: Best limiting performance may be realized with a fast attack and a slow release
setting with soft ramp enabled in the control registers. The CUSH bits allow the user to set a threshold slightly below the maximum threshold for hysteresis control - this cushions the sound as the limiter attacks and
releases.
Referenced Control
Register Location
Limiter Rates .......................
Limiter Thresholds
LIMSRDIS............................
Master Volume Control ........
“Limiter Release Rate” on page 86, “Limiter Attack Rate” on page 87
“Limiter Maximum Threshold” on page 85, “Limiter Cushion Threshold” on page 85
“Limiter Soft Ramp Disable” on page 82
“Master Volume Control: MSTA (Address 13h) & MSTB (Address 14h)” on page 70
DS851F2
45
CS42L56
Input
MAX[2:0]
Limiter
ATTACK/RELEASE SOUND
CUSHION
Volume
Output
(after Limiter)
CUSH[2:0]
MAX[2:0]
ARATE[5:0]
RRATE[5:0]
Figure 30. Peak Detect & Limiter
4.8
Serial Port Clocking
The CODEC serial audio interface port operates either as a slave or master. It accepts externally generated
clocks in Slave Mode (M/S = 0b) and will generate synchronous clocks derived from an input master clock
(MCLK) in Master Mode (M/S = 1b). The RATIO[4:0] bits need to be set appropriately according to the
clocks being used in the system for correct device functionality. Table 3. “Serial Port Clock Ratio Settings”
beginning on page 47 shows possible clock frequencies achievable by the CS42L56 serial port and provides a reference on how the RATIO[4:0] bits need to be configured for different clock ratios. Figure 31
shows how SCLK and LRCK are internally derived in Master Mode.
MCLK (MHz)
LRCK (kHz)
22.5792
11.0250
22.0500
44.1000
11.0250
22.0500
44.1000
11.0250
22.0500
44.1000
(MKPREDIV=1b)
(MCLKDIV2=1b)
11.2896
(MKPREDIV=0b)
(MCLKDIV2=1b)
5.6448
(MKPREDIV=0b)
(MCLKDIV2=0b)
MCLK/ LRCK
Clock Ratio
2048
1024
512
1024
512
256
512
256
128
SCLK (MHz)
0.7056
1.4112
2.8224
0.7056
1.4112
2.8224
0.7056
1.4112
2.8224
MCLK/SCLK
Clock Ratio
32
16
8
16
8
4
8
4
2
RATIO[4:0]
11000
10000
01000
11000
10000
01000
11000
10000
01000
Table 3. Serial Port Clock Ratio Settings
46
DS851F2
CS42L56
MCLK (MHz)
24.0000
(MKPREDIV=1b)
(MCLKDIV2=1b)
12.0000
(MKPREDIV=0b)
(MCLKDIV2=1b)
6.0000
(MKPREDIV=0b)
(MCLKDIV2=0b)
24.5760
(MKPREDIV=1b)
(MCLKDIV2=1b)
12.2880
(MKPREDIV=0b)
(MCLKDIV2=1b)
6.1440
(MKPREDIV=0b)
(MCLKDIV2=0b)
LRCK (kHz)
8.0000
11.0294
12.0000
16.0000
22.0588
24.0000
32.0000
44.1180
48.0000
8.0000
11.0294
12.0000
16.0000
22.0588
24.0000
32.0000
44.1180
48.0000
8.0000
11.0294
12.0000
16.0000
22.0588
24.0000
32.0000
44.1180
48.0000
8.0000
12.0000
16.0000
24.0000
32.0000
48.0000
8.0000
12.0000
16.0000
24.0000
32.0000
48.0000
8.0000
12.0000
16.0000
24.0000
32.0000
48.0000
MCLK/ LRCK
Clock Ratio
3000
2176
2000
1500
1088
1000
750
544
500
1500
1088
1000
750
544
500
375
272
250
750
544
500
375
272
250
187.5
136
125
3072
2048
1536
1024
768
512
1536
1024
768
512
384
256
768
512
384
256
192
128
SCLK (MHz)
0.496
0.75
0.744
0.992
1.500
1.488
1.984
3.000
2.976
0.496
0.75
0.744
0.992
1.500
1.488
1.984
3.000
2.976
0.496
0.75
0.744
0.992
1.500
1.488
1.984
3.000
2.976
0.512
0.768
1.024
1.536
2.048
3.072
0.512
0.768
1.024
1.536
2.048
3.072
0.512
0.768
1.024
1.536
2.048
3.072
MCLK/SCLK
Clock Ratio
~48
32
~32
~24
16
~16
~12
8
~8
~24
16
~16
~12
8
~8
~6
4
~4
~12
8
~8
~6
4
~4
~3
2
~2
48
32
24
16
12
8
24
16
12
8
6
4
12
8
6
4
3
2
RATIO[4:0]
11101
11011
11001
10101
10011
10001
01101
01011
01001
11101
11011
11001
10101
10011
10001
01101
01011
01001
11101
11011
11001
10101
10011
10001
01101
01011
01001
11100
11000
10100
10000
01100
01000
11100
11000
10100
10000
01100
01000
11100
11000
10100
10000
01100
01000
Table 3. Serial Port Clock Ratio Settings (Continued)
DS851F2
47
CS42L56
RATIO[4:0]
MCLKDIS
MCLKPREDIV
MCLK
MCLKDIV2
1
0
2
1
1
0
2
1
125
128
136
187.5
192
250
256
272
375
384
500
512
544
750
768
01001
01000
01011
01101
01100
10001
10000
10011
10101
10100
11001
11000
11011
11100
11101
LRCK
SCK=MCK[1:0]
NOTE:
The SCLK divide ratios shown in the figure are not
accurate when MCLK is a multiple of 6 MHz. For
accurate SCLK frequency values please refer to
Table 3. “Serial Port Clock Ratio Settings” beginning on
page 47 and Note 21 on page 23.

010

011

100

101

110

111
00
SCLK
RATIO[4:2]
10
11
Figure 31. Serial Port Timing in Master Mode
48
Referenced Control
Register Location
SCK=MCK[1:0] ....................
MKPREDIV...........................
MCLKDIV2...........................
MCLKDIS.............................
RATIO[4:0]...........................
“SCLK Equals MCLK” on page 60
“MCLK Pre-Divide” on page 60
“MCLK Divide” on page 61
“MCLK Disable” on page 61
“Clock Ratio” on page 62
DS851F2
CS42L56
4.9
Digital Interface Format
The serial port operates in standard I²S or Left-Justified digital interface formats with varying bit depths from
16 to 24. Data is clocked out of the ADC or into the DAC on the rising edge of SCLK. Figures 32-33 illustrate
the general structure of each format. Refer to “Switching Specifications - Serial Port” on page 23 for exact
timing relationship between clocks and data.
For additional information, application note AN282 presents a tutorial of the 2-channel serial audio interface.
AN282 can be downloaded from the Cirrus Logic web site at http://www.cirrus.com.
LRCK
L eft C h a n n el
R ig ht C h a n n el
SCLK
SDIN
MSB
M SB
LSB
AOUTA / AINxA
MSB
LSB
AOUTB / AINxB
Figure 32. I²S Format
LRCK
L eft C h a n n el
R ig ht C h a n n el
SCLK
SDIN
MSB
LS B
AOUTA / AINxA
MSB
LS B
MSB
AOUTB / AINxB
Figure 33. Left-Justified Format
4.10
Initialization
The CODEC enters a Power-Down state upon initial power-up. The interpolation and decimation filters, delta-sigma modulators and control port registers are reset. The charge pump, LDO, internal voltage reference
and switched-capacitor low-pass filters are powered down. The device will remain in the Power-Down state
until the RESET pin is brought high. The control port is accessible once RESET is high and the desired register settings can be loaded per the interface descriptions in the “Register Description” on page 58.
After the PDN bit is released and MCLK is valid, the quiescent voltage, VQ, and the internal voltage reference, FILT+, will begin powering up to normal operation. The charge pump slowly powers up and charges
the capacitors. Power is then applied to the headphone amplifiers and switched-capacitor filters, and the analog/digital outputs enter a muted state. MCLK occurrences are counted over one LRCK period to determine
a valid MCLK/LRCK ratio and normal operation begins.
4.11
Recommended DAC to HP or Line Power Sequence
4.11.1
Power-Up Sequence
1. Hold RESET low until the power supplies are stable. Note: VA must be applied prior to VCP to
maintain the relationship specified in “Recommended Operating Conditions” on page 14. RESET
should be held low for a minimum of 1 ms after power supplies are stable.
2. Apply MCLK at the appropriate frequency, as discussed in Section 4.8. SCLK may be applied or set
to master at any time; LRCK may only be applied or set to master while the PDN bit is set to 1.
3. Bring RESET high.
DS851F2
49
CS42L56
4. Wait a minimum of 500 ns before writing to the control port.
5. The default state of the master power down bit, PDN, is 1b. Load the following register settings while
keeping the PDN bit set to 1b.
6. Configure the headphone and line power down controls for ON, OFF, or HPDETECT operation.
Register Controls: PDN_HPx[1:0], PDN_LINx[1:0]
7. Configure the serial port I/O control for master or slave operation.
Register Controls: M/S
8. Configure the master clock (MCLK) and bit clock (SCLK) I/O control as desired. Refer to 4.8 “Serial
Port Clocking” on page 47 for the required configuration for a given master clock.
Register Controls: MKPREDIV, MCLKDIV2, SCLK=MCLK
9. Configure the sample rate (LRCK) controls for the desired sample rate. Refer to 4.8 “Serial Port
Clocking” on page 47 for the required configuration for a given sample rate.
Register Controls: See Register 05h
10. The default state of the DSP engine’s power down bit, PDN_DSP, is 0b. It is not necessary to power
down the DSP before changing the various DSP functions. The DSP may be powered down for
additional power savings.
11. To minimize pops on the headphone or line amplifier, each respective analog volume control must
first be muted and set to maximum attenuation.
Register Controls: HPxMUTE, LINExMUTE, HPxVOL[6:0], LINExVOL[6:0]
12. After muting the headphone or line amplifiers, set the PDN bit to 0b.
13. Wait 75 ms for the headphone or line amplifier to power up.
14. Un-mute and ramp the volume for the headphone or line amplifiers to the desired level.
15. Bring RESET low if the analog or digital supplies drop below the recommended operating condition
to prevent power glitch related issues.
4.11.2
Power Up Sequence
Register Location
Step 5, 12 ............................
Step 6 ..................................
Steps 7-8 .............................
Step 9 ..................................
Step 10 ................................
Step 11a,14a .......................
Step 11b,14b .......................
“Power Down” on page 59
“Power Control 2 (Address 04h)” on page 59
“Clocking Control 1 (Address 05h)” on page 60
“Clocking Control 2 (Address 06h)” on page 61
“Power Down DSP” on page 66
“Headphone Channel x Mute” on page 83, “Line Channel x Mute” on page 84
“Headphone Volume Control” on page 84, “Line Volume Control” on page 84
Power-Down Sequence
1. To minimize pops during volume transitions, mute the master volume with soft ramp enabled.
Register Controls: MSTxMUTE, DIGSFT
2. The required wait time for muting the master volume as described in 1 above depends on the soft
ramp rate, initial master volume setting and sample rate. For example, if the master volume is set to
0 dB and the sample rate is 48 kHz, the required wait time is at least:
8 [soft ramp rate is 1/8 dB per LRCK] x 102 [volume must transition from 0 dB to -102 dB] x 21 µs
[period of 48 kHz LRCK] = 17 ms. Wait at least [the delay required according to the details in this
step].
3. To minimize pops on the headphone or line amplifier, each respective analog volume control must
first be muted and set to maximum attenuation.
Register Controls: HPxMUTE, LINExMUTE, HPxVOL[6:0], LINExVOL[6:0]
4. Disable soft ramp and zero cross volume transitions.
Register Controls: ANLGSFT, ANLGZC, DIGSFT
5. Set the PDN bit to ‘1’b.
6. Wait at least 100 µs.
50
DS851F2
CS42L56
The CODEC will be fully powered down after this 100 µs delay. Prior to the removal of the master
clock (MCLK), this delay of at least 100 µs must be implemented after step 5 to avoid premature
disruption of the CODEC’s power down sequence. A disruption in the CODEC’s power down
sequence may abruptly stop the charge pump, causing the headphone and/or line amplifiers to drive
the outputs up to the VCP supply. Such disruption may also cause clicks and pops on the output of
the DAC’s.
7. Optionally, MCLK may be removed at this time.
8. To achieve the lowest operating quiescent current, bring RESET low. All control port registers will be
reset to their default state.
9. Power Supply Removal (Option 1): Switch power supplies to a high impedance state. Note: VCP
must be removed prior to VA to maintain the relationship specified in “Recommended Operating
Conditions” on page 14.
10. Power Supply Removal (Option2): To minimize pops when the power supplies are pulled to ground,
a discharge resistor must be added in parallel with the capacitor on the FILT+ pin. With a 1 M
resistor and a 2.2 µF capacitor on FILT+, FILT+ will ramp to ground in approximately 5 seconds.
After step 5, wait the required time for FILT+ to ramp to ground before pulling VA to ground. Note:
VCP must be pulled to ground prior to VA to maintain the relationship specified in “Recommended
Operating Conditions” on page 14.
4.12
Power Down Sequence
Register Location
Step 1a ................................
Step 1b ................................
Step 4 ..................................
Step 5 ..................................
“Headphone Volume Control” on page 84, “Line Volume Control” on page 84
“Headphone Channel x Mute” on page 83, “Line Channel x Mute” on page 84
“Analog Soft Ramp” on page 64, “Analog Zero Cross” on page 64, “Digital Soft Ramp” on page 64
“Power Down” on page 59
Recommended PGA to HP or Line Power Sequence (Analog Passthrough)
4.12.1 Power-Up Sequence
1. Hold RESET low until the power supplies are stable. Note: VA must be applied prior to VCP to
maintain the relationship specified in “Recommended Operating Conditions” on page 14. RESET
should be held low for a minimum of 1 ms after power supplies are stable.
2. Apply MCLK at the appropriate frequency.
3. Bring RESET high.
4. Wait a minimum of 500 ns before writing to the control port.
5. The default state of the master power down bit, PDN, is ‘1’b. Load the following register settings while
keeping the PDN bit set to ‘1’b.
6. Configure the headphone and line power down controls for ON, OFF, or HPDETECT operation.
Register Controls: PDN_HPx[1:0], PDN_LINx[1:0]
7. Configure the HP and/or Line amplifiers to receive the analog output from the PGA.
Register Controls: LINExMUX, HPxMUX
8. Power down the DSP engine.
Register Controls: PDN_DSP
9. To minimize pops on the headphone or line amplifier, each respective analog volume control must
first be muted and set to maximum attenuation.
Register Controls: HPxMUTE, LINExMUTE, HPxVOL[6:0], LINExVOL[6:0]
10. After muting the headphone and/or line amplifiers, set the PDN bit to ‘0’b.
11. Wait 75 ms for the headphone or line amplifier to power up.
12. Un-mute and ramp the volume for the headphone or line amplifiers to the desired level.
DS851F2
51
CS42L56
13. Bring RESET low if the analog or digital supplies drop below the recommended operating condition
to prevent power glitch related issues.
Power Up Sequence
Register Location
Step 5, 10 ............................
Step 6 ..................................
Steps 7 ................................
Step 8 ..................................
Step 9a,12a .........................
Step 9b,12b .........................
“Power Down” on page 59
“Power Control 2 (Address 04h)” on page 59
“AIN Reference Configuration, ADC MUX (Address 1Ah)” on page 74
“Power Down DSP” on page 66
“Headphone Channel x Mute” on page 83, “Line Channel x Mute” on page 84
“Headphone Volume Control” on page 84, “Line Volume Control” on page 84
4.12.2 Power-Down Sequence
1. To minimize pops on the headphone and/or line amplifier, each respective analog volume control
must first be muted and set to maximum attenuation. To reduce the volume transition delay while
minimizing pops, enable the analog zero cross function and disable the analog soft ramp function.
Register Controls: HPxMUTE, LINExMUTE, HPxVOL[6:0], LINExVOL[6:0], ANLGSFT, ANLGZC
2. The required wait time for muting the analog volume as described in 1 above depends on the worst
case zero cross timeout of 150 ms in passthrough mode. Wait at least 150 ms.
3. Disable soft ramp and zero cross volume transitions.
Register Controls: ANLGZC, DIGSFT
4. Set the PDN bit to ‘1’b.
5. Wait at least 100 µs.
The CODEC will be fully powered down after this 100 µs delay. Prior to the removal of the master
clock (MCLK), this delay of at least 100 µs must be implemented after step 4 to avoid premature
disruption of the CODEC’s power down sequence. A disruption in the CODEC’s power down
sequence may abruptly stop the charge pump, causing the headphone and/or line amplifiers to drive
the outputs up to the VCP supply. Such disruption may also cause clicks and pops on the output of
the DAC’s.
6. Optionally, MCLK may be removed at this time.
7. To achieve the lowest operating quiescent current, bring RESET low. All control port registers will be
reset to their default state.
8. Power Supply Removal (Option 1): Switch power supplies to a high impedance state. Note: VCP
must be removed prior to VA to maintain the relationship specified in “Recommended Operating
Conditions” on page 14.
9. Power Supply Removal (Option 2): To minimize pops when the power supplies are pulled to ground,
a discharge resistor must be added in parallel with the capacitor on the FILT+ pin. With a 1 M
resistor and a 2.2 µF capacitor on FILT+, FILT+ will ramp to ground in approximately 5 seconds.
After step 5, wait the required time for FILT+ to ramp to ground before pulling VA to ground. Note:
VCP must be pulled to ground prior to VA to maintain the relationship specified in “Recommended
Operating Conditions” on page 14.
52
Power Down Sequence
Register Location
Step 1a................................
Step 1b................................
Step 1c ................................
Step 3..................................
Step 4..................................
“Analog Soft Ramp” on page 64, “Analog Zero Cross” on page 64
“Headphone Volume Control” on page 84, “Line Volume Control” on page 84
“Headphone Channel x Mute” on page 83, “Line Channel x Mute” on page 84
, “Analog Zero Cross” on page 64, “Digital Soft Ramp” on page 64
“Power Down” on page 59
DS851F2
CS42L56
4.13
Control Port Operation
The control port is used to access the registers allowing the CODEC to be configured for the desired operational modes and formats. The operation of the control port may be completely asynchronous with respect
to the audio sample rates. However, to avoid potential interference problems, the control port pins should
remain static if no operation is required.
The device enters software mode only after a successful write command using one of two software protocols: SPI or I²C, with the device acting as a slave. The SPI protocol is permanently selected whenever there
is a high-to-low transition on the AD0/CS pin after reset. If using the I²C protocol, pin AD0/CS should be
permanently connected to either VL or GND; this option allows the user to slightly alter the chip address as
desired.
4.13.1 SPI Control
In Software Mode, CS is the CS42L56 chip-select signal, CCLK is the control port bit clock (input into the
CS42L56 from the microcontroller), CDIN is the input data line from the microcontroller. Data is clocked
in on the rising edge of CCLK. The CODEC will only support write operations. Read request will be ignored.
Figure 34 shows the operation of the control port in Software Mode. To write to a register, bring CS low.
The first seven bits on CDIN form the chip address and must be 1001010. The eighth bit is a read/write
indicator (R/W), which should be low to write. The next eight bits form the Memory Address Pointer (MAP),
which is set to the address of the register that is to be updated. The next eight bits are the data which will
be placed into the register designated by the MAP.
There is MAP auto-increment capability, enabled by the INCR bit in the MAP register. If INCR is a zero,
the MAP will stay constant for successive read or writes. If INCR is set to a 1, the MAP will auto-increment
after each byte is read or written, allowing block reads or writes of successive registers.
CS
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17
CCLK
CHIP ADDRESS (WRITE)
CDIN
1
0
0
1
0
1
0
MAP BYTE
0
INCR
6
5
4
3
DATA +n
DATA
2
1
0
7
6
1
0
7
6
1
0
Figure 34. Control Port Timing in SPI Mode
4.13.2 I²C Control
SDA is a bidirectional data line. Data is clocked into and out of the part by the clock, SCL. The signal timings for a read and write cycle are shown in Figure 35 and Figure 36. A Start condition is defined as a
falling transition of SDA while the clock is high. A Stop condition is defined as a rising transition of SDA
while the clock is high. All other transitions of SDA occur while the clock is low. The first byte sent to the
CS42L56 after a Start condition consists of a 7-bit chip address field and a R/W bit (high for a read, low
for a write).
The upper 6 bits of the address field are fixed at 100101. Pin ADO forms the least significant bit of the
chip address and should be connected to VL or DGND as desired. To communicate with the CS42L56,
the chip address field, which is the first byte sent to the CS42L56, should match 100101+AD0. The eighth
bit of the address is the R/W bit. If the operation is a write, the next byte is the Memory Address Pointer
(MAP); the MAP selects the register to be read or written. If the operation is a read, the contents of the
DS851F2
53
CS42L56
register pointed to by the MAP will be output. Setting the auto-increment bit in MAP allows successive
reads or writes of consecutive registers. Each byte is separated by an acknowledge bit. The ACK bit is
output from the CS42L56 after each input byte is read and is input to the CS42L56 from the microcontroller after each transmitted byte.
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18
24 25 26 27 28
19
SCL
CHIP ADDRESS (WRITE)
1
SDA
0
0
1
0
1
AD0
MAP BYTE
0
INCR
6
5
4
3
2
1
0
ACK
7
6
1
ACK
DATA +n
DATA +1
DATA
0
7
6
1
0
7
6
1
0
ACK
ACK
STOP
START
Figure 35. Control Port Timing, I²C Write
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16
17 18
19
20 21 22 23 24 25 26 27 28
SCL
CHIP ADDRESS (WRITE)
SDA
1
0
0
1
STOP
MAP BYTE
0 1 AD0 0
INCR
6
5
4
3
2
1
ACK
CHIP ADDRESS (READ)
1
0
0
0
1
0
1 AD0 1
ACK
START
DATA
START
7
ACK
DATA +1
0
7
ACK
0
DATA + n
7
0
NO
ACK
STOP
Figure 36. Control Port Timing, I²C Read
Since the read operation cannot set the MAP, an aborted write operation is used as a preamble. As shown
in Figure 36, the write operation is aborted (after the acknowledge for the MAP byte) by sending a stop
condition. The following pseudocode illustrates an aborted write operation followed by a read operation.
Send start condition.
Send 10010100 (chip address & write operation).
Receive acknowledge bit.
Send MAP byte, auto-increment off.
Receive acknowledge bit.
Send stop condition, aborting write.
Send start condition.
Send 10010101 (chip address & read operation).
Receive acknowledge bit.
Receive byte, contents of selected register.
Send acknowledge bit.
Send stop condition.
Setting the auto-increment bit in the MAP allows successive reads or writes of consecutive registers. Each
byte is separated by an acknowledge bit.
4.13.3 Memory Address Pointer (MAP)
The MAP byte comes after the address byte and selects the register to be read or written. Refer to the
pseudo code above for implementation details.
4.13.3.1 Map Increment (INCR)
The device has MAP auto-increment capability enabled by the INCR bit (the MSB) of the MAP. If INCR is
set to 0, MAP will stay constant for successive I²C writes or reads. If INCR is set to 1, MAP will auto-increment after each byte is read or written, allowing block reads or writes of successive registers.
54
DS851F2
CS42L56
5. REGISTER QUICK REFERENCE
Default values are shown below the bit names. Unless otherwise specified, all “Reserved” bits must maintain their
default value.
Adr.
Function
01h ID 1
p 58 (Read Only)
7
DEVID7
x
6
DEVID6
x
5
DEVID5
x
4
DEVID4
x
3
DEVID3
x
2
DEVID2
x
1
DEVID1
x
0
DEVID0
x
AREVID1
x
AREVID0
x
MTLREVID1
x
MTLREVID0
x
PDN
1
PDN_LINA0
1
MCLKDIS
0
RATIO0
1
Reserved
0
CHGFREQ0
1
FREEZE
0
ADCAOVFL
0
02h ID 2
p 58 (Read Only)
03h Power Ctl 1
p 58
04h Power Ctl 2
p 59
05h Clocking Ctl 1
p 60
06h Clocking Ctl 2
p 61
07h Serial Format
p 62
08h Class H Ctl
p 63
09h Misc. Ctl
p 63
0Ah Status
p 65 (Read Only)
Reserved
x
Reserved
x
Reserved
x
AREVID2
x
Reserved
1
PDN_HPB1
1
Reserved
0
Reserved
0
Reserved
0
ADPTPWR1
0
DIGMUX
0
HPDETECT
0
Reserved
1
PDN_HPB0
1
M/S
0
Reserved
0
Reserved
0
ADPTPWR0
0
Reserved
0
SPCLKERR
0
PDN_VBUF
1
PDN_HPA1
1
INV_SCLK
0
AUTO
0
Reserved
0
Reserved
0
Reserved
0
DSPBOVFL
0
PDN_BIAS
1
PDN_HPA0
1
SCK=MCK1
0
RATIO4
0
Reserved
0
Reserved
0
ANLGSFT
0
DSPAOVFL
0
PDN_CHRG PDN_ADCB PDN_ADCA
1
1
1
PDN_LINB1 PDN_LINB0 PDN_LINA1
1
1
1
SCK=MCK0 MKPREDIV MCLKDIV2
0
0
0
RATIO3
RATIO2
RATIO1
1
0
1
DIF
Reserved
Reserved
0
0
0
CHGFREQ3 CHGFREQ2 CHGFREQ1
0
1
0
ANLGZC
DIGSFT
Reserved
1
1
0
MIXBOVFL MIXAOVFL ADCBOVFL
0
0
0
0Bh
p 66
0Ch
p 67
0Dh
p 67
0Eh
p 67
0Fh
p 68
10h
p 68
11h
p 69
PDN_DSP
0
AMIXBMUTE
1
AMIXAVOL7
0
AMIXBVOL7
0
PMIXAVOL7
0
PMIXBVOL7
0
AINADV7
0
DEEMPH
0
AMIXAMUTE
1
AMIXAVOL6
0
AMIXBVOL6
0
PMIXAVOL6
0
PMIXBVOL6
0
AINADV6
0
Reserved
0
PMIXBMUTE
0
AMIXAVOL5
0
AMIXBVOL5
0
PMIXAVOL5
0
PMIXBVOL5
0
AINADV5
0
PLYBCKB=A
0
PMIXAMUTE
0
AMIXAVOL4
0
AMIXBVOL4
0
PMIXAVOL4
0
PMIXBVOL4
0
AINADV4
0
INV_PCMB
0
Reserved
0
AMIXAVOL3
0
AMIXBVOL3
0
PMIXAVOL3
0
PMIXBVOL3
0
AINADV3
0
INV_PCMA
0
Reserved
0
AMIXAVOL2
0
AMIXBVOL2
0
PMIXAVOL2
0
PMIXBVOL2
0
AINADV2
0
DINADV7
0
DINADV6
0
DINADV5
0
DINADV4
0
DINADV3
0
DINADV2
0
DINADV1
0
DINADV0
0
p 70
14h Master B Vol
p 70
15h BEEP Freq,
p 70 On Time
MSTAVOL7
0
MSTBVOL7
0
FREQ3
0
MSTAVOL6
0
MSTBVOL6
0
FREQ2
0
MSTAVOL5
0
MSTBVOL5
0
FREQ1
0
MSTAVOL4
0
MSTBVOL4
0
FREQ0
0
MSTAVOL3
0
MSTBVOL3
0
ONTIME3
0
MSTAVOL2
0
MSTBVOL2
0
ONTIME2
0
MSTAVOL1
0
MSTBVOL1
0
ONTIME1
0
MSTAVOL0
0
MSTBVOL0
0
ONTIME0
0
16h BEEP Vol,
p 71 Off Time
OFFTIME2
0
OFFTIME1
0
OFFTIME0
0
BPVOL4
0
BPVOL3
0
BPVOL2
0
BPVOL1
0
BPVOL0
0
17h BEEP,
p 72 Tone Cfg.
BEEP1
0
BEEP0
0
Reserved
0
TREB_CF1
0
TREB_CF0
0
BASS_CF1
0
BASS_CF0
0
TC_EN
0
Playback Ctl
DSP Mute Ctl
ADCMIXA Vol
ADCMIXB Vol
PCMMIXA Vol
PCMMIXB Vol
Analog Input
Advisory Vol
12h Digital Input
p 69 Advisory Vol
13h Master A Vol
Reserved
Reserved
0
0
MSTBMUTE MSTAMUTE
0
0
AMIXAVOL1 AMIXAVOL0
0
0
AMIXBVOL1 AMIXBVOL0
0
0
PMIXAVOL1 PMIXAVOL0
0
0
PMIXBVOL1 PMIXBVOL0
0
0
AINADV1
AINADV0
0
0
TREB3
TREB2
TREB1
TREB0
BASS3
BASS2
BASS1
18h Tone Ctl
p 73
1
0
0
0
1
0
0
19h Channel Mixer PCMBSWP1 PCMBSWP0 PCMASWP1 PCMASWP0 ADCBSWP1 ADCBSWP0 ADCASWP1
p 74 & Swap
0
0
0
0
0
0
0
BASS0
0
ADCASWP0
0
1Ah AIN Ref Conp 74 fig, ADC MUX
ADCAMUX0
0
DS851F2
AIN2B_REF
0
AIN2A_REF
0
AIN1B_REF
0
AIN1A_REF
0
ADCBMUX1 ADCBMUX0 ADCAMUX1
0
0
0
55
CS42L56
Adr.
1Bh
p 75
1Ch
p 76
1Dh
p 77
1Eh
p 77
1Fh
p 77
20h
p 78
21h
p 78
22h
p 79
23h
p 79
24h
p 80
Function
HPF Ctl
Misc. ADC Ctl
7
HPFB
1
ADCB=A
0
PREAMPB1
0
6
HPFRZB
0
PGAB=A
0
PREAMPB0
0
5
HPFA
1
DIGSUM1
0
PREAMPA1
0
4
HPFRZA
0
DIGSUM0
0
PREAMPA0
0
Gain & Bias
Ctl
PGAAMUX1 PGAAMUX0 PGAAVOL5 PGAAVOL4
PGAA MUX,
0
0
0
0
Vol
PGABMUX1 PGABMUX0 PGABVOL5 PGABVOL4
PGAB MUX,
0
0
0
0
Vol
ADCA Attenu- ADCAATT7 ADCAATT6 ADCAATT5 ADCAATT4
0
0
0
0
ator
ADCBATT7
ADCBATT6
ADCBATT5
ADCBATT4
ADCB Attenu0
0
0
0
ator
ALCB
ALCA
ALCARATE5 AALCRATE4
ALC Enable,
0
0
0
0
Attack Rate
ALC_ALL
Reserved
ALCRRATE5 ALCRRATE4
ALC Release
1
0
1
1
Rate
ALCMAX2
ALCMAX1
ALCMAX0
ALCMIN2
ALC Thresh0
0
0
0
olds
NGALL
25h
Noise Gate Ctl
p 81
0
26h ALC, Limiter
ALCASRDIS
p 82 SFT, ZC
0
3
HPFB_CF1
0
INV_ADCB
0
BOOSTB
0
2
HPFB_CF0
0
INV_ADCA
0
BOOSTA
0
1
HPFA_CF1
0
ADCBMUTE
0
BIAS_LVL1
0
0
HPFA_CF0
0
ADCAMUTE
0
BIAS_LVL0
0
PGAAVOL3
0
PGAAVOL2
0
PGAAVOL1
0
PGAAVOL0
0
PGABVOL3
0
PGABVOL2
0
PGABVOL1
0
PGABVOL0
0
ADCAATT3
0
ADCAATT2
0
ADCAATT1
0
ADCAATT0
0
ADCBATT3
0
ADCBATT2
0
ADCBATT1
0
ADCBATT0
0
ALCARATE3 ALCARATE2 ALCARATE1 ALCARATE0
0
0
0
0
ALCRRATE3 ALCRRATE2 ALCRRATE1 ALCRRATE0
1
1
1
1
ALCMIN1
0
ALCMIN0
0
Reserved
0
Reserved
0
NG
0
ALCAZCDIS
0
NGBOOST
0
ALCBSRDIS
0
THRESH2
0
ALCBZCDIS
0
THRESH1
0
LIMSRDIS
0
THRESH0
0
Reserved
0
NGDELAY1
0
Reserved
0
NGDELAY0
0
Reserved
0
27h AMUTE, Line
p 83 & HP MUX
AMUTE
0
Reserved
0
Reserved
0
Reserved
0
LINEBMUX
0
LINEAMUX
0
HPBMUX
0
HPAMUX
0
28h Headphone A
p 83 Volume
HPAMUTE
0
HPAVOL6
0
HPAVOL5
0
HPAVOL4
0
HPAVOL3
0
HPAVOL2
0
HPAVOL1
0
HPAVOL0
0
29h Headphone B
p 83 Volume
HPBMUTE
0
HPBVOL6
0
HPBVOL5
0
HPBVOL4
0
HPBVOL3
0
HPBVOL2
0
HPBVOL1
0
HPBVOL0
0
2Ah Line A
p 84 Volume
LINEAMUTE
0
LINEAVOL6
0
LINEAVOL5
0
LINEAVOL4
0
LINEAVOL3
0
LINEAVOL2
0
LINEAVOL1
0
LINEAVOL0
0
2Bh Line B
p 84 Volume
LINEBMUTE
0
LINEBVOL6
0
LINEBVOL5
0
LINEBVOL4
0
LINEBVOL3 LINEBVOL2 LINEBVOL1
0
0
0
LINEBVOL0
0
2Ch Limit Threshp 85 olds Control
2Dh Limit Ctl,
p 86 Release Rate
LMAX2
0
LMAX1
0
LMAX0
0
CUSH2
0
LIMIT
0
LIMIT_ALL
1
LIMRRATE5
1
LIMRRATE4
1
LIMRRATE3 LIMRRATE2 LIMRRATE1
1
1
1
LIMRRATE0
1
2Eh Limiter Attack
p 87 Rate
Reserved
0
Reserved
0
LIMARATE5
0
LIMARATE4
0
LIMARATE3 LIMARATE2 LIMARATE1
0
0
0
LIMARATE0
0
56
CUSH1
0
CUSH0
0
Reserved
0
Reserved
0
DS851F2
CS42L56
6. REGISTER DESCRIPTION
All registers are read/write except for the chip I.D. and revision register and the status register which are read only.
See the following bit definition tables for bit assignment information. The default state of each bit after a power-up
sequence or reset is listed in each bit description. Unless otherwise specified, all “Reserved” bits must maintain their
default value.
I²C Address: 1001010[R/W]
6.1
Device I.D. Register (Address 01h) (Read Only)
7
6
5
4
3
2
1
0
DEVID7
DEVID6
DEVID5
DEVID4
DEVID3
DEVID2
DEVID1
DEVID0
6.1.1
Device I.D. (Read Only)
Device I.D. code for the CS42L56.
6.2
DEVID[7:0]
Part Number
01010110
CS42L56
Device Revision Register (Address 02h) (Read Only)
7
6
5
4
3
2
1
0
Reserved
Reserved
Reserved
AREVID2
AREVID1
AREVID0
MTLREVID1
MTLREVID0
6.2.1
Alpha Revision (Read Only)
CS42L56 alpha revision level.
6.2.2
AREVID[2:0]
Alpha Revision Level
000
A
Numeric Revision (Read Only)
CS42L56 numeric revision level.
6.3
MTLREVID[1:0]
Metal Revision Level
00
0
Power Control 1 (Address 03h)
7
6
5
4
3
2
1
0
Reserved
Reserved
PDN_VBUF
PDN_BIAS
PDN_CHRG
PDN_ADCB
PDN_ADCA
PDN
6.3.1
Power Down VCM Bias Buffer
Configures the power state of the weak internal VCM buffer.
DS851F2
PDN_VBUF
Weak VCM Status
0
All weak VCM buffers for the AINx inputs that are not selected (either through ADCxMUX[1:0] or PGAxMUX[1:0]) are powered up. The weak VCM buffers for the AINx inputs that are selected are powered down.
1
All weak VCM buffers are powered down.
Application:
“Optional VCM Buffer” on page 35
57
CS42L56
6.3.2
Power Down MIC Bias
Configures the power state of the microphone bias output.
6.3.3
PDN_BIAS
MIC Bias Status
0
Powered Up
1
Powered Down
Power Down ADC Charge Pump
Configures the power state of the ADC charge pump. For optimal ADC performance and power consumption, set to 1b when VA > 2.1 V and set to 0b when VA < 2.1 V.
6.3.4
PDN_CHRG
ADC Charge Pump Status
0
Powered Up
1
Powered Down
Power Down ADC x
Configures the power state of ADC channel x.
6.3.5
PDN_ADCx
ADC Status
0
Powered Up
1
Powered Down
Power Down
Configures the power state of the entire CODEC.
6.4
PDN
CODEC Status
0
Powered Up
1
Powered Down
Power Control 2 (Address 04h)
7
6
5
4
3
2
1
0
PDN_HPB1
PDN_HPB0
PDN_HPA1
PDN_HPA0
PDN_LINB1
PDN_LINB0
PDN_LINA1
PDN_LINA0
6.4.1
Headphone Power Control
Configures how the HPDETECT pin, controls the power for the headphone amplifier.
58
PDN_HPx[1:0]
Headphone Status
00
Headphone channel is ON when the HPDETECT pin, is LO.
Headphone channel is OFF when the HPDETECT pin, is HI.
01
Headphone channel is ON when the HPDETECT pin, is HI.
Headphone channel is OFF when the HPDETECT pin, is LO.
10
Headphone channel is always ON.
11
Headphone channel is always OFF.
DS851F2
CS42L56
6.4.2
Line Power Control
Configures how the HPDETECT pin, 29, controls the power for the line amplifier.
6.5
PDN_LINx[1:0]
Line Status
00
Line channel is ON when the HPDETECT pin, is LO.
Line channel is OFF when the HPDETECT pin, is HI.
01
Line channel is ON when the HPDETECT pin, is HI.
Line channel is OFF when the HPDETECT pin, is LO.
10
Line channel is always ON.
11
Line channel is always OFF.
Clocking Control 1 (Address 05h)
7
6
5
4
3
2
1
0
Reserved
M/S
INV_SCLK
SCK=MCK1
SCK=MCK0
MKPREDIV
MCLKDIV2
MCLKDIS
6.5.1
Master/Slave Mode
Configures the serial port I/O clocking.
6.5.2
M/S
Serial Port Clocks
0
Slave (Input ONLY)
1
Master (Output ONLY)
Application:
“Serial Port Clocking” on page 47
SCLK Polarity
Configures the polarity of the SCLK signal.
6.5.3
INV_SCLK
SCLK Polarity
0
Not Inverted
1
Inverted
SCLK Equals MCLK
Configures the SCLK signal source and speed for master mode.
SCK=MCK[1:0]
Output SCLK
00
Re-timed, bursted signal with minimal speed needed to clock the required data samples
01
Reserved
10
MCLK signal after the MCLK divide by 2 (MCLKDIV2) circuit
11
MCLK signal before the MCLK divide by 2 (MCLKDIV2) circuit
Note: The SCK=MCK[1:0] bits must be set to “00” when the device is in slave mode.
6.5.4
MCLK Pre-Divide
Configures a divide of the input MCLK prior to all internal circuitry.
DS851F2
MKPREDIV
MCLK signal into CODEC
0
No divide
1
Divided by 2
Application:
“Serial Port Clocking” on page 47
59
CS42L56
6.5.5
MCLK Divide
Configures a divide of the MCLK after the MCLK pre-divide.
6.5.6
MCLKDIV2
MCLK signal into CODEC
0
No divide
1
Divided by 2
Application:
“Serial Port Clocking” on page 47
MCLK Disable
Configures the MCLK signal prior to all internal circuitry.
MCLKDIS
On
1
Off; Disables the clock tree to save power when the CODEC is powered down.
Note:
6.6
MCLK signal into CODEC
0
This function should be enabled during power down (PDN=1) ONLY.
Clocking Control 2 (Address 06h)
7
6
5
4
3
2
1
0
Reserved
Reserved
AUTO
RATIO4
RATIO3
RATIO2
RATIO1
RATIO0
6.6.1
Clock Ratio Auto-Detect
Configures the power status of the Auto-Detect circuitry. When enabled, the Auto-Detect circuitry detects
when the LRCK changes and automatically adjusts internal clock divide-ratios eliminating the need of a
register write to account for the change. It should be noted that the Auto-detect circuitry can only detect
when the LRCK changes by a factor of two while the MCLK stays the same (for instance, Mclk = 6.000
MHz; LRCK changes from 48 kHz to 24 kHz). Any other major clock frequency changes must be accounted for by appropriate control port writes.
AUTO
Auto-detection of Clock Ratio
0
Disabled
1
Enabled
Application:
“Serial Port Clocking” on page 47
Note: When AUTO is enabled, the MCLK/LRCK ratio must be implemented according to Table 3 on
page 47.
60
DS851F2
CS42L56
6.6.2
Clock Ratio
Configures the appropriate internal MCLK divide ratio for LRCK and SCLK.
RATIO[4:0]
MCLK/LRCK Ratio
MCLK/SCLK Ratio
01000
128
2
01001
125
2
01011
136
2
01100
192
3
01101
187.5
3
10000
256
4
10001
250
4
10011
272
4
10100
384
6
10101
375
6
11000
512
8
11001
500
8
11011
544
8
11100
750
12
11101
768
12
Application:
“Serial Port Clocking” on page 47
Notes:
1. Register settings not shown in the table are reserved. Use Table 3. “Serial Port Clock Ratio Settings”
beginning on page 47 for determining the register settings based on the system master clock (MCLK),
bit clock (SCLK) and frame clock (LRCK) frequencies.
6.7
Serial Format (Address 07h)
7
6
5
4
3
2
1
0
Reserved
Reserved
Reserved
Reserved
DIF
Reserved
Reserved
Reserved
6.7.1
CODEC Digital Interface Format
Configures the digital interface format for data on SDOUT and SDIN.
DIF
CODEC Interface Format
0
I²S
1
Left Justified
Application:
DS851F2
61
CS42L56
6.8
Class H Control (Address 08h)
7
6
5
4
3
2
1
0
ADPTPWR1
ADPTPWR0
Reserved
Reserved
CHGFREQ3
CHGFREQ2
CHGFREQ1
CHGFREQ0
6.8.1
Adaptive Power Adjustment
Configures how the power to the headphone and line amplifiers adapts to the output signal level.
6.8.2
ADPTPWR[1:0]
Power Supply
00
Adapted to volume setting; Voltage level is determined by the sum of the relevant volume settings
01
Fixed - Headphone and Line Amp supply = ±VCP/2
10
Fixed - Headphone and Line Amp supply = ±VCP
11
Adapted to Signal; Voltage level is dynamically determined by the output signal
Application:
“Class H Amplifier” on page 39
Charge Pump Frequency
Sets the charge pump frequency on FLYN and FLYP.
CHGFREQ[3:0]
N
0000
0
...
0101
5
...
1111
15
Formula:
f MCLK
Frequency = -------------------------4   N + 2  ; where fMCLK is the frequency of the MCLK signal after the MCLKDIV2 circuit.
Notes:
1. The output THD+N performance improves at higher frequencies; power consumption increases at
higher frequencies.
6.9
Misc. Control (Address 09h)
7
6
5
4
3
2
1
0
DIGMUX
Reserved
Reserved
ANLGSFT
ANLGZC
DIGSFT
Reserved
FREEZE
6.9.1
Digital MUX
Selects the signal source for the ADC serial port.
DIGMUX
62
SDOUT Signal Source
0
ADC
1
DSP Mix
DS851F2
CS42L56
6.9.2
Analog Soft Ramp
Configures an incremental volume ramp from the current level to the new level at the specified rate.
6.9.3
ANLGSFT
Volume Changes
Affected Analog Volume Controls
0
Do not occur with a soft ramp
1
Occur with a soft ramp
PGAx_VOL[5:0] (“PGAx Volume” on page 78)
HPxMUTE (“Headphone Channel x Mute” on page 83)
HPxVOL[6:0] (“Headphone Volume Control” on page 84)
LINExMUTE (“Line Channel x Mute” on page 84)
LINExVOL[6:0] (“Line Volume Control” on page 84)
Ramp Rate:
1/8 dB every LRCK cycle
Analog Zero Cross
Configures when the signal level changes occur for the analog volume controls.
ANLGZCx
Volume Changes
Affected Analog Volume Controls
0
Do not occur on a zero crossing
1
Occur on a zero crossing
PGAx_VOL[5:0] (“PGAx Volume” on page 78)
HPxMUTE (“Headphone Channel x Mute” on page 83)
HPxVOL[6:0] (“Headphone Volume Control” on page 84)
LINExMUTE (“Line Channel x Mute” on page 84)
LINExVOL[6:0] (“Line Volume Control” on page 84)
Note: If the signal does not encounter a zero crossing, the requested volume change will occur after a
timeout period between 1024 and 1536 sample periods (approximately 21.3 ms to 32 ms at 48 kHz sample rate).
6.9.4
Digital Soft Ramp
Configures an incremental volume ramp from the current level to the new level at the specified rate.
6.9.5
DIGSFT
Volume Changes
Affected Digital Volume Controls
0
Do not occur with a soft ramp
1
Occur with a soft ramp
ADCxMUTE (“ADC Mute” on page 76)
ADCxATT[7:0] (“ADCx Volume” on page 78)
AMIXxMUTE (“ADC Mixer Channel x Mute” on page 67)
AMIXxVOL[6:0] (“ADC Mixer Channel x Volume” on page 67)
PMIXxMUTE (“PCM Mixer Channel x Mute” on page 67)
PMIXxVOL[6:0] (“PCM Mixer Channel x Volume” on page 68)
MSTxMUTE (“Master Playback Mute” on page 67)
MSTxVOL[7:0] (“Master Volume Control” on page 70)
Ramp Rate:
1/8 dB every LRCK cycle
Freeze Registers
Configures a hold on all register settings.
FREEZE
Control Port Status
0
Register changes take effect immediately
1
Modifications may be made to all control port registers without the changes taking effect until after the
FREEZE is disabled.
Notes:
1. This bit should only be used to synchronize run-time controls, such as volume and mute, during
normal operation. Using this bit before the relevant circuitry begins normal operation could cause the
change to take effect immediately, ignoring the FREEZE bit.
DS851F2
63
CS42L56
6.10
Status (Address 0Ah) (Read Only)
Bits [6:0] in this register are “sticky”. 1b means the associated error condition has occurred at least once
since the register was last read. 0b means the associated error condition has NOT occurred since the last
reading of the register. Reading the register resets these bits to 0. Bit 7 is not “sticky” and will always indicate
current status when the register is read.
7
6
5
4
3
2
1
0
HPDETECT
SPCLKERR
DSPBOVFL
DSPAOVFL
MIXBOVFL
MIXAOVFL
ADCBOVFL
ADCAOVFL
6.10.1 HPDETECT Pin Status (Read Only)
Indicates the status of the HPDETECT pin.
HPDETECT
Pin State
0
Low
1
High
6.10.2 Serial Port Clock Error (Read Only)
Indicates the status of the MCLK to LRCK ratio.
SPCLKERR
Serial Port Clock Status:
0
MCLK/LRCK ratio is valid.
1
MCLK/LRCK ratio is not valid.
Application:
“Serial Port Clocking” on page 47
Note:
nizes.
On initial power up and application of clocks, this bit will report 1b as the serial port re-synchro-
6.10.3 DSP Engine Overflow (Read Only)
Indicates the over-range status in the DSP data path.
DSPxOVFL
DSP Overflow Status:
0
No digital clipping has occurred in the data path after the DSP.
1
Digital clipping has occurred in the data path after the DSP.
6.10.4 MIXx Overflow (Read Only)
Indicates the over-range status in the PCM mix data path.
MIXxOVFL
PCM Overflow Status:
0
No digital clipping has occurred in the data path of the ADC and PCM mix of the DSP.
1
Digital clipping has occurred in the data path of the ADC and PCM mix of the DSP.
6.10.5 ADCx Overflow (Read Only)
Indicates the over-range status in the ADC signal path.
64
ADCxOVFL
ADC Overflow Status:
0
No clipping has occurred anywhere in the ADC signal path.
1
Clipping has occurred in the ADC signal path.
DS851F2
CS42L56
6.11
Playback Control (Address 0Bh)
7
6
5
4
3
2
1
0
PDN_DSP
DEEMPH
Reserved
PLYBCKB=A
INV_PCMB
INV_PCMA
Reserved
Reserved
6.11.1
Power Down DSP
Configures the power state of the DSP Engine.
PDNDSP
DSP Status
DSP Engine Controls/Blocks
0
Powered Up
1
Powered Down
AMIXxMUTE (“ADC Mixer Channel x Mute” on page 67)
AMIXxVOL[6:0] (“ADC Mixer Channel x Volume” on page 67)
PMIXxMUTE (“PCM Mixer Channel x Mute” on page 67)
PMIXxVOL[6:0] (“PCM Mixer Channel x Volume” on page 68)
Beep Generator, Tone Control, De-Emphasis
6.11.2 HP/Line De-Emphasis
Configures a 15s/50s (when Fs = 44.1 kHz) digital de-emphasis filter response on the headphone and
line outputs.
DEEMPH
6.11.3
De-Emphasis Status
0
Disabled
1
Enabled
Playback Channels B=A
Configures independent or ganged volume and mute control of all playback channels. When enabled, the
channel B settings are ignored and the channel A settings control channel A and channel B.
PLYBCKB=A
Single Volume Control for all Playback
Channels
0
Disabled; Independent channel control.
1
Affected Volume Controls
AMIXxMUTE (“ADC Mixer Channel x Mute” on page 67)
AMIXxVOL[6:0] (“ADC Mixer Channel x Volume” on page 67)
PMIXxMUTE (“PCM Mixer Channel x Mute” on page 67)
PMIXxVOL[6:0] (“PCM Mixer Channel x Volume” on page 68)
Enabled; Ganged channel control. Channel MSTxVOL[7:0] (“Master Volume Control” on page 70)
A volume control controls channel B volume. HPxMUTE (“Headphone Channel x Mute” on page 83)
HPxVOL[7:0] (“Headphone Volume Control” on page 84
LINExMUTE[7:0] (“Line Channel x Mute” on page 84)
LINExVOL[7:0] (“Line Volume Control” on page 84)
6.11.4 Invert PCM Signal Polarity
Configures the polarity of the digital input signal.
DS851F2
INV_PCMx
PCM Signal Polarity
0
Not Inverted
1
Inverted
65
CS42L56
6.12
DSP Mute Controls (Address 0Ch)
7
6
5
4
3
2
1
0
AMIXBMUTE
AMIXAMUTE
PMIXBMUTE
PMIXAMUTE
Reserved
Reserved
MSTBMUTE
MSTAMUTE
6.12.1 ADC Mixer Channel x Mute
Configures a digital mute on the ADC mix in the DSP Engine.
AMIXxMUTE
ADC Mixer Mute
0
Disabled
1
Enabled
6.12.2 PCM Mixer Channel x Mute
Configures a digital mute on the PCM mix from the serial data input (SDIN) to the DSP Engine.
PMIXxMUTE
PCM Mixer Mute
0
Disabled
1
Enabled
6.12.3 Master Playback Mute
Configures a digital mute on the master volume control for channel x.
MSTxMUTE
6.13
Master Mute
0
Not muted.
1
Muted
ADCx Mixer Volume: ADCA (Address 0Dh) & ADCB (Address 0Eh)
7
6
5
4
3
2
1
0
AMIXxVOL7
AMIXxVOL6
AMIXxVOL5
AMIXxVOL4
AMIXxVOL3
AMIXxVOL2
AMIXxVOL1
AMIXxVOL0
6.13.1 ADC Mixer Channel x Volume
Sets the volume/gain of the ADC mix in the DSP Engine.
66
AMIXxVOL[7:0]
Volume
0111 1111
+12 dB
...
...
0001 1000
+12 dB
...
...
0000 0001
+0.5 dB
0000 0000
0 dB
1111 1111
-0.5 dB
...
...
1000 1000
-60.0 dB
1000 0111
Mute
...
...
1000 0000
Mute
Step Size:
0.5 dB
DS851F2
CS42L56
6.14
PCMx Mixer Volume: PCMA (Address 0Fh) & PCMB (Address 10h)
7
6
5
4
3
2
1
0
PMIXxVOL7
PMIXxVOL6
PMIXxVOL5
PMIXxVOL4
PMIXxVOL3
PMIXxVOL2
PMIXxVOL1
PMIXxVOL0
6.14.1 PCM Mixer Channel x Volume
Sets the volume/gain of the PCM mix from the serial data input (SDIN) to the DSP Engine.
DS851F2
PMIXxVOL[7:0]
Volume
0111 1111
+12 dB
...
...
0001 1000
+12 dB
...
...
0000 0001
+0.5 dB
0000 0000
0 dB
1111 1111
-0.5 dB
...
...
1000 1000
-60.0 dB
1000 0111
Mute
...
...
1000 0000
Mute
Step Size:
0.5 dB
67
CS42L56
6.15
Analog Input Advisory Volume (Address 11h)
7
6
5
4
3
2
1
0
AINADV7
AINADV6
AINADV5
AINADV4
AINADV3
AINADV2
AINADV1
AINADV0
6.15.1 Analog Input Advisory Volume
Defines the maximum analog input volume level used by the class H controller to determine the appropriate supply for the HP and Line amplifiers.
6.16
AINADV[7:0]
Defined Input Volume
0001 1000
Reserved
···
···
0000 0001
Reserved
0000 0000
0 dB
1111 1111
-0.5 dB
1111 1110
-1.0 dB
···
···
0011 0100
-102 dB
···
···
0001 1001
-102 dB
Step Size:
0.5 dB
Digital Input Advisory Volume (Address 12h)
7
6
5
4
3
2
1
0
DINADV7
DINADV6
DINADV5
DINADV4
DINADV3
DINADV2
DINADV1
DINADV0
6.16.1 Digital Input Advisory Volume
Defines the maximum digital input volume level used by the class H controller to determine the appropriate supply for the HP and Line amplifiers.
DINADV[7:0]
Defined Input Volume
0001 1000
Reserved
···
···
0000 0001
Reserved
0000 0000
0 dB
1111 1111
-0.5 dB
1111 1110
-1.0 dB
···
···
0011 0100
-102 dB
···
···
0001 1001
-102 dB
Step Size:
0.5 dB
Note: Between the headphone and line, the final output voltage from the charge pump is dictated by
the highest required advisory volume. When any respective amplifier is powered down, the charge pump’s
voltage automatically adjusts to the appropriate level.
68
DS851F2
CS42L56
6.17
Master Volume Control:
MSTA (Address 13h) & MSTB (Address 14h)
7
6
5
4
3
2
1
0
MSTxVOL7
MSTxVOL6
MSTxVOL5
MSTxVOL4
MSTxVOL3
MSTxVOL2
MSTxVOL1
MSTxVOL0
6.17.1 Master Volume Control
Sets the volume of the signal out the DSP.
MSTxVOL[7:0]
6.18
Master Volume
0001 1000
+12.0 dB
···
···
0000 0000
0 dB
1111 1111
-0.5 dB
1111 1110
-1.0 dB
···
···
0011 0100
-102 dB
0011 0011
Mute
···
···
0001 1001
Mute
Step Size:
0.5 dB
Beep Frequency & On Time (Address 15h)
7
6
5
4
3
2
1
0
FREQ3
FREQ2
FREQ1
FREQ0
ONTIME3
ONTIME2
ONTIME1
ONTIME0
6.18.1 Beep Frequency
Sets the frequency of the beep signal.
FREQ[3:0]
Frequency (Fs = 12, 24, 48 or 96 kHz)
Pitch
0000
260.87 Hz
C4
0001
521.74 Hz
C5
0010
585.37 Hz
D5
0011
666.67 Hz
E5
0100
705.88 Hz
F5
0101
774.19 Hz
G5
0110
888.89 Hz
A5
0111
1000.00 Hz
B5
1000
1043.48 Hz
C6
1001
1200.00 Hz
D6
1010
1333.33 Hz
E6
1011
1411.76 Hz
F6
1100
1600.00 Hz
G6
1101
1714.29 Hz
A6
1110
2000.00 Hz
B6
1111
2181.82 Hz
C7
Application:
“Beep Generator” on page 45
Notes:
1. This setting must not change when BEEP is enabled.
2. Beep frequency will scale directly with sample rate, Fs.
DS851F2
69
CS42L56
6.18.2 Beep On Time
Sets the on duration of the beep signal.
ONTIME[3:0]
On Time (Fs = 12, 24 or 48 kHz)
0000
~86 ms
0001
~430 ms
0010
~780 ms
0011
~1.20 s
0100
~1.50 s
0101
~1.80 s
0110
~2.20 s
0111
~2.50 s
1000
~2.80 s
1001
~3.20 s
1010
~3.50 s
1011
~3.80 s
1100
~4.20 s
1101
~4.50 s
1110
~4.80 s
1111
~5.20 s
Application:
“Beep Generator” on page 45
Notes:
1. This setting must not change when BEEP is enabled.
2. Beep on time will scale inversely with sample rate, Fs.
6.19
Beep Volume & Off Time (Address 16h)
7
6
5
4
3
2
1
0
OFFTIME2
OFFTIME1
OFFTIME0
BPVOL4
BPVOL3
BPVOL2
BPVOL1
BPVOL0
6.19.1 Beep Off Time
Sets the off duration of the beep signal.
OFFTIME[2:0]
Off Time (Fs = 12, 24 or 48 kHz)
000
~1.23 s
001
~2.58 s
010
~3.90 s
011
~5.20 s
100
~6.60 s
101
~8.05 s
110
~9.35 s
111
~10.80 s
Application:
“Beep Generator” on page 45
Notes:
1. This setting must not change when BEEP and/or REPEAT is enabled.
2. Beep off time will scale inversely with sample rate, Fs.
70
DS851F2
CS42L56
6.19.2 Beep Volume
Sets the volume of the beep signal.
6.20
BPVOL[4:0]
Gain
00110
+6.0 dB
···
···
00000
0 dB
11111
-2 dB
11110
-4 dB
···
···
00111
-50 dB
Step Size:
2 dB
Application:
“Beep Generator” on page 45
Beep & Tone Configuration (Address 17h)
7
6
5
4
3
2
1
0
BEEP1
BEEP0
Reserved
TREBCF1
TREBCF0
BASSCF1
BASSCF0
TCEN
6.20.1 Beep Configuration
Configures a beep mixed with the HP and Line output.
BEEP[1:0]
Beep Occurrence
00
Off
01
Single
10
Multiple
11
Continuous
Application:
“Beep Generator” on page 45
Notes:
1. When used in analog pass through mode, the output alternates between the signal from the PGA and
the beep signal. The beep signal does not mix with the analog signal from the PGA.
2. Re-engaging the beep before it has completed its initial cycle may cause the beep signal to remain
ON for the maximum ONTIME duration.
6.20.2 Treble Corner Frequency
Sets the corner frequency for the treble shelving filter.
DS851F2
TREBCF[1:0]
Treble Corner Frequency Setting
00
5 kHz
01
7 kHz
10
10 kHz
11
15 kHz
71
CS42L56
6.20.3 Bass Corner Frequency
Sets the corner frequency for the bass shelving filter.
BASSCF[1:0]
Bass Corner Frequency Setting
00
50 Hz
01
100 Hz
10
200 Hz
11
250 Hz
6.20.4 Tone Control Enable
Configures the treble and bass activation.
6.21
TCEN
Bass and Treble Control
0
Disabled
1
Enabled
Tone Control (Address 18h)
7
6
5
4
3
2
1
0
TREB3
TREB2
TREB1
TREB0
BASS3
BASS2
BASS1
BASS0
6.21.1 Treble Gain
Sets the gain of the treble shelving filter.
TREB[3:0]
Gain Setting
0000
+12.0 dB
···
···
0111
+1.5 dB
1000
0 dB
1001
-1.5 dB
···
···
1111
-10.5 dB
Step Size:
1.5 dB
6.21.2 Bass Gain
Sets the gain of the bass shelving filter.
72
BASS[3:0]
Gain Setting
0000
+12.0 dB
···
···
0111
+1.5 dB
1000
0 dB
1001
-1.5 dB
···
···
1111
-10.5 dB
Step Size:
1.5 dB
DS851F2
CS42L56
6.22
ADC & PCM Channel Mixer (Address 19h)
7
6
5
4
3
2
1
0
PCMBSWP1
PCMBSWP0
PCMASWP1
PCMASWP0
ADCBSWP1
ADCBSWP0
ADCASWP1
ADCASWP0
6.22.1 PCM Mix Channel Swap
Configures a mix/swap of the PCM Mix to the headphone/line outputs.
PCMxSWP[1:0]
PCM Mix to HP/LINEOUTA
PCM Mix to HP/LINEOUTB
00
Left
Right
(Left + Right)/2
(Left + Right)/2
Right
Left
01
10
11
6.22.2 ADC Mix Channel Swap
Configures a mix/swap of the ADC Mix to the headphone/line outputs.
ADCxSWP[1:0]
ADC Mix to HP/LINEOUTA Channel
ADC Mix to HP/LINEOUTB Channel
00
Left
Right
(Left + Right)/2
(Left + Right)/2
Right
Left
01
10
11
6.23
AIN Reference Configuration, ADC MUX (Address 1Ah)
7
6
5
4
3
2
1
0
AIN2B_REF
AIN2A_REF
AIN1B_REF
AIN1A_REF
ADCBMUX1
ADCBMUX0
ADCAMUX1
ADCAMUX0
6.23.1 Analog Input 2 x Reference Configuration
Configures the analog input 2 x reference.
AIN2x_REF
Analog Input Configuration
0
AIN2x is configured as a single-ended input, referenced to the internal ADC common-mode voltage. If both
AIN2 channels are configured as single-ended, AIN2REF/AIN3B can be used as an additional single-ended
input, referenced to the internal ADC common-mode voltage.
1
AIN2x is configured as a pseudo-differential input, referenced to AIN2REF/AIN3B.
6.23.2 Analog Input 1 x Reference Configuration
Configures the analog input 1 x reference.
AIN1x_REF
Analog Input Configuration
0
AIN1x is configured as a single-ended input, referenced to the internal ADC common-mode voltage. If both
AIN1 channels are configured as single-ended, AIN1REF/AIN3A can be used as an additional single-ended
input, referenced to the internal ADC common-mode voltage.
1
AIN1x is configured as a pseudo-differential input, referenced to AIN1REF/AIN3A.
DS851F2
73
CS42L56
6.23.3 ADC x Input Select
Selects the specified analog input signal into ADCx.
ADCxMUX[1:0]
Selected Input to ADCx
00
PGAx - Use PGAxMUX bit (“PGA x Input Select” on page 77) to select an input channel.
01
AIN1x; PGA is bypassed.
10
AIN2x; PGA is bypassed.
11
AIN3x; PGA is bypassed.
Note: Pseudo-differential inputs are not available when the PGA is bypassed. Use the AINx_REF bits
(Analog Input 1 x Reference Configuration and “Analog Input 1 x Reference Configuration” on page 74)
to properly configure the input channel.
6.24
HPF Control (Address 1Bh)
7
6
5
4
3
2
1
0
HPFB
HPFRZB
HPFA
HPFRZA
HPFB_CF1
HPFB_CF0
HPFA_CF1
HPFA_CF0
6.24.1 ADCx High-Pass Filter
Configures the internal high-pass filter after ADCx.
HPFx
High Pass Filter Status
0
Disabled
1
Enabled
6.24.2 ADCx High-Pass Filter Freeze
Configures the high pass filter’s digital DC subtraction and/or calibration after ADCx.
HPFRZx
High Pass Filter Digital Subtraction
0
Continuous DC Subtraction
1
Frozen DC Subtraction
6.24.3 HPF x Corner Frequency
Sets the corner frequency (-3 dB point) for the internal High-Pass Filter (HPF).
HPFx_CF[1:0]
74
HPF Corner Frequency Setting (Fs=48 kHz)
00
1.8 Hz
01
119 Hz
10
236 Hz
11
464 Hz
DS851F2
CS42L56
6.25
Misc. ADC Control (Address 1Ch)
7
6
5
4
3
2
1
0
ADCB=A
PGAB=A
DIGSUM1
DIGSUM0
INV_ADCB
INV_ADCA
ADCBMUTE
ADCAMUTE
6.25.1 ADC Channel B=A
Configures independent or ganged volume and mute control of the ADC. When enabled, the channel B
settings are ignored and the channel A settings control channel A and channel B.
ADCB=A
Single Volume Control
0
Disabled; Independent channel control.
Affected Volume Controls
1
Enabled; Ganged channel control. Channel A volume
control controls channel B volume.
ADCxMUTE (“ADC Mute” on page 76)
ADCxVOL[6:0] (“ADCx Volume” on page 78)
6.25.2 PGA Channel B=A
Configures independent or ganged volume control of the PGA. When enabled, the channel B settings are
ignored and the channel A settings control channel A and channel B. Affected register bits include PGAxVOL[5:0].
PGAB=A
Single Volume Control
Affected Volume Controls
0
Disabled; Independent channel control.
1
Enabled; Ganged channel control. Channel A volume
control controls channel B volume.
PGAxVOL[5:0] (“PGAx Volume” on page 78)
6.25.3 Digital Sum
Configures a mix/swap of ADCA and ADCB.
DIGSUM[1:0]
Serial Output Signal
Left Channel
Right Channel
00
ADCA
ADCB
01
(ADCA + ADCB)/2
(ADCA + ADCB)/2
10
(ADCA - ADCB)/2
(ADCA - ADCB)/2
11
ADCB
ADCA
6.25.4 Invert ADC Signal Polarity
Configures the polarity of the ADC signal.
INV_ADCx
ADC Signal Polarity
0
Not Inverted
1
Inverted
6.25.5 ADC Mute
Configures a digital mute on ADC channel x.
ADCxMUTE
DS851F2
ADC Mute
0
Not muted.
1
Muted
75
CS42L56
6.26
Gain & Bias Control (Address 1Dh)
7
6
5
4
3
2
1
0
PREAMPB1
PREAMPB0
PREAMPA1
PREAMPA0
BOOSTB
BOOSTA
BIAS_LVL1
BIAS_LVL0
6.26.1 PGA x Preamplifier Gain
Configures the gain of the PGA x preamp.
PREAMPx[1:0]
PGA x Preamp Gain
00
0 dB
01
+10 dB
10
+20 dB
11
Reserved
6.26.2 Boostx
Configures a +20 dB digital boost on ADC channel x.
BOOSTx
+20 dB Boost
0
No boost applied
1
+20 dB digital boost applied
6.26.3 Microphone Bias Output Level
Configures the voltage level of the microphone bias output.
6.27
BIAS_LVL[1:0]
MIC Bias Output Level
00
0.9xVA
01
0.8xVA
10
0.7xVA
11
0.6xVA
PGA x MUX, Volume: PGA A (Address 1Eh) & PGA B (Address 1Fh)
7
6
5
4
3
2
1
0
PGAxMUX1
PGAxMUX0
PGAxVOL5
PGAxVOL4
PGAxVOL3
PGAxVOL2
PGAxVOL1
PGAxVOL0
6.27.1 PGA x Input Select
Selects the specified analog input signal into PGA channel x.
PGAxMUX[1:0]
Selected Input to PGAx
00
AIN1x.
01
AIN2x.
10
AIN3x.
11
Reserved
Note: For pseudo-differential inputs, the CODEC automatically chooses the respective pseudo-ground
(AIN1REF or AIN2REF) for each input selection.
Use the AINx_REF bits (Analog Input 1 x Reference Configuration and “Analog Input 1 x Reference Configuration” on page 74) to properly configure the input channel.
76
DS851F2
CS42L56
6.27.2 PGAx Volume
Sets the volume/gain of the Programmable Gain Amplifier (PGA).
PGAxVOL[5:0]
Volume
01 1111
+12 dB
...
...
01 1000
+12 dB
...
...
00 0001
+0.5 dB
00 0000
0 dB
11 1111
-0.5 dB
...
...
11 0100
-6.0 dB
...
...
10 0000
-6.0 dB
Step Size:
0.5 dB
Notes:
1. Refer to Figure 37 and Figure 38 on page 89 for differential and integral nonlinearity (DNL and INL).
6.28
ADCx Attenuator Control: ADCAATT (Address 20h) & ADCBATT (Address 21h)
7
6
5
4
3
2
1
0
ADCxATT7
ADCxATT6
ADCxATT5
ADCxATT4
ADCxATT3
ADCxATT2
ADCxATT1
ADCxATT0
6.28.1 ADCx Volume
Sets the volume of the ADC signal.
DS851F2
ADCxATT[7:0]
Volume
0111 1111
0 dB
...
...
0000 0000
0 dB
1111 1111
-1.0 dB
1111 1110
-2.0 dB
...
...
1010 0000
-96.0 dB
1001 1111
Mute
...
...
1000 0000
Mute
Step Size:
1.0 dB
77
CS42L56
6.29
ALC Enable & Attack Rate (Address 22h)
7
6
5
4
3
2
1
0
ALCB
ALCA
ALCARATE5
AALCRATE4
ALCARATE3
ALCARATE2
ALCARATE1
ALCARATE0
6.29.1 ALCx
Configures the automatic level controller (ALC).
ALC
ALC Status
0
Disabled
1
Enabled
Application:
“Automatic Level Control (ALC)” on page 35
Notes:
1. The ALC should only be configured while the power down bit (“Power Down” on page 59) is enabled.
2. The ALC is not available in passthrough mode.
6.29.2 ALC Attack Rate
Sets the rate at which the ALC applies analog and/or digital attenuation from levels above the AMAX[2:0]
threshold (“ALC Maximum Threshold” on page 80).
ALCARATE[5:0]
Attack Time
00 0000
Fastest Attack
···
···
11 1111
Slowest Attack
Application:
“Automatic Level Control (ALC)” on page 35
Note: The ALC attack rate is user-selectable but is also a function of the sampling frequency, Fs, the
ANLGZCx (“Analog Zero Cross” on page 64) and the DIGSFT (“Digital Soft Ramp” on page 64) setting
unless the respective disable bit (“ALCx Soft Ramp Disable” on page 82 or “ALCx Zero Cross Disable” on
page 82) is enabled.
6.30
ALC Release Rate (Address 23h)
7
6
5
4
3
2
1
0
ALC_ALL
Reserved
ALCRRATE5
ALCRRATE4
ALCRRATE3
ALCRRATE2
ALCRRATE1
ALCRRATE0
6.30.1 ALC Limit All Channels
Sets how channels are attenuated when the ALC is enabled.
ALC_ALL
ALC action:
0
Apply the necessary attenuation on a specific channel only when the signal amplitudes on that specific channel rises above ALCMAX[2:0].
Remove attenuation on a specific channel only when the signal amplitude on that specific channel falls below
ALCMIN[2:0].
1
Apply the necessary attenuation on BOTH channels when the signal amplitudes on any ONE channel rises
above ALCMAX[2:0].
Remove attenuation on BOTH channels only when the signal amplitude on BOTH channels fall below ALCMIN[2:0].
Application:
“Automatic Level Control (ALC)” on page 35
Note:
78
This function should only be used when the ALC for both channels is enabled.
DS851F2
CS42L56
6.30.2 ALC Release Rate
Sets the rate at which the ALC releases the analog and/or digital attenuation from levels below the
MIN[2:0] threshold (“Limiter Cushion Threshold” on page 85) and returns the signal level to the PGAxVOL[5:0] (“PGAx Volume” on page 78) and ADCxVOL[7:0] (“ADCx Volume” on page 78) setting.
ALCRRATE[5:0]
Release Time
00 0000
Fastest Release
···
···
11 1111
Slowest Release
Application:
“Automatic Level Control (ALC)” on page 35
Notes:
1. The ALC release rate is user-selectable but is also a function of the sampling frequency, Fs, and the
DIGSFT (“Digital Soft Ramp” on page 64) and ANLGZCx (“Analog Zero Cross” on page 64) setting.
2. It is recommended that the Release Rate setting be slower than the Attack Rate.
6.31
ALC Threshold (Address 24h)
7
6
5
4
3
2
1
0
ALCMAX2
ALCMAX1
ALCMAX0
ALCMIN2
ALCMIN1
ALCMIN0
Reserved
Reserved
6.31.1 ALC Maximum Threshold
Sets the maximum level, below full scale, at which to limit and attenuate the input signal at the attack rate
(ALCARATE - “ALC Attack Rate” on page 79).
MAX[2:0]
DS851F2
Threshold Setting
000
0 dB
001
-3 dB
010
-6 dB
011
-9 dB
100
-12 dB
101
-18 dB
110
-24 dB
111
-30 dB
Application:
“Automatic Level Control (ALC)” on page 35
79
CS42L56
6.31.2 ALC Minimum Threshold
Sets the minimum level at which to disengage the ALC’s attenuation or amplify the input signal at the release rate (ALCRRATE - “ALC Release Rate” on page 80) until levels lie between the ALCMAX and ALCMIN thresholds.
ALCMIN[2:0]
0 dB
001
-3 dB
010
-6 dB
011
-9 dB
100
-12 dB
101
-18 dB
110
-24 dB
111
-30 dB
Application:
“Automatic Level Control (ALC)” on page 35
Note:
6.32
Threshold Setting
000
This setting is usually set slightly below the ALCMAX threshold.
Noise Gate Control (Address 25h)
7
6
5
4
3
2
1
0
NGALL
NG
NG_BOOST
THRESH2
THRESH1
THRESH0
NGDELAY1
NGDELAY0
6.32.1 Noise Gate All Channels
Sets which channels are attenuated when clipping on any single channel occurs.
NGALL
Noise Gate triggered by:
0
Individual channel; Any channel that falls below the threshold setting triggers the noise gate attenuation for
ONLY that channel.
1
Both channels A & B; Both channels must fall below the threshold setting for the noise gate attenuation to
take effect.
6.32.2 Noise Gate Enable
Configures the noise gate.
80
NG
Noise Gate Status
0
Disabled
1
Enabled
DS851F2
CS42L56
6.32.3 Noise Gate Threshold and Boost
THRESH sets the threshold level of the noise gate. Input signals below the threshold level will be attenuated to -96 dB. NG_BOOST configures a +30 dB boost to the threshold settings.
THRESH[2:0]
Minimum Setting (NG_BOOST = 0b)
000
-64 dB
Minimum Setting (NG_BOOST = 1b)
-34 dB
001
-67 dB
-36 dB
010
-70 dB
-40 dB
011
-73 dB
-43 dB
100
-76 dB
-46 dB
101
-82 dB
-52 dB
110
Reserved
-58 dB
111
Reserved
-64 dB
6.32.4 Noise Gate Delay Timing
Sets the delay time before the noise gate attacks.
NGDELAY[1:0]
Delay Setting
00
50 ms
01
100 ms
10
150 ms
11
200 ms
Note: The Noise Gate attack rate is a function of the sampling frequency, Fs, and the DIGSFT (“Digital
Soft Ramp” on page 64) setting.
6.33
ALC and Limiter Soft Ramp, Zero Cross Disables (Address 26h)
7
6
5
4
3
2
1
0
ALCASRDIS
ALCAZCDIS
ALCBSRDIS
ALCBZCDIS
LIMSRDIS
Reserved
Reserved
Reserved
6.33.1 ALCx Soft Ramp Disable
Configures an override of the analog soft ramp setting.
ALCxSRDIS
ALC Soft Ramp Disable
0
OFF; ALC Attack Rate is dictated by the DIGSFT (“Digital Soft Ramp” on page 64) setting
1
ON; ALC volume changes take effect in one step, regardless of the DIGSFT setting.
6.33.2 ALCx Zero Cross Disable
Configures an override of the analog zero cross setting.
ALCxZCDIS
ALC Zero Cross Disable
0
OFF; ALC Attack Rate is dictated by the ANLGZC (“Analog Zero Cross” on page 64) setting
1
ON; ALC volume changes take effect at any time, regardless of the ANLGZC setting.
6.33.3 Limiter Soft Ramp Disable
Configures an override of the digital soft ramp setting.
LIMSRDIS
DS851F2
Limiter Soft Ramp Disable
0
OFF; Limiter Attack Rate is dictated by the DIGSFT (“Digital Soft Ramp” on page 64) setting
1
ON; Limiter volume changes take effect in one step, regardless of the DIGSFT setting.
81
CS42L56
6.34
Automute, Line & HP MUX (Address 27h)
7
6
5
4
3
2
1
0
AMUTE
Reserved
Reserved
Reserved
LINEBMUX
LINEAMUX
HPBMUX
HPAMUX
6.34.1 Auto Mute
Configures the state of the auto mute feature. When enabled, the analog outputs will mute after 4096 consecutive zeros or ones from SDIN.
AMUTE
Auto Mute Configuration
0
Auto Mute Disabled
1
Auto Mute Enabled. The analog outputs will mute after 4096 consecutive words of all zeros or ones from
SDIN.
6.34.2 Line Input Select
Selects the specified analog input signal into line amplifier x.
LINExMUX
Selected Input to Line Amplifier Ch. x
0
DACx
1
PGAx - Use PGAxMUX bit (“PGA x Input Select” on page 77) to select an input channel.
Note:
The PGA path must not be selected while the Line Amplifier is powered down.
6.34.3 Headphone Input Select
Selects the specified analog input signal into headphone amplifier x.
HPxMUX
DACx
1
PGAx - Use PGAxMUX bit (“PGA x Input Select” on page 77) to select an input channel.
Note:
6.35
Selected Input to HP Amplifier Ch. x
0
The PGA path must not be selected while the Headphone Amplifier is powered down.
Headphone Volume Control: HPA (Address 28h) & HPB (Address 29h)
7
6
5
4
3
2
1
0
HPxMUTE
HPxVOL6
HPxVOL5
HPxVOL4
HPxVOL3
HPxVOL2
HPxVOL1
HPxVOL0
6.35.1 Headphone Channel x Mute
Configures an analog mute on the headphone amplifier.
HPxMUTE
82
HP Amp Mute
0
Disabled
1
Enabled
DS851F2
CS42L56
6.35.2 Headphone Volume Control
Sets the volume of the signal out of the headphone amplifier.
HPxVOL[6:0]
Heaphone Volume
0111111
+12 dB
...
...
0001100
+12 dB
...
...
0000001
+1.0 dB
0000000
0 dB
1111111
-1.0 dB
...
...
1000100
-60.0 dB (Nominal Level (Note 1))
1000011
Mute
...
...
1000000
Mute (Note 2)
Step Size:
1.0 dB
Notes:
1. The step size may deviate from 1.0 dB. Refer to Figure 39 and Figure 40 on page 89.
2. See section “Analog Output Attenuation Characteristics” on page 26 for actual Mute Attenuation.
6.36
Line Volume Control: LINEA (Address 2Ah) & LINEB (Address 2Bh)
7
6
5
4
3
2
1
0
LINExMUTE
LINExVOL6
LINExVOL5
LINExVOL4
LINExVOL3
LINExVOL2
LINExVOL1
LINExVOL0
6.36.1 Line Channel x Mute
Configures an analog mute on the line amplifier.
LINExMUTE
HP Amp Mute
0
Disabled
1
Enabled
6.36.2 Line Volume Control
Sets the volume of the signal out of the line amplifier.
DS851F2
LINExVOL[6:0]
Line Volume
0111111
+12 dB
...
...
0001100
+12 dB
...
...
0000001
+1.0 dB
0000000
0 dB
1111111
-1.0 dB
...
...
1000100
-60.0 dB (Nominal Level (Note 1))
1000011
Mute (Note 2)
...
...
Step Size:
1.0 dB
83
CS42L56
Notes:
1. The step size may deviate from 1.0 dB. Refer to Figure 39 on page 89 and Figure 40 on page 89.
2. See section “Analog Output Attenuation Characteristics” on page 26 for actual Mute Attenuation.
6.37
Limiter Min/Max Thresholds (Address 2Ch)
7
6
5
4
3
2
1
0
LMAX2
LMAX1
LMAX0
CUSH2
CUSH1
CUSH0
Reserved
Reserved
6.37.1 Limiter Maximum Threshold
Sets the maximum level, below full scale, at which to limit and attenuate the output signal at the attack
rate (LIMARATE - “Limiter Release Rate” on page 86).
LMAX[2:0]
Threshold Setting
000
0 dB
001
-3 dB
010
-6 dB
011
-9 dB
100
-12 dB
101
-18 dB
110
-24 dB
111
-30 dB
Application:
“Limiter” on page 46
Note: Bass, Treble and digital gain settings that boost the signal beyond the maximum threshold may
trigger an attack.
6.37.2 Limiter Cushion Threshold
Sets the minimum level at which to disengage the Limiter’s attenuation at the release rate (LIMRRATE “Limiter Release Rate” on page 86) until levels lie between the LMAX and CUSH thresholds.
CUSH[2:0]
Threshold Setting
000
0 dB
001
-3 dB
010
-6 dB
011
-9 dB
100
-12 dB
101
-18 dB
110
-24 dB
111
-30 dB
Application:
“Limiter” on page 46
Note:
84
This setting is usually set slightly below the LMAX threshold.
DS851F2
CS42L56
6.38
Limiter Control, Release Rate (Address 2Dh)
7
6
5
4
3
2
1
0
LIMIT
LIMIT_ALL
LIMRRATE5
LIMRRATE4
LIMRRATE3
LIMRRATE2
LIMRRATE1
LIMRRATE0
6.38.1 Peak Detect and Limiter
Configures the peak detect and limiter circuitry.
LIMIT
Limiter Status
0
Disabled
1
Enabled
Application:
“Limiter” on page 46
Note: The Limiter should only be configured while the power down bit (“Power Down” on page 59) is
enabled.
6.38.2 Peak Signal Limit All Channels
Sets how channels are attenuated when the limiter is enabled.
LIMIT_ALL
Limiter action:
0
Apply the necessary attenuation on a specific channel only when the signal amplitudes on that specific channel rises above LMAX.
Remove attenuation on a specific channel only when the signal amplitude on that specific channel falls below
CUSH.
1
Apply the necessary attenuation on BOTH channels when the signal amplitudes on any ONE channel rises
above LMAX.
Remove attenuation on BOTH channels only when the signal amplitude on BOTH channels fall below CUSH.
Application:
“Limiter” on page 46
6.38.3 Limiter Release Rate
Sets the rate at which the limiter releases the digital attenuation from levels below the CUSH[2:0] threshold (“Limiter Cushion Threshold” on page 85) and returns the analog output level to the MSTxVOL[7:0]
(“Master Volume Control” on page 70) setting.
LIMRRATE[5:0]
Release Time
00 0000
Fastest Release
···
···
11 1111
Slowest Release
Application:
“Limiter” on page 46
Note: The limiter release rate is user-selectable but is also a function of the sampling frequency, Fs,
and the DIGSFT (“Digital Soft Ramp” on page 64) setting unless the disable bit (“Limiter Soft Ramp Disable” on page 82) is enabled.
DS851F2
85
CS42L56
6.39
Limiter Attack Rate (Address 2Eh)
7
6
5
4
3
2
1
0
Reserved
Reserved
LIMARATE5
LIMARATE4
LIMARATE3
LIMARATE2
LIMARATE1
LIMARATE0
6.39.1 Limiter Attack Rate
Sets the rate at which the limiter applies digital attenuation from levels above the MAX[2:0] threshold
(“Limiter Maximum Threshold” on page 85).
LIMARATE[5:0]
Attack Time
00 0000
Fastest Attack
···
···
11 1111
Slowest Attack
Application:
“Limiter” on page 46
Note: The limiter attack rate is user-selectable but is also a function of the sampling frequency, Fs, and
the DIGSFT (“Digital Soft Ramp” on page 64) setting unless the disable bit (“Limiter Soft Ramp Disable”
on page 82) is enabled.
86
DS851F2
CS42L56
7. PCB LAYOUT CONSIDERATIONS
7.1
Power Supply
As with any high-resolution converter, the CS42L56 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 1 on page 11 shows the recommended power arrangements, with VA and VCP connected to clean supplies. VLDO, which powers the digital
circuitry, may be run from the system logic supply. Alternatively, VLDO may be powered from the analog
supply via a ferrite bead. In this case, no additional devices should be powered from VLDO.
7.2
Grounding
Extensive use of power and ground planes, ground plane fill in unused areas and surface mount decoupling
capacitors are recommended. Decoupling capacitors should be as close to the pins of the CS42L56 as possible. The low value ceramic capacitor should be closest to the pin and should be mounted on the same
side of the board as the CS42L56 to minimize inductance effects. All signals, especially clocks, should be
kept away from the FILT+ and VQ pins in order to avoid unwanted coupling into the modulators. The FILT+,
VQ, +VHPFILT and -VHPFILT capacitors must be positioned to minimize the electrical path from each respective pin to AGND. The CDB42L56 evaluation board demonstrates the optimum layout and power supply arrangements.
7.3
QFN Thermal Pad
The CS42L56 comes in a compact QFN package. The under side of the QFN package reveals a large metal
pad that serves as a thermal relief to provide for maximum heat dissipation. This pad must mate with an
equally dimensioned copper pad on the PCB and must be electrically connected to ground. A series of vias
should be used to connect this copper pad to one or more larger ground planes on other PCB layers. In split
ground systems, it is recommended that this thermal pad be connected to AGND for best performance. The
CDB42L56 evaluation board demonstrates the optimum thermal pad and via configuration.
DS851F2
87
CS42L56
8. ANALOG VOLUME NON-LINEARITY (DNL & INL)
12
0.52
Actual Output Volume, dB
10
Actual Step Size, dB
0.5
0.48
0.46
0.44
0.42
-6
-5
-4
-3
-2
0.4
-1 0
1 2 3 4 5
PGA Volume Setting
6
7
8
9
4
2
0
-2
-4
-6
-8
0
1 2 3 4 5 6
PGA Volume Setting
0.6
0.4
0.2
-40
-30
-20
-10
10 11 12
-1 0
-2 0
-3 0
-4 0
-5 0
-6 0
0
+10
HP/Line Volume Setting
Figure 39. HP/Line Step Size vs. Volume Setting
88
9
0
0
-50
8
10
Actual Output Volume, dB
0.8
-60
7
Figure 38. PGA Output Volume vs. Volume Setting
1
Actual Step Size, dB
6
-6 -5 -4 -3 -2 -1
10 11
Figure 37. PGA Step Size vs. Volume Setting
8
+20
-6 0
-5 0
-4 0
-3 0
-2 0
-1 0
0
10
20
H P / L in e V o l u m e S e t t i n g
Figure 40. HP/Line Output Volume vs. Volume Setting
DS851F2
CS42L56
9. ADC & DAC DIGITAL FILTERS
0
0.25
−10
0.2
−20
0.1
−30
0.05
−40
Magnitude (dB)
Magnitude (dB)
0.15
0
−0.05
−50
−60
−0.1
−70
−0.15
−80
−0.2
−90
−0.25
0
0.05
0.1
0.15
0.2
0.25
0.3
Frequency (normalized to Fs)
0.35
0.4
0.45
−100
0.5
Figure 41. ADC Frequency Response
0.1
0.2
0.3
0.4
0.5
0.6
Frequency (normalized to Fs)
0.7
0.8
0.9
1
Figure 42. ADC Stopband Rejection
0
0
−1
−10
−2
−20
−3
−30
−4
Magnitude (dB)
Magnitude (dB)
0
−40
−50
−5
−6
−60
−7
−70
−8
−80
−9
−90
−100
0.4
0.45
0.5
0.55
0.6
Frequency (normalized to Fs)
−10
0.45
0.65
Figure 43. ADC Transition Band
0.46
0.47
0.48
0.49
0.5
0.51
Frequency (normalized to Fs)
0.52
0.53
0.54
0.55
Figure 44. ADC Transition Band Detail
0
0.03
−10
0.02
−20
−30
0
Magnitude (dB)
Magnitude (dB)
0.01
−0.01
−40
−50
−60
−0.02
−70
−0.03
−80
−0.04
−90
−0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
frequency (Normalized to Fs)
0.35
0.4
0.45
0
0
0
−10
−10
−20
−20
−30
−40
0.4
0.5
0.6
frequency (Normalized to Fs)
0.7
0.8
0.9
0.53
0.54
1
−40
−50
−60
−60
0.42
0.44
0.46
0.48
0.5
0.52
0.54
frequency (Normalized to Fs)
0.56
0.58
Figure 47. DAC Transition Band
DS851F2
0.3
−30
−50
0.4
0.2
Figure 46. DAC Stopband
Magnitude (dB)
Magnitude (dB)
Figure 45. DAC Frequency Response
0.1
0.6
0.45
0.46
0.47
0.48
0.49
0.5
0.51
frequency (Normalized to Fs)
0.52
Figure 48. DAC Transition Band (Detail)
89
CS42L56
10.PARAMETER DEFINITIONS
Dynamic Range
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified
bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified band width made with
a -60 dB signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This technique ensures that the distortion components are below the noise level and do not affect the measurement.
This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the
Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels.
Total Harmonic Distortion + Noise
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured
at -1 dBFS and -20 dBFS for the analog input and 0 dB and -20 dB for the analog output as suggested in
AES17-1991 Annex A.
Frequency Response
A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at
1 kHz. Units in decibels.
Interchannel Isolation
A measure of crosstalk between the left and right channel pairs. Measured for each channel at the converter's output with no signal to the input under test and a full-scale signal applied to the other channel. Units in
decibels.
HP to ADC Isolation
A measure of crosstalk between the headphone amplifier and the ADC inputs. Measured for each channel
at the ADC’s output with no signal to the input and a full-scale signal applied to the headphone amplifier with
a 16 or 10 k load. Units in decibels.
Output Offset Voltage
Describes the DC offset voltage present at the amplifier’s output. When measuring the offset out the line
amplifier, the line amplifier is ON while the headphone amplifier is OFF; when measuring the offset out the
headphone amplifier, the headphone amplifier is ON while the line amplifier is OFF.
AC Load Resistance and Capacitance
RL and CL reflect the recommended minimum resistance and maximum capacitance required for the internal op-amp's stability and signal integrity. CL will effectively move the band-limiting pole of the amp in the
output stage. Increasing this value beyond the recommended 150 pF can cause the internal op-amp to become unstable.
Interchannel Gain Mismatch
The gain difference between left and right channel pairs. Units in decibels.
Gain Error
The deviation from the nominal full-scale analog output for a full-scale digital input.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
Offset Error
The deviation of the mid-scale transition (111...111 to 000...000) from the ideal.
90
DS851F2
CS42L56
11.PACKAGE DIMENSIONS
(Unless otherwise specified, linear tolerance is ±0.05 mm, and angular tolerance is ±2 deg.)
40L QFN (5 X 5 mm BODY) PACKAGE DRAWING
D
b
2.00 REF
e
PIN #1 CORNER
2.00 REF
PIN #1
IDENTIFIER
0.500.10
LASER
MARKING
E2
E
A1
L
D2
A
Dim
MIN
A
A1
b
e
D
E
D2
E2
L
0.01575
0.00000
0.00591
0.13583
0.13583
0.01181
INCHES
NOM
0.01772
0.00787
0.01575 BSC
0.19685 BSC
0.19685 BSC
0.13780
0.13780
0.01378
MAX
MIN
0.01969
0.00197
0.00984
0.40
0.00
0.15
0.13976
0.13976
0.01575
3.45
3.45
0.30
MILLIMETERS
NOM
0.45
0.20
0.40 BSC
5.00 BSC
5.00 BSC
3.50
3.50
0.35
NOTE
MAX
0.50
0.05
0.25
3.55
3.55
0.40
1,2
1,2
1,2,3
1,2
1,2
1,2
1,2
1,2
1,2
JEDEC #: MO-220
Controlling Dimension is Millimeters.
1. Controlling dimensions are in millimeters.
2. Dimensioning and tolerances per ASME Y 14.5M-1994.
3. Dimension lead width applies to the plated terminal and is measured 0.25 mm and 0.30 mm from the
terminal tip.
THERMAL CHARACTERISTICS
Parameter
Junction to Ambient Thermal Impedance
DS851F2
2 Layer Board
4 Layer Board
Symbol
Min
Typ
Max
Units
JA
JA
-
68
28
-
°C/Watt
°C/Watt
91
CS42L56
12.ORDERING INFORMATION
Product
CS42L56
Description
Ultralow Power, Stereo
Codec with Class H Headphone Amp
Package
Pb-Free
40L-QFN
YES
-
-
Grade
Temp Range
Container Order #
Rail
CDB42L56 CS42L56 Evaluation Board
Commercial -40°C to +85°C
-
-
CS42L56-CNZ
Tape & Reel CS42L56-CNZR
-
CDB42L56
13.REFERENCES
1. Philips Semiconductor, The I²C-Bus Specification: Version 2.1, January 2000.
http://www.semiconductors.philips.com
14.REVISION HISTORY
Release
F1
F2
Changes
Final Release.
Updated “ADC Digital Filter Characteristics” section on page 18.
Updated dither specified in Note 15 on page 20.
Updated “Combined DAC Interpolation & On-Chip Analog FIlter Response” section on page 22.
Updated Figure 14. “Stereo Pseudo-Differential Input” on page 33.
Updated the Class H section, “Adapt to Volume Mode (setting 00)” on page 40.
Updated Section 4.11 “Recommended DAC to HP or Line Power Sequence” on page 50.
Updated Section 4.12 “Recommended PGA to HP or Line Power Sequence (Analog Passthrough)” on page 52.
Updated the first paragraph in “Register Quick Reference” on page 56 and “Register Description” on page 58 to
allow data sheet-specified control-writes to reserved registers.
Removed I²C address heading row from “Register Quick Reference” on page 56.
Added Note 1 in “Freeze Registers” on page 64.
Corrected BEEP volume settings to reflect level relative to DAC’s full scale in “Beep Volume” on page 72
Updated “PGA x Preamplifier Gain” section on page 77.
Corrected the E2 scale in the package drawing in “Package Dimensions” on page 92.
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.
To find one nearest you, go to www.cirrus.com.
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY
INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.
SPI is a trademark of Motorola.
92
DS851F2