Standard Products UT6325 RadTol Eclipse FPGA Data Sheeet November 2013 www.aeroflex.com/FPGA Comprehensive design tools include high quality Verilog/ VHDL synthesis and simulation QuickLogic IP available for microcontrollers, DRAM controllers, USART and PCI Packaged in a 208-pin CQFP, 288 CQFP, 484 CCGA, 484 CLGA, 208 PQFP, 280 PBGA, and 484 PBGA Standard Microcircuit Drawing 5962-04229 - QML Q & V FEATURES TM 0.25m, five-layer metal, ViaLink epitaxial CMOS process for smallest die sizes One-time programmable, ViaLink technology for personalization Typical performance characteristics -- 120 MHz 16-bit counters, 120 MHz datapaths, 60+ MHz FIFOs 2.5V core supply voltage, 3.3V I/O supply voltage Up to 320,000 system gates (non-volatile) I/Os - Interfaces with 3.3 volt - PCI compliant with 3.3 volt - Full JTAG 1149.1 compliant - Registered I/O cells with individually controlled enables Operational environment; total dose irradiation testing to MIL-STD-883 Test Method 1019 - Total-dose: 300 krad(Si) - SEL Immune: <120MeV-cm2/mg INTRODUCTION The UT6325 RadTol Eclipse Field Programmable Gate Array Family (FPGA) offers up to 320,000 system gates including Dual-Port RadTol SRAM modules. It is fabricated on 0.25m five-layer metal ViaLink CMOS process and contains 1,536 logic cells and 24 dual-port SRAM modules (see Figure 1 Block Diagram). Each SRAM module has 2,304 RAM bits, for a maximum total of 55,300 bits. Please reference product family features chart on page 2. SRAM modules are Dual Port (one asynchronous/synchronous read port, one write port) and can be configured into one of four modes (see Figure 2). Designers can cascade multiple RAM modules to increase the depth or width allowed in single modules by connecting corresponding address lines together and dividing the words between modules (see Figure 3). This approach allows a variety of address depths and word widths to be tailored to a specific application. - LETTH (0.25) MeV-cm2/mg: >42 logic cell flip flops >64 for embedded SRAM - Saturated Cross Section (cm2) per bit 5.0E-7 logic cell flip flops 2.0E-7 embedded SRAM Up to 24 dual-port RadTol SRAM modules, organized in user-configurable 2,304 bit blocks - 5ns access times, each port independently accessible - Fast and efficient for FIFO, RAM, and initialized RAM functions 100% routable with full logic cell utilization and 100% user fixed I/O Variable-grain logic cells provide high performance and 100% utilization Typical logic utilization = 65-80% (design dependent) The UT6325 RadTol Eclipse FPGA is available in a 208-pin Cerquad Flatpack, allowing access to 99 bidirectional signal I/ O, 1 dedicated clock, 8 programmable clocks and 16 high drive inputs. Other package options include a 288 CQFP, 484 CCGA and a 484 CLGA. Aeroflex uses QuickLogic Corporation’s licensed ESP (Embedded Standard Products) technology. QuickLogic is a pioneer in the FPGA semiconductor and software tools field. 1 UT6325 Product Features Features Device System Gates Logic Cells UT6325 320,640 1,536 Maximum Logic Flip Flops Cell Flip Flops 4,002 RAM Modules RAM Bits I/O Standards Clocks High Drive Inputs 24 55,300 LVTTL, LVCMOS3, PCI 9 16 3072 Operational Environment Device Total Dose LETTH (0.25) MeV-cm2/mg Saturated Cross Section UT6325 3E5 >42 logic cell flip flops >64 embedded SRAM 5.0E-7 logic cell flip flops 2.0E-7 embedded SRAM Latch-up Immune >120 Bidirectional I/O per Package Device 208 PQFP 208 CQFP 280PBGA 288 CQFP 484 PBGA 484 CLGA 484 CCGA UT6325 99 99 163 163 310 316 316 2 Embedded RAM Blocks Maximum of 24 RadTol SRAM Blocks Fabric Embedded RAM Blocks Bidirectional I//O and High-Drive Inputs Figure 1. UT6325 Eclipse FPGA Block Diagram 3 IP Maximum of 1,536 High Speed Variable Grain Logic Cells PRODUCT DESCRIPTION I/O Pins (9:0) (17:0) WA WD RCLK RA WE RD WCLK (1:0) MODE • Up to 316 bi-directional input/output pins, PCI-compliant for 3.3V buses (see Table 4) RE • Each bidirectional I/O contains RadTol flip-flops for input, output, and output enable lines (9:0) Distributed Networks (17:0) • One, dedicated clock network, hardwired to each logic cell flip-flop clock pin to minimize skew ASYNCRD • Three programmable, global clock networks accessible from clock input only pins Figure 2. UT6325 Eclipse FPGA RAM Module • Five programmable quadrant clock networks, accessible from clock pins or internal logic Software support for the product is available from both Aeroflex and QuickLogic. The Windows PC-based QuickWorksTM package provides the most complete software solution from design entry to logic synthesis, place and route, simulation, static timing, and power analysis. Device libraries are available to provide support for designers who use Mentor, Synplicity, Synopsys or other third party tools for design entry, synthesis and simulation. Please visit QuickLogic’s website at www.quicklogic.com for more information. • 20 pre-defined Quad-clock networds, five per quadrant. Accessed by the five programmable quadrant clock networks • Sixteen high drive inputs. Two inputs located in each of the eight I/O banks. Used as clock or enable signals for the I/O RadTol flip-flops, or as high drive inputs for internal logic Typical Performance The variable grain logic cell features up to 17 simultaneous inputs and 6 outputs within a cell that can be fragmented into 6 independent sections. Each cell has a fan-in of 30 including register and control lines (see Figure 5). • Input + logic cell + output total delays under 12ns • Data path speeds over 120 MHz • Counter speeds over 120 MHz WDATA RAM Module (2,304 bits) WADDR • FIFO speeds over 60+ MHz RDATA RADDR RAM Module (2,304 bits) WDATA RDATA Figure 3. UT6325 Eclipse FPGA Module Bits 4 + - INPUT REGISTER Q E D R PAD Q OUTPUT REGISTER D R E OUTPUT ENABLE REGISTER Q D R Figure 4. RadTol Eclipse FPGA I/O Cell 5 QS A1 A2 A3 A4 A5 A6 OS OP B1 B2 C1 C2 MP MS AZ OZ S D Q QZ R D1 D2 E1 E2 NP NS F1 F2 F3 F4 F5 F6 S D Q R PS PP QC DCLK CLKSEL QR GRST Figure 5. RadTol Eclipse FPGA Logic Cell 6 NZ Q2Z FZ Table 1: 208-pin Ceramic Quad Flatpack Pinout Table Pin Function Pin Function Pin Function Pin Function Pin Function Pin Function 1 PLLRST(3) 36 IO(B) 71 IO(C) 106 VCCPLL(1) 141 IO(F) 176 IO(G) 2 VCCPLL(3) 37 IO(B) 72 VCCIO(C) 107 IO(E) 142 IO(F) 177 VCCIO(G) 3 GND 38 IO(B) 73 IO(C) 108 GND 143 IO(F) 178 GND 4 GND 39 IOCTRL(B) 74 IO(C) 109 IO(E) 144 IOCTRL(F) 179 IO(G) 5 IO(A) 40 INREF(B) 75 GND 110 IO(E) 145 INREF(F) 180 IO(G) 6 IO(A) 41 IOCTRL(B) 76 VCC 111 VCCIO(E) 146 VCC 181 IO(G) 7 IO(A) 42 IO(B) 77 IO(C) 112 IO(E) 147 IOCTRL(F) 182 VCC 8 VCCIO(A) 43 IO(B) 78 TRSTB 113 VCC 148 IO(F) 183 TCK 9 IO(A) 44 VCCIO(B) 79 VCC 114 IO(E) 149 IO(F) 184 VCC 10 IO(A) 45 IO(B) 80 IO(D) 115 IO(E) 150 VCCIO(F) 185 IO(H) 11 IOCTRL(A) 46 VCC 81 IO(D) 116 IO(E) 151 IO(F) 186 IO(H) 12 VCC 47 IO(B) 82 IO(D) 117 IOCTRL(E) 152 IO(F) 187 IO(H) 13 INREF(A) 48 IO(B) 83 GND 118 INREF(E) 153 GND 188 GND 14 IOCTRL(A) 49 GND 84 VCCIO(D) 119 IOCTRL(E) 154 IO(F) 189 VCCIO(H) 15 IO(A) 50 TDO 85 IO(D) 120 IO(E) 155 PLLOUT(3) 190 IO(H) 16 IO(A) 51 PLLOUT(1) 86 VCC 121 IO(E) 156 GNDPLL(0) 191 IO(H) 17 IO(A) 52 GNDPLL(2) 87 IO(D) 122 VCCIO(E) 157 GND 192 IOCTRL(H) 18 IO(A) 53 GND 88 IO(D) 123 GND 158 VCCPLL(0) 193 IO(H) 19 VCCIO(A) 54 VCCPLL(2) 89 VCC 124 IO(E) 159 PLLRST(0) 194 INREF(H) 20 IO(A) 55 PLLRST(2) 90 IO(D) 125 IO(E) 160 GND 195 VCC 21 GND 56 VCC 91 IO(D) 126 IO(E) 161 IO(G) 196 IOCTRL(H) 22 IO(A) 57 IO(C) 92 IOCTRL(D) 127 162 VCCIO(G) 197 IO(H) 23 TDI 58 GND 93 INREF(D) 128 CLK(5) PLLIN(3) CLK(6) 163 IO(G) 198 IO(H) 24 CLK(0) 59 IO(C) 94 IOCTRL(D) 129 VCC 164 IO(G) 199 IO(H) 25 CLK(1) 60 VCCIO(C) 95 IO(D) 130 CLK(7) 165 VCC 200 IO(H) 26 VCC 61 IO(C) 96 IO(D) 131 VCC 166 IO(G) 201 IO(H) 27 CLK(2) PLLIN(2) 62 IO(C) 97 IO(D) 132 CLK(8) 167 IO(G) 202 IO(H) 28 CLK(3) PLLIN(1) 63 IO(C) 98 VCCIO(D) 133 TMS 168 IO(G) 203 VCCIO(H) 29 VCC 64 IO(C) 99 IO(D) 134 IO(F) 169 IOCTRL(G) 204 GND 30 CLK(4), DEDCLK PLLIN(0) 65 IO(C) 100 IO(D) 135 IO(F) 170 INREF(G) 205 IO(H) 31 IO(B) 66 IO(C) 101 GND 136 IO(F) 171 IOCTRL(G) 206 PLLOUT(2) 32 IO(B) 67 IOCTRL(C) 102 PLLOUT(0) 137 GND 172 IO(G) 207 GND 33 GND 68 INREF(C) 103 GND 138 VCCIO(F) 173 IO(G) 208 GNDPLL(3) 34 VCCIO(B) 69 IOCTRL(C) 104 GNDPLL(1) 139 IO(F) 174 IO(G) 35 IO(B) 70 IO(C) 105 PLLRST(1) 140 IO(F) 175 VCC 7 Table 2: 288-pin Ceramic Quad Flatpack Pinout Table Pin Function Pin Function Pin Function Pin Function Pin Function Pin Function 1 GND 36 CLK(7) 71 VCC 106 IO(G) 141 PLLRST(3) 176 IO(A) 2 VCC 37 CLK(8) 72 GND 107 TCK 142 VCCPLL(3) 177 TDI 3 PLLRST(1) 38 TMS 73 GND 108 VCC 143 VCC 178 CLK(0) 4 VCCPLL(1) 39 IO(F) 74 VCC 109 IO(H) 144 GND 179 CLK(1) 5 IO(E) 40 IO(F) 75 GND 110 IO(H) 145 GND 180 6 IO(E) 41 IO(F) 76 PLLRST(0) 111 IO(H) 146 VCC 181 7 IO(E) 42 IO(F) 77 IO(F) 112 IO(H) 147 GND 182 8 IO(E) 43 VCC 78 IO(F) 113 IO(H) 148 IO(A) 183 CLK(2) PLLIN(2) CLK(3) PLLIN(1) CLK(4), DEDCIK, PLLIN(0) IO(B) 9 IO(E) 44 GND 79 IO(F) 114 IO(H) 149 IO(A) 184 IO(B) 10 IO(E) 45 VCCIO(F) 80 IO(G) 115 VCC 150 IO(A) 185 IO(B) 11 IO(E) 46 IO(F) 81 IO(G) 116 GND 151 IO(A) 186 IO(B) 12 IO(E) 47 IO(F) 82 IO(G) 117 VCCIO(H) 152 IO(A) 187 VCC 13 IO(E) 48 IO(F) 83 IO(G) 118 IO(H) 153 IO(A) 188 GND 14 VCC 49 IO(F) 84 IO(G) 119 IO(H) 154 IO(A) 189 VCCIO(B) 15 GND 50 IO(F) 85 IO(G) 120 IO(H) 155 IO(A) 190 IO(B) 16 VCCIO(E) 51 IO(F) 86 VCC 121 IOCTRL(H) 156 IOCTRL(A) 191 IO(B) 17 IOCTRL(E) 52 INREF(F) 87 GND 122 IO(H) 157 INREF(A) 192 IO(B) 18 INREF(E) 53 IOCTRL(F) 88 VCCIO(G) 123 INREF(H) 158 VCC 193 IO(B) 19 IOCTRL(E) 54 IOCTRL(F) 89 IO(G) 124 IOCTRL(H) 159 GND 194 IO(B) 20 IO(E) 55 IO(F) 90 IOCTRL(G) 125 IO(H) 160 VCCIO(A) 195 IOCTRL(B) 21 IO(E) 56 IO(F) 91 INREF(G) 126 IO(H) 161 IOCTRL(A) 196 INREF(B) 22 IO(E) 57 VCCIO(F) 92 IOCTRL(G) 127 IO(H) 162 IO(A) 197 IOCTRL(B) 23 IO(E) 58 GND 93 IO(G) 128 IO(H) 163 IO(A) 198 IO(B) 24 IO(E) 59 VCC 94 IO(G) 129 VCCIO(H) 164 IO(A) 199 IO(B) 25 IO(E) 60 IO(F) 95 IO(G) 130 GND 165 IO(A) 200 IO(B) 26 IO(E) 61 IO(F) 96 IO(G) 131 VCC 166 IO(A) 201 VCCIO(B) 27 IO(E) 62 IO(F) 97 IO(G) 132 IO(H) 167 IO(A) 202 GND 28 VCCIO(E) 63 IO(F) 98 IO(G) 133 IO(H) 168 IO(A) 203 VCC 29 GND 64 IO(F) 99 IO(G) 134 IO(H) 169 IO(A) 204 IO(B) 30 VCC 65 IO(F) 100 VCCIO(G) 135 IO(A) 170 IO(A) 205 IO(B) 31 IO(E) 66 IO(F) 101 GND 136 IO(A) 171 IO(A) 206 IO(B) 32 IO(E) 67 IO(F) 102 VCC 137 IO(A) 172 VCCIO(A) 207 IO(B) 33 IO(E) 68 PLLOUT(3) 103 IO(G) 138 PLLOUT(2) 173 GND 208 IO(B) 34 CLK(5) PLLIN(3) 69 GNDPLL(0) 104 IO(G) 139 GND 174 VCC 209 IO(B) 35 CLK(6) 70 VCCPLL(0) 105 IO(G) 140 GNDPLL(3) 175 IO(A) 210 IO(B) 8 Pin Function Pin Function Pin Function Pin Function Pin Function Pin Function 211 TDO 224 IO(B) 237 IOCTRL(C) 250 IO(C) 263 IO(D) 276 IO(D) 212 PLLOUT(1) 225 IO(C) 238 INREF(C) 251 IO(C) 264 IO(D) 277 IO(D) 213 GNDPLL(2) 226 IO(C) 239 IOCTRL(C) 252 TRSTB 265 IO(D) 278 IO(D) 214 IO(B) 227 IO(C) 240 IO(C) 253 VCC 266 IO(D) 279 IO(D) 215 VCC 228 IO(C) 241 IO(C) 254 IO(D) 267 IO(D) 280 IO(D) 216 GND 229 IO(C) 242 IO(C) 255 IO(D) 268 IO(D) 281 IO(E) 217 GND 230 VCC 243 IO(C) 256 IO(D) 269 IO(D) 282 IO(E) 218 VCC 231 GND 244 VCCIO(C) 257 IO(D) 270 IOCTRL(D) 283 IO(E) 219 GND 232 VCCIO(C) 245 GND 258 IO(D) 271 INREF(D) 284 PLLOUT(0) 220 VCCPLL(2) 233 IO(C) 246 VCC 259 VCC 272 IOCTRL(D) 285 GND 221 PLLRST(2) 234 IO(C) 247 IO(C) 260 GND 273 VCCIO(D) 286 GNDPLL(1) 222 IO(B) 235 IO(C) 248 IO(C) 261 VCCIO(D) 274 GND 287 VCC 223 IO(B) 236 IO(C) 249 IO(C) 262 IO(D) 275 VCC 288 GND 9 Table 3: 484-pin Ceramic Land Grid Array and Plastic Ball Grid Array Pinout Table Pin Function Pin Function Pin Function Pin Function Pin Function Pin Function A1 IO(A) AA14 IO(D) B5 IO(A) C18 IO(G) E9 IO(H) F22 IOCTRL(F) A2 PLLRST(3) AA15 IO(D) B6 IO(H) C19 IO(F) E10 IO(H) G1 IO(A) A3 IO(A) AA16 IO(D) B7 IO(H) C20 GNDPLL(0) E11 VCC G2 IO(A) A4 IO(A) AA17 IO(D) B8 INREF(H) C21 IO(F) E12 IO(G) G3 IO(A) A5 IO(A) AA18 IO(D) B9 IO(H) C22 IO(F) E13 IO(G) G4 IO(A) A6 IO(H) AA19 IO(E) B10 IO(H) D1 IO(A) E14 IO(G) G5 IO(A) A7 IO(H) AA20 GNDPLL(1) B11 IO(H) D2 IO(A) E15 IOCTRL(G) G6 IO(A) A8 IOCTRL(H) AA21 IO(E) B12 NC D3 IO(A) E16 IO(G) G7 GND A9 IO(H) AA22 IO(E) B13 NC D4 IO(A) E17 INREF(G) G8 IO(H) A10 NC AB1 IO(B) B14 NC D5 IO(A) E18 IO(G) G9 IO(H) A11 IO(H) AB2 GNDPLL(2) B15 IO(G) D6 IO(H) E19 IO(F) G10 IO(H) A12 TCK AB3 PLLRST(2) B16 IO(G) D7 IO(H) E20 IO(F) G11 IO(G) A13 IO(G) AB4 IO(B) B17 IO(G) D8 IO(H) E21 IO(F) G12 GND A14 IO(G) AB5 IO(B) B18 IO(G) D9 IO(H) E22 IO(F) G13 IO(G) A15 IO(G) AB6 IO(C) B19 PLLRST(0) D10 IO(H) F1 IO(A) G14 IO(G) A16 IO(G) AB7 IO(C) B20 IO(F) D11 IO(H) F2 INREF(A) G15 IO(G) A17 IO(G) AB8 IOCTRL(C) B21 IO(F) D12 IO(G) F3 IO(A) G16 GND A18 IO(G) AB9 IO(C) B22 IO(F) D13 IO(G) F4 IO(A) G17 VCCIO(F) A19 IO(F) AB10 IO(C) C1 IO(A) D14 IO(G) F5 IO(A) G18 IO(F) A20 GND AB11 IO(C) C2 IO(A) D15 IOCTRL(G) F6 VCCIO(A) G19 IO(F) A21 PLLOUT(3) AB12 IO(D) C3 VCCPLL(3) D16 IO(G) F7 VCCIO(H) G20 IO(F) A22 IO(F) AB13 IO(D) C4 PLLOUT(2) D17 IO(G) F8 IO(H) G21 INREF(F) AA1 TDO AB14 IO(D) C5 IO(A) D18 IO(F) F9 VCCIO(H) G22 IO(F) AA2 PLLOUT(1) AB15 IO(D) C6 IO(H) D19 VCCPLL(0) F10 IO(H) H1 IO(A) AA3 GND AB16 IOCTRL(D) C7 IO(H) D20 IO(F) F11 VCCIO(H) H2 IO(A) AA4 IO(B) AB17 IO(D) C8 IO(H) D21 IO(F) F12 VCCIO(G) H3 IO(A) AA5 IO(C) AB18 IO(D) C9 IOCTRL(H) D22 IO(F) F13 IO(G) H4 IO(A) AA6 IO(C) AB19 IO(E) C10 IO(H) E1 IOCTRL(A) F14 VCCIO(G) H5 IOCTRL(A) AA7 IO(C) AB20 GND C11 IO(H) E2 IO(A) F15 NC H6 VCCIO(A) AA8 INREF(C) AB21 VCCPLL(1) C12 IO(H) E3 IO(A) F16 VCCIO(G) H7 IO(H) AA9 IO(C) AB22 IO(E) C13 IO(G) E4 IO(A) F17 IO(F) H8 GND AA10 IO(C) B1 IO(A) C14 IO(G) E5 IO(A) F18 IO(F) H9 VCC AA11 IO(C) B2 GND C15 IO(G) E6 IO(H) F19 IO(F) H10 VCC AA12 IO(D) B3 GNDPLL(3) C16 IO(G) E7 IO(A) F20 IOCTRL(F) H11 VCC AA13 IO(D) B4 GND C17 IO(G) E8 IO(H) F21 IO(F) H12 GND 10 Pin Function Pin Function Pin Function Pin Function Pin Function Pin Function H13 VCC K4 IO(A) L17 VCCIO(F) N8 VCC P21 IO(E) T12 IO(C) H14 VCC K5 IO(A) L18 IO(F) N9 VCC P22 IO(E) T13 IO(D) H15 GND K6 VCCIO(A) L19 CLK(8) N10 GND R1 IO(B) T14 IO(E) H16 IO(F) K7 IO(A) L20 IO(F) N11 GND R2 INREF(B) T15 IO(D) H17 IO(F) K8 VCC L21 IO(F) N12 GND R3 IO(B) T16 GND H18 IO(F) K9 VCC L22 IO(F) N13 GND R4 IO(B) T17 IO(E) H19 IO(F) K10 GND M1 IO(B) N14 VCC R5 IO(B) T18 IO(E) H20 IO(F) K11 GND M2 IO(B) N15 VCC R6 IO(B) T19 IO(E) H21 IO(F) K12 GND M3 IO(B) N16 IO(E) R7 IO(B) T20 IO(E) H22 IO(F) K13 GND M4 N17 VCCIO(E) R8 GND T21 IOCTRL(E) J1 IO(A) K14 VCC M5 CLK(3) PLLIN(1) IO(B) N18 IO(E) R9 VCC T22 IO(E) J2 IO(A) K15 VCC M6 VCCIO(B) N19 IO(E) R10 VCC U1 IOCTRL(B) J3 IO(A) K16 IO(F) M7 CLK(1) N20 IO(E) R11 GND U2 IO(B) J4 IO(A) K17 IO(F) M8 VCC N21 IO(E) R12 VCC U3 IOCTRL(B) J5 IO(A) K18 IO(F) M9 VCC N22 IO(E) R13 VCC U4 IO(B) J6 IO(A) K19 IO(F) M10 GND P1 IO(B) R14 VCC U5 IO(B) J7 IO(A) K20 IO(F) M11 GND P2 IO(B) R15 GND U6 IO(C) J8 VCC K21 IO(F) M12 GND P3 IO(B) R16 IO(D) U7 VCCIO(C) J9 GND K22 IO(F) M13 GND P4 IO(B) R17 VCCIO(E) U8 NC J10 VCC L1 CLK4, DEDCLK PLLIN(0) M14 GND P5 IO(B) R18 IO(E) U9 VCCIO(C) J11 VCC L2 CLK(0) M15 GND P6 VCCIO(B) R19 IO(E) U10 IO(C) J12 GND L3 CLK(2) PLLIN(2) M16 GND P7 IO(B) R20 IO(E) U11 VCCIO(C) J13 VCC L4 IO(A) M17 IO(E) P8 VCC R21 IO(E) U12 VCCIO(D) J14 GND L5 IO(A) M18 IO(E) P9 GND R22 IO(E) U13 IO(D) J15 VCC L6 IO(A) M19 IO(E) P10 VCC T1 IO(B) U14 VCCIO(D) J16 IO(F) L7 GND M20 CLK(7) P11 GND T2 IO(B) U15 NC J17 VCCIO(F) L8 GND M21 P12 VCC T3 IO(B) U16 VCCIO(D) J18 IO(F) L9 GND M22 CLK(5) PLLIN(3) TMS P13 VCC T4 IO(B) U17 VCCIO(E) J19 IO(F) L10 GND N1 IO(B) P14 GND T5 IO(B) U18 IO(E) J20 IO(F) L11 GND N2 IO(B) P15 VCC T6 VCCIO(B) U19 IO(E) J21 IO(F) L12 GND N3 IO(B) P16 IO(E) T7 GND U20 IOCTRL(E) J22 IO(F) L13 GND N4 IO(B) P17 IO(E) T8 IO(C) U21 IO(E) K1 TDI L14 VCC N5 IO(B) P18 IO(E) T9 IO(B) U22 INREF(E) K2 IO(A) L15 VCC N6 IO(B) P19 IO(E) T10 TRSTB V1 IO(B) K3 IO(A) L16 CLK(6) N7 IO(B) P20 IO(E) T11 GND V2 IO(B) 11 Pin Function Pin Function Pin Function Pin Function Pin Function Pin Function V3 IO(B) V14 IO(D) W3 IO(B) W14 IO(D) Y3 VCCPLL(2) Y14 IO(D) V4 IO(B) V15 IO(D) W4 IO(B) W15 IO(D) Y4 IO(C) Y15 IOCTRL(D) V5 IO(B) V16 INREF(D) W5 IO(B) W16 NC Y5 IO(C) Y16 IO(D) V6 IO(C) V17 IO(D) W6 IO(C) W17 IO(D) Y6 IO(C) Y17 IO(D) V7 IO(C) V18 IO(E) W7 NC W18 IO(E) Y7 IO(C) Y18 IO(E) V8 IO(C) V19 IO(E) W8 IO(C) W19 IO(E) Y8 IOCTRL(C) Y19 PLLOUT(0) V9 NC V20 IO(E) W9 IO(C) W20 IO(E) Y9 IO(C) Y20 PLLRST(1) V10 IO(C) V21 IO(E) W10 IO(C) W21 IO(E) Y10 IO(C) Y21 ID(E) V11 IO(C) V22 IO(E) W11 IO(C) W22 IO(E) Y11 IO(D) Y22 IO(E) V12 VCC W1 IO(B) W12 IO(D) Y1 IO(B) Y12 IO(D) V13 NC W2 IO(B) W13 IO(D) Y2 IO(B) Y13 IO(D) 12 Table 4: UT6325 Eclipse FPGA Pin Description PIN FUNCTION DESCRIPTION TDI/RSI Test data in for JTAG/RAM initialization Serial Data In Hold HIGH during normal operation. Connects to serial PROM data in for RAM initialization. Connect to VCC if unused. TRSTB/RRO Active low reset for JTAG/ RAM initialization reset out Hold LOW during normal operation. Connects to serial PROM reset for RAM initialization. Connect to GND if unused. TMS Test mode select for JTAG Hold HIGH during normal operation. Connect to VCC if not used for JTAG. TCK Test clock for JTAG Hold HIGH or LOW during normal operation. Connect to VCC or ground if not used for JTAG. TDO/RCO Test data out for JTAG/RAM initialization clock out Connect to serial PROM clock for RAM initialization. Must be left unconnected if not used for JTAG or RAM initialization. CLK1 Global clock network driver Low skew global clock. This pin provides access to a programmable clock network. IO(A) Input/Output Pin The I/O pin is a bi-directional pin, configurable to input and/or output. The A inside the parenthesis means that the I/O is located in Bank A. DEDCLK1 Dedicated clock pin Low skew global clock. This pin provides access to a dedicated, distributed clock network capable of driving the CLOCK inputs of sequential elements of the device (e.g., RAM and flip-flops). PLLIN1 PLL clock input Clock input for PLL. VCCPLL1 Phase locked loop power supply pin Voltage supply for PLLIN. VCCPLL should be connected to 2.5V supply if the PLLs are used. If the PLLs are not used, VCCPLL can be connected GND. GNDPLL Ground pin for PLL Connect to GND. PLLRST1 Reset input pin for PLL Reset input for PLL. If PLLs are not used, PLLRST should be connect to the same voltage as VCCPLL (e.g., GND). PLLOUT2 PLL output pin Dedicated PLL output pin. If PLLs are not used, PLLOUT should be connected to GND. INREF(A) Differential reference voltage The INREF is the reference voltage pin for GTL+, SSTL2, and STTL3 standards. The A inside the parenthesis means that INREF is located in Bank A. This pin should be tied to GND for LVTTL, LVCMOS3 and PCI inputs. IOCTRL(A)1 Highdrive input This pin provides fast RESET, SET, CLOCK and ENABLE access to the I/O cell flip flops, providing fast clock-to-out and fast I/O response times. This pin can also double as a high-drive pin to the internal logic cells. The A inside the parenthesis means that IOCTRL is located in Bank A. VCC Power supply pin Connect to 2.5V supply. 13 Table 4: UT6325 Eclipse FPGA Pin Description PIN FUNCTION DESCRIPTION VCCIO(A) Input voltage tolerance pin Connect to 3.3V supply. The A inside the parenthesis means that VCCIN is located in Bank A. Every I/O pin in Bank A will be tolerance of VCCIO input signals and will output VCCIO level signals. GND Ground pin Connect to ground. Note: Four PLL inputs are available on the RadTol Eclipse FPGA. These PLL pins are noted and available in the QuickWorks/SpDE place and route tools. Aeroflex has tested and characterized the PLL circuits for jitter performance vs frequency and SEE. Aeroflex cautions against the use of the PLL circuits without a full review of the test results. Please contact Aeroflex Colorado Springs directly for support. 1. All dedicated inputs including the CLK, DEDCLK, PLLIN, PLLRST, and IOCTRL pins, are LVCMOS2 compliant (2.5V). Modifications to the ESD protection networks allow these pins to be driven up to VCCIO +0.3V. Slightly lower noise margins exist for these LVCMOS2 compliant inputs, as compared to the LVCMOS3 compliant bidirectional I/O. 2. All PLLOUT output pins are driven by the VCC rail, not the VCCIO rail. These output pins are LVCMOS2 compliant only (2.5V). 14 ABSOLUTE MAXIMUM RATINGS1 (Referenced to VSS) SYMBOL PARAMETER LIMITS VCC Core supply voltage -0.5 to 3.6V VCCIO I/O supply voltage -0.5 to 4.6V VIO Voltage on any pin -0.5V to VCCIO +0.5V ILU Electrical Latchup Immunity +/-100mA PD Power Dissipation .5 - 2.5W JC Thermal resistance, junction-to-case2 for 208 CQFP, 288 CQFP, 484 CLGA/CCGA 6oC/W Thermal resistance, junction-to-case2 for 208 PQFP, 280 PBGA, 484 PBGA 8oC/W Maximum junction temperature2 TJ +150C ESDS ESD pad protection +/-2000V II DC input current ±10 mA TLS Lead Temperature 300C Notes: 1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability and performance. 2. Test per MIL-STD-883; Method 1012. RECOMMENDED OPERATING CONDITIONS SYMBOL PARAMETER LIMITS VCC Core supply voltage 2.3 to 2.7V VCCIO I/O Input Tolerance Voltage 3.0 to 3.6V TA Ambient Temperature -55C to +125C K1 Delay factor for FPGA 0.42 to 1.92 (speed grade -4) tINRISE tINFALL Maximum input rise or fall time (VIN transitioning between VIL (max) and VIH (min)) 20ns Notes: 1. To conclude best and worst case delays, multiply the K factor from the operating conditions with the delay values defined in the following AC delay tables. 15 DC ELECTRICAL CHARACTERISTICS (Pre/Post-Radiation)* (-55C to +125C) (2.3V < VCC < 2.7V) SYMBOL PARAMETER IIN1 Input or I/O leakage current, all I/O except TRSTB, TDI, TMS IIN2 MIN MAX UNIT VIN = VCCIO or Gnd -2 2 A Input leakage current TRSTB, TDI, TMS VIN = VCCIO or Gnd -20 5 A IIN2 Input leakage current TRSTB, TDI, TMS post 300 krads(Si) VIN = VCCIO or Gnd -50 50 A IOZ Three-state output leakage current VIN= VCCIO or Gnd -10 10 A CI1 Input capacitance -- - 8 pF CI/O1 Bi-directional capacitance -- - 12 pF IOS2 Short-circuit output current VO = GND VO = VCCIO -15 40 -180 210 mA mA ICC3 Core quiescent current VCC = 2.7V 15 mA ICC3 Core quiescent current VCC = 2.7V, post 100 krads(Si) 5 mA ICC3 Core quiescent current VCC = 2.7V, post 300 krads(Si) 400 mA ICCIO3 I/O quiescent current VCCIO = 3.6V 50 A ICCIO3 I/O quiescent current VCCIO = 3.6V, post 100 krads(Si) 0.5 mA ICCIO3 I/O quiescent current VCCIO = 3.6V, post 300 krads(Si) 5 mA -10 10 A - 150 A IREF DC supply current on INREF IPD Pad Pull-down (programmable) CONDITION VCCIO = 3.6V Notes: * Post-radiation performance guaranteed at 25C per MIL-STD-883 Method 1019. 1. Capacitance is sample tested for initial qualification or design changes only. Clock pins are 12pF maximum. 2. Input only or I/O. Duration should not exceed 1 second. Measured at initial qualification, or after any design or process change that may affect this parameter. 3. All quiescent current measurements utilize a worst case Standard Evaluation Circuit (SEC) which represents full utilization of synchronous, combinatorial and SRAM logic. 16 Table 5: DC Input and Output Levels1 VIL INREF VIH VOL VOH IOL IOH VMIN VMAX VMIN VMAX VMIN VMAX VMAX VMIN mA mA LVTTL n/a n/a -0.3 0.8 2.0 VCCIO + 0.3 0.4 2.4 2.0 -2.0 LVCMOS2 n/a n/a -0.3 0.7 1.7 VCCIO + 0.3 0.7 1.7 2.0 -2.0 LVCMOS3 n/a n/a -0.3 0.8 2.0 VCCIO + 0.3 .55 2.0 24.0 -24.0 LVCMOS32 n/a n/a -0.3 0.8 2.0 VCCIO + 0.3 0.20 VCCIO -0.2 0.10 -0.10 PCI n/a n/a -0.3 0.3 x VCCIO 0.5 x VCCIO VCCIO + 0.5 0.1 x VCCIO 0.9 x VCCIO 1.5 -0.5 Notes: 1. The data provided in Table 5 are JEDEC and PCI specifications. See preceding AC Delay Data for information specific to Eclipse FPGA I/Os. 2. Low current mode for LVCMOS3 outputs. Table 6: Max Bidirectional I/O per Device/Package Combination Device 208 CQFP 288 CQFP 484 CLGA/484 CCGA UT6325 Eclipse FPGA 99 163 316 Notes: 1. Excludes input only signals such as DEDCLK. PROGCLK and IOCTRL. 17 AC CHARACTERISTICS LOGIC CELLS (Pre/Post-Radiation)* (VCC = 2.5V, TA = 25oC, K=1.00) SYMBOL PARAMETER Value (ns) Min Max TPD Combinatorial Delay of the longest path: time taken by the combinatorial circuit to output 0.205 1.01 TSU Setup Time: time the synchronous input of the flip flop must be stable before the active clock edge 0.231 -- THL Hold Time: time the synchronous input of the flip flop must be stable after the active clock edge 0 -- TCO Clock to Out Delay: the amount of time taken by the flip flop to output after the active clock edge - 0.43 TCWHI Clock High Time: required minimum time the clock stays high 0.46 -- TCWLO Clock Low Time: required minimum that the clock stays low 0.46 -- TSET Set Delay: time between when the flip flop is "set" (high) and when the output is consequently "set" (high) -- 0.59 TRESET Reset Delay: time between when the flip flop is "reset" (low) and when the output is consequently "reset" (low) -- 0.66 TSW Set Width: time that the SET signal remains high/low 0.3 -- TRW Reset Width: time that the RESET signal remains high/low 0.3 Notes: * Post-radiation performance guaranteed at 25C per MIL-STD-883 Method 1019. 1. Stated timing for typical case propagation delay over process variation at VCC=2.5V and TA=25oC. Multiply by the appropriate delay factor, K, for voltage and temperature settings as specified in operating range. 2. These limits are derived from a representative selection of the slowest paths through the logic cell including typical net delays. Worst case delay values for specific paths should be determined from timing analysis of your particular design. 18 SET D Q CLK RESET Figure 6: Logic Cell Flip Flop CLK tCWHI (MIN) tCWLO (MIN) SET RESET Q tRESET tSET tRW tSW Figure 7: Logic Cell Flip Flop Timings - First Waveform CLK D tSU tHL D tCO Figure 8: Logic Cell Flip Flop Timings - Second Waveform 19 Quad Net Figure 9: Global Clock Structure GLOBAL CLOCK TREE DELAY (VCC = 2.5V, TA = 25oC, K=1.00) SYMBOL PARAMETER Value (ns) Min Max tPGCK Global clock pin delay to quad net 0.990 1.386 tBGCK Global clock buffer delay (quad net to flip flop) 0.534 1.865 Programmable Clock Global Clock Buffer External Clock Global Clock Clock Select tPGCK tBGCK Figure 10: Global Clock Structure Schematic 20 RAM CELL SYNCHRONOUS and ASYNCHRONOUS READ TIMING (VCC = 2.5V, TA = 25oC, K=1.00) SYMBOL PARAMETER Value (ns) RAM Cell Synchronous Read Timing Min Max tSRA RA setup time to RCLK: time the READ ADDRESS must be stable before the active edge of the READ CLOCK 0.686 -- tHRA RA hold time to RCLK: time the READ ADDRESS must be stable after the active edge of the READ CLOCK 0 -- tSRE RE setup time to RCLK: time the READ ENABLE must be stable before the active edge of the READ CLOCK 0.243 -- tHRE RE hold time to RCLK: time the READ ENABLE must be stable after the active edge of the READ CLOCK 0 -- tRCRD RCLK to RD: time between the active READ CLOCK edge and the time when the data is delivered to RD -- 2.3 -- 2.4 RAM Cell Asynchronous Read Timing tPDRD RA to RD: time between when the READ ADDRESS is input and when the DATA is output RCLK RA tSRA tHRA tSRE tHRE RE RD old data new data tRCRD tPDRD Figure 11: RAM Cell Synchronous and Asynchronous Read Timing 21 RAM CELL SYNCHRONOUS WRITE TIMING (VCC = 2.5V, TA = 25oC, K=1.00) SYMBOL PARAMETER Value (ns) Min Max tSWA WA setup time to WCLK: time the WRITE ADDRESS must be stable before the active edge of the WRITE CLOCK 0.675 -- tHWA WA hold time to WCLK: time the WRITE ADDRESS must be stable after the active edge of the WRITE CLOCK 0 -- tSWD WD setup time to WCLK: time the WRITE DATA must be stable before the active edge of the WRITE CLOCK 0.654 -- tHWD WD hold time to WCLK: time the WRITE DATA must be stable after the active edge of the WRITE CLOCK 0 -- tSWE WE setup time to WCLK: time the WRITE ENABLE must be stable before the active edge of the WRITE CLOCK 0.276 tHWE WE hold time to WCLK: time the WRITE ENABLE must be stable after the active edge of the WRITE CLOCK 0 tWCRD WCLK to RD (WA = RA): time between the active WRITE CLOCK edge and the time when the data is available at RD -- 2.8 WCLK WA tSWA tHWA tSWD tHWD tSWE tHWE WD WE RD old data new data tWCRD Figure 12: RAM Cell Synchronous Write Timing 22 tICLK tIN - tINI tISU + - tSID Q E D R PAD Figure 13. Input Register Cell 23 INPUT REGISTER CELL (VCC = 2.5V, TA = 25oC, K=1.00) SYMBOL PARAMETER Value (ns) Min Max tISU Input register setup time: time the synchronous input of the pin must be stable before the active clock edge 3.308 3.526 tIHL Input register hold time: time the synchronous input of the flip-flop must be stable after the active clock edge 0 -- tICO Input register clock to out: time taken by the flip-flop to output after the active clock edge -- 0.494 tIRST Input register reset delay: time between when the flip-flop is "reset" (low) and when the output is consequently "reset" (low) -- 0.464 tIESU Input register clock enable setup time: time "enable" must be stable before the active clock edge 0.830 - tIEH Input register clock enable hold time: time "enable" must be stable after the active clock edge 0 -- STANDARD INPUT DELAYS (VCC = 2.5V, TA = 25oC, K=1.00) SYMBOL PARAMETER Value (ns) Min tSID (LVTTL) tSID (LVCMOS3) LVTTL input delay: Low voltage TTL for 3.3V applications Max - 0.34 LVCMOS3 input delay: Low voltage CMOS for 3.3V applications - 0.42 R CLK D tISU tIHL tICO Q tIRST E tIESU tIEH Figure 14. Input Register Timing 24 PAD Q D Figure 15. Output Register Cell 25 OUTPUT REGISTER CELL (VCC = 2.5V, TA = 25oC, K=1.00) SYMBOL PARAMETER Value (ns) Min tOUTLH Output Delay low to high (90% of H) - 2.59 tOUTHL Output Delay high to low (10% of L) - 2.16 tPZH Output Delay tri-state to high (90% of H) - 3.06 tPZL Output Delay tri-state to low (10% of L) -- 2.71 tPHZ Output Delay high to tri-state -- 3.44 tPLZ Output Delay low to tri-state -- 3.32 tCOP Clock to out delay (does not include clock tree delays) -- 2.67 (fast skew) 9.0 (slow skew) OUTPUT SLEW RATES (VCC = 2.5V, TA = 25oC, K=1.00, VCCIO = 3.3V) Fast Slew Slow Slew Rising Edge 2.8V/ns 1.0V/ns Falling Edge 2.86V/ns 1.0V/ns tOUTHL L H H Z Z L tPZH Z Z tPZL L H H L tOUTHL H H L Max L tPLZ Figure 16. Output Register Cell Timing 26 tPHZ Power vs Operating Frequency The basic power equation which best models power consumption is shown below. PTOTAL = 0.350 + f(0.0031 NLC + 0.0948 NCKBF +0.01 NCLBF + 0.0263 NCKLD + 0.543 NRAM + 0.0035 NINP + 0.0257 NOUTP) (mW) Where • NLC is the total number of logic cells in the design • NCKBF = # of clock buffers • NCLBF = # of column clock buffers • NCKLD = # of loads connected to the column clock buffers • NRAM = # of RAM blocks • NINP is the number of input pins • NOUTP is the number of output pins Figure 17 exhibits the power consumption in the device. The chip was filled with (300) 8-bit counters, approximately 76% logic cell utilization. Power vs Frequency (Counter_300) 2.5 Power (W) 2 1.5 1 .5 0 0 20 40 60 80 100 Frequency (Mhz) Figure 17: Power Consumption 27 120 140 Power-Up Sequencing VCCIO Voltage VCC tPOR VCCOFFSET tRVCC Time Figure 18. Power-Up Requirements/Recommendations Notes: 1. VCC and VCCIO should either be ramped simultaneously to their final values (as shown) or with the core voltage VCC leading the I/O voltage VCCIO. 2. Rise time for the voltage supplies (tRVCC) must be within the range of 1s < tRVCC <200ms. 3. Voltage power up/power down ramps for the supplies must be monotonically increasing/decreasing. 4. The starting point for power up (VCCOFFSET) must be less than or equal to 300mV. 5. Users must allow time for the asynchronous power on reset to complete initialization of the device (tPOR). For fast rise times, (tRVCC <10msec) a minimum tPOR =10 msec must be allowed. For slower rise times, 10ms <tRVCC <200ms, a minimum tPOR=tRVCC must be allowed. 28 Joint Test Access Group (JTAG) TCK TAp Controller State Machine (16 States) TMS Instruction Decode & Control Logic TRSTB Instruction Register RDI Mux Mux TDO Boundary-Scan Register (Data Register) Bypass Register Internal Register I/O Registers User Defined Data Register Figure 19. JTAG Block Diagram Microprocessors and Application Specific Integrated Circuits (ASICs) pose many design challenges, not in the least of which concerns the accessibility of test points. The Joint Test Access Group (JTAG) formed in response to this challenge, resulting in IEEE standard 1149.1, the Standard Test Access Port and Boundary Scan Architecture. The JTAG boundary scan test methodology allows complete observation and control of the boundary pins of a JTAG-compatible device through JTAG software. A Test Access Port (TAP) controller works in concert with the Instruction Register (IR), which allow users to run three required tests along with several user-defined tests. JTAG tests allow users to reduce system debug time, reuse test platforms and tools, and reuse subsystem tests for fuller verification of higher level system elements. The 1149.1 standard requires the following three tests: • Extest Instruction: The Extest instruction performs a PCB interconnect test. This test places a device into an external boundary test mode, selecting the boundary scan register to be connected between the TAP’s Test Data In (TDI) and Test Data Out (TDO) pins. Boundary scan cells are preloaded with test patters (via the Sample/Preload Instruction), and input boundary cells capture the input data for analysis. • Sample/Preload Instruction: This instruction allows a device to remain in its functional mode, while selecting the boundary scan register to be connected between the TDI and TDO pins. For this test, the boundary scan register can be accessed 29 via a data scan operation, allowing users to sample the functional data entering and leaving the device. • Bypass Instruction: The Bypass instruction allows data to skip a device’s boundary scan entirely, so the data passes through the bypass register. The Bypass instruction allows users to test a device without passing through other devices. The bypass register is connected between the TDI and TDO pins, allowing serial data to be transferred through a device without affecting the operation of the device. Table 7: JTAG Pin Descriptions Pin Function Description TDI/RSI Test Data In for JTAG/RAM init. Serial Data In Hold HIGH during normal operation. Connects to serial PROM data in for RAM initialization. Connect to VCC if unused. TRSTB/RRO Active low Reset for JTAG/RAM init. reset out Hold LOW during normal operation. Connects to serial PROM data in for RAM initialization. Connect to GND if unused. TMS Test Mode Select for JTAG Hold HIGH during normal operation. Connect to VCC if not used for JTAG. TCK Test Clock for JTAG Hold HIGH or LOW during normal operation. Connect to VCC or GND if not used for JTAG. Test data out for JTAG/RAM init. clock out Connect to serial PROM clock for RAM initialization. Must be left unconnected if not used for JTAG or RAM initialization. TDO/RCO Recommended Unused Pin Terminations for the UT6325 Eclipse FPGA Devices All unused, general purpose I/O pins can be tied to VCC, GND, or HIZ (high impedance) internally using the Configuration editor. This option is given in the bottom-right corner of the placement window. To use the Placement Editor, choose Constraint ->Fix Placement in the Option pull-down menu of SpDE. The rest of the pins should be terminated at the board level in the manner presented in Table 8. 30 Table 8: Recommended Unused Pin Terminations Signal Name Recommended Termination IOCTRL <y> Any unused pins of this type should be connected to either VCC or GND (recommended: GND). CLK/PLLIN <x> Any unused clock pins should be connected to either VCC or GND (recommended: GND). INREF <y> If an I/O bank does not require the use of an INREF signal, that INREF pin should be connected to GND. VCCPLL <x> If a PLL is not used, the associated VCCPLL must be connected to the same voltage as PLLRST (2.5V or GND; recommend GND). PLLRST <x> If a PLL is not used, the associated PLLRST must be connected to the same voltage as VCCPLL (2.5V or GND; recommend GND). PLLOUT <x> Unused PLLOUT pins must be connected to either VCC or GND so that the input buffer portion never floats (recommend GND). Utilized PLLs which route the PLL clock outside of the chip require use of the associated PLLOUT pin. Note: X---> number, Y ---> alphabetical character 31 PACKAGING Figure 20. 208-pin Ceramic FLATPACK 32 Figure 21. 288-pin Ceramic Quad FLATPACK 33 Figure 22. 484-pin Ceramic Column Grid Array 34 Figure 23. 484-pin Ceramic Land Grid Array 35 Figure 24. 208-pin Plastic Quad Flat Pack 36 Figure 25. 280-pin Plastic Ball Grid Array 37 Figure 26. 484-pin Plastic Ball Grid Array 38 ORDERING INFORMATION UT6325 RadTol Eclipse FPGA: UT ***** * * * Lead Finish: (NOTES 1 & 2) (A) = Hot solder dipped (C) = Gold (X) = Factory option (gold, solder, or tinned) Screening: (NOTES 3 & 4) (C) = HiRel Temperature Range flow (P) = Prototype flow Packaging: (NOTE 5) (W) = 208-pin PQFP Plastic Quad Flatpack (X) = 208-pin CQFP Ceramic Quad Flatpack (P) = 280-pin PBGA Plastic Ball Grid Array (Y) = 288-pin CQFP Ceramic Quad Flatpack (R) = 484-pin PBGA Plastic Ball Grid Array (Z) = 484-pin CLGA Ceramic Land Grid Array (S) = 484-pin CCGA Ceramic Column Grid Array Device Type: (6325) = FPGA Notes: 1. Lead finish (A, C, or X) must be specified. 2. If an “X” is specified when ordering, then the part marking will match the lead finish and will be either “A” (solder) or “C” (gold). 3. Prototype flow per Aeroflex Manufacturing Flows Document. Tested at 25C only. Lead finish is FACTORY OPTION "X" only. Radiation neither tested nor guaranteed. 4. HiRel Temperature Range flow per Aeroflex Manufacturing Flows Document. Devices are tested at -55C, room temp, and 125C. Radiation neither tested nor guaranteed. 5. Use the following table to determine which lead finishes to select for the corresponding package options. Package Option Associated Lead Finish Option (W) 208-PQFP (A) Hot Solder Dipped (X) 208-CQFP (C) Gold (P) 280-PBGA (A) Hot Solder Dipped (Y) 288-CQFP (C) Gold (R) 484-PBGA (A) Hot Solder Dipped (Z) 484-CLGA (C) Gold (S) 484-CCGA (A) Hot Solder Dipped 39 UT6325 FPGA: SMD 5962 - 04229 ** * * * Lead Finish: (C) = Gold (A) = Solder Case Outline: (NOTE 1) (X) = 208-pin CQFP Ceramic Quad Flatpack (Y) = 288-pin CQFP Ceramic Quad Flatpack (Z) = 484-pin CLGA Ceramic Land Grid Array (V) = 484-pin CCGA Ceramic Land Grid Array Class Designator: (Q) = QML Class Q (V) = QML Class V Device Type (NOTE 2) 01 = UT6325 (Temperature Range: -55oC to +125oC) 02 = No Longer Available. Contact Factory 03 = UT6325 assembled to Aeroflex’s Q+ flow Drawing Number: 04229 Total Dose: (NOTE 3) (R) = 1E5 (100 krad)(Si)) (F) = 3E5 (300 krad)(Si)) Federal Stock Class Designator: No options Notes: 1. Case outlines "X", "Y" and "Z" can only be ordered with Gold lead finish "C". Case outline "V" can only be ordered with Solder lead finish "A". 2. Aeroflex’s Q+ assembly flow, as defined in section 4.2.2.d of the SMD, provides QML-Q product through that SMD that is manufactured with Aeroflex’s standard QML-V flow. 3.Aeroflex’s Total dose radiation must be specified when ordering. QML Q not available without radiation hardening. 40 Aeroflex Colorado Springs - Datasheet Definition Advanced Datasheet - Product In Development Preliminary Datasheet - Shipping Prototype Datasheet - Shipping QML & Reduced HiRel COLORADO Toll Free: 800-645-8862 Fax: 719-594-8468 INTERNATIONAL Tel: 805-778-9229 Fax: 805-778-1980 NORTHEAST Tel: 603-888-3975 Fax: 603-888-4585 SE AND MID-ATLANTIC Tel: 321-951-4164 Fax: 321-951-4254 WEST COAST Tel: 949-362-2260 Fax: 949-362-2266 CENTRAL Tel: 719-594-8017 Fax: 719-594-8468 www.aeroflex.com [email protected] Aeroflex Colorado Springs, Inc. reserves the right to make changes to any products and services herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties. Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused 41