FL75R10A Filter Module 75Vdc Input Maximum, 10A Maximum FEATURES ROHS Compliant Small size: 50.8mm x 40.6mm x 12.7mm (2.0” x 1.6” x 0.5”) Industry standard footprint and pin-out Optimized for use with high frequency board mounted DC/DC converters Printed-circuit board mountable ISO 9001, TL 9000, ISO 14001, QS 9000, OHSAS 18001 certified manufacturing facility UL/cUL 60950 (US & Canada) Recognized, VDE 0805 (IEC60950) Licensed Delphi Series Filter Module - FL75L20 75Vdc max input, 20A max output current The Delphi series FL75L20 filter module is the latest offering from a world leader in power systems technology and manufacturing -- Delta Electronics, Inc. This filter module is designed to reduce the conducted common-mode and differential-mode noise on input or output lines of high-frequency switching power supplies and has a maximum current rating of 20A. It has the industry standard footprint and pin-out. With creative design technology and optimization of component placement, Delphi FL75L20 filter module possesses outstanding electrical and thermal performance, as well as extremely high reliability under highly stressful operating conditions. APPLICATIONS Common-mode and differential-mode filtering of power supply dc input and output line DATASHEET DS_FL75L20_ 03042014 Computer application Communications equipment SPECIFICATIONS GENERAL SPECIFICATIONS OUTPUT SPECIFICATIONS Input voltage, continuous Typical 0~75V Output current Ta=60°C, 2 m/s 20A Input voltage, transient Typical 100V Output current Ta=70°C, 0 m/s 12A Operation case temperature Typical -40℃ ~ 110℃ Common-mode Insertion Loss 50Ω circuit, 500 kHz (Typ) 28dB Storage temperature Typical -55℃ ~ 125℃ Differential-mode Insertion Loss 50Ω circuit, 500 kHz (Typ) 46dB Size (2.0”. x 1.6”x 0.5”) 50.8 x 40.6 x 12.7 mm ELECTRICAL CHARACTERISTICS CURVES Figure 1: Typical common-mode insertion loss in a 50Ω circuit Figure 2: Typical differential-mode insertion loss in a 50Ω circuit Internal Schematics Figure 3: Internal schematics 2 THERMAL CONSIDERATIONS 27 mm (1.06 in) Thermal management is an important part of the system design. To ensure proper, reliable operation, sufficient cooling of the power module is needed over the entire temperature range of the module. Convection cooling is usually the dominant mode of heat transfer. Hence, the choice of equipment to characterize the thermal performance of the power module is a wind tunnel. OUT Thermal Testing Setup Delta’s filter modules are characterized in heated vertical wind tunnels that simulate the thermal environments encountered in most electronics equipment. This type of equipment commonly uses vertically mounted circuit cards in cabinet racks in which the power modules are mounted. GND 16 mm (0.63 in) Figure 5: Temperature measurement location The allowed maximum hot spot temperature is defined at 110℃ 25 The following figure shows the wind tunnel characterization setup. The filter module is mounted on a test PWB and is vertically positioned within the wind tunnel. The space between the neighboring PWB and the top of the power module is 6.35mm (0.25”). FL75L20 (Standard) Output Current vs. Ambient Temperature and Air Velocity @ Vin = 48V (Either Orientation) Output Current(A) 20 Natural Convection 100LFM 15 200LFM 300LFM Thermal Derating 10 400LFM 500LFM 600LFM Heat can be removed by increasing airflow over the module. Figure 4 shows maximum output is a function of ambient temperature and airflow rate. To enhance system reliability, the power module should always be operated below the maximum operating temperature. If the temperature exceeds the maximum module temperature, reliability of the unit may be affected. 5 0 25 35 45 55 65 75 85 Ambient Temperature (℃) Figure 6: Output Current vs. Ambient Temperature and Air Velocity @ Vin = 48V (Either Orientation) Figure 4: Wind tunnel test setup figure dimensions are in millimeters and (inches). 3 APPLICATION Note: C2 through C5 can be 0.01μF to o.1μF. Select the voltage rating to meet input-to-output isolation requirements. C1 should be the recommended value indicated in the power module data sheet. Figure 7. Recommended schematic when used as the input filter to a high-frequency dc-to-dc converter Note: Vdc input(+) and Vdc input(-) planes should overlay each other, as should the Vi(+) and Vi(-) planes, as should the Vout(+) and Vout(-) planes. Avoid routing signals or planes under the power module or the filter module. Ensure all connections are low impedance. Figure 8. Recommended layout when used as the input filter to a high-frequency dc-to-dc converter 4 APPLICATION (Continued) Note: : C2 through C5 and C6 through C9 can be 0.01μF to o.1μF. Select the voltage rating to meet input-to-output isolation requirements. C1 should be the recommended value indicated in the power module datasheet. Figure 9. Recommended schematic of filter module with two power modules 5 Figure 10 shows the experimental result obtained by using this filter module, together with the recommended external components shown in Figures 5 and 6. The Q48SR3R335NR module is one of the Delphi series quarter brick 3.3V, 35A DCDC converters. Measured noise is greatly dependent on layout, grounding, cable orientation, and load characteristics and the variation is possible from various application conditions. Figure 10. Q48SR3R335NR A conducted noise with FL75L20 input filter MECHANICAL DRAWING Top View Side View Bottom View Pin length L: A=5.0mm; B=3.1mm Dimensions are in millimeter and (inches). Tolerances : x.xx ± 0.5 mm (0.02 in), x.xxx ± 0.25 mm (0.010 in) RECOMMENDED HOLE PATTERN Dimensions are in millimeter and (inches). Tolerances : x.xx ± 0.5 mm (0.02 in), x.xxx ± 0.25 mm (0.010 in) 6 PART NUMBERING SYSTEM FL 75 L 20 A Product Family Input Voltage Product Series Output Current FL- EMI Filter 75- 0 ~ 75V L – Industry standard 20 - 20A Space Option Code A – PIN length=5.0mm B – PIN length=3.1mm MODEL LIST Module Name FL75L05 FL75L10 FL75L20 A A A Input Voltage (max.) Current Rating (max.) 75V 75V 75V 5A 10A 20A Size (metric) Size (English unit) 25.4 x 25.4 x 10.2 mm 1.0 in. x 1.0 in. x 0.4 in. 50.8 x 27.9 x 12.5 mm 2.0 in. x 1.1 in. x 0.5 in. 50.8 x 40.6 x 12.7 mm 2.0 in. x 1.6 in. x 0.5 in. CONTACT: www.deltaww.com/dcdc USA: Telephone: East Coast: 978-656-3993 West Coast: 510-668-5100 Fax: (978) 656 3964 Email: [email protected] Europe: Telephone: +31-20-655-0967 Fax: +31-20-655-0999 Email: [email protected] Asia & the rest of world: Telephone: +886 3 4526107 Ext. 6220~6224 Fax: +886 3 4513485 Email: [email protected] WARRANTY Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available upon request from Delta. Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these specifications at any time, without notice. 7