ROHM BU28TD3WG-GTR

Datasheet
CMOS LDO Regulator Series for Portable Equipments
Versatile Package
FULL CMOS LDO Regulator
BUxxTD3WG series
●General Description
BUxxTD3WG series is high-performance FULL CMOS
regulator with 200-mA output, which is mounted on
versatile package SSOP5 (2.9 mm × 2.8 mm × 1.25 mm).
It has excellent noise characteristics and load
responsiveness characteristics despite its low circuit
current consumption of 35μA. It is most appropriate for
various applications such as power supplies for logic IC,
RF, and camera modules.ROHM’s.
●Key Specifications
„ Output voltage:
„ Accuracy output voltage:
„ Low current consumption:
„ Operating temperature range:
1.0V to 3.4V
±1.0% (±25mV)
35μA
-40°C to +85°C
●Applications
Battery-powered portable equipment, etc.
●Package
SSOP5:
●Features
„ High accuracy detection
„ low current consumption
„ Compatible with small ceramic capacitor(Cin=Co=0.47uF)
„ With built-in output discharge circuit
„ High ripple rejection
„ ON/OFF control of output voltage
„ With built-in over current protection circuit
and thermal shutdown circuit
„ Package SSOP5 is similar to SOT-23-5 (JEDEC)
„ Low dropout voltage
2.90mm x 2.80mm x 1.25mm
●Typical Application Circuit
STBY
VIN
VOUT
STBY
VOUT
VIN
GND
GND
GND
Fig.1 Application Circuit
○Product structure:Silicon monolithic integrated circuit
○This product is not designed protection against radioactive rays.
www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・14・001
1/10
TSZ02201-0RBR0A300030-1-2
30.JUL.2013.Rev.002
Datasheet
BUxxTD3WG series
●Connection Diagram
VOUT
SSOP5
N.C.
Lot. No
Marking
VIN GND STBY
TOP VIEW
●Pin Descriptions
SSOP5
PIN No.
Symbol
Function
1
VIN
Power Supply Voltage
2
GND
Grouding
3
STBY
4
N.C.
ON/OFF control of output voltage
(High: ON, Low: OFF)
Unconnected Terminal
5
VOUT
Output Voltage
●Ordering Information
B
U
x
Part
Number
x
Output Voltage
10 : 1.0V
T
D
3
Series
Maximum Output Current
200mA
W
G
with
Package
output discharge G : SSOP5
-
x
Halogen Free
G : compatible
Blank : incompatible
T
R
Packageing and forming specification
Embossed tape and reel
TR : The pin number 1 is the upper right
34 : 3.4V
SSOP5
+6°
4° −4°
2.9±0.2
5
1
2
0.2Min.
2.8±0.2
+0.2
1.6 −0.1
4
3
0.05±0.05
1.1±0.05
1.25Max.
+0.05
0.13 −0.03
+0.05
0.42 −0.04
0.95
0.1
(Unit : mm)
www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
2/10
TSZ02201-0RBR0A300030-1-2
30.JUL.2013.Rev.002
Datasheet
BUxxTD3WG series
●Lineup
Marking
Output Voltage
Part Number
F0
1.0V
BU10
L6
1.1V
BU11
F1
1.2V
BU12
M0
1.25V
BU1C
L5
1.3V
BU13
F2
1.5V
BU15
F3
1.8V
BU18
F4
1.85V
BU1J
F5
1.9V
BU19
F6
2.0V
BU20
F7
2.1V
BU21
F8
2.5V
BU25
F9
2.6V
BU26
G0
2.7V
BU27
G1
2.8V
BU28
G2
2.85V
BU2J
G3
2.9V
BU29
G4
3.0V
BU30
G5
3.1V
BU31
G6
3.2V
BU32
G7
3.3V
BU33
G8
3.4V
BU34
●Absolute Maximum Ratings (Ta=25°C)
PARAMETER
Symbol
Power Supply Voltage
Power Dissipation
Maximum junction temperature
Operating Temperature Range
Storage Temperature Range
Limit
VMAX
-0.3 ~
Pd
Unit
+6.5
V
540(*1)
mW
+125
℃
Topr
-40 ~ +85
℃
Tstg
-55 ~ +125
℃
TjMAX
(*1)Pd deleted at 5.4mW/℃ at temperatures above Ta=25℃, mounted on 70×70×1.6 mm glass-epoxy PCB.
● RECOMMENDED OPERATING RANGE (not to exceed Pd)
Symbol
Limit
Unit
Power Supply Voltage
PARAMETER
VIN
1.7~6.0
V
Maximum Output Current
IMAX
200
mA
●OPERATING CONDITIONS
PARAMETER
Symbol
MIN.
TYP.
MAX.
Unit
Input Capacitor
Cin
0.22(*2)
0.47
-
μF
Output Capacitor
Co
0.22(*2)
0.47
-
μF
CONDITION
Ceramic capacitor recommended
(*2)Make sure that the output capacitor value is not kept lower than this specified level across a variety of
temperature, DC bias, changing as time progresses characteristic.
www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
3/10
TSZ02201-0RBR0A300030-1-2
30.JUL.2013.Rev.002
Datasheet
BUxxTD3WG series
●Electrical Characteristics
(Ta=25℃, VIN=VOUT+1.0V (*3), STBY=VIN, Cin=0.47μF, Co=0.47μF, unless otherwise noted.)
PARAMETER
Limit
Symbol
MIN.
TYP.
Unit
MAX.
Conditions
Overall Device
VOUT×0.99
Output Voltage
VOUT
VOUT-25mV
Operating Current
Operating Current (STBY)
V
VOUT+25mV
IOUT=10μA, VOUT≧2.5V
IOUT=10μA, VOUT<2.5V
IIN
-
35
60
μA
IOUT=0mA
ISTBY
-
-
1.0
μA
STBY=0V
RR
45
70
-
dB
VRR=-20dBv, fRR=1kHz, IOUT=10mA
-
280
540
mV
2.5V≦VOUT≦2.6V (VIN=0.98*VOUT, IOUT=200mA)
-
260
500
mV
2.7V≦VOUT≦2.85V (VIN=0.98*VOUT, IOUT=200mA)
-
240
460
mV
2.9V≦VOUT≦3.1V (VIN=0.98*VOUT, IOUT=200mA)
-
220
420
mV
3.2V≦VOUT≦3.4V (VIN=0.98*VOUT, IOUT=200mA)
Ripple Rejection Ratio
Dropout Voltage
VOUT×1.01
VOUT
VSAT
Line Regulation
VDL
-
2
20
mV
VIN=VOUT+1.0V to 5.5V (*4), IOUT=10μA
Load Regulation
VDLO
-
10
80
mV
IOUT=0.01mA to 100mA
Over Current Protection (OCP)
Limit Current
ILMAX
220
400
700
mA
Vo=VOUT*0.95
Short Current
ISHORT
20
70
150
mA
Vo=0V
RDSC
20
50
80
Ω
VIN=4.0V, STBY=0V, VOUT=4.0V
Standby Block
Discharge Resistor
STBY Pin Pull-down Current
STBY Control Voltage
ISTB
0.1
0.6
2.0
μA
ON
VSTBH
1.2
-
6.0
V
OFF
VSTBL
-0.3
-
0.3
V
STBY=1.5V
This product is not designed for protection against radioactive rays.
(*3) VIN=2.5V for VOUT≦1.5V
(*4) VIN=2.5V to 3.6V for VOUT≦1.5V
●ELECTRICAL CHARACTERISTICS of each Output Voltage
(Ta=25℃, STBY=VIN, Cin=0.47μF, Co=0.47μF, unless otherwise noted.)
Output Voltage
PARAMETER
1.0V, 1.1V, 1.2V, 1.25V, 1.3V
Maximum
output current
1.5V
1.8V, 1.85V, 1.9V, 2.0V, 2.1V
MIN.
80
200
60
200
200
TYP.
160
120
-
MAX.
-
Unit
mA
Conditions
VIN=1.7V
VIN=2.1V
VIN=1.8V
VIN=2.2V
VIN=VOUT+0.6V
●Block Diagrams
VIN
VIN
1
VREF
VOUT
Cin
VOUT
5
GND
2
OCP
Co
TSD
STBY
STBY
3
STBY
Discharge
Cin・・・0.47μF (Ceramic)
Co ・・・0.47μF (Ceramic)
Fig. 2 Block Diagrams
www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
4/10
TSZ02201-0RBR0A300030-1-2
30.JUL.2013.Rev.002
Datasheet
BUxxTD3WG series
●Reference data
BU18TD3WG
(Ta=25ºC unless otherwise specified.)
1.85
Temp=25°C
100
Temp=25°C
1.84
1.6
Output Voltage (V)
1.4
1.2
1.0
Io=0uA
Io=100uA
Io=50mA
Io=200mA
0.8
0.6
0.4
VIN=STBY
0.2
VIN=STBY
1.82
1.81
1.80
1.79
Io=0uA
Io=100uA
Io=50mA
Io=200mA
1.78
1.77
1.76
0.0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
1.7
20
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
0
0.5
1
1.5
Gnd Current (uA)
Temp=85°C
0.8
0.6
3
3.5
4
4.5
5
5.5
1.85
VIN=2.8V
STBY=1.5V
80
VIN=2.8V
STBY=1.5V
1.84
Temp=85°C
60
40
Temp=-40°C
Temp=25°C
20
Temp=-40°C
2.5
Fig 5. Circuit Current IGND
100
1.4
1.2
2
Input Voltage (V)
Fig 4. Line Regulation
1.6
Temp=25°C
Temp=25°C
40
Input Voltage (V)
Fig 3. Output Voltage
0.4
Temp=85°C
60
0
Input Voltage (V)
1.0
VIN=STBY
80
Temp=-40°C
1.75
0
STBY Pin Current (uA)
Io=0uA
1.83
Output Voltage (V)
Output Voltage (V)
1.8
Gnd Current (uA)
2.0
0.2
1.83
Temp=25°C
1.82
Temp=85°C
1.81
1.80
1.79
1.78
1.77
Temp=-40°C
1.76
0
0.0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
1.75
0
5.5
0.05
0.1
0.15
0.2
0
0.05
Fig 6. VSTBY - ISTBY
0.1
0.15
0.2
Output Current (A)
Output Current (A)
Input Voltage (V)
Fig 8. Load Regulation
Fig 7. IOUT - IGND
1.85
2.0
2.0
VIN=5.5V
1.4
VIN=2.3V
1.2
1.0
0.8
0.6
0.4
Temp=25°C
0.2
STBY=1.5V
1.5
1.0
Temp=25°C
Temp=-40°C
Temp=85°C
0.5
0.0
0.1
0.2
0.3
0.4
0.5
1.83
1.82
1.81
1.80
1.79
1.78
1.77
1.76
0.0
0.0
1.75
0
0.6
0.5
1
1.5
Fig 9. OCP Threshold
-40
-15
10
35
60
85
Temp (°C)
STBY Voltage (V)
Output Current (mA)
Fig 11. VOUT - Temp
Fig 10. STBY Threshold
1.0
60
VIN=2.8V
STBY=1.5V
Io=0mA
0.9
Gnd Current (uA)
50
Gnd Current (uA)
Output Voltage (V)
1.6
Output Voltage (V)
Output Voltage (V)
VIN=2.8V
VIN=2.8V
STBY=1.5V
Io=0.1mA
1.84
VIN=3.8V
Io=0mA
1.8
40
30
20
VIN=2.8V
STBY=0V
0.8
0.7
0.6
0.5
0.4
0.3
0.2
10
0.1
0
0.0
-40
-15
10
35
60
85
-40
-15
Temp (°C)
Fig 12. IGND - Temp
10
60
85
Fig 13. IGND - Temp (STBY)
www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
35
Temp (°C)
5/10
TSZ02201-0RBR0A300030-1-2
30.JUL.2013.Rev.002
Datasheet
BUxxTD3WG series
●Reference data
BU18TD3WG
(Ta=25ºC unless otherwise specified.)
0
100
50
IOUT=50mA→0mA
0
Output Current (mA)
50
IOUT=0mA→50mA
Output Current (mA)
100
1.90
Output Voltage (V)
Output Voltage (V)
1.85
1.80
1.75
1.85
1.80
1.75
1.70
Fig 14. Load Response
50
0
100
50
IOUT=100mA→0mA
1.90
Output Voltage (V)
Output Voltage (V)
1.85
1.80
1.75
1.70
1.85
1.80
1.75
Fig 16. Load Response
Fig 17. Load Response
0
200
100
IOUT=200mA→0mA
2.00
Output Voltage (V)
Output Voltage (V)
1.90
1.80
1.70
1.60
1.90
1.80
1.70
Fig 18. Load Response
Fig 19. Load Response
0
100
IOUT=100mA→50mA
50
0
Output Current (mA)
50
Output Current (mA)
100
IOUT=50mA→100mA
1.85
Output Voltage (V)
1.90
Output Voltage (V)
0
Output Current (mA)
100
Output Current (mA)
200
IOUT=0mA→200mA
1.80
1.70
1.60
1.80
1.75
1.70
Fig 21. Load Response
Fig 20. Load Response
www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
0
Output Current (mA)
100
Output Current (mA)
IOUT=0mA→100mA
Fig 15. Load Response
6/10
TSZ02201-0RBR0A300030-1-2
30.JUL.2013.Rev.002
Datasheet
BUxxTD3WG series
●Reference data
BU18TD3WG
(Ta=25ºC unless otherwise specified.)
2.0
1.0
0.0
2.0
1.0
0.0
Fig 23. Start Up Time
Fig 22. Start Up Time
Iout=200mA
Iout=0mA
VIN=STBY=2.8→0V
2.0
1.0
0.0
2.0
1.0
0.0
Fig 25. Start Up Time
(VIN=STBY) Iout=200mA
Fig 24. Start Up Time
(VIN=STBY) Iout=0mA
Iout=0mA
1.81
2.0
1.0
0.0
1.80
1.79
1.78
Fig 27. VIN Response
Fig 26. Discharge Time
www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
3.8
2.8
Output Voltage (V)
Output Voltage (V)
0.0
4.8
VIN=2.8V→3.8V→2.8V
Input Voltage (V)
1.0
STBY Voltage (V)
2.0
STBY=1.5→0V
2.0
0.0
Output Voltage (V)
Output Voltage (V)
0.0
4.0
STBY Voltage (V)
2.0
STBY Voltage (V)
4.0
VIN=STBY=0→2.8V
1.0
0.0
Output Voltage (V)
Output Voltage (V)
0.0
2.0
STBY=0→1.5V
STBY Voltage (V)
1.0
STBY Voltage (V)
2.0
STBY=0→1.5V
7/10
TSZ02201-0RBR0A300030-1-2
30.JUL.2013.Rev.002
Datasheet
BUxxTD3WG series
z About power dissipation (Pd)
As for power dissipation, an approximate estimate of the heat reduction characteristics and internal power consumption of
IC are shown, so please use these for reference. Since power dissipation changes substantially depending on the
implementation conditions (board size, board thickness, metal wiring rate, number of layers and through holes, etc.), it is
recommended to measure Pd on a set board. Exceeding the power dissipation of IC may lead to deterioration of the
original IC performance, such as causing operation of the thermal shutdown circuit or reduction in current capability.
Therefore, be sure to prepare sufficient margin within power dissipation for usage.
Calculation of the maximum internal power consumption of IC (PMAX)
PMAX=(VIN-VOUT)×IOUT(MAX.) (VIN: Input voltage VOUT: Output voltage IOUT(MAX): Maximum output current)
{ Measurement conditions
Standard ROHM Board
Layout of Board for
Measurement
Top Layer (Top View)
IC
Implementation
Position
Bottom Layer (Top View)
Measurement State
With board implemented (Wind speed 0 m/s)
Board Material
Glass epoxy resin (Double-side board)
Board Size
70 mm x 70 mm x 1.6 mm
Top layer
Wiring
Bottom
Rate
layer
Through Hole
Metal (GND) wiring rate: Approx. 0%
Metal (GND) wiring rate: Approx. 50%
Diameter 0.5mm x 6 holes
Power Dissipation
0.54W
Thermal Resistance
θja=185.2°C/W
0.6
0.5
0.54W
Standard ROHM
Board
Pd [W]
0.4
0.3
* Please design the margin so that
PMAX becomes is than Pd (PMAX<Pd)
within the usage temperature range
0.2
0.1
0
0
25
50
75
85
100
125
Ta [℃]
Fig. 28 SSOP5 Power dissipation heat reduction characteristics (Reference)
www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
8/10
TSZ02201-0RBR0A300030-1-2
30.JUL.2013.Rev.002
Datasheet
BUxxTD3WG series
●Operation Notes
1.) Absolute maximum ratings
Use of the IC in excess of absolute maximum ratings (such as the input voltage or operating temperature range) may result in
damage to the IC. Assumptions should not be made regarding the state of the IC (e.g., short mode or open mode) when such damage
is suffered. If operational values are expected to exceed the maximum ratings for the device, consider adding protective circuitry
(such as fuses) to eliminate the risk of damaging the IC.
2.) GND potential
The potential of the GND pin must be the minimum potential in the system in all operating conditions.
Never connect a potential lower than GND to any pin, even if only transiently.
3.) Thermal design
Use a thermal design that allows for a sufficient margin for that package power dissipation rating (Pd) under actual operating
conditions.
4.) Inter-pin shorts and mounting errors
Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting or
shorts between pins may result in damage to the IC.
5.) Operation in strong electromagnetic fields
Strong electromagnetic fields may cause the IC to malfunction. Caution should be exercised in applications where strong
electromagnetic fields may be present.
6.) Common impedance
Wiring traces should be as short and wide as possible to minimize common impedance. Bypass capacitors should
be use to keep ripple to a minimum.
7.) Voltage of STBY pin
To enable standby mode for all channels, set the STBY pin to 0.3 V or less, and for normal operation, to 1.2 V or more.
STBY to a voltage between 0.3 and 1.2 V may cause malfunction and should be avoided.
Setting
Keep transition time between high and
low (or vice versa) to a minimum.
Additionally, if STBY is shorted to VIN, the IC will switch to standby mode and disable the output discharge circuit, causing
a temporary voltage to remain on the output pin.
occur on the output.
If the IC is switched on again while this voltage is present, overshoot may
Therefore, in applications where these pins are shorted, the output should always be completely discharged
before turning the IC on.
8.) Over-current protection circuit (OCP)
This IC features an integrated over-current and short-protection circuitry on the output to prevent destruction of the IC when
the output is shorted.
The OCP circuitry is designed only to protect the IC from irregular conditions (such as motor output
shorts) and is not designed to be used as an active security device for the application.
Therefore, applications should not
be designed under the assumption that this circuitry will engage.
9.) Thermal shutdown circuit (TSD)
This IC also features a thermal shutdown circuit that is designed to turn the output off when the junction temperature of the
IC exceeds about 150℃.
This feature is intended to protect the IC only in the event of thermal overload and is not designed
to guarantee operation or act as an active security device for the application.
Therefore, applications should not be designed
under the assumption that this circuitry will engage.
10.) Input/output capacitor
Capacitors must be connected between the input/output pins and GND for stable operation, and should be physically mounted as
close to the IC pins as possible. The input capacitor helps to counteract increases in power supply impedance, and increases
stability in applications with long or winding power supply traces.
The output capacitance value is directly related to the
Unstablevalue
region
overall stability and transient response of the regulator, and should be set to the largest possible
for the application
to increase these characteristics. During design, keep in mind that in general, ceramic capacitors have a wide range of tolerances,
temperature coefficients and DC bias characteristics, and that their capacitance values tend to decrease over time. Confirm
these details before choosing appropriate capacitors for your application.(Please refer the technical note, regarding ceramic
capacitor of
recommendation)
Cout=0.47μF, Cin=0.47μF, Temp=+25℃
11.) About the equivalent series resistance (ESR) of a ceramic capacitor
100
Capacitors generally have ESR (equivalent series resistance)
and it operates stably in the ESR-IOUT area shown on the right.
10
capacitors, etc. generally have different ESR, please check
the ESR of the capacitor to be used and use it within the
stability area range shown in the right graph for evaluation
of the actual application.
ESR [Ω]
ESR [Ω]
Since ceramic capacitors, tantalum capacitors, electrolytic
1
0.1
0.01
0
50
100
150
200
IOUT [mA]
Fig. 29
www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
9/10
Stable region (example)
TSZ02201-0RBR0A300030-1-2
30.JUL.2013.Rev.002
Datasheet
BUxxTD3WG series
●Revision History
Date
Revision
7.Feb.2013
001
30.Jul.2013
002
Changes
New Release
Adding a Revision History.
VSBYH is changed.
www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
10/10
TSZ02201-0RBR0A300030-1-2
30.JUL.2013.Rev.002