MC74VHCT374ADWRG - ON Semiconductor

MC74VHCT374A
Octal D-Type Flip-Flop
with 3-State Output
The MC74VHCT374A is an advanced high speed CMOS octal
flip−flop with 3−state output fabricated with silicon gate CMOS
technology. It achieves high speed operation similar to equivalent
Bipolar Schottky TTL while maintaining CMOS low power
dissipation.
This 8−bit D−type flip−flop is controlled by a clock input and an
output enable input. When the output enable input is high, the eight
outputs are in a high impedance state.
The internal circuit is composed of three stages, including a buffer
output which provides high noise immunity and stable output.
The VHCT inputs are compatible with TTL levels. This device can
be used as a level converter for interfacing 3.3 V to 5.0 V, because it
has full 5.0 V CMOS level output swings.
The VHCT374A input and output (when disabled) structures
provide protection when voltages between 0 V and 5.5 V are applied,
regardless of the supply voltage. These input and output structures
help prevent device destruction caused by supply
voltage−input/output voltage mismatch, battery backup, hot insertion,
etc.
http://onsemi.com
MARKING
DIAGRAMS
20
1
•
•
High Speed: fmax = 140 MHz (Typ) at VCC = 5.0 V
Low Power Dissipation: ICC = 4 mA (Max) at TA = 25°C
TTL−Compatible Inputs: VIL = 0.8 V; VIH = 2.0 V
Power Down Protection Provided on Inputs and Outputs
Balanced Propagation Delays
Designed for 4.5 V to 5.5 V Operating Range
Low Noise: VOLP = 1.6 V (Max)
Pin and Function Compatible with Other Standard Logic Families
Latchup Performance Exceeds 300 mA
ESD Performance:
Human Body Model > 2000 V;
Machine Model > 200 V
Chip Complexity: 276 FETs or 69 Equivalent Gates
These Devices are Pb−Free and are RoHS Compliant
1
20
1
Features
•
•
•
•
•
•
•
•
•
•
VHCT374A
AWLYYWWG
SOIC−20WB
SUFFIX DW
CASE 751D
VHCT
374A
ALYWG
G
TSSOP−20
SUFFIX DT
CASE 948E
1
A
= Assembly Location
WL, L
= Wafer Lot
YY, Y
= Year
WW, W = Work Week
G or G
= Pb−Free Package
(Note: Microdot may be in either location)
FUNCTION TABLE
INPUTS
OE
L
L
L
H
OUTPUT
CP
D
Q
L, H,
X
H
L
X
X
H
L
No Change
Z
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 4 of this data sheet.
© Semiconductor Components Industries, LLC, 2014
October, 2014 − Rev. 6
1
Publication Order Number:
MC74VHCT374A/D
MC74VHCT374A
DATA
INPUTS
2
5
6
9
12
15
16
19
3
D0
4
D1
7
D2
8
D3
13
D4
14
D5
17
D6
18
D7
11
CP
OE
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
NONINVERTING
OUTPUTS
1
OE
1
20
VCC
Q0
2
19
Q7
D0
3
18
D7
D1
4
17
D6
Q1
5
16
Q6
Q2
6
15
Q5
D2
7
14
D5
D3
8
13
D4
Q3
9
12
Q4
10
11
CP
GND
Figure 2. Pin Assignment
Figure 1. Logic Diagram
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
VCC
DC Supply Voltage
– 0.5 to + 7.0
V
Vin
DC Input Voltage
– 0.5 to + 7.0
V
Vout
DC Output Voltage
– 0.5 to + 7.0
– 0.5 to VCC + 0.5
V
IIK
Input Diode Current
− 20
mA
IOK
Output Diode Current (VOUT < GND; VOUT > VCC)
± 20
mA
Iout
DC Output Current, per Pin
± 25
mA
ICC
DC Supply Current, VCC and GND Pins
± 75
mA
PD
Power Dissipation in Still Air,
500
450
mW
Tstg
Storage Temperature
– 65 to + 150
_C
Outputs in 3−State
High or Low State
SOIC Package†
TSSOP Package†
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or V CC ).
Unused outputs must be left open.
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any
of these limits are exceeded, device functionality should not be assumed, damage may occur
and reliability may be affected.
†Derating − SOIC Packages: – 7 mW/_C from 65_ to 125_C
TSSOP Package: − 6.1 mW/_C from 65_ to 125_C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
VCC
DC Supply Voltage
Vin
DC Input Voltage
Vout
DC Output Voltage
TA
Operating Temperature
tr, tf
Input Rise and Fall Time
Outputs in 3−State
High or Low State
VCC =5.0V ±0.5V
Min
Max
Unit
4.5
5.5
V
0
5.5
V
0
0
5.5
VCC
V
− 40
+ 85
_C
0
20
ns/V
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond
the Recommended Operating Ranges limits may affect device reliability.
http://onsemi.com
2
MC74VHCT374A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC ELECTRICAL CHARACTERISTICS
Test Conditions
TA = 25°C
VCC
V
Min
2.0
Typ
TA = − 40 to 85°C
Max
Min
Max
Symbol
Parameter
VIH
Minimum High−Level Input Voltage
4.5 to 5.5
VIL
Maximum Low−Level Input Voltage
4.5 to 5.5
VOH
Minimum High−Level Output
Voltage
Vin = VIH or VIL
IOH = − 50mA
4.5
4.4
IOH = − 8mA
4.5
3.94
VOL
Maximum Low−Level Output
Voltage
Vin = VIH or VIL
IOL = 50mA
4.5
4.5
0.36
0.44
Iin
Maximum Input Leakage Current
Vin = 5.5 V or GND
0 to 5.5
± 0.1
± 1.0
mA
IOZ
Maximum 3−State Leakage Current
Vin = VIL or VIH
Vout = VCC or GND
5.5
± 0.25
± 2.5
mA
ICC
Maximum Quiescent Supply Current
Vin = VCC or GND
5.5
4.0
40.0
mA
ICCT
Quiescent Supply Current
Per Input: VIN = 3.4V
Other Input: VCC or GND
5.5
1.35
1.50
mA
IOPD
Output Leakage Current
VOUT = 5.5V
0
0.5
5.0
mA
IOL = 8mA
2.0
V
0.8
4.5
Unit
0.8
4.4
V
V
3.80
0.0
0.1
0.1
V
AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0ns)
TA = 25°C
Symbol
Parameter
Test Conditions
Min
Typ
90
85
140
130
TA = − 40 to 85°C
Max
Min
Max
Unit
fmax
Maximum Clock Frequency
(50% Duty Cycle)
VCC = 5.0 ± 0.5V CL = 15pF
CL = 50pF
tPLH,
tPHL
Maximum Propagation Delay,
CP to Q
VCC = 5.0 ± 0.5V CL = 15pF
CL = 50pF
4.1
5.6
9.4
10.4
1.0
1.0
10.5
11.5
ns
tPZL,
tPZH
Output Enable Time,
OE to Q
VCC = 5.0 ± 0.5V CL = 15pF
RL = 1kW CL = 50pF
6.5
7.3
10.2
11.2
1.0
1.0
11.5
12.5
ns
tPLZ,
tPHZ
Output Disable Time
OE to Q
VCC = 5.0 ± 0.5V
RL = 1kW
CL = 50pF
7.0
11.2
1.0
12.0
ns
Output to Output Skew
VCC = 5.0 ± 0.5V
(Note 1)
CL = 50pF
1.0
1.0
ns
10
10
pF
tOSLH,
tOSHL
Cin
Maximum Input Capacitance
4
Cout
Maximum 3−State Output Capacitance
(Output in High−Impedance State)
9
80
95
MHz
pF
Typical @ 25°C, VCC = 5.0V
25
CPD
Power Dissipation Capacitance (Note 2)
pF
1. Parameter guaranteed by design. tOSLH = |tPLHm − tPLHn|, tOSHL = |tPHLm − tPHLn|.
2. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC / 8 (per flip−flop). CPD is used to determine the
no−load dynamic power consumption; PD = CPD VCC2 fin + ICC VCC.
NOISE CHARACTERISTICS (Input tr = tf = 3.0ns, CL = 50pF, VCC = 5.0V)
TA = 25°C
Max
Unit
VOLP
Quiet Output Maximum Dynamic VOL
1.2
1.6
V
VOLV
Quiet Output Minimum Dynamic VOL
−1.2
−1.6
V
VIHD
Minimum High Level Dynamic Input Voltage
2.0
V
VILD
Maximum Low Level Dynamic Input Voltage
0.8
V
Parameter
Symbol
Typ
TIMING REQUIREMENTS (Input tr = tf = 3.0ns)
TA = 25°C
Limit
Unit
Minimum Pulse Width, CP
VCC = 5.0 ± 0.5 V
6.5
8.5
ns
tsu
Minimum Setup Time, D to CP
VCC = 5.0 ± 0.5 V
2.5
2.5
ns
th
Minimum Hold Time, D to CP
VCC = 5.0 ± 0.5 V
2.5
2.5
ns
Parameter
Test Conditions
http://onsemi.com
3
Typ
Limit
TA = − 40 to 85°C
tw
Symbol
MC74VHCT374A
ORDERING INFORMATION
Package
Shipping†
MC74VHCT374ADWRG
SOIC−20WB
(Pb−Free)
1000 / Tape & Reel
MC74VHCT374ADTRG
TSSOP−20
(Pb−Free)
2500 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
3V
1.5V
CP
GND
tW
1/fmax
tPHL
tPLH
VOH
Q
1.5V
VOL
Figure 3. Switching Waveform
3V
OE
1.5V
GND
tPZL
tPLZ
tPZH
tPHZ
HIGH
IMPEDANCE
1.5V
Q
VOL +0.3V
Q
VOH -0.3V
1.5V
HIGH
IMPEDANCE
Figure 4. Switching Waveform
VALID
3V
D
1.5V
GND
th
tsu
3V
CP
1.5V
GND
Figure 5. Switching Waveform
http://onsemi.com
4
MC74VHCT374A
TEST POINT
OUTPUT
DEVICE
UNDER
TEST
CL*
*Includes all probe and jig capacitance
Figure 6. Test Circuit
TEST POINT
CONNECT TO VCC WHEN
TESTING tPLZ AND tPZL.
CONNECT TO GND WHEN
TESTING tPHZ AND tPZH.
1 kW
OUTPUT
DEVICE
UNDER
TEST
CL*
*Includes all probe and jig capacitance
Figure 7. Test Circuit
D0
3
D1
4
D
Q
D
C
CP
OE
D2
7
Q
D3
8
D
C
Q
D4
13
D
C
Q
D5
14
D
C
Q
D6
17
D
C
Q
D7
18
D
C
Q
D
C
Q
C
11
1
2
Q0
5
Q1
6
Q2
9
Q3
12
Q4
Figure 8. Expanded Logic Diagram
http://onsemi.com
5
15
Q5
16
Q6
19
Q7
MC74VHCT374A
PACKAGE DIMENSIONS
TSSOP−20
CASE 948E−02
ISSUE C
20X
0.15 (0.006) T U
2X
K REF
0.10 (0.004)
S
L/2
20
M
T U
S
V
K
K1
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
S
J J1
11
B
L
SECTION N−N
−U−
PIN 1
IDENT
0.25 (0.010)
N
1
10
M
0.15 (0.006) T U
S
A
−V−
N
F
DETAIL E
C
G
D
H
DETAIL E
0.100 (0.004)
−T− SEATING
PLANE
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION:
MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE
MOLD FLASH, PROTRUSIONS OR GATE
BURRS. MOLD FLASH OR GATE BURRS
SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
MILLIMETERS
INCHES
DIM MIN
MAX
MIN
MAX
A
6.40
6.60 0.252
0.260
B
4.30
4.50 0.169
0.177
C
1.20
0.047
----D
0.05
0.15 0.002
0.006
F
0.50
0.75 0.020
0.030
G
0.65 BSC
0.026 BSC
−W−
H
0.27
0.37
0.011
0.015
J
0.09
0.20 0.004
0.008
J1
0.09
0.16 0.004
0.006
K
0.19
0.30 0.007
0.012
K1
0.19
0.25 0.007
0.010
L
6.40 BSC
0.252 BSC
M
0_
8_
0_
8_
SOLDERING FOOTPRINT
7.06
1
0.65
PITCH
16X
0.36
16X
1.26
DIMENSIONS: MILLIMETERS
http://onsemi.com
6
MC74VHCT374A
PACKAGE DIMENSIONS
SOIC−20 WB
DW SUFFIX
CASE 751D−05
ISSUE G
20
11
X 45 _
h
H
M
E
0.25
10X
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
q
A
B
M
D
1
10
20X
B
B
0.25
M
T A
S
B
S
L
A
18X
e
A1
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
2.35
2.65
0.10
0.25
0.35
0.49
0.23
0.32
12.65
12.95
7.40
7.60
1.27 BSC
10.05
10.55
0.25
0.75
0.50
0.90
0_
7_
SEATING
PLANE
C
T
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
7
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC74VHCT244A/D