IDT IDT23S05E-1DC

IDT23S05E
3.3V ZERO DELAY CLOCK BUFFER, SPREAD SPECTRUM
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
IDT23S05E
3.3V ZERO DELAY CLOCK
BUFFER, SPREAD SPECTRUM
COMPATIBLE
FEATURES:
•
•
•
•
•
•
•
•
•
•
•
•
•
DESCRIPTION:
Phase-Lock Loop Clock Distribution
10MHz to 200MHz operating frequency
Distributes one clock input to one bank of five outputs
Zero Input-Output Delay
Output Skew < 250ps
Low jitter <200 ps cycle-to-cycle
IDT23S05E-1 for Standard Drive
IDT23S05E-1H for High Drive
No external RC network required
Operates at 3.3V VDD
Power down mode
Spread spectrum compatible
Available in SOIC package
The IDT23S05E is a high-speed phase-lock loop (PLL) clock buffer,
designed to address high-speed clock distribution applications. The zero
delay is achieved by aligning the phase between the incoming clock and
the output clock, operable within the range of 10 to 200MHz.
The IDT23S05E is an 8-pin version of the IDT23S09E. IDT23S05E
accepts one reference input, and drives out five low skew clocks. The -1H
version of this device operates up to 200MHz frequency and has a higher
drive than the -1 device. All parts have on-chip PLLs which lock to an input
clock on the REF pin. The PLL feedback is on-chip and is obtained from the
CLKOUT pad. In the absence of an input clock, the IDT23S05E enters
power down. In this mode, the device will draw less than 12µA for
Commercial Temperature range and less than 25µA for Industrial temperature range, the outputs are tri-stated, and the PLL is not running, resulting
in a significant reduction of power.
The IDT23S05E is characterized for both Industrial and Commercial
operation.
FUNCTIONAL BLOCK DIAGRAM
8
CLKOUT
REF
1
3
PLL
CLK1
Control
Logic
2
5
CLK2
CLK3
7
CLK4
The IDT logo is a registered trademark of Integrated Device Technology, Inc.
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
OCTOBER 2003
1
c
2003
Integrated Device Technology, Inc.
DSC - 6398/5
IDT23S05E
3.3V ZERO DELAY CLOCK BUFFER, SPREAD SPECTRUM
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
ABSOLUTE MAXIMUM RATINGS(1)
PIN CONFIGURATION
Symbol
REF
1
8
CLKOUT
CLK2
2
7
CLK4
CLK1
3
6
VDD
GND
4
5
CLK3
Rating
Max.
Unit
VDD
Supply Voltage Range
–0.5 to +4.6
V
VI (2)
Input Voltage Range (REF)
–0.5 to +5.5
V
VI
Input Voltage Range
–0.5 to
V
(except REF)
IIK (VI < 0)
Input Clamp Current
IO (VO = 0 to VDD)
VDD or GND
TA = 55°C
VDD+0.5
–50
mA
Continuous Output Current
±50
mA
Continuous Current
±100
mA
Maximum Power Dissipation
0.7
W
TSTG
Storage Temperature Range
–65 to +150
°C
0 to +70
°C
-40 to +85
°C
(in still air)(3)
SOIC
TOP VIEW
Operating
Commercial Temperature
Temperature
Range
Operating
Industrial Temperature
Temperature
Range
NOTES:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.
2. The input and output negative-voltage ratings may be exceeded if the input and output
clamp-current ratings are observed.
3. The maximum package power dissipation is calculated using a junction temperature
of 150°C and a board trace length of 750 mils.
APPLICATIONS:
•
•
•
•
•
SDRAM
Telecom
Datacom
PC Motherboards/Workstations
Critical Path Delay Designs
PIN DESCRIPTION
Pin Name
REF
Pin Number
Type
Functional Description
1
IN
Input reference clock, 5 Volt tolerant input
CLK2(2)
2
Out
Output clock
CLK1
3
Out
Output clock
4
Ground
(1)
(2)
GND
CLK3
(2)
VDD
CLK4
(2)
CLKOUT
(2)
Ground
5
Out
Output clock
6
PWR
3.3V Supply
7
Out
Output clock
8
Out
Output clock, internal feedback on this pin
NOTES:
1. Weak pull down.
2. Weak pull down on all outputs.
2
IDT23S05E
3.3V ZERO DELAY CLOCK BUFFER, SPREAD SPECTRUM
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
OPERATING CONDITIONS - COMMERCIAL
Symbol
Parameter
Min.
Max.
Unit
3
3.6
V
Operating Temperature (Ambient Temperature)
0
70
°C
Load Capacitance < 100MHz
—
30
pF
Load Capacitance 100MHz - 200MHz
—
10
Input Capacitance
—
7
VDD
Supply Voltage
TA
CL
CIN
pF
DC ELECTRICAL CHARACTERISTICS - COMMERCIAL
Symbol
Parameter
Conditions
Min.
Max.
Unit
VIL
Input LOW Voltage Level
—
0.8
V
VIH
Input HIGH Voltage Level
2
—
V
IIL
Input LOW Current
VIN = 0V
—
50
µA
IIH
Input HIGH Current
VIN = VDD
—
100
µA
VOL
Output LOW Voltage
Standard Drive
—
0.4
V
VOH
Output HIGH Voltage
2.4
—
V
IDD_PD
Power Down Current
REF = 0MHz
—
12
µA
Supply Current
Unloaded Outputs at 66.66MHz
—
32
mA
IDD
IOL = 8mA
High Drive
IOL = 12mA (-1H)
Standard Drive
IOH = -8mA
High Drive
IOH = -12mA (-1H)
SWITCHING CHARACTERISTICS (23S05E-1) - COMMERCIAL
Symbol
t1
Parameter
Output Frequency
Conditions
(1,2)
Min.
Typ.
Max.
Unit
10pF Load
10
—
200
MHz
30pF Load
10
—
100
Duty Cycle = t2 ÷ t1
Measured at 1.4V, FOUT = 66.66MHz
40
50
60
%
t3
Rise Time
Measured between 0.8V and 2V
—
—
2.5
ns
t4
Fall Time
Measured between 0.8V and 2V
—
—
2.5
ns
t5
Output to Output Skew
All outputs equally loaded
—
—
250
ps
t6
Delay, REF Rising Edge to CLKOUT Rising Edge
Measured at VDD/2
—
0
±350
ps
t7
Device-to-Device Skew
Measured at VDD/2 on the CLKOUT pins of devices
—
0
700
ps
tJ
Cycle-to-Cycle Jitter, pk - pk
Measured at 66.66MHz, loaded outputs
—
—
200
ps
PLL Lock Time
Stable power supply, valid clock presented on REF pin
—
—
1
ms
tLOCK
NOTES:
1. REF Input has a threshold voltage of VDD/2.
2. All parameters specified with loaded outputs.
3
IDT23S05E
3.3V ZERO DELAY CLOCK BUFFER, SPREAD SPECTRUM
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
SWITCHING CHARACTERISTICS (23S05E-1H) - COMMERCIAL
Symbol
Min.
Typ.
Max.
Unit
Output Frequency
10pF Load
30pF Load
10
10
—
—
200
100
MHz
Duty Cycle = t2 ÷ t1
Measured at 1.4V, FOUT = 66.66MHz
40
50
60
%
Duty Cycle = t2 ÷ t1
Measured at 1.4V, FOUT <50MHz
45
50
55
%
t3
Rise Time
Measured between 0.8V and 2V
—
—
1.5
ns
t4
Fall Time
Measured between 0.8V and 2V
—
—
1.5
ns
t5
Output to Output Skew
All outputs equally loaded
—
—
250
ps
t6
Delay, REF Rising Edge to CLKOUT Rising Edge
Measured at VDD/2
—
0
±350
ps
t7
Device-to-Device Skew
Measured at VDD/2 on the CLKOUT pins of devices
—
0
700
ps
t8
Output Slew Rate
Measured between 0.8V and 2V using Test Circuit #2
1
—
—
V/ns
tJ
Cycle-to-Cycle Jitter, pk - pk
Measured at 66.66MHz, loaded outputs
—
—
200
ps
PLL Lock Time
Stable power supply, valid clock presented on REF pin
—
—
1
ms
t1
tLOCK
Parameter
Conditions
(1,2)
NOTES:
1. REF Input has a threshold voltage of VDD/2.
2. All parameters specified with loaded outputs.
OPERATING CONDITIONS - INDUSTRIAL
Symbol
Parameter
Min.
Max.
Unit
VDD
Supply Voltage
3
3.6
V
TA
Operating Temperature (Ambient Temperature)
-40
+85
°C
CL
Load Capacitance < 100MHz
—
30
pF
Load Capacitance 100MHz - 200MHz
—
10
Input Capacitance
—
7
CIN
pF
DC ELECTRICAL CHARACTERISTICS - INDUSTRIAL
Symbol
Parameter
Conditions
VIL
Input LOW Voltage Level
VIH
Input HIGH Voltage Level
IIL
Input LOW Current
VIN = 0V
IIH
Input HIGH Current
VIN = VDD
VOL
Output LOW Voltage
VOH
IDD_PD
IDD
Output HIGH Voltage
Standard Drive
IOL = 8mA
High Drive
IOL = 12mA (-1H)
Standard Drive
IOH = -8mA
High Drive
IOH = -12mA (-1H)
Min.
Max.
Unit
—
0.8
V
2
—
V
—
50
µA
—
100
µA
—
0.4
V
2.4
—
V
Power Down Current
REF = 0MHz
—
25
µA
Supply Current
Unloaded Outputs at 66.66MHz
—
35
mA
4
IDT23S05E
3.3V ZERO DELAY CLOCK BUFFER, SPREAD SPECTRUM
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
SWITCHING CHARACTERISTICS (23S05E-1) - INDUSTRIAL
Symbol
t1
Parameter
Output Frequency
(1,2)
Conditions
Min.
Typ.
Max.
Unit
10pF Load
10
—
200
MHz
30pF Load
10
—
100
Duty Cycle = t2 ÷ t1
Measured at 1.4V, FOUT = 66.66MHz
40
50
60
%
t3
Rise Time
Measured between 0.8V and 2V
—
—
2.5
ns
t4
Fall Time
Measured between 0.8V and 2V
—
—
2.5
ns
t5
Output to Output Skew
All outputs equally loaded
—
—
250
ps
t6
Delay, REF Rising Edge to CLKOUT Rising Edge
Measured at VDD/2
—
0
±350
ps
t7
Device-to-Device Skew
Measured at VDD/2 on the CLKOUT pins of devices
—
0
700
ps
tJ
Cycle-to-Cycle Jitter, pk - pk
Measured at 66.66MHz, loaded outputs
—
—
200
ps
PLL Lock Time
Stable power supply, valid clock presented on REF pin
—
—
1
ms
tLOCK
NOTES:
1. REF Input has a threshold voltage of VDD/2.
2. All parameters specified with loaded outputs.
SWITCHING CHARACTERISTICS (23S05E-1H) - INDUSTRIAL
Symbol
t1
Parameter
Conditions
(1,2)
Min.
Typ.
Max.
Unit
Output Frequency
10pF Load
30pF Load
10
10
—
—
200
100
MHz
Duty Cycle = t2 ÷ t1
Measured at 1.4V, FOUT = 66.66MHz
40
50
60
%
Duty Cycle = t2 ÷ t1
Measured at 1.4V, FOUT <50MHz
45
50
55
%
t3
Rise Time
Measured between 0.8V and 2V
—
—
1.5
ns
t4
Fall Time
Measured between 0.8V and 2V
—
—
1.5
ns
t5
Output to Output Skew
All outputs equally loaded
—
—
250
ps
t6
Delay, REF Rising Edge to CLKOUT Rising Edge
Measured at VDD/2
—
0
±350
ps
t7
Device-to-Device Skew
Measured at VDD/2 on the CLKOUT pins of devices
—
0
700
ps
t8
Output Slew Rate
Measured between 0.8V and 2V using Test Circuit #2
1
—
—
V/ns
tJ
Cycle-to-Cycle Jitter, pk - pk
Measured at 66.66MHz, loaded outputs
—
—
200
ps
PLL Lock Time
Stable power supply, valid clock presented on REF pin
—
—
1
ms
tLOCK
NOTES:
1. REF Input has a threshold voltage of VDD/2.
2. All parameters specified with loaded outputs.
5
IDT23S05E
3.3V ZERO DELAY CLOCK BUFFER, SPREAD SPECTRUM
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
ZERO DELAY AND SKEW CONTROL
All outputs should be uniformly loaded in order to achieve Zero I/O Delay. Since the CLKOUT pin is the internal feedback for the PLL, its relative
loading can affect and adjust the input/output delay.
For designs utilizing zero I/O Delay, all outputs including CLKOUT must be equally loaded. Even if the output is not used, it must have a capacitive
load equal to that on the other outputs in order to obtain true zero I/O Delay. For zero output-to-output skew, all outputs must be loaded equally.
SPREAD SPECTRUM COMPATIBLE
Many systems being designed now use a technology called Spread Spectrum Frequency Timing Generation. This product is designed not to filter
off the Spread Spectrum feature of the reference input, assuming it exists. When a zero delay buffer is not designed to pass the Spread Spectrum feature
through, the result is a significant amount of tracking skew, which may cause problems in systems requiring synchronization.
6
IDT23S05E
3.3V ZERO DELAY CLOCK BUFFER, SPREAD SPECTRUM
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
SWITCHING WAVEFORMS
1.4V
t1
Output
t2
1.4V
1.4V
1.4V
1.4V
Output
t5
Output to Output Skew
Duty Cycle Timing
Output
0.8V
2V
2V
3.3V
0.8V
VDD/2
REF
0V
t4
t3
VDD/2
Output
t6
Input to Output Propagation Delay
All Outputs Rise/Fall Time
CLKOUT
Device 1
CLKOUT
Device 2
VDD/2
VDD/2
t7
Device to Device Skew
TEST CIRCUITS
VDD
0.1µF
CLKOUT
OUTPUTS
VDD
0.1µF
1KΩ
CLKOUT
OUTPUTS
CLOAD
1KΩ
10pF
VDD
VDD
0.1µF
0.1µF
GND
GND
GND
GND
Test Circuit 2 (t8, Output Slew Rate On -1H Devices)
Test Circuit 1 (all Parameters Except t8)
7
IDT23S05E
3.3V ZERO DELAY CLOCK BUFFER, SPREAD SPECTRUM
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
ORDERING INFORMATION
IDT
XXXXX
XX
Device Type Package
X
Process
Blank
I
Commercial (0oC to +70oC)
Industrial (-40oC to +85oC)
DC
Small Outline
23S05E-1 Zero Delay Clock Buffer with High Drive Output,
23S05E-1H Spread Spectrum Compatible
Ordering Code
Package Type
Operating Range
IDT23S05E-1DC
8-Pin SOIC
Commercial
IDT23S05E-1DCI
8-Pin SOIC
Industrial
IDT23S05E-1HDC
8-Pin SOIC
Commercial
IDT23S05E-1HDCI
8-Pin SOIC
Industrial
CORPORATE HEADQUARTERS
2975 Stender Way
Santa Clara, CA 95054
for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com
8
for Tech Support:
[email protected]
(408) 654-6459