PCN20070501

Product Change Notices
PCN No.: 20070501
Date: 05/02/2007
This is to inform you that AME5140 datasheet will be changed from Rev. C.01 to
Rev. D. 01. This notification is for your information and concurrence.
If you require data or samples to qualify this change, please contact AME, Inc.
within 30 days of receipt of this notification.
If we do not receive any response from you within 30 calendar days from the
date of this notification, we will consider that you have accepted this PCN.
If you have any questions concerning this change, please contact:
PCN Originator:
Name: Sean Huang
Email: [email protected]
Expected 1st Device Shipment Date: 1/30/2007
Earliest Year/Work Week of Changed Product: 0704
Description of Change (From):
1. In Electrical Specifications: Delete Minimum Output Voltage Under Load.
2. Add 3 new curves.
Description of Change (To):
1. Delete Minimum Output Voltage Under Load.
2. Add 3 new curves of a. Output Voltage(Vout=5V) vs Load Current
b. Output Voltage(Vout=12V) vs Load Current
c. Output Voltage(Vout=18V) vs Load Current
Reason for Change:
Minimum Output Voltage under Load is not going to be tested at final test because
it is guaranteed by design. In order to present the sound design 3 new
characterization curves are added to present it.
QPM018A-A
AME, Inc.
AME5140
n General Description
1.6 MHz Boost Converter With
30V Internal FET Switch
n Typical Application
The AME5140 switching regulator is current-mode boost
converters operating at fixed frequency of 1.6 MHz.
The use of SOT-25/TSOT-25,DFN-8 (3mm x 3mm x
0.85mm) & MSOP-8 packages, made possible by the
minimal power loss of the internal 1.8A switch, and use
of small inductor and capacitors result in the industry's
highest power density. The 30V internal switch makes
these solutions perfect for boosting to voltages up to 30V.
These parts have a logic-level shutdown pin that can
be used to reduce quiescent current and extend battery
life. Protection is provided through cycle-by-cycle current limiting and thermal shutdown. Internal compensation simplifies and reduces component count.
L/6.8µH
D1
VIN
IN
EN
R3
51K
AME5140
EN
l Switch Current Up to 1.8A
R1
43K
FB
GND
C1
4.7µF
R2
13.3K
GND
CF
680pF
C2
22µF
Figure 1. 4.2V to 5V Boost Converter
L/10µH
D1
VIN
l 1.6 MHz Switching Frequency
l Low RDSON DMOS FET
VOUT
5V
800mA
4.2V
n Features
l 30V DMOS FET Switch
SW
IN
12V
400mA
5V
EN
R3
51K
AME5140
EN
l Wide Input Voltage Range (2.7V-5.5V)
VOUT
SW
FB
R1
117K
GND
l Low Shutdown Current (<1µA)
C1
4.7µF
l SOT-25/TSOT-25, DFN-8(3mmx3mmx0.85mm) &
MSOP-8 Packages
R2
13.3K
GND
CF
220pF
C2
4.7µF
l Uses Tiny Capacitors and Inductor
l Cycle-by-Cycle Current Limiting
Figure 2. 5V to 12V Boost Converter
l All AME's Lead Free Products Meet RoHS
Standards
L/10µH
n Applications
l White LED Current Source
IN
SW
EN
R3
51K
AME5140
EN
l Portable Phones and Games
FB
VOUT
18V
250mA
5V
l PDA's and Palm-Top Computers
l Digital Cameras
D1
VIN
R1
183K
GND
l Local Boost Regulator
C1
4.7µF
GND
R2
13.3K
CF
160pF
C2
4.7µF
Figure 3. 5V to 18V Boost Converter
Rev.D.01
1
AME, Inc.
1.6 MHz Boost Converter with
30V Internal FET Switch
AME5140
n Function Block Diagram
EN
SW
VIN
THERMAL
SHUTDOWN
SHUTDOWN
CIRCUITRY
R5
R6
+
Q1
Q2X8
-
R
+
Gm
RAMP
GENERATOR
FB
Σ
-
Q
R
DRIVER
R
S
RC
R3
oscillator
CURRENT
LIMIT
COMP
CC
+
R4
-
GND
Figure 4. Functional Block Diagram
2
Rev.D.01
AME, Inc.
1.6 MHz Boost Converter With
30V Internal FET Switch
AME5140
n Pin Configuration
SOT-25/TSOT-25
Top View
5
MSOP-8
Top View
AME5140AEEV
4
AME5140
8
7
6
5
1. SW
1. IN
2. GND
2. EN
3. FB
3. GND
4. EN
AME5140
5. IN
1
2
AME5140BEQA
4. FB
5. SW
3
6. SW
7. GND
1
* Die Attach:
Conductive Epoxy
2
3
4
8. GND
* Die Attach:
Conductive Epoxy
DFN-8
(3mmx3mmx0.85mm)
Top View
8
7
6
5
AME5140AEVA
1. NC
2. FB
3. NC
4. SW
AME5140
5. NC
1
2
3
4
6. IN
7. EN
8. NC
* Die Attach:
Conductive Epoxy
Note: The trapezoid area enclosed by dashed line represents Exposed Pad and is GND.
Rev.D.01
3
AME, Inc.
1.6 MHz Boost Converter with
30V Internal FET Switch
AME5140
n Pin Description (Continued)
AME5140AEEV SOT-25/TSOT-25
Pin Number
Pin Name
Pin Description
1
SW
Power Switch input.
This is the drain of the internal NMOS power switch.
Minimize the metal trace area connected to this pin to minimize EMI.
2
GND
Ground. Tie directly to ground plane.
Output voltage feedback input.
Set the output voltage by selecting values for R1 and R2 using:
3
FB
 V

R 1 = R 2  out − 1 
 1 . 23V

Connect the ground of the feedback network to a GND plane.
4
EN
Enable, active high.
The enable pin is an active high control. Tie this pin above 2V to enable the
device. Tie this pin below 0.4V to turn off the device.
5
IN
Analog and Power input. Input Supply Pin.
Place bypass capacitor as close to VIN as possible.
AME5140BEQA MSOP-8
Pin Number
Pin Name
1
IN
2
EN
3
GND
Pin Description
Analog and Power input. Input Supply Pin.
Place bypass capacitor as close to VIN as possible.
Enable, active high.
The enable pin is an active high control. Tie this pin above 2V to enable the
device. Tie this pin below 0.4V to turn off the device.
Ground. Tie directly to ground plane.
Output voltage feedback input.
Set the output voltage by selecting values for R1 and R2 using:
4
4
FB
 V

R 1 = R 2  out − 1 
 1 . 23 V

Connect the ground of the feedback network to a GND plane.
Power Switch input.
This is the drain of the internal NMOS power switch.
Minimize the metal trace area connected to this pin to minimize EMI.
Power Switch input.
This is the drain of the internal NMOS power switch.
Minimize the metal trace area connected to this pin to minimize EMI.
5
SW
6
SW
7
GND
Ground. Tie directly to ground plane.
8
GND
Ground. Tie directly to ground plane.
Rev.D.01
AME, Inc.
1.6 MHz Boost Converter With
30V Internal FET Switch
AME5140
n Pin Description
AME5140AEVA DFN-8(3mmx3mmx0.85mm)
Pin Number
Pin Name
1
NC
Pin Description
Not Connected
Output voltage feedback input.
Set the output voltage by selecting values for R1 and R2 using:
2
FB
 V

R 1 = R 2  out − 1 
 1 . 23V

Connect the ground of the feedback network to a GND plane.
Rev.D.01
3
NC
Not Connected
4
SW
Power Switch input.
This is the drain of the internal NMOS power switch.
Minimize the metal trace area connected to this pin to minimize EMI.
5
NC
Not Connected
6
IN
Analog and Power input. Input Supply Pin.
Place bypass capacitor as close to VIN as possible.
7
EN
Enable, active high.
The enable pin is an active high control. Tie this pin above 2V to enable the
device. Tie this pin below 0.4V to turn off the device.
8
NC
Not Connected
5
AME, Inc.
1.6 MHz Boost Converter with
30V Internal FET Switch
AME5140
n Ordering Information
AME5140 x x x x xxx x x
Special Feature2
Special Feature1
Output Voltage
Number of Pins
Package Type
Operating Ambient Temperature Range
Pin Configuration
Pin
Configuration
A
(SOT-25)
(TSOT-25)
A
(DFN-8)
B
(MSOP-8)
6
1. SW
2. GND
3. FB
4. EN
5. IN
Operating Ambient
Temperature
Range
E: -40OC to 85OC
Package
Type
Number
of
Output Voltage
Pins
E: SOT-2X V: 5
V: DFN
A: 8
Q: MSOP
ADJ: Adjustable
Special Feature1
Lead free &
Y: Low profile
Special Feature2
(For DFN package only)
3: 3x3x0.85(mm) (LxWxH)
(For TSOT-25 only)
Z: Lead free
1. NC
2. FB
3. NC
4. SW
5. NC
6. IN
7. EN
8. NC
1. IN
2. EN
3. GND
4. FB
5. SW
6. SW
7. GND
8. GND
Rev.D.01
AME, Inc.
1.6 MHz Boost Converter With
30V Internal FET Switch
AME5140
n Ordering Information
Part Number
Marking*
Output
Voltage
Package
Operating Ambient
Temperature Range
AME5140AEEVADJZ
BDRww
ADJ
SOT-25
-40OC to 85OC
AME5140AEEVADJY
BDRww
ADJ
TSOT-25
-40OC to 85OC
AME5140AEVAADJZ-3
BFK
yyww
ADJ
DFN-8
(3mmx3mmx0.85mm)
-40OC to 85OC
AME5140BEQAADJZ
5140
Cyww
ADJ
MSOP-8
-40OC to 85OC
Note: ww represents the date code and pls refer to Date Code Rule before Package Dimension.
* A line on top of the first letter represents lead free plating such as BDRww.
Please consult AME sales office or authorized Rep./Distributor for the availability of package type.
Rev.D.01
7
AME, Inc.
1.6 MHz Boost Converter with
30V Internal FET Switch
AME5140
n Absolute Maximum Ratings
Parameter
Input Supply Voltage
EN, FB Voltages
SW Voltage
Symbol
Maximum
Unit
V IN
6
V
VEN ,VFB
VIN
V
VSW
30
V
B*
ESD Classification
Caution: Stress above the listed absolute maximum rating may cause permanent damage to the device.
* HBM B:2000V~3999V
n Recommended Operating Conditions
Parameter
Symbol
Rating
Ambient Temperature Range
TA
-40 to 85
Junction Temperature Range
TJ
-40 to 125
Storage Temperature Range
TSTG
-65 to 150
Unit
o
C
n Thermal Information
Parameter
Package
Die Attach
Symbol
SOT-25
TSOT-25
Thermal Resistance*
(Junction to Case)
θ JC
MSOP-8
MSOP-8
100
17
o
C/W
260
Conductive
Epoxy
θ JA
DFN-8
(3x3x0.85mm)
SOT-25
TSOT-25
Internal Power Dissipation
Unit
81
DFN-8
(3x3x0.85mm)
SOT-25
TSOT-25
Thermal Resistance
(Junction to Ambient)
Maximum
MSOP-8
DFN-8
(3x3x0.85mm)
Maximum Junction Temperature
206
125
400
PD
625
mW
800
150
o
Solder Iron (10 Sec)**
C
350
* Measure θJC on backside center of molding compund if IC has no tab.
8 ** MIL-STD-202G 210F
Rev.D.01
AME, Inc.
1.6 MHz Boost Converter With
30V Internal FET Switch
AME5140
n Electrical Specifications
VIN = 5V, EN = VIN, TA= 25oC, I L = 0A, unless otherwise noted.
Parameter
Symbol
Input Voltage
VIN
Switch Current Limit
ICL
Test Condition
Typ
2.7
TA = 25OC
1.5
o
TA = -40 to 85 C
0.4
TA = -40 to 85 C
TA = 25 C
0.5
TA = -40 to 85oC
0.8
1.23
1.255
V
60
500
nA
Feedback Pin Bias Current
IFB
VFB = 1.23V
1.205
o
TA = 25 C
FB = 1.15V
(Switching)
VIN = 5V
3
o
TA = 25oC
FB = 1.3V
(Not Switching)
500
o
TA = -40 to 85 C
EN = 0V
2.15
VIN=2.7V to 5.5V
OTP Hysteresis Temperature
0.01
1
2.35
2.55
o
fSW
TA = -40 to 85oC
1
1.6
Maximum Duty Cycle
DMAX
TA = -40 to 85oC
86
93
ISW
EN = 0V
Rev.D.01
EN
Threshold
C
C
0.02
0.1
TA = -40 to 85oC
V
20
Switching Frequency
EN Input Threshold (Low)
(Shutdown)
EN Input Threshold (High)
(Enable the device)
µA
160
2.7V <= VIN <= 5.5V
Switch Leakage
µA
o
∆VFB
∆VIN
FB Voltage Line Regulation
mA
400
VIN = 5V
Rising Edge
µA
2
TA = -40 to 85 C
IQ
OTP
Ω
2
VIN = 3V
Over Temperature Protection
0.7
0
V FB
UVP
0.6
EN = 5V
Feedback Pin Reference Voltage
Undervoltage Lockout
A
0
IEN
Shutdown Current
V
EN = 0V
EN Pin Bias Current
Quiescent Current
5.5
0.7
O
V IN = 3.3V
Units
1.8
o
RDSON
Max
1.2
TA = 25OC
VIN = 5V
Switch ON Resistance
Min
%V
1.85
MHz
%
2
µA
0.4
V
TA = -40 to 85oC
2
9
AME, Inc.
AME5140
1.6 MHz Boost Converter with
30V Internal FET Switch
n Detailed Description
n Application Hints
The AME5140 is a switching converter IC that operates
at a fixed frequency (1.6MHz) for fast transient response
over a wide input voltage range and incorporates pulse-bypulse current limiting protection. Operation can be best
understood by referring to Figure 4. Because this is current mode control, a 33mΩ sense resistor in series with
the switch FET is used to provide a voltage (which is proportional to the FET current) to both the input of the pulse
width modulation (PWM) comparator and the current limit
amplifier.
Selecting The External Capacitors
At the beginning of each cycle, the S-R latch turns on
the FET. As the current through the FET increases, a voltage (proportional to this current) is summed with the ramp
coming from the ramp generator and then fed into the input
of the PWM comparator. When this voltage exceeds the
voltage on the other input (coming from the Gm amplifier),
the latch resets and turns the FET off. Since the signal
coming from the Gm amplifier is derived from the feedback
(which samples the voltage at the output), the action of the
PWM comparator constantly sets the correct peak current
through the FET to keep the output voltage in regulation.
Q1 and Q2 align with R3 - R6 form a bandgap voltage
reference used by the IC to hold the output in regulation.
The currents flowing through Q1 and Q2 will be equal, and
the feedback loop will adjust the regulated output to maintain this. Because of this, the regulated output is always
maintained at a voltage level equal to the voltage at the FB
node "multiplied up" by the ratio of the output resistive divider.
The current limit comparator feeds directly into the flipflop that drives the switch FET. If the FET current reaches
the limit threshold, the FET is turned off and the cycle terminated until the next clock pulse. The current limit input
terminates the pulse regardless of the status of the output
of the PWM comparator.
10
The best capacitors for use with the AME5140 are
multilayer Ceramic capacitors. They have the lowest ESR
(equivalent series resistance) and highest resonance frequency, which makes them optimum for use with high
frequency switching Converters. When selecting a ceramic capacitor, only X5R and X7R dielectric types should
be used. Other types such as Z5U and Y5F have such
severe loss of capacitance due to effects of temperature
variation and applied voltage, they may provide as little
as 20% of rated capacitance in many typical applications. Always consult capacitor manufacturer’s data
curves before selecting a capacitor. High-quality ceramic
capacitors can be obtained from Taiyo-Yuden, AVX, and
Murata.
Selecting The Output Capacitor
A single ceramic capacitor of value 4.7µF to 10µF will
provide sufficient output capacitance for most applications. If larger amounts of capacitance are desired for
improved line support and transient response, tantalum
capacitors can be used. Aluminum electrolytic with ultra
low ESR such as Sanyo Oscon can be used, but are
usually prohibitively expensive. Typical AI electrolytic
capacitors are not suitable for switching frequencies above
500kHz due to significant ringing and temperature rise
due to self-heating from ripple current. An output capacitor with excessive ESR can also reduce phase margin
and cause instability. In general, if electrolytic are used,
it is recommended that. They be paralleled with ceramic
capacitors to reduce ringing, switching losses, and output voltage ripple.
Selecting The Input Capacitor
An input capacitor is required to serve as an energy
reservoir for the current which must flow into the coil
each time the switch turns ON. This capacitor must have
extremely low ESR, so ceramic is the best choice. We
recommend a nominal value of 4.7µF, but larger values
can be used. Since this capacitor reduces the amount
of voltage ripple seen at the input pin, it also reduces
the amount of EMI passed back along that line to other
circuitry.
Rev.D.01
AME, Inc.
AME5140
1.6 MHz Boost Converter With
30V Internal FET Switch
n Application Hints
Feed-Forward Compensation
Layout Hints
Although internally compensated, the feed-forward capacitor Cf is required for stability. Adding this capacitor
puts a zero in the loop response of the Converter. The
recommended frequency for the zero fz should be approximately 6kHz. Cf can be calculated using the formula:
Cf = 1 / (2 x π x R1 x fz)
Selecting Diodes
The external diode used in the typical application should
be a Schottky diode. A 20V diode such as the MBR0520
is recommended. The MBR05XX series of diodes are designed to handle a maximum average current of 0.5A. For
applications exceeding 0.5A average but less than 1A, a
Microsemi UPS5817 can be used.
Recommended PCB Component Layout (Bottom)
Layout Hints
Some additional guidelines to be observed:
High frequency switching regulators require very careful layout of components in order to get stable operation
and low noise. All components must be as close as possible to the AME5140 device. It is recommended that a
4-layer PCB be used so that internal ground planes are
available. As an example, a recommended layout of components is shown:
1. Keep the path between L1, D1, and C2 extremely
short. Parasitic trace inductance in series with D1 and C2
will increase noise and ringing.
2. The feedback components R1, R2 and CF must be
kept close to the FB pin of U1 to prevent noise injection
on the FB pin trace.
3. If internal ground planes are available use vias to connect directly to ground at pin 2 of U1, as well as the negative sides of capacitors C1 and C2.
Duty Cycle
The maximum duty cycle of the switching regulator determines the maximum boost ratio of output-to-input voltage that the converter can attain in mode of operation.
The duty cycle for a given boost application is defined as:
This applies for continuous mode operation.
D=
VOUT + VDIODE - VIN
VOUT + VDIODE - VSW
Recommended PCB Component Layout (Top)
Rev.D.01
11
AME, Inc.
1.6 MHz Boost Converter with
30V Internal FET Switch
AME5140
n Application Hints
Calculating Load Current
Shutdown Pin Operation
The load current is related to the average inductor current by the relation:
The device is turned off by pulling the shutdown pin low.
If this function is not going to be used, the pin should be
tied directly to VIN. If the SHDN function will be needed, a
pull-up resistor must be used to VIN (approximately 50k100k recommended). The EN pin must not be left
unterminated.
ILOAD = IIND (AVG) x (1 - D)
Where “D” is the duty cycle of the application. The
switch current can be found by:
ISW = IIND (AVG) + 1 /2 (IRIPPLE)
Inductor ripple current is dependent on inductance, duty
cycle, input voltage and frequency:
IRIPPLE = D x (VIN-VSW ) / (f x L)
Combining all terms, we can develop an expression
which allows the maximum available load current to be
calculated:
ILOAD = ( 1-D ) x ( ISW (max) -
D ( VIN-VSW )
)
2fL
Thermal Consuderations
At higher duty cycles, the increased ON time of the
FET means the maximum output current will be determined by power dissipation within the AME5140 FET
switch. The switch power dissipation from ON-state conduction is calculated by:
P(SW) = D x IIND(AVE)2 x RDS(ON)
There will be some switching losses as well, so some
derating needs to be applied when calculating IC power
dissipation.
Inductor Suppliers
Recommended suppliers of inductors for this product
include, but are not limited to Sumida, Coilcraft, Panasonic,
TDK and Murata. When selecting an inductor, make certain that the continuous current rating is high enough to
avoid saturation at peak currents. A suitable core type
must be used to minimize core (switching) losses, and
wire power losses must be considered when selecting
the current rating.
12
Rev.D.01
AME, Inc.
1.6 MHz Boost Converter With
30V Internal FET Switch
AME5140
IQ VIN (Idle) vs Temperature
IQ VIN(Active) vs Temperature
3.50
500
2.50
IQ VIN (Idle) (µA)
IQ VIN Active (mA)
3.00
2.00
1.50
1.00
400
300
200
100
0.50
0.00
-50
-25
0
25
50
75
100
125
0
-50
150
Temperature (oC)
25
50
75
100
125
150
Max. Duty Cycle vs Temperature
93.5
93.4
VIN=5V
93.3
Max Duty Cycle (%)
Oscillator Frequency (MHz)
0
Temperature (oC)
Oscillator Frequency vs Temperature
1.59
1.57
1.55
1.53
1.51
1.49
1.47
1.45
1.43
1.41
1.39
1.37
1.35
1.33
1.31
1.29
1.27
1.25
-50
-25
VIN=3.3V
VIN=5V
93.2
93.1
93
VIN=3.3V
92.9
92.8
92.7
92.6
92.5
92.4
92.3
92.2
-25
0
25
50
75
100
125
150
92.1
92
-50
-25
0
25
50
75
100
125
Temperature (oC)
Temperature (oC)
Feedback Bias Current vs Temperature
Efficiency vs Load Current
150
0.10
90
0.09
80
0.08
Efficiency (%)
Feedback Bias Current (µA)
0.11
0.07
0.06
0.05
0.04
0.03
VIN=5V
0.01
-25
0
25
50
75
Temperature (oC)
Rev.D.01
60
50
40
30
20
0.02
0
-50
70
100
125
VIN=5V
VOUT=18V
10
150
0
0
50
100
150
200
250
300
350
Load (mA)
13
AME, Inc.
1.6 MHz Boost Converter with
30V Internal FET Switch
AME5140
Efficiency vs Load Current
Efficiency vs Load Current
90
90
80
80
70
Efficiency (%)
100
Efficiency (%)
70
60
50
40
60
50
40
30
30
20
20
VIN=2.7V
VOUT=5V
10
VIN=2.7V
VOUT=12V
10
0
0
0
50
100
150
200
250
0
300
90
80
Efficiency (%)
Efficiency (%)
50
70
70
60
50
40
30
20
0
100
200
300
400
500
600
60
50
40
30
20
VIN=3.3V
VOUT=5V
10
VIN=3.3V
VOUT=12V
10
0
700
0
Load (mA)
20
40
60
80
100
120
140
160
Load (mA)
Efficiency vs Load Current
Efficiency vs Load Current
100
100
90
90
80
80
Efficiency (%)
Efficiency (%)
40
Efficiency vs Load Current
80
70
60
50
40
30
70
60
50
40
30
20
20
VIN=4.2V
VOUT=5V
10
VIN=5V
VOUT=12V
10
0
0
200
400
600
800
Load (mA)
14
30
Efficiency vs Load Current
90
0
20
Load (mA)
100
0
10
Load (mA)
1000
1200
1400
0
100
200
300
400
500
600
Load (mA)
Rev.D.01
AME, Inc.
1.6 MHz Boost Converter With
30V Internal FET Switch
AME5140
RDS(ON) vs Temperature
RDS(ON) vs VIN
750
700
700
650
600
550
500
RDS(ON) (mΩ)
RDS(ON) (mΩ)
600
VIN= 3.3V
400
VIN= 5V
300
500
450
400
350
300
250
200
200
150
100
100
50
0
-50
-25
0
25
50
75
100
125
0
2.5
150
3
3.5
4
4.5
Temperature ( C)
Output Voltage vs Load Current
5.5
6
6.5
7
7.5
8
Output Voltage vs Load Current
13.0
5.5
COUT=22µF
VOUT=5V
COUT=4.7µF
VOUT=12V
12.0
Output Voltage (V)
5.0
Ootput Voltage (V)
5
VIN (V)
o
VIN=4.2V
4.5
4.0
3.5
VIN=3.3V
3.0
11.0
10.0
VIN=5V
9.0
8.0
7.0
6.0
VIN=3.3V
VIN=2.7V
VIN=2.7V
2.5
0
500
1000
1500
2000
2500
5.0
0
50 100150200250300350400450500550600650700750800850
IOUT (mA)
IOUT (mA)
Output Voltage vs Load Current
19
Output Voltage (V)
18
17
16
15
VIN=5V
14
13
12
11
COUT=4.7µF
VOUT=18V
10
9
0
50
100
150
200
250
300
350
400
IOUT (mA)
Rev.D.01
15
AME, Inc.
1.6 MHz Boost Converter with
30V Internal FET Switch
AME5140
n Date Code Rule
Marking
Date Code
Year
A
A
A
W
W
xxx0
A
A
A
W
W
xxx1
A
A
A
W
W
xxx2
A
A
A
W
W
xxx3
A
A
A
W
W
xxx4
A
A
A
W
W
xxx5
A
A
A
W
W
xxx6
A
A
A
W
W
xxx7
A
A
A
W
W
xxx8
A
A
A
W
W
xxx9
n Tape and Reel Dimension
SOT-25
P
W
AME
AME
PIN 1
Carrier Tape, Number of Components Per Reel and Reel Size
16
Package
Carrier Width (W)
Pitch (P)
Part Per Full Reel
Reel Size
SOT-25
8.0±0.1 mm
4.0±0.1 mm
3000pcs
180±1 mm
Rev.D.01
AME, Inc.
1.6 MHz Boost Converter With
30V Internal FET Switch
AME5140
n Tape and Reel Dimension
TSOT-25
P
W
AME
AME
PIN 1
Carrier Tape, Number of Components Per Reel and Reel Size
Package
Carrier Width (W)
Pitch (P)
Part Per Full Reel
Reel Size
TSOT-25
8.0±0.1 mm
4.0±0.1 mm
3000pcs
180±1 mm
DFN-8
(3mmx3mmx0.85mm)
P
W
AME
AME
PIN 1
Carrier Tape, Number of Components Per Reel and Reel Size
Package
Carrier Width (W)
Pitch (P)
Part Per Full Reel
Reel Size
DFN-8
(3mmx3mmx0.85mm)
8.0±0.1 mm
4.0±0.1 mm
1000pcs
180±1 mm
Rev.D.01
17
AME, Inc.
1.6 MHz Boost Converter with
30V Internal FET Switch
AME5140
n Tape and Reel Dimension
MSOP-8
P
PIN 1
W
AME
AME
Carrier Tape, Number of Components Per Reel and Reel Size
18
Package
Carrier Width (W)
Pitch (P)
Part Per Full Reel
Reel Size
MSOP-8
12.0±0.1 mm
4.0±0.1 mm
4000pcs
330±1 mm
Rev.D.01
AME, Inc.
1.6 MHz Boost Converter With
30V Internal FET Switch
AME5140
n Package Dimension
SOT-25
Top View
Side View
SYMBOLS
D
MILLIMETERS
MAX
MIN
MAX
L
MIN
INCHES
E
H
A
θ1
S1
0.00
0.15
0.0000
0.0059
b
0.30
0.55
0.0118
0.0217
D
2.70
3.10
0.1063
0.1220
E
1.40
1.80
0.0551
0.0709
e
L
Front View
θ1
S1
1.90 BSC
2.60
3.00
0.37BSC
0o
10 o
0.07480 BSC
0.10236 0.11811
0.0146BSC
0o
10 o
0.95BSC
0.0374BSC
MILLIMETERS
INCHES
A1
A
0.0472REF
A1
H
e
1.20REF
b
TSOT-25
Top View
Side View
SYMBOLS
MIN
MAX
MIN
MAX
A+A1
0.90
1.25
0.0354
0.0492
b
0.30
0.50
0.0118
0.0197
c
0.09
0.25
0.0035
0.0098
D
2.70
3.10
0.1063
0.1220
E
1.40
1.80
0.0551
0.0709
E
H
L
D
θ1
S1
e
H
e
L
Front View
b
Rev.D.01
S1
2.40
3.00
0.35BSC
0o
10o
0.95BSC
0.07480 BSC
0.09449 0.11811
0.0138BSC
0o
10 o
0.0374BSC
A1
A
θ1
1.90 BSC
19
AME, Inc.
1.6 MHz Boost Converter with
30V Internal FET Switch
AME5140
n Package Dimension
DFN-8 (3mmx3mmx0.85mm)
Top View
SYMBOLS
MILLIMETERS
MIN
D
MIN
0.900
A
E
MAX
INCHES
MAX
0.035
D
2.900
3.100
0.114
0.122
E
2.900
3.100
0.114
0.122
e
0.650 TYP.
0.026 TYP.
D2
1.500 TYP.
0.059TYP.
E2
2.400 TYP.
0.094 TYP.
b
0.200
0.300
0.0079
0.012
L
0.450
0.550
0.018
0.022
G
0.010
0.090
0.0004
0.004
H
0.000
0.050
0.000
0.002
Front View
A
G
Bottom View
b
e
L
D2
PIN 1 ID
H
E2
20
Rev.D.01
AME, Inc.
1.6 MHz Boost Converter With
30V Internal FET Switch
AME5140
n Package Dimension
MSOP-8
SYMBOLS
Top View
DETAIL A
D
e1
TOP PKG.
BTM PKG.
E1
θ
L2
E
L
L1
PIN 1 I.D
(SHINNY SURFACE)
A
A2
INCHES
MIN
MAX
MIN
MAX
A
-
1.07
-
0.04197
A1
0.05
0.20
0.002
0.008
A2
0.81
0.92
0.032
0.036
b
0.28
0.38
0.011
0.015
b1
0.28
0.33
0.011
0.013
c
0.13
0.23
0.005
0.009
c1
0.13
0.17
0.005
0.006
D
2.90
3.10
0.114
0.122
E
4.77
4.98
0.188
0.196
E1
2.90
3.10
0.114
0.122
e
0.65 TYP
0.0255 TYP
e1
1.95 TYP
0.0767 TYP
L
R0.127(0.005) TYP
ALL CORNER
& EDGES
Front View
MILLIMETERS
0.406
0.686
L1
0.94 REF
L2
0.254 TYP
θ
0
o
8
0.01598 0.02701
0.037 REF
0.010 TYP
o
0o
8o
A1
e
b
End View
SECTION B-B
b
b1
BASE METAL
B
c
B
E1
c1
WITH PLATING
See Detail A
Rev.D.01
21
www.ame.com.tw
E-Mail: [email protected]
Life Support Policy:
These products of AME, Inc. are not authorized for use as critical components in life-support
devices or systems, without the express written approval of the president
of AME, Inc.
AME, Inc. reserves the right to make changes in the circuitry and specifications of its devices and
advises its customers to obtain the latest version of relevant information.
 AME, Inc. , April 2007
Document: 1049-DS5140-D.01
Corporate Headquarter
U.S.A.(Subsidiary)
AME, Inc.
Analog Microelectronics, Inc.
2F, 302 Rui-Guang Road, Nei-Hu District
3100 De La Cruz Blvd., Suite 201
Taipei 114, Taiwan, R.O.C.
Tel: 886 2 2627-8687
Santa Clara, CA. 95054-2438
Tel : (408) 988-2388
Fax: 886 2 2659-2989
Fax: (408) 988-2489