ROHM BH7624KS2_05

TECHNICAL NOTE
Video/Audio Interfaces for TV and DVD Recorders
PAL Video
I/O Interface
BH7624KS2
٨Description
2
BH7624KS2 is a PAL video signal input switch for DVD-Recorder applications. It supports I C-BUS, 75ȍ driver, PAL
control functions with fast blinking, I/O BUS port, and the control for BD3825FS audio signal system switch. A built-in
scart terminal is incorporated.
٨Features
1) Vcc 5V Single
2) I2C-BUS control (Input switch to high impedance at power-off)
3) BD3825FS control function built-in
4) Built-in three parallel bus control terminal
5) Standby mode
6) CVBS/Y
5 inputs, 5 Bottom Clamp circuits, with Mute function
1 output
0/2dB AMP + Buffer
2 outputs 6/8dB AMP + 75ȍ driver
1 output
0/6dB AMP + Buffer (for VPS, PDC)
7) Chroma
2 inputs, 2 BIAS circuits, with Mute function
2 outputs 6/8dB AMP + 75ȍ driver control
3 outputs Buffer + 8 order LPF (Record)
8) Each SW independent actuation and all the SW simultaneous actuation are possible for the mute circuit,
9) Playback order LPF 6 circuits built-in
10) Record 8 order LPF 3 circuits built-in
11) Fast blanking circuit built-in
12) Function SW Input, 2 circuit built-in
13) Crosstalk -60dB Typ.
14) DG/DP 0.5%/0.5deg Typ.
٨Applications
DVD-Recorder, STB, etc.
٨Absolute maximum ratings (Ta=25°C)
Parameter
Symbol
Power supply voltage
V
Power dissipation
Pd
Operating temperature range
Topr
Storage temperature range
Tstg
*1 Reduced by 13 mW/qC over 25qC.
Limits
7.0
1300 *1
-25 㨪 +65
-55 㨪 +125
Unit
V
mW
°C!
°C!
٨Operating range (Ta=25°C)
Parameter
Supply voltage
Symbol
Limits
Unit
Vcc1, Vcc2, VDD
4.75 㨪 5.25
V
Ver.B Oct.2005
٨Electrical characteristics (Unless otherwise specified, Vcc1, Vcc2, VDD=5V, Ta=25°C)
Item
Symbol
MIN.
Limit
TYP.
MAX.
Unit
Conditions
Load 75ȍ Resistor
㧨Whole㧪
VCC Circuit current
ICC
85
130
175
mA
VDD Circuit current
IDD
4.6
7.2
9.8
mA
VCC Circuit current at standby
ICCST
10
15
20
mA
VDD Circuit current at standby
IDDST
3.5
5.5
7.5
mA
GVPS0
-0.7
-0.2
0.3
dB
Vin=1Vpp , f=100kHz
GVPS6
5.7
6.2
6.7
dB
Vin=1Vpp , f=100kHz
GAD0
-0.8
-0.3
0.2
dB
Vin=1Vpp , f=100kHz
GAD2
1.4
1.9
2.4
dB
Vin=800mVpp , f=100kHz
GL1AUX6
5.5
6.0
6.5
dB
Vin=1Vpp , f=100kHz
GL1AUX8
7.7
8.2
8.7
dB
Vin=800mVpp , f=100kHz
GAUX6-1
5.7
6.2
6.7
dB
Vin=450mVpp , f=100kHz
GAUX6-2
5.5
6.0
6.5
dB
Vin=450mVpp , f=100kHz
GAUX8
7.7
8.2
8.7
dB
Vin=360mVpp , f=100kHz
GL16-1
5.5
6.0
6.5
dB
Vin=450mVpp , f=100kHz
GL18-1
7.7
8.2
8.7
dB
Vin=360mVpp , f=100kHz
GL16-2
5.5
6.0
6.5
dB
Vin=450mVpp , f=100kHz
GL18-2
7.7
8.2
8.7
dB
Vin=360mVpp , f=100kHz
GL16-3
5.7
6.2
6.7
dB
Vin=700mV , f=100kHz
GRGB0-1
-0.6
-0.1
0.4
dB
Vin=560mV , f=100kHz
GRGB0-2
-0.8
-0.3
0.2
dB
Vin=560mV , f=100kHz
ǍG
-0.5
0.0
0.5
dB
Vin=1.0Vpp,f=100kHz
VAD0
2.8
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
VAD2
2.8
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
VCV-L6
2.8
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
VCV-L8
2.8
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
VCV-A6
2.8
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
CVBS/Y OUT to AUX
Maximum output level 8dB
VCV-A8
2.8
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
C OUT to AUX
Maximum output level 6dB
VC-A6
2.8
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
C OUT to AUX
Maximum output level 8dB
VC-A8
2.8
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
Load 75ȍ Resistor
㧨SW part㧪
L1,AUX CVBS/Y ψ
For VPS,PDC 0dB Voltage gain
L1,AUX CVBS/Y ψ
For VPS,PDC 6dB Voltage gain
ENC CVBS,ENC Y ψ
to INPUT AD 0dB Voltage gain
ENC CVBS,ENC Y ψ
to INPUT AD 2dB Voltage gain
ENC CVBS,ENC Y ψ
to L1&AUX 6dB Voltage gain
ENC CVBS,ENC Y ψ
to L1&AUX 8dB Voltage gain
L1 C ψto AUX 6dB
Voltage gain
ENC C ψto AUX 6dB
Voltage gain
ENC C ψto AUX 8dB
Voltage gain
ENC C ψto L1 6dB
Voltage gain
ENC C ψto L1 8dB
Voltage gain
ENC R,G,B ψto L1 6dB
Voltage gain
ENC R,G,B ψto L1 8dB
Voltage gain
AUX R,G,B ψto L1
Voltage gain
AUX R,G,B ψto R,G,B
Voltage gain (LPF OFF)
AUX R,G,B ψto R,G,B
Voltage gain (LPF ON)
Difference voltage gain
Between the channel
CVBS/Y OUT to INPUT AD
Maximum output level 0dB
CVBS/Y OUT to INPUT AD
Maximum output level 2dB
CVBS/Y OUT to L1
Maximum output level 6dB
CVBS/Y OUT to L1
Maximum output level 8dB
CVBS/Y OUT to AUX
Maximum output level 6dB
2/16
Item
Limit
Unit
Conditions
㧙
Vp-p
Vin: THD=1.0% f=100kHz
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
2.8
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
VG-L8
2.8
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
VB-L6
2.8
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
VB-L8
2.8
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
R Maximum output level
VR
2.8
3.2
㧙
Vp-p
Vin: THD=1.0% f=100kHz
G Maximum output level
VG
2.8
3.2
㧙
V
Vin: THD=1.0% f=100kHz
B Maximum output level
VB
2.8
3.2
㧙
V
Vin: THD=1.0% f=100kHz
VVPS0
2.8
3.2
㧙
V
Vin: THD=1.0% f=100kHz
VVPS6
2.8
3.2
㧙
V
Vin: THD=1.0% f=100kHz
FAD0
-1.0
0
1.0
dB
Vin=1Vpp , f=100k/7MHz
FAD2
-1.0
0
1.0
dB
Vin=800mVpp , f=100k/7MHz
FCV-L6
-1.0
0
1.0
dB
Vin=1Vpp , f=100k/7MHz
FCV-L8
-1.0
0
1.0
dB
Vin=800mVpp , f=100k/7MHz
FCV-AU6
-1.0
0
1.0
dB
Vin=1Vpp , f=100k/7MHz
FCV-AU8
-1.0
0
1.0
dB
Vin=800mVpp , f=100k/7MHz
FC-A6
-1.0
0
1.0
dB
Vin=450mVpp , f=100k/7MHz
FC-A8
-1.0
0
1.0
dB
Vin=360mVpp , f=100k/7MHz
FRC-L6
-1.0
0
1.0
dB
Vin=700mVpp , f=100k/7MHz
FRC-L8
-1.0
0
1.0
dB
Vin=560mVpp , f=100k/7MHz
FG-L6
-1.0
0
1.0
dB
Vin=700mVpp , f=100k/7MHz
FG-L8
-1.0
0
1.0
dB
Vin=560mVpp , f=100k/7MHz
FB-L6
-1.0
0
1.0
dB
Vin=700mVpp , f=100k/7MHz
FB-L8
-1.0
0
1.0
dB
Vin=560mVpp , f=100k/7MHz
R Frequency characteristic
FR
-1.0
0
1.0
dB
Vin=700mVpp , f=100k/7MHz
G Frequency characteristic
FG
-1.0
0
1.0
dB
Vin=700mVpp , f=100k/7MHz
B Frequency characteristic
FB
-1.0
0
1.0
dB
Vin=700mVpp , f=100k/7MHz
FCV-LPF1
-1.5
-0.5
0.5
dB
Vin=1.0Vpp , f=100k/6.75MHz
FCV-LPF2
㧙
-38
-27
dB
Vin=1.0Vpp , f=100kHz/27MHz
FCR-LPF1
-1.5
-0.5
0.5
dB
Vin=1.0Vpp , f=100k/6.75MHz
FCR-LPF2
㧙
-38
-27
dB
Vin=1.0Vpp , f=100kHz/27MHz
R/C OUT to L1
Maximum output level
R/C OUT to L1
Maximum output level
G OUT to L1
Maximum output level
G OUT to L1
Maximum output level
B OUT to L1
Maximum output level
B OUT to L1
Maximum output level
Symbol
6dB
8dB
6dB
8dB
6dB
8dB
For VPS, PDC
Maximum output level 0dB
For VPS, PDC
Maximum output level 6dB
CVBS/Y OUT to INPUT AD
Frequency characteristic 0dB
CVBS/Y OUT to INPUT AD
Frequency characteristic 2dB
CVBS/Y OUT to L1
Frequency characteristic 6dB
CVBS/Y OUT to L1
Frequency characteristic 8dB
CVBS/Y OUT to AUX
Frequency characteristic 6dB
CVBS/Y OUT to AUX
Frequency characteristic 8dB
C OUT to AUX
Frequency characteristic 6dB
C OUT to AUX
Frequency characteristic 8dB
R/C OUT to L1
Frequency characteristic 6dB
R/C OUT to L1
Frequency characteristic 8dB
G OUT to L1
Frequency characteristic 6dB
G OUT to L1
Frequency characteristic 8dB
B OUT to L1
Frequency characteristic 6dB
B OUT to L1
Frequency characteristic 8dB
CVBS/Y OUT LPF ON
Frequency characteristic
CVBS/Y OUT LPF ON
Frequency characteristic
C-R/C-G-B OUT LPF ON
Frequency characteristic
C-R/C-G-B OUT LPF ON
Frequency characteristic
1
2
1
2
MIN.
TYP.
MAX.
VRC-L6
2.8
3.2
VRC-L8
2.8
VG-L6
3/16
Item
Symbol
Limit
Unit
Conditions
MIN.
TYP.
MAX.
FRGB1
-3
0
1
dB
FRGB2
㧙
-15
-1.5
dB
MAD
㧙
-60
-55
dB
Vin=1.0Vpp , f=4.43MHz
ML1
㧙
-60
-55
dB
Vin=1.0Vpp , f=4.43MHz
MAUX
㧙
-60
-55
dB
Vin=1.0Vpp , f=4.43MHz
MC
㧙
-60
-55
dB
Vin=1.0Vpp , f=4.43MHz
MRC
㧙
-60
-55
dB
Vin=1.0Vpp , f=4.43MHz
MG
㧙
-60
-55
dB
Vin=1.0Vpp , f=4.43MHz
MB
㧙
-60
-55
dB
Vin=1.0Vpp , f=4.43MHz
SW1 Switch crosstalk
CSW1
㧙
-60
-55
dB
SW2 Switch crosstalk
CSW2
㧙
-60
-55
dB
SW3 Switch crosstalk
CSW3
㧙
-60
-55
dB
SW4 Switch crosstalk
CSW4
㧙
-60
-55
dB
SW5 Switch crosstalk
CSW5
㧙
-60
-55
dB
SW7 Switch crosstalk
CSW7
㧙
-60
-55
dB
SW8 Switch crosstalk
CSW8
㧙
-60
-55
dB
SW10 Switch crosstalk
CSW10
㧙
-60
-55
dB
CCVBS
㧙
-60
-55
dB
CCR/CGB
㧙
-60
-55
dB
CRGB
㧙
-60
-55
dB
BIAS input impedance
RBIAS
14
20
26
kȍ
BIAS input impedance
AUX R/C terminal
RRC
100
150
200
kȍ
VFB
0.4
0.7
0.9
V
L1 FB OUT Output voltage H
VFB-HI
3.6
4
4.4
V
RL=150ȍ
L1 FB OUT Output voltage L
VFB-L0
0
㧙
0.7
V
RL=150ȍ
FSW Output voltage H
VFSW-HI
VCC
-0.5
VCC
-0.1
VCC
V
No load
FSW Output voltage L
VFSW-LOW
0
㧙
0.7
V
No load
Input voltage H
VADR-HI
2.0
㧙
VCC
V
Input voltage L
VADR-LOW
0
㧙
1.0
V
RADR
65
100
135
kȍ
R-G-B LPF ON
Frequency characteristic 1
R-G-B LPF ON
Frequency characteristic 2
CVBS/Y OUT to INPUT AD
MUTE attenuation
CVBS/Y OUT to L1
MUTE attenuation
CVBS/Y OUT to AUX
MUTE attenuation
C OUT to AUX
MUTE attenuation
R/C OUT to L1
MUTE attenuation
G OUT to L1
MUTE attenuation
B OUT to L1
MUTE attenuation
CVBS/Y OUT
Between the channel crosstalk
C-R/C-G-B OUT
Between the channel crosstalk
R-G-B
Between the channel crosstalk
Vin=700mVpp ,
f=100kHz/6MHz
Vin=700mVpp ,
(f=100kHz/14.3MHz)
Vin=1.0Vpp , f=4.43MHz
AMP0dB
Vin=1.0Vpp , f=4.43MHz
AMP6dB
Vin=1.0Vpp , f=4.43MHz
AMP6dB
Vin=1.0Vpp , f=4.43MHz
AMP6dB
Vin=1.0Vpp , f=4.43MHz
AMP6dB
Vin=1.0Vpp , f=4.43MHz
AMP6dB
Vin=1.0Vpp , f=4.43MHz
AMP6dB
Vin=1.0Vpp , f=4.43MHz
AMP6dB
Vin=1.0Vpp , f=4.43MHz
AMP0,6dB
Vin=1.0Vpp , f=4.43MHz
AMP6dB
Vin=1.0Vpp , f=4.43MHz
㧨Scart connector part㧪
FB threshold
㧨ADR㧪
Input impedance
4/16
Pull down resister
Item
Symbol
Limit
MIN.
TYP.
MAX.
Unit
Conditions
㧨SCL, SDA㧪
Input voltage H
VΤC-HI
2.0
㧙
VCC
V
Input voltage L
VΤC-LOW
0
㧙
1.0
V
Input bias current
VΤC-BIAS
0
-1
-10
μA
INT Output voltage H
VINT-HI
Vcc
-0.5
Vcc-0.1
Vcc
V
Pull up 100kԈ
INT Output voltage L
VINT-LOW
0
0.3
0.5
V
Iload=1mA
ALL MUTE threshold
VMUTE
1.0
1.5
2.0
V
FS1, FS2 Input threshold H
VFS-H
2.5
2.75
3
V
FS1, FS2 Input threshold L
VFS-L
0.83
1.08
1.33
V
PARALLEL 1~4 Output voltage H
VOPH
Vcc
-0.5
Vcc
-0.1
Vcc
V
Pull up 100kԈ
PARALLEL 1~4 Output voltage L
VOPL
0
0.3
0.5
V
Iload=1mA
ASW1~4 Output voltage H
VOSH
3.5
VCC0.1
VCC
V
No load
ASW1~4 Output voltage L
VOSL
0
0.1
1.0
V
No load
FSL1, FSAUX Output voltage H
VOFSH
4.0
0.95
×Vcc
VCC
V
RL=200kԈ
FSL1, FSAUX Output voltage M
VOFSM
2.0
2.5
3.0
V
RL=200kԈ
FSL1, FSAUX Output voltage L
VOFSL
0
0.1
0.75
V
RL=200kԈ
DGVPS0
-
0.1
-
%
75Ԉterminating. 1Vpp output
DGVPS6
-
0.1
-
%
75Ԉterminating. 1Vpp output
DGAD0
-
0.1
-
%
75Ԉterminating. 1Vpp output
DGAD2
-
0.1
-
%
75Ԉterminating. 1Vpp output
DGL1AU6
-
0.5
-
%
75Ԉterminating. 1Vpp output
DGL1AU8
-
0.5
-
%
75Ԉterminating. 1Vpp output
DGLCAUX
-
1.0
-
%
75Ԉterminating. 1Vpp output
DGC-A6
-
1.0
-
%
75Ԉterminating. 1Vpp output
DGC-A8
-
1.0
-
%
75Ԉterminating. 1Vpp output
DGC-L6
-
1.0
-
%
75Ԉterminating. 1Vpp output
DGC-L8
-
1.0
-
%
75Ԉterminating. 1Vpp output
DGRGBL6
-
0.8
-
%
75Ԉterminating. 1Vpp output
DGRGBL8
-
0.8
-
%
75Ԉterminating. 1Vpp output
DGAUX-L
-
0.2
-
%
75Ԉterminating. 1Vpp output
The span that input is possible.
0㨪VCC
Maximum input voltage VCC
(VCCr5%)
Minimum input voltage 0V
(VCCr5%)
㧨Guaranteed design parameters㧪
㧨SW part㧪
L1,AUX CVBS/Y ψ
For VPS,PDC 0dB Differential Gain
L1,AUX CVBS/Y ψ
For VPS,PDC 6dB Differential Gain
ENC CVBS,ENC Y ψ
to INPUT AD 0dB Differential Gain
ENC CVBS,ENC Y ψ
to INPUT AD 2dB Differential Gain
ENC CVBS,ENC Y ψ
to L1&AUX 6dB Differential Gain
ENC CVBS,ENC Y ψ
to L1&AUX 8dB Differential Gain
L1Cψto AUX 6dB
Differential Gain
ENC Cψto AUX 6dB
Differential Gain
ENC C ψto AUX 8dB
Differential Gain
ENC C ψto L1 6dB
Differential Gain
ENC C ψto L1 8dB
Differential Gain
ENC R,G,B ψto L1 6dB
Differential Gain
ENC R,G,B ψto L1 8dB
Differential Gain
AUX R,G,B ψto L1
Differential Gain
5/16
Item
AUX R,G,B ψ R,G,B
Differential Gain
L1,AUX CVBS/Y ψFor VPS,PDC
0dB Differential Phase
L1,AUX CVBS/Y ψFor VPS,PDC
6dB Differential Phase
ENC CVBS,ENC Y ψto INPUT AD
6dB Differential Phase
ENC CVBS,ENC Y ψto INPUT AD
8dB Differential Phase
ENC CVBS,ENC Y ψto L1&AUX
6dB Differential Phase
ENC CVBS,ENC Y ψto L1&AUX
8dB Differential Phase
L1 C ψto AUX 6dB
Differential Phase
ENC C to AUX 6dB
Differential Phase
ENC C ψto AUX 8dB
Differential Phase
ENC C ψto L1 6dB
Differential Phase
ENC C ψto L1 8dB
Differential Phase
ENC R,G,B ψto L1 6dB
Differential Phase
ENC R,G,B ψto L1 8dB
Differential Phase
AUX R,G,B ψto L1
Differential Phase
AUX R,G,B ψto R,G,B
Differential Phase
L1,AUX CVBS/Y ψ
For VPS,PDC 0dB S/N ratio
L1,AUX CVBS/Y ψ
For VPS,PDC 6dB S/N ratio
ENC CVBS,ENC Y ψ
to INPUT AD 0dB S/N ratio
ENC CVBS,ENC Y ψ
to INPUT AD 2dB S/N ratio
ENC CVBS,ENC Y ψ
to L1&AUX 6dB S/N ratio
ENC CVBS,ENC Y ψ
to L1&AUX 8dB S/N ratio
L1 C ψto AUX
6dB S/N ratio
Symbol
Limit
Unit
Conditions
-
%
75Ԉterminating. 1Vpp output
0.2
-
deg
75Ԉterminating. 1Vpp output
-
0.2
-
deg
75Ԉterminating. 1Vpp output
DPAD6
-
0.2
-
deg
75Ԉterminating. 1Vpp output
DPAD8
-
0.2
-
deg
75Ԉterminating. 1Vpp output
DPL1AU6
-
0.2
-
deg
75Ԉterminating. 1Vpp output
DPL1AU8
-
0.2
-
deg
75Ԉterminating. 1Vpp output
DPLCAU6
-
0.2
-
deg
75Ԉterminating. 1Vpp output
DPC-A6
-
0.4
-
deg
75Ԉterminating. 1Vpp output
DPC-A8
-
0.4
-
deg
75Ԉterminating. 1Vpp output
DPC-L6
-
0.4
-
deg
75Ԉterminating. 1Vpp output
DPC-L8
-
0.4
-
deg
75Ԉterminating. 1Vpp output
DPRGBL6
-
0.2
-
deg
75Ԉterminating. 1Vpp output
DPRGBL8
-
0.2
-
deg
75Ԉterminating. 1Vpp output
DPAUX-L
-
0.2
-
deg
75Ԉterminating. 1Vpp output
DPAURB
-
0.2
-
deg
75Ԉterminating. 1Vpp output
SNVPS0
-
-70
-
dB
Standard 100% white signal
SNVPS6
-
-70
-
dB
Standard 100% white signal
SNAD0
-
-70
-
dB
Standard 100% white signal
SNAD2
-
-70
-
dB
Standard 100% white signal
SNL1AU6
-
-70
-
dB
Standard 100% white signal
SNL1AU8
-
-70
-
dB
Standard 100% white signal
SNLCAU6
-
-70
-
dB
Standard 100% white signal
MIN.
TYP.
MAX.
DGAURB
-
0.2
DPVPS0
-
DPVPS6
ENC C ψto AUX
6dB S/N ratio
SNC-A6
-
-70
-
dB
Standard 100% white signal
ENC C ψto AUX
8dB S/N ratio
SNC-A8
-
-70
-
dB
Standard 100% white signal
ENC C ψto L1
6dB S/N ratio
SNC-L6
-
-70
-
dB
Standard 100% white signal
ENC C ψto L1
8dB S/N ratio
SNC-L8
-
-70
-
dB
Standard 100% white signal
ENC R,G,B ψto L16dB S/N ratio
SNRGBL6
-
-70
-
dB
Standard 100% white signal
ENC R,G,B ψto L18dB S/N ratio
SNRGBL8
-
-70
-
dB
Standard 100% white signal
AUX R,G,B ψto L1 S/N ratio
SNAUX-L
-
-70
-
dB
Standard 100% white signal
AUX R,G,B ψto R,G,B S/N ratio
SNAURB
-
-70
-
dB
Standard 100% white signal
6/16
٨Block diagram
Ǵ
Ǵ
Ǵ
. %8$5;
#7: %8$5;
67 %8$5;
B CLAMP
B CLAMP
SW10
HQT 8252&%
L1 CVBS/Y
AUX CVBS/Y
TU CVBS/Y
ENC CVBS
ENC Y
B CLAMP
1
2
3
G%
1
2
3
4
5
SW1
%8$5; 176
VQ +0276 #&
%8$5; 176
VQ .
%8$5; 176
VQ #7:
% 176
VQ #7:
4% 176
VQ .
) 176
VQ .
$ 176
VQ .
G%
MUTE
AUX CVBS/Y 1
ENC CVBS 2
ENC Y
3
SW2
G%
Ǵ
Ǵ
'0% %8$5
'0% ;
B CLAMP
LPF
B CLAMP
LPF
L1 CVBS/Y
TU CVBS/Y
ENC CVBS
ENC Y
1
2
3
4
MUTE
SW3
G%
MUTE
Ǵ
Ǵ
. %
'0% %
BIAS
BIAS
1
2
LPF
SW4
G%
MUTE
Ǵ
Ǵ
Ǵ
Ǵ
Ǵ
Ǵ
'0% 4
#7: 4%
'0% )
#7: )
'0% $
#7: $
SW5
1
B CLAMP
LPF
2
B CLAMP/BIAS
B CLAMP
LPF
1
SW6
2
MUTE
1
SW7
2
B CLAMP
B CLAMP
LPF
B CLAMP
MUTE
1
SW8
2
MUTE
G%
G%
G%
SW11
M
M
4
)
$
(59
($
+06
#.. /76'
(5
(5
G%
LPF
G%
LPF
G%
LPF
1
4V
2
0V
3
%8)
2
#59
#59
#59
#59
(5#7:
୯
REF
(5.
୯
2#4#..'.
I C BUS
2#4#..'.
#&4
7(67
INT
2#4#..'.
5%.
8%%
8&&
)0&
)0&
&)0&
. ($ 176
6'56
84'(
SW9
FS IN
MONI
2#4#..'.
5&#
%8)
M M
8%%
Fig.1
Blocks inside the dotted line operate at a standby mode.
7/16
Ǵ
٨Equivalent circuit
Pin No. Pin name
(Input/Output)
1.
19.
39.
DGND
GND2
GND1
2.
6.
8.
10.
12.
24.
38.
42.
44.
48.
ENCY
ENCR
ENCG
ENCB
TV CVBS/Y
L1 CVBS/Y
AUX CVBS/Y
AUX G
AUX B
L1 C
4.
26.
ENC C
L1 C
40.
AUX R/C
14.
CVBS/Y OUT to
INPUT AD
for VPS PDC
R
G
B
Function
Equivalent circuit
No used
INPUT
range (V)
Terminal
voltage (V)
GND terminal
㧙
0
Signal input terminal
1.4
The video signal input pins is
a bottom clamp.
Signal input terminal
2.9
The video signal input pins is
a resistance bias.
Signal input terminal
16.
18.
20.
22.
28.
29.
30.
32.
34.
B OUT to L1
G OUT to L1
R/C OUT to L1
CVBS/Y OUT to
AUX
C OUT to AUX
1.4
AUX R input can be a bottom
clamp or resistance bias.
S-Video signal input
distinction terminal
㧙
0.7
The state of each pin can be
2
read by I C-BUS.
Signal output terminal
0.7
75ǡ driver output pin gain
can be selected 6/8dB by
2
I C-BUS.
㧙
2.1
Signal output terminal
50.
L1 FB OUT
52.
FSW
51.
FB
This pin is an output terminal
for scart connector. The drive
of 75ǡis possible.
㧙
㧙
㧙
㧙
Signal output terminal
The input from FB is
outputted as is.
Signal input terminal
㧙
The signal from scart
connector input.
Reference voltage terminal
9.
VREF
2.8
A capacitor is connected to
opposite GND.
8/16
7.
11.
13.
43.
PARALLEL1
PARALLEL2
PARALLEL3
PARALLEL4
15.
17.
21.
23.
ASW4
ASW3
ASW2
ASW1
Open collector output
terminal
0
2
It can be set up by I C-BUS.
LOW
BD3825FS control terminal
0
The signal which switches
SW of BD3825FS is output. It
2
can be set by I C-BUS.
㧙
HI
5
FS output terminal
3.
5.
FS AUX
FS L1
37.
TEST1
Controls the FS output of
BD3825FS.
2
It can be set up by I C-BUS.
㧙
0
TEST control terminal
0
Short to GND.
ALL MUTE control terminal
41.
ALL MUTE
5
It can set all 75ǡ driver
outputs to mute mode.
ADR control terminal
5.
ADR
27.
31.
FS1
FS2
Pin to set slave address
which is 90H(91H) or
92H(93H).
0
FS monitor terminal
㧙
It acts as the monitor for the
FS change.
2
I C-BUS Clock input terminal
46.
SCL
The pin is an input clock of
2
I C-BUS. It uses a resistor to
pull up.
㧙
2
I C-BUS Data input terminal
47.
SDA
The pin is data of the
2
I C-BUS. It uses a resistor to
pull up.
㧙
INT terminal
45.
INT
0
When INT terminal changes
FS pin, it outputs HiZ.
9/16
٨Description of operations
2
‫ع‬I C-BUS Control input specifications
࡮I2C -BUS Format (WRITE MODE)
SLAVE
S
A DATA1 A
ADDRESS
DATA2
A
DATA3
A
DATA4
A
DATA5
A
DATA6
A
P
S : Start Condition A : Acknowledge P: Stop Condition
Slave
address
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
b7
b6
b5
b4
b3
b2
b1
b0
1
0
0
1
0
0
ADR
R/W
ADSW
CAUVSW
L1SW
YAUXSW
LASW
CL/BI
CRSW
FBSW
AMP0/6
AMP6/8 FILTERSW
#
SEL
INT_EN
OUTCTL1
OUTCTL2
Standby
#
#
#
#
PARALLEL1 PARALLEL2 PARALLEL3 PARALLEL4 ASW1
ASW2
ASW3 ASW4
FSL
FSA
#
#
#
#
#㧔Don’t Care㧕When the power is turned on, the condition is as marked *.
RSW
GBSW
Explanation
Explanation
ADR
The slave address configured with the ADR
terminal (write mode).
0 : When ADR terminal input is L. Address
becomes “90H”.
1 : When ADR terminal input is H. Address
becomes “92H”.
YAUXSW
SW3 input select. A signal to output in
“CVBS/Y to AUX”, select.
000 :L1 CVBS/Y *
001 :TU CVBS/Y
010 : ENC CVBS
011 : ENC Y
1XX : MUTE
R/W
READ/WRITE mode setting
0 : WRITE
1 : READ
CAUXSW
SW4 input select. A signal to output in
“C OUT to AUX”, select.
00 : L1 C *
01 : ENC C
1X : MUTE
ADSW
SW1 input select. A signal to output in
“CVBS/Y to INPUT AD”, select.
000 : L1 CVBS/Y
001 : AUX CVBS/Y *
010 : TU CYBS/Y
011 : ENC CVBS
100 : ENC Y
101 : MUTE
110 : MUTE
111 : MUTE
L1SW
SW2 input select. A signal to output in
“CVBS/Y to L1”, select.
00 : AUX CVBS/Y *
01 : ENC CVBS
10 : ENC Y
11 : MUTE
RSW
SW6 input select. A signal to output in “R/C
OUT to L1”, select.
00 : ENC C or ENC R
01 : AUX R/C *
1X : MUTE
GBSW
CRSW
A signal to input in RSW (SW5), select.
0 : ENC C *
1 : ENC
FBSW
AMP0/6
PARALLEL
1㨪4
for VPS‫ޔ‬PDC terminal AMP gain
configuration.
0 : 0dB *
1 : 6dB
The output configuration of the PARALLEL
terminal.
0 : Low *
1 : Hi
10/16
CL/BI SEL
SW7, SW8 input selects. Signals to
output in “G OUT to L1” and “B OUT to
L1”, select.
00 : ENC G‫ޔ‬ENC B
01 : AUX G‫ޔ‬AUX B *
1X : MUTE
The output of L1 FB OUT, select.
0X : FB (Through)* 10 : 0V
11 : 4V
The configuration of AUX R/C input
mode.
0 : B CLAMP *
1 : BIAS
LASW
AMP6/8
OUTCTL㧝
INT_EN
INT signal output control.
0 : Enable *
1 : Disable
Caution: When EnableψDisable
change, INT signal is cleared.
FILTERSW
SW11 input select. Select the R,
G and B each output signal are
outputted through the filter, or not
outputted through the filter.
0: There is no filter. *
1: There is a filter.
SW10 input select. A signal to output in “for
VPS, PDC”, select.
00 : AUX CVBS/Y *
01 : L1 CVBS/Y
1X : TU CVBS/Y
When encoder input is chosen, the gain of
AMP is configured.
(Encoder input terminal :ENC CVBS, ENC Y,
ENC C, ENC R, ENC G, ENC B)
0: 6dB 㧔0dB㧕*
1: 8dB 㧔2dB㧕
Caution : As for “CVBS/Y OUT to INPUT
AD”, it is 0/2 dB switchover.
“C OUT to AUX” output control.
0 : Normal *
1 : HI Z
Standby
normal/standby mode configuration.
0 : Normal *
1 : Standby
Caution : Block diagram is referred for the
actuation block at the time of Standby.
ASW 1㨪4
FSL
The output configuration of the FSL1.
00 : input mode *
01 : Low
10 : MID
11 : HI
Caution : When input mode, the output of
BD3825FS becomes HiZ(Low).
FSA
2
࡮I C-BUS format (READ MODE)
SLAVE
S
A DATA1 A/N DATA2
ADDRESS
A/N
DATA3
“B OUT to L1” output control.
0 : Normal *
1 : HI Z
The output configuration of the ASW
terminal.
0 : Low
1 : Hi
(Initial condition) ASW1:H ASW 2:L
ASW 3:L ASW 4:H *
The output configuration of the FSAUX.
00 : input mode *
01 : Low
10 : MID
11 : HI
Caution : When input mode, the output
of BD3825FS becomes HiZ(Low).
OUTCTL2
A/N
DATA4
A/N
DATA5
A/N
DATA6
A/N
P
S : Start Condition A/N : NO acknowledge P: Stop Condition
Slave
address
DATA1
DATA2
b7
b6
b5
b4
b3
b2
b1
b0
1
0
0
1
0
0
ADR
R/W
ADSW
CAUVSW
L1SW
YAUXSW
LASW
CL/BI
DATA3
CRSW
FBSW
AMP0/6
AMP6/8 FILTERSW
HI
SEL
DATA4
INT_EN
OUTCTL1
OUTCTL2
Standby
HI
HI
HI
HI
DATA5 PARALLEL1 PARALLEL2 PARALLEL3 PARALLEL4 ASW1
ASW2
ASW3 ASW4
DATA6
FSL
FSA
FS1
FS2
#㧔Don’t Care㧕
In the read mode, 00h is output from DATA4 after power-on is reset to 09h. If a write movement occurs once, it is
set to normal mode.
RSW
11/16
GBSW
Explanation
Explanation
ADR
The slave address configured with
the ADR terminal. (read mode)
0 : When ADR terminal input is L.
Address becomes “91H”.
1 : When ADR terminal input is H.
Address becomes “93H”.
R/W
READ/WRITE mode setting
0 : WRITE
1 : READ
FS1
The state of FS1 is outputted.
00 : Low
10 : MID
11 : HI
FS2
The state of FS2 is outputted.
00 : Low
10 : MID
11 : HI
䂓 INT signal (45pin)
ż An INT signal outputs HI (high impedance) when the state of FS1, FS2 is monitored by I2C-BUS for transition
stage, during input mode configuration.
Mode
Monitor
FS1
FS2
Input mode
Input mode
Both
Input mode
Others
Only FS1
Others
Input mode
Only FS2
Others
Others
No monitoring
ż
INT signal clearance occurs every time the read (read mode) of the data with I2C-BUS when slave address is sent.
ż
INT signal output control
It can be controlled with I2C-BUS. INT signal is cleared at switching by EnableψDisable.
䂓 Standby mode
ż Standby mode can be configured by I2C-BUS. Only the section marked in the dotted line, in the Figure 3, Block
Diagram, is active during standby state. All others are off.
䂓 ALL MUTE
ż CVBS/Y, C, R/C, G, B output (14pin‫ޔ‬29pin‫ޔ‬30pin‫ޔ‬31pin‫ޔ‬32pin‫ޔ‬34pin‫ޔ‬36pin) are all muted. Mute controls each
output separately by I2C-BUS.
ALL MUTE
H
L
Mode
Normal
Mute
䂓 The bias of an AUX R/C
As for CLAMP/BIAS change of AUX R/C (40pin), the output bias of R/C OUT to L1 (30pin) is synchronized.
Setup “CL/BI SEL” by the I2C-BUS control, in accordance with the bias method of the input chosen when input
from ENC C (4pin) and ENC R (6pin) is output.
12/16
٨Reference data
10
CCSTBY[mA]
8
15
6
10
4
2
0
0
0
4.6
4.8
5.0
5.2
5.4
4.4
5.6
4.6
VCC [V]
SUPPLY CURRENT : I
6
4
2
0
0
-25
0
25
50
TEMPERATURE [㷄]
75
100
Fig.5 VCC Circuit Current
(Temperature dependence)
10
0
PHASE
-45
-30
10
5
-50
-25
0
25
50
TEMPERATURE [㷄]
75
100
Fig.7 VCC Circuit Current (Standby)
(Temperature dependence)
180
0
GAIN
135
5.25V
45
5.6
15
100
0
90
5.25V
5.0V
-10
GAIN [dB]
-20
5.4
10
90
PHASE [deg]
5.0V
4.75V
0
25
50
75
TEMPERATURE [㷄]
10
135
5.25V
-10
-25
Fig.6 VDD Circuit Current
(Temperature dependence)
180
GAIN
5.0
5.2
VCC [V]
0
-50
-10
4.75V
GAIN [dB]
-50
4.8
Fig.4 VCC Circuit Current (Standby)
(Supply voltage dependence)
CCSTBY[mA]
[mA]
50
4.6
20
8
SUPPLY CURRENT : I
100
0
4.4
5.6
DD
[mA]
CC
5.4
10
150
SUPPLY CURRENT : I
5.0
5.2
VDD [V]
Fig.3 VDD Circuit Current
(Supply voltage dependence)
Fig.2 VCC Circuit Current
(Supply voltage dependence)
GAIN [dB]
4.8
-20
5.0V
45
4.75V
0
-20
PHASE
-30
-30
-40
-40
-45
-90
-90
-135
-50
-180
10E+04
1E+06
10E+06
FREQUENCY [Hz]
10E+04
180
135
GAIN
GAIN [dB]
-50C
45
PHASE
-45
-30
1E+06
10E+06
FREQUENCY [Hz]
10
10
0
180
GAIN
100C
100C
25C
-10
135
-10
-50C
-20
25C
-50C
-20
-135
-50
10E+04
-180
1E+06
10E+06
FREQUENCY [Hz]
1E+08
Fig.11 Frequency Characteristics
CVBS/Y OUT to L1
90
45
0
PHASE
-30
-30
-40
-40
-45
-90
-40
1E+08
Fig.10 Frequency Characteristics
G
90
0
-20
-180
10E+04
1E+08
Fig.9 Frequency Characteristics
CVBS/Y OUT to L1 (with LPF)
GAIN [dB]
25C
-10
10E+06
0
100C
PHASE [deg]
0
1E+06
FREQUENCY [Hz]
Fig.8 Frequency Characteristics
CVBS/Y OUT to L1
10
-135
-50
-50
1E+08
GAIN [dB]
-40
PHASE [deg]
4.4
5
PHASE [deg]
50
20
SUPPLY CURRENT : I
DD[mA]
100
SUPPLY CURRENT : I
SUPPLY CURRENT : I
CC[mA]
150
-90
-50
100E+03
01E+06
010E+06
FREQUENCY [Hz]
100E+06
Fig12 Frequency Characteristics
CVBS/Y OUT to L1 (with LPF)
13/16
-135
-50
10E+04
-180
1E+06
10E+06
FREQUENCY [Hz]
1E+08
Fig.13 Frequency Characteristics
G
10
10
0
5.25V
0
0
5.0V
25C
4.75V
-20
-30
-30
-40
-40
-50
1E+06
10E+06
FREQUENCY [Hz]
1E+08
1E+06
10E+06
FREQUENCY [Hz]
-50
1E+08
6dB
3
8dB
2
1
-50
-25
0
25
50
TEMPERATURE [㷄]
75
4
LPF OFF
LPF ON
2
-50
-25
0
25
50
TEMPERATURE [㷄]
75
4.4
-50
-25
0
25
50
TEMPERATURE [㷄]
75
0.8
0.6
G
0.4
CVBS/Y OUT to L1
0.2
4.6
4.8
5.0
5.2
VCC [V]
5.4
G
0.2
CVBS/Y OUT to L1
-25
0
25
50
75
100
200
150
30
20
100
50
10
-80
G
Fig.22 Differential Phase
(Temperature dependence)
IMPEDANCE [kȍ]
IMPEDANCE [kȍ]
-60
0.4
TEMPERATURE [㷄]
40
-40
5.6
0.6
-50
5.6
50
-20
5.4
0.8
Fig.21 Differential Phase
(Supply voltage dependence)
Fig.20 Differential Gain
(Temperature dependence)
0
5.0
5.2
VCC [V]
0.0
4.4
100
4.8
1.0
0.0
0.0
4.6
Fig.19 Differential Gain
(Supply voltage dependence)
DIFFERENTIAL PHASE : DP [deg.]
G
G
Fig.18 Maximum Output Level
G
DIFFERENTIAL PHASE : DP [deg.]
1.0
CVBS/Y OUT to L1
0.0
100
1.0
CVBS/Y OUT to L1
100
1.0
1
Fig.17 Maximum Output Level
CVBS/Y OUT to L1
2.0
75
2.0
3
100
3.0
50
3.0
0
0
25
G
DIFFERENTIAL GAIN : DG [%]
MAXIMUM OUTPUT VOLTAGE
:Vomax [Vpp]
4
0
Fig.16 MUTE Attenuation
(Temperature dependence)
5
CVBS/Y OUT to L1
-25
TEMPERATURE [㷄]
Fig.15 Frequency Characteristics
G (with LPF)
5
MAXIMUM OUTPUT VOLTAGE
:Vomax [Vpp]
-100
10E+04
Fig.14 Frequency Characteristics
G (with LPF)
-60
-80
-50
10E+04
-40
GAIN [dB]
GAIN [dB]
GAIN [dB]
-10
-20
DIFFERENTIAL GAIN : DG [%]
-20
-50C
-10
S/N [dB]
CVBS/Y OUT to L1
100C
CVBS/Y OUT to L1
0
-100
0
-50
-50
-25
0
25
50
TEMPERATURE [㷄]
75
100
Fig.23 S/N ratio
(Temperature dependence)
-25
0
25
50
TEMPERATURE [㷄]
75
100
Fig.24 BIAS input impedance
(Temperature dependence)
14/16
-50
-25
0
25
50
TEMPERATURE [㷄]
75
100
Fig.25 AUX R BIAS input impedance
(Temperature dependence)
٨Cautions on use
1.
2.
Numbers and data in entries are representative design values and are not guaranteed values of the items.
Although ROHM is confident that the example application circuit reflects the best possible recommendations, be sure to
verify circuit characteristics for your particular application. Modification of constants for other externally connected circuits
may cause variations in both static and transient characteristics for external components as well as this Rohm IC. Allow
for sufficient margins when determining circuit constants.
3. Absolute maximum ratings
Use of the IC in excess of absolute maximum ratings, such as the applied voltage or operating temperature range
(Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open
mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when using
the IC at times where the absolute maximum ratings may be exceeded.
4. GND potential
Ensure a minimum GND pin potential in all operating conditions. Make sure that no pins are at a voltage below the
GND at any time, regardless of whether it is a transient signal or not.
5. Thermal design
Perform thermal design, in which there are adequate margins, by taking into account the permissible dissipation (Pd)
in actual states of use.
6. Short circuit between terminals and erroneous mounting
Pay attention to the assembly direction of the ICs. Wrong mounting direction or shorts between terminals, GND, or other
components on the circuits, can damage the IC.
7. Operation in strong electromagnetic field
Using the ICs in a strong electromagnetic field can cause operation malfunction.
8. Operating Voltage Range and Operating Temperature Range
The circuit functional operations and electrical characteristics are guaranteed within the Operating Voltage Range and
Operating Temperature Range. However, careful consideration must be taken in designing the circuit.
9. Supply voltage of operation
Although basic circuit function is guaranteed under normal voltage operation (4.75V㨪5.25V), ensure each parameter
complies with appropriate electrical characteristics, when using this device.
10. The first resistor of 75ǡ driver output must be layout nearest to the IC.
11. The coupling capacitor must be layout nearest to the IC and each pin.
2
12. I C BUS is compatible with fast mode of Version 2.0 but not compatible with Hs mode.
٨Thermal derating characteristics
㪧㪦㪮㪜㪩㩷㪛㪠㪪㪪㪠㪧㪘㪫㪠㪦㪥㩷㪑㩷㪧㪻㪲㫄㪮㪴
㪈㪋㪇㪇
㪈㪉㪇㪇
㪈㪇㪇㪇
㪏㪇㪇
㪍㪇㪇
㪋㪇㪇
㪉㪇㪇
㪇
㪄㪌㪇
㪄㪉㪌
㪇
㪉㪌
㪌㪇
㪎㪌
㪘㪤㪙㪠㪜㪥㪫㩷㪫㪜㪤㪧㪜㪩㪘㪫㪬㪩㪜㩷㪲㷄㪴
Fig.26
15/16
㪈㪇㪇
㪈㪉㪌
㪈㪌㪇
٨Selection of order type
B
H
7
6
2
4
K
S
2
TYPE
BH7624KS2
SQFP-T52
<Dimension>!
<Packing information>!
12.0 ± 0.3
10.0 ± 0.2
52
14
13
0.125 ± 0.1
1pin
0.1 ± 0.1
1.4 ± 0.1
1
1000pcs
Direction of product is fixed in a tray.
Direction
of feed
27
26
40
Tray(with dry pack)
Quantity
0.5
12.0 ± 0.3
10.0 ± 0.2
39
Container
0.65
0.3 ± 0.1
0.15
㧔Unit:mm)
̪Orders are available in complete units only.
The contents described herein are correct as of October, 2005
The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD.
Any part of this application note must not be duplicated or copied without our permission.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding
upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any
warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such
infringement, or arising from or connected with or related to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other
proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.
The products described herein utilize silicon as the main material.
The products described herein are not designed to be X ray proof.
Published by
Application Engineering Group
Catalog NO.05T395Be '05.10 ROHM C 2000 TSU
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level
of reliability and the malfunction of which would directly endanger human life (such as medical
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers
and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM
cannot be held responsible for any damages arising from the use of the products under conditions out of the
range of the specifications or due to non-compliance with the NOTES specified in this catalog.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.
ROHM Customer Support System
www.rohm.com
Copyright © 2008 ROHM CO.,LTD.
THE AMERICAS / EUROPE / ASIA / JAPAN
Contact us : webmaster@ rohm.co. jp
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
TEL : +81-75-311-2121
FAX : +81-75-315-0172
Appendix1-Rev2.0