High-performance Video Driver Series Standard 3-output Video Driver No.09065EAT04 BA7622F, BA7623F ●Description The BA7622F and BA7623F are video driver ICs with three built-in circuits, developed for video equipment. The three circuits in the BA7622F, two sync-tip clamp inputs and one bias input, are terminated by internal resistances of 20 kΩ. The BA7623F output pins cab be connected directly in a DC coupling mode. Each output can drive 2 lines of load (75Ωx2). Suitable to connect to a 2Vpp output type signal processing LSI and DAC. ●Features Common 1) 2 lines can be driven from each output 2) Can be operated by Vcc=4.5 V BA7622F 1) Large output dynamic range (3.3 Vpp, Vcc=5 V) 2) Built-in, 2 clamp input circuits and1 bias input circuit 3) Y signal, C signal, and composite video signal can be driven simultaneously by this particular IC. BA7623F 1) Wide output dynamic range (3.3 Vpp, Vcc=5 V) 2) Can be directly connected to previous stage circuit ●Applications TV, VCR, camcorder, and other video equipment. ●Product lineup Parameter Input pin configuration BA7622F 2 clamp input circuits 1 bias input circuit BA7623F Previous stage direct connection (Base direct input) ●Absolute maximum ratings(Ta=25℃) Symbol Limits Unit Supply voltage Power dissipation VMax Pd 8.0 550 *1 V mW Operating temperature Storage temperature Topr Tstg -25~+75 -55~+125 ℃ ℃ Parameter *1 Reduce by 5.5 mW/C over 25C www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 1/16 2009.04 - Rev.A Technical Note BA7622F, BA7623F ●Operating range (Ta=25℃) Parameter Symbol Limits Supply Voltage VCC 4.5~5.5 Note: This IC is not designed to be radiation-resistant.. Unit V ●Electrical characteristics (Unless otherwise specified, Ta=25℃, Vcc=5 V and 2 lines are driven.) BA7622F Parameter Symbol Min. Typ. Max Unit Conditions Circuit Current Icc 23.6 35.4 mA No signal Maximum output level Vom 2.8 3.3 Vp-p f=1kHz,THD=1.0% Voltage gain Gv -1.2 -0.6 0 dB f=1kHz,VIN=2.0Vp-p Frequency characteristic Gf -3 0 1.3 dB 10kHz/1MHz, VIN=1.0Vp-p Differential gain 75Ωdrive1 DG1 0.4 1.0 % VIN=2.0Vp-p,Standard staircase signal Differential phase 75Ωdrive1 DP1 0.4 1.0 deg VIN=2.0Vp-p, Standard staircase signal Differential gain 75Ωdrive2 DG2 0.7 2.0 % VIN=2.0Vp-p, Standard staircase signal Differential phase 75Ωdrive2 DP2 0.7 2.0 deg VIN=2.0Vp-p, Standard staircase signal Interchannel crosstalk CT -60 dB f=4.43MHz, VIN=2.0Vp-p Input impedance(VIN3) ZIN3 17 20 23 kΩ ― Total harmonic distortion(VIN3) f=1kHz,VIN=1.0Vp-p THD32 0.1 0.5 % BA7623F Parameter Circuit Current Maximum output level Voltage gain Frequency characteristics Differential gain 75Ωdrive1 Differential phase 75Ωdrive1 Differential gain 75Ωdrive2 Differential phase 75Ωdrive2 Interchannel crosstalk Total harmonic distortion Symbol Icc Vom Gv Gf DG1 DP1 DG2 DP2 CT Min. 2.9 -1.0 -3 - Typ. 25.2 3.4 -0.5 0 0.4 0.4 0.7 0.7 -60 Max 37.8 0 1 1.0 1.0 2.0 2.0 - Unit mA Vp-p dB dB % deg % deg dB THD - 0.1 0.5 % Conditions No signal f=1kHz,THD=1.0% f=1kHz,VIN=2.0Vp-p 10kHz/1MHz, VIN=1.0Vp-p VIN=2.0Vp-p, Standard staircase signal VIN=2.0Vp-p, Standard staircase signal VIN=2.0Vp-p, Standard staircase signal VIN=2.0Vp-p, Standard staircase signal f=4.43MHz, VIN=2.0Vp-p f=1kHz,VIN=1.0Vp-p ●Block diagram GND 1 IN1 2 Clamp IN2 3 Clamp 75 driver 8 OUT1 GND 1 75 driver 8 OUT1 75 driver 7 OUT2 IN1 2 75 driver 7 OUT2 75 driver 6 OUT3 IN2 3 75 driver 6 OUT3 5 VCC IN3 4 5 VCC 20k IN3 4 Bias Fig.1 BA7622F www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. Fig.2 BA7623F 2/16 2009.04 - Rev.A Technical Note BA7622F, BA7623F ●Measurement circuit Vector Scope Analyzer Audio Vector Scope Analyzer Audio V ~ 1 2 Vector Scope Analyzer Audio V ~ 3 2 1 SWD V ~ 1 3 SWE 2 VCC5V 3 SWF + 0.022 F 47F 75 driver 1 2 3 470 75 75 + 470 7 75 driver Clamp + 8 75 driver Clamp 75 + 75 470 6 They shownininthe thefigure figurebelow below They areare asas shown when driving 75Ω loads. twotwo 75Ω loads. when driving 75 + 1000 75 20k 4 75 VCC5V SWA 1 2 + + V CC5V SWB 4 3 1 + 200A + 1 1 1 ~ OSC 4 2 3 + + V CC5V SWC 1 200A + 1 1 1 600 600 ~ ~ V SG 75 75 5 Bias 75 3 + + 50A 1 1 1 600 ~ OSC 4 2 ~ V SG ~ OSC V SG Fig.3 BA7622F Vector Scope Analyzer Audio Vector Scope V ~ 1 2 Analyzer Audio Vector Scope Analyzer Audio V ~ 3 1 SWD 2 V ~ 3 1 2 3 VCC5V SWF SWE + 47F 75 driver 1 75 driver 2 75 75 + 470 7 75 driver 3 + 75 470 8 0.022F + 75 470 6 They are as shown in the figure below ただし、出力段負荷は75 1ドライブ時 when driving two 75Ω loads. 75 2ドライブ時は下図となる。 75 + 75 75 75 5 4 75 1000 75 SWA 1 2 + + OSC 2.1V 1 1 ~ SG 2.1V 1k 2.1V 3 + ~ OSC 2.1V + + 1 600 1k 1 1k 2 + + 1 600 1k ~ SWC 1 SWB 3 1 ~ SG 2.1V 3 + + 1 600 1k 1 1k 2 1k 2.1V ~ OSC 2.1V 1 ~ SG 1 1k 1k 2.1V 2.1V Fig.4 BA7623F www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 3/16 2009.04 - Rev.A Technical Note BA7622F, BA7623F ●Measurement methods and conditions (BA7622F) Parameter Symbol Circuit current Icc Vom12 Vom22 Vom32 Gv12 Gv22 Gv32 f12 f22 f32 CT112 CT113 CT211 CT213 CT311 CT312 ZIN3 THD12 THD22 THD32 Maximum output level Voltage gain Frequency characteristic Interchannel crosstalk Input impedance Total harmonic distortion IN1 SWA 3 1 3 3 1 3 3 1 3 3 1 1 3 3 3 3 3 1 3 3 IN2 SWB 3 3 1 3 3 1 3 3 1 3 3 3 1 1 3 3 3 3 1 3 IN3 SWC 3 3 3 1 3 3 1 3 3 1 3 3 3 3 1 1 4 3 3 1 OUT1 SWD × 3 × × 3 × × 3 × × × × 3 × 3 × × 3 × × OUT2 SWE × × 3 × × 3 × × 3 × 3 × × × × 3 × × 3 × OUT3 SWF × × × Conditions *1 3 × × *2 3 × × - 3 × 3 × 3 × × × × × - *3 *4 3 ×:Switches 1, 2, and 3 can be * 1:Maximum output level Connect a distortion meter to the output. Apply a f=1 kHz, 1 Vp-p sine wave to the input and adjust the input level so that the output distortion becomes 1.0%. The maximum output level Vom (Vp-p) is the output voltage at that time. * 2:Voltage gain Apply a f=1MHz, 2.0 Vp-p sine wave to the input.. The voltage gain GV=20log[VOUT/VIN] (dB). * 3:Input resistance Measure the input pin voltage VIN50, when 50 μA is injected at the input pin. Measure the open voltage VIN0 of the input pin. The input resistance Z=( VIN50- VIN0)/50×10-6 [Ω]. * 4:Total harmonic distortion Apply a f=1kHz, 1.0 Vp-p sine wave to the input and measure by connecting a distortion meter to the output. ●Measurement methods and conditions (BA7623F) Parameter Circuit current Maximum output level Voltage gain Frequency characteristic Interchannel crosstalk Total harmonic distortion Differential gain (DG) Differential phase (DP) Symbol Icc Vom12 Vom22 Vom32 Gv12 Gv22 Gv32 f12 f22 f32 CT112 CT113 CT211 CT213 CT311 CT312 THD12 THD22 THD32 DG1 DG2 DG3 DP1 DP2 DP3 IN1 SWA 3 1 3 3 1 3 3 1 3 3 1 1 3 3 3 3 1 3 3 2 3 3 2 3 3 IN2 SWB 3 3 1 3 3 1 3 3 1 3 3 3 1 1 3 3 3 1 3 3 2 3 3 2 3 IN3 SWC 3 3 3 1 3 3 1 3 3 1 3 3 3 3 1 1 3 3 1 3 3 2 3 3 2 OUT1 SWD × 3 × × 3 × × 3 × × × × 3 × 3 × 3 × × 1 × × 1 × × OUT2 SWE × × 3 × × 3 × × 3 × 3 × × × × 3 × 3 × × 1 × × 1 × OUT3 SWF × × × Conditions *1 3 × × *2 3 × × - 3 × 3 × - 3 × × × × *3 3 × × - 1 × × - 1 ×:Switches 1, 2, and 3 can be * 1:Maximum output level Connect a distortion meter to the output. Apply a f=1 kHz, 1 Vp-p sine wave to the input and adjust the input level so that the output distortion becomes 1.0%. The maximum output level Vom (Vp-p), is the output voltage at that time. * 2:Voltage gain Apply a f=1MHz, 2.0 Vp-p sine wave to the input. The voltage gain is calculated as follows: GV=20log[VOUT/VIN] (dB) * 3:Total harmonic distortion Apply a f=1kHz, 1.0 Vp-p sine wave to the input and measure by connecting a distortion meter to the output. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 4/16 2009.04 - Rev.A Technical Note BA7622F, BA7623F ●Application circuit V CC5V + 47 F 1 Composite Video Signal Y Signal + 2 Clamp 1F + 1F 3 Clamp 75 driver 8 75 driver 7 75 driver 6 75 VIDEO OUT1 1000F 75 VIDEO OUT2 + 75 + 4 C Y C 75 + 1F 75 5 Bias 0.01 F Y 1000F 20k C Signal 0.022 F 75 Example of input VIDEO ,Y , and C signals. Fig.5 BA7622F Vcc=5V + 47F 0.022F 1 75 driver 2 75 driver 7 75 driver 6 3 8 75 R OUT 75 R OUT2 75 G OUT 1000F 75 G OUT2 + 75 B OUT1 75 B OUT + 1000F + 1000F 5 4 Example of input R, G, and B signals Fig.6 BA7623F www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 5/16 2009.04 - Rev.A Technical Note BA7622F, BA7623F ●Pin descriptions (1/2) BA7622F Pin No. Pin name IN OUT 1 GND ○ ― Typical Equivalent Circuit voltage Function GND terminal GND 0V GND Clamp input pin IN1,IN2 Inputs a video signal or Y/C separated Y signal. Vcc 2 IN1 ○ ― Q1 1.4V Q2 N N 100µA Clamp input pin IN1,IN2 Inputs a video signal or Y/C separated Y signal. Vcc 3 IN2 ○ ― Q1 1.4V Q2 N N 100µA Bias input pin Inputs a chroma signal. IN1,IN2 4 IN3 ○ ― 2.7V Vcc Q1 N 20k 10k Q2 N 100µA www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 6/16 2009.04 - Rev.A Technical Note BA7622F, BA7623F Pin No. Pin name IN OUT Typical voltage Equivalent Circuit VCC 5 VCC ○ ― Function Vcc terminal VCC 5.0V Video driver output (Bias input) Vcc Q4 Outputs a chroma signal. 20K OUT1~ 3 Q3 6 OUT3 ― ○ 2.0V When output is forced to ground, the protection circuit activates power save mode. Q1 Q5 Q2 Video driver output pin (Clamp input) Vcc Q4 20K OUT1~ 3 Q3 7 OUT2 ― ○ Outputs a video signal or Y/C separated Y signal Q1 0.6V When output is forced to ground, the protection circuit activates power save mode. Q5 Q2 Video driver output pin (Clamp input) Vcc Outputs a video signal or Y/C separated Y signal Q4 20K OUT1~ 3 8 OUT1 ― ○ Q3 0.6V Q1 Q2 www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 7/16 Q5 When output is forced to ground, the protection circuit activates power save mode. 2009.04 - Rev.A Technical Note BA7622F, BA7623F ●Pin descriptions (2/2) BA7623F Pin No. Pin name IN OUT Typical voltage Equivalent Circuit Function GND terminal 1 GND ○ ― 0V GND GND Base direct connect input IN1~ IN3 Set the input signal as composite video signal, chroma signal, or RGB signal. Input signal range 0.5~ 3.8 V. Vcc 100µA 2 IN1 ○ ― 100µA *1 300µA 300µA Base direct connect input pin IN1~ IN3 Vcc 100µA 3 IN2 ○ ― 100µA *1 300µA 300µA Set the input signal as composite video signal, chroma signal, or RGB signal. Input signal range 0.5~ 3.8 V. Base direct connect input pin IN1~ IN3 Vcc 100µA 4 IN3 ○ ― 100µA *1 300µA www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 8/16 300µA Set the input signal as composite video signal, chroma signal, or RGB signal. Input signal range 0.5~ 3.8 V. 2009.04 - Rev.A Technical Note BA7622F, BA7623F Pin No. Pin name IN OUT Typical voltage 5 VCC ○ ― 5.0V Equivalent Circuit Function VCC Vcc terminal VCC Video driver output (Base direct connect input) Vcc Q4 20K OUT1~ 3 Q3 6 OUT3 ― ○ *2 Q1 Q5 Q2 * 2 Output potential and * 1 input potential have the same signal level. When output is forced to ground, the protection circuit activates power save mode. Vcc Video driver output (Base direct connect input) Q4 20K OUT1~ 3 * 2 Output potential and * 1 input potential have the same signal level. Q3 7 OUT2 ― ○ Q1 *2 Q5 Q2 When output is forced to ground, the protection circuit activates power save mode. Video driver output (Base direct connect input) Vcc Q4 20K OUT1~ 3 Q3 8 OUT1 ― ○ *2 Q1 Q5 Q2 www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 9/16 * 2 Output potential and * 1 input potential have the same signal level. When grounded to ground, the protection circuit operates to move to power save mode. 2009.04 - Rev.A Technical Note BA7622F, BA7623F ●Operation Notes 1. Numbers and data in entries are representative design values and are not guaranteed values of the items. 2. Although ROHM is confident that the example application circuit reflects the best possible recommendations, be sure to verify circuit characteristics for your particular application. Modification of constants for other externally connected circuits may cause variations in both static and transient characteristics for external components as well as this Rohm IC. Allow for sufficient margins when determining circuit constants. 3. Absolute maximum ratings Use of the IC in excess of absolute maximum ratings, such as the applied voltage or operating temperature range (Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when using the IC at times where the absolute maximum ratings may be exceeded. 4. GND potential Ensure a minimum GND pin potential in all operating conditions. Make sure that no pins are at a voltage below the GND at any time, regardless of whether it is a transient signal or not. 5. Thermal design Perform thermal design, in which there are adequate margins, by taking into account the permissible dissipation (Pd) in actual states of use. 6. Short circuit between terminals and erroneous mounting Pay attention to the assembly direction of the ICs. Wrong mounting direction or shorts between terminals, GND, or other components on the circuits, can damage the IC. 7. Operation in strong electromagnetic field Using the ICs in a strong electromagnetic field can cause operation malfunction. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 10/16 2009.04 - Rev.A Technical Note BA7622F, BA7623F ●Reference data (1/5) BA7623F 75C 20 0 4 5 6 7 8 MAXIMUM OUTPUT LEVEL:Vom[Vpp] 25C 5 4 3 2 -50 0 50 TEMPERATURE:Ta.[℃] POWER SUPPLY VOLTAGE:Vcc[V] Fig.7 Circuit current vs. Supply voltage -5 -10 -25C 25C -15 -5 -10 4.5V 5.0V -15 75C -20 0.1 1 10 1 Fig.11 Frequency characteristic vs. Supply voltage 2Drive 0.6 0.4 1Drive 0.2 4 4.5 5 5.5 0.4 2Drive 0.2 1Drive 0 -0.2 -50 2Drive 83 1Drive 82.5 82 50 0 50 100 TEMPERATURE : Ta[℃] Fig.16 Y system S/N vs. Temperature www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 1Drive 83.5 2Drive 83 82.5 0 50 TEMPERATURE : Ta[℃] BA7623F 0.6 100 1Drive Ta=25℃ 0.4 2Drive 0.2 1Drive 0 -0.2 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V] Fig.15 Differential phase vs. Supply voltage BA7623F VCC=5V 85.0 80.0 75.0 70.0 65.0 82 -50 0.2 4 100 BA7623F Ta=25℃ 84 Y SYSTEM S/N : SNY[dB] . 83.5 0 Fig.14 Differential phase vs. Temperature BA7623F VCC=5V 84 0.4 TEMPERATURE : Ta[℃] POWER SUPPLY VOLTAGE : Vcc[V] Fig.13 Differential gain vs. Supply voltage 0.6 Fig.12 Differential gain vs. Temperature BA7623F VCC=5V 0.6 6 2Drive -50 C SYSTEM AM S/N : SNCA[dB] . 0.8 6 BA7623F VCC=5V 0.8 100 Fig.10 Frequency characteristic vs. Temperature 0 Y SYSTEM S/N : SNY[dB] . 10 INPUT FREQUENCY:fin[MHz] BA7623F Ta=25℃ 5.5 0 0.1 DIFFERENTIAL PHASE : DP[deg] . DIFFERENTIAL GAIN : DG[%] . 5.5V INPUT FREQUENCY:fin[MHz] 1 5 Fig.9 Maximum output level vs. Supply voltage -20 100 4.5 1 0 VOLTAGE GAIN:Gv[dB] VOLTAGE GAIN:Gv[dB] . 0 3 POWER SUPPLY VOLTAGE:Vcc[V] BA7623F Ta=25℃ 5 4 4 Fig.8 Maximum output level vs. Temperature BA7623F VCC=5V 5 5 2 100 DIFFERENTIAL GAIN : DG[%] . -25C BA7623F Ta=25℃ 6 DIFFERENTIAL PHASE : DP[deg] . 60 40 BA7623F VCC=5V 6 MAXIMUM OUTPUT LEVEL:Vom[Vpp] . CIRCUIT CURRENT:Icc[mA] 80 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V] Fig.17 Y system S/N vs. Supply voltage 11/16 -50 0 50 TEMPERATURE : Ta[℃] 100 Fig.18 C system AM S/N vs. Temperature 2009.04 - Rev.A Technical Note BA7622F, BA7623F ●Reference data (2/5) C SYSTEM PM S/N : SNCP[dB] 75 70 70 2Drive 65 1Drive 60 4.5 5 5.5 60 5 5.5 6 BA7623F -55 CROSS TALK : CT[dB] . -57 -59 -61 -63 -65 -57 -59 -61 -63 TEMPERATURE:Ta[℃] 4.5 5 5.5 6 POW ER SUPPLY VOLTAGE:VCC[V] Fig.22 Cross talk vs. Temperature Fig.23 Cross talk vs. Supply voltage 0 50 4 100 BA7623F Ta=25℃ 0.4 0.3 0.2 0.1 BA7622F Ta=25℃ 80 CIRCUIT CURRENT : Icc[mA] 0.5 60 -25C 25C 75C 40 20 0 0 4 4.5 5 5.5 4 6 6 7 Fig.25 Total harmonic distortion vs. Supply voltage 4.0 3.0 2.0 5 5.5 0.1 0 -50 6 POWER SUPPLY VOLTAGE : Vcc[V] Fig.28 Maximum output level (clamp) vs. Supply voltage www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 0 50 TEMPERATURE:Ta[℃] 100 Fig.24 Total harmonic distortion vs. Temperature BA7622F VCC=5V 6 5 4 3 2 -50 0 50 100 TEMPERATURE : Ta[℃] 4 3 2 1 4.5 0.2 Fig.27 Maximum output level vs. Temperature Ta=25℃ BA7622F 5 MAXIMUM OUTPUT LEVEL : Vom[Vpp] MAXIMUM OUTPUT LEVEL : Vom[Vpp] 5.0 4 0.3 BA7622F VCC=5V 5 100 0.4 8 Fig.26 Circuit current vs. Supply voltage BA7622F Ta=25℃ 50 BA7623F VCC=5V 0.5 POWER SUPLLY VOLTAGE : Vcc(V) POWER SUPPLY VOLTAGE:VCC[V] 6.0 5 0 Fig.21 C system PM S/N vs. Temperature Ta=25℃ -65 -50 -50 TEMPERATURE : Ta[℃] Fig.20 C system PM S/N vs. Supply voltage BA7623F VCC=5V -55 4.5 POWER SUPPLY VOLTAGE : Vcc[V] Fig.19 C system AM S/N vs. Supply voltage CROSS TALK:CT[dB] . 1Drive 55 4 6 POWER SUPPLY VOLTAGE : Vcc[V] TOTAL HARMONIC DISTORTION:THD[%] . 2Drive 65 TOTAL HARMONIC DISTORTION:THD[%] . 4 MAXIMUM OUTPUT LEVEL : Vom[Vpp] 70 55 65 BA7623F Ta=25℃ 75 MAXIMUM OUTPUT LEVEL :Vom[Vpp] . C SYSTEM AM S/N : SNCA[dB] 80 BA7623F VCC=5V 75 C SYSTEM PM S/N : SNCP[dB] BA7623F Ta=25℃ 85 4 3 2 1 -50 0 50 100 TEMPERATURE : Ta[℃] Fig.29 Maximum output level (bias) vs. Temperature 12/16 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V] Fig.30 Maximum output level (bias) vs. Supply voltage 2009.04 - Rev.A Technical Note BA7622F, BA7623F ●Reference data (3/5) BA7622F 10 VCC=5V -5 -10 -25C -15 25C 75C 5 0 -5 -10 5.5V -15 4.5V 5.0V -20 -25 10 100 0.1 Fig.31 Frequency characteristic (clamp) vs. Temperature DIFFERENTIAL GAIN : DG[%] . -5 -10 -15 5.0V 4.5V 5.5V 0.6 2Drive 0.4 1Drive 0.2 -50 100 Fig.34 Frequency characteristic (bias) vs. Supply voltage DIFFERENTIAL GAIN : DG[%] . DIFFERENTIAL GAIN : DG[%] . 0.8 2Drive 0.4 0 50 TEMPERATURE : Ta[℃] 1Drive 0.2 0 0 50 2Drive 0.4 1Drive 0.2 4 Ta=25℃ 4.5 5 0.6 0.6 2Drive 5.5 1Drive 1Drive 0 4.5 5 5.5 6 POWER SUPLLY VOLTAGE : Vcc[V] Fig.40 Differential phase (clamp) vs. Supply voltage www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 5.5 6 BA7622F VCC=5V 0.8 0.6 2Drive 0.4 1Drive 0.2 -50 -50 0 50 100 TEM PERATURE : Ta[℃] Fig.41 Differential phase (bias) vs. Temperature 13/16 0 50 100 TEMPERATURE[ : Ta℃] Fig.39 Differential phase (clamp) vs. Temperature 0.2 0 5 1 6 2Drive 0.4 0.4 4.5 Fig.36 Differential gain (clamp) vs. Supply voltage BA7622F VCC=5V 1 0.8 4 1Drive 0.2 Fig.38 Differential gain (bias) vs. Supply voltage 0.8 0.2 2Drive 0.4 POWER SUPLLY VOLTAGE : Vcc[V] Fig.37 Differential gain (bias) vs.Temperature BA7622F 0.6 0 100 TEMPERATURE : Ta[℃] 1 0.8 4 0 -50 BA7622F Ta=25℃ POWER SUPLLY VOLTAGE : Vcc[V] 0.8 0.6 100 0 100 BA7622F Ta=25℃ 1 10 1 Fig.35 Differential gain (clamp) vs. Temperature BA7622F VCC=5V 1 Fig.33 Frequency characteristic (bias) vs. Temperature VCC=5V 0.8 INPUT FREQUENCY [MHz] 0.6 75C INPUT FREQUENCY:fin[dB] DIFFERENTIAL PHASE : DP[deg] . 10 -25C 25C 0.1 0 -25 1 -15 100 BA7622F 1 DIFFERENTIAL PHASE : DP[deg] . VOLTAGE GAIN:Gv[dB] 0 1 10 BA7622F 1 5 0.1 1 Fig.32 Frequency characteristic (clamp) vs. Supply voltage BA7622F Ta=25℃ -20 -10 INPUT FREQUENCY:fin(MHz) INPUT FREQUENCY:fin[MHz] 10 -5 -25 DIFFERENTIAL GAIN : DG[%] . 1 0 -20 -25 0.1 BA7622F VCC=5V 10 VOLTAGE GAIN:Gv[dB] VOLTAGE GAIN:Gv[dB] 0 -20 DIFFERENTIAL PHASE : DP[deg] . Ta=25℃ 5 5 VOLTAGE GAIN:Gv[dB] BA7622F 10 Ta=25℃ 0.8 0.6 0.4 2Drive 0.2 1Drive 0 4 4.5 5 5.5 6 POWER SUPLLY VOLTAGE : Vcc[V] Fig.42 Differential phase (bias) vs. Supply voltage 2009.04 - Rev.A Technical Note BA7622F, BA7623F ●Reference data (4/5) Y SYSTEM S/N : SNY[dB] . Y SYSTEM S/N : SNY[dB] . 88 86 84 2Drive 1Drive 82 0 50 86 84 2Drive 1Drive 82 4.5 5 5.5 2Drive 1Drive 5 5.5 VCC=5V 70 -50 6 0 50 70 65 100 BA7622F 4 75 70 Ta=25℃ 80 75 70 4.5 5 5.5 6 POW ER SUPLLY VOLTAGE : Vcc[V] Fig.48 C system AM S/N (clamp) vs. Supply voltage BA7622F VCC=5V 75 C SYSTEM PM S/N : SNCP[dB] . C SYSTEM AM S/N : SNCA[dB] 80 Ta=25℃ 75 Fig.47 C system AM S/N (clamp) vs. Temperature 85 100 80 TEMPERATURE : Ta[℃] VCC=5V 50 BA7622F 85 75 Fig.46 Y system S/N (bias) vs. Supply voltage BA7622F 0 TEMPERATURE : Ta[℃] Fig.45 Y system S/N (bias) vs. Temperature 80 POWER SUPLLY VOLTAGE : Vcc[V] 85 1Drive -50 6 65 4.5 2Drive 82 C SYSTEM AM S/N : SNCA[dB] . 86 BA7622F 85 C SYSTEM AM S/N : SNCA[dB] Y SYSTEM S/N : SNY[dB] . 88 4 C SYSTEM AM S/N : SNCA[dB] 84 POWER SUPLLY VOLTAGE : Vcc[V] 80 70 65 60 55 65 -50 0 50 100 65 -50 4 TEMPERATURE : Ta[℃] 5 5.5 6 Ta=25℃ BA7622F VCC=5V 75 67 70 66 65 2Drive 60 66 1Drive 55 65 4 0 50 TEMPERATURE : Ta[℃] 100 4.5 5 5.5 POWER SUPLLY VOLTAGE : Vcc[V] 6 Fig.52 C system PM S/N (clamp) vs. Supply voltage www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. Fig.51 C system PM S/N (clamp) vs. Temperature Fig.50 C system AM S/N (bias) vs. Supply voltage -50 0 50 TEM PERATURE : Ta[℃] 100 BA7622F 75 C SYSTEM PM S/N : SNCP[dB BA7622F 67 4.5 POWER SUPLLY VOLTAGE : Vcc[V] Fig.49 C system AM S/N (bias) vs. Temperature C SYSTEM PM S/N : SNCP[dB] . 86 Fig.44 Y system S/N (clamp) vs. Supply voltage BA7622F Ta=25℃ 82 88 80 4 Fig.43 Y system S/N (clamp) vs. Temperature 84 BA7622F VCC=5V 90 80 100 TEMPERATURE : Ta[℃] 90 Ta=25℃ 88 80 -50 BA7622F 90 Y SYSTEM S/N : SNY[dB] . BA7622F VCC=5V 90 Ta=25℃ 70 2Drive 65 1Drive 60 55 4 4.5 5 5.5 6 POWER SUPLLY VOLTAGE : Vcc[V] Fig.53 C system PM S/N (bias) vs. Temperature 14/16 Fig.54 C system PM S/N (bias) vs. Supply voltage 2009.04 - Rev.A Technical Note BA7622F, BA7623F ●Reference data (5/5) BA7622F -57.00 -57 -59.00 -61.00 -63.00 -59 -61 -63 -65.00 50 4 TEMPERATURE : Ta[℃] BA7622F 4.5 5 5.5 TOTAL HARHONIC DISTORTION:THD[%] . INPUT IMPEDANCE : Zin[kΩ] 0.3 20.0 0.2 15.0 0.1 10.0 5 5.5 0 -50 6 0.2 0.1 0 0 50 BA7622F 0.5 0.4 0.3 0.2 0.1 4 bias clamp 1 4.5 5 5.5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V] BA7622F 4 6 VCC=5V BA7622F 5 4 3 bias 2 clamp 1 3 bias 2 1 clamp -50 -50 0 50 TEMPERATURE : Ta[℃] 0 50 100 Fig.63 Input terminal voltage vs. Temperature VCC=5V 100 BA7622F 4 Ta=25℃ 3 bias 2 1 clamp 0 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V] Fig.65 Output terminal voltage vs. Supply voltage vs. Temperature www.rohm.com 5.5 TEMPERATURE : Ta[℃] Fig.64 Input terminal voltage © 2009 ROHM Co., Ltd. All rights reserved. 5 Fig.60 Total harmonic distortion (clamp) vs. Supply voltage 6 0 0 5 4.5 0 4 BA7622F Ta=25℃ 4.5 0 4 0 100 Fig.62 Total harmonic distortion (bias) vs. Supply voltage 4 0.1 Ta=25℃ Fig.61 Total harmonic distortion (bias) vs. Temperature 2 0.2 POW ER SUPPLY VOLTAGE : Vcc[V] POWER SUPPLY VOLTAGE : Vcc[V] 3 0.3 100 TEMPERATURE : Ta[℃] 5 INPUT TERMINAL VOLTAGE[V] 50 0.4 INPUT TERMINAL VOLTAGE[V] . TOTAL HARHONIC DISTORTION:THD[%] . 0.3 OUTPUT TERMINAL VOLTAGE[V] . TOTAL HARHONIC DISTORTION:THD[%] . VCC=5V 0.4 -50 0 Fig.59 Total harmonic distortion (clamp) vs. Temperature Fig.58 Input impedance vs. Supply voltage BA7622F 100 BA7622F Ta=25℃ 0.5 TEMPERATURE : Ta[℃] POWER SUPPLY VOLTAGE : Vcc [V] 0.5 0 50 TEMPERATURE : Ta[℃] Fig.57 Input impedance vs. Temperature VCC=5V BA7622F 0.5 0.4 4.5 -50 6 Fig.56 Cross talk vs. Supply voltage Ta=25℃ 25.0 4 15.0 POWER SUPPLY VOLTAGE : Vcc [V] Fig.55 Cross talk vs. Temperature 30.0 20.0 10.0 -65 100 VCC=5V 25.0 TOTAL HARHONIC DISTORTION:THD[%] . 0 BA7622F 30.0 OUTPUT TERMINAL VOLTAGE[V] . -50 Ta=25℃ INPUT IMPEDANCE : Zin[kΩ] -55 CROSS TALK : Cr[dB] . CROSS TALK : Cr[dB] BA7622F VCC=5V -55.00 15/16 Fig.66 Output terminal voltage vs. Supply voltage 2009.04 - Rev.A Technical Note BA7622F, BA7623F ●Selection of order type A B 7 2 6 2 E F Part No. 2 Tape and Reel information BA7622F BA7623F SOP8 <Dimension> <Tape and Reel information> Tape Embossed carrier tape Quantity 5.0±0.2 5 1 4 6.2±0.3 4.4±0.2 (Correct direction: 1pin of product should be at the upper left when you hold reel on the left hand, and you pull out the tape on the right hand) 0.15±0.1 1234 1234 1234 www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 1Pin 1234 (Unit:mm) 1234 Reel 1234 0.1 1234 1.27 0.4±0.1 1234 1.5±0.1 0.11 Direction of feed 0.3Min. 8 2500pcs E2 Direction of feed ※Orders are available in complete units only. 16/16 2009.04 - Rev.A Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. R0039A