ROHM BA7622F

High-performance Video Driver Series
Standard 3-output
Video Driver
No.09065EAT04
BA7622F, BA7623F
●Description
The BA7622F and BA7623F are video driver ICs with three built-in circuits, developed for video equipment. The three circuits
in the BA7622F, two sync-tip clamp inputs and one bias input, are terminated by internal resistances of 20 kΩ. The BA7623F
output pins cab be connected directly in a DC coupling mode. Each output can drive 2 lines of load (75Ωx2).
Suitable to connect to a 2Vpp output type signal processing LSI and DAC.
●Features
Common
1) 2 lines can be driven from each output
2) Can be operated by Vcc=4.5 V
BA7622F
1) Large output dynamic range (3.3 Vpp, Vcc=5 V)
2) Built-in, 2 clamp input circuits and1 bias input circuit
3) Y signal, C signal, and composite video signal can be driven simultaneously by this particular IC.
BA7623F
1) Wide output dynamic range (3.3 Vpp, Vcc=5 V)
2) Can be directly connected to previous stage circuit
●Applications
TV, VCR, camcorder, and other video equipment.
●Product lineup
Parameter
Input pin configuration
BA7622F
2 clamp input circuits
1 bias input circuit
BA7623F
Previous stage direct connection
(Base direct input)
●Absolute maximum ratings(Ta=25℃)
Symbol
Limits
Unit
Supply voltage
Power dissipation
VMax
Pd
8.0
550 *1
V
mW
Operating temperature
Storage temperature
Topr
Tstg
-25~+75
-55~+125
℃
℃
Parameter
*1
Reduce by 5.5 mW/C over
25C
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
1/16
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
●Operating range (Ta=25℃)
Parameter
Symbol
Limits
Supply Voltage
VCC
4.5~5.5
Note: This IC is not designed to be radiation-resistant..
Unit
V
●Electrical characteristics (Unless otherwise specified, Ta=25℃, Vcc=5 V and 2 lines are driven.)
BA7622F
Parameter
Symbol
Min.
Typ.
Max
Unit
Conditions
Circuit Current
Icc
23.6
35.4
mA
No signal
Maximum output level
Vom
2.8
3.3
Vp-p f=1kHz,THD=1.0%
Voltage gain
Gv
-1.2
-0.6
0
dB
f=1kHz,VIN=2.0Vp-p
Frequency characteristic
Gf
-3
0
1.3
dB
10kHz/1MHz, VIN=1.0Vp-p
Differential gain 75Ωdrive1
DG1
0.4
1.0
%
VIN=2.0Vp-p,Standard staircase signal
Differential phase 75Ωdrive1
DP1
0.4
1.0
deg
VIN=2.0Vp-p, Standard staircase signal
Differential gain 75Ωdrive2
DG2
0.7
2.0
%
VIN=2.0Vp-p, Standard staircase signal
Differential phase 75Ωdrive2
DP2
0.7
2.0
deg
VIN=2.0Vp-p, Standard staircase signal
Interchannel crosstalk
CT
-60
dB
f=4.43MHz, VIN=2.0Vp-p
Input impedance(VIN3)
ZIN3
17
20
23
kΩ
―
Total harmonic distortion(VIN3)
f=1kHz,VIN=1.0Vp-p
THD32
0.1
0.5
%
BA7623F
Parameter
Circuit Current
Maximum output level
Voltage gain
Frequency characteristics
Differential gain 75Ωdrive1
Differential phase 75Ωdrive1
Differential gain 75Ωdrive2
Differential phase 75Ωdrive2
Interchannel crosstalk
Total harmonic distortion
Symbol
Icc
Vom
Gv
Gf
DG1
DP1
DG2
DP2
CT
Min.
2.9
-1.0
-3
-
Typ.
25.2
3.4
-0.5
0
0.4
0.4
0.7
0.7
-60
Max
37.8
0
1
1.0
1.0
2.0
2.0
-
Unit
mA
Vp-p
dB
dB
%
deg
%
deg
dB
THD
-
0.1
0.5
%
Conditions
No signal
f=1kHz,THD=1.0%
f=1kHz,VIN=2.0Vp-p
10kHz/1MHz, VIN=1.0Vp-p
VIN=2.0Vp-p, Standard staircase signal
VIN=2.0Vp-p, Standard staircase signal
VIN=2.0Vp-p, Standard staircase signal
VIN=2.0Vp-p, Standard staircase signal
f=4.43MHz, VIN=2.0Vp-p
f=1kHz,VIN=1.0Vp-p
●Block diagram
GND
1
IN1
2
Clamp
IN2
3
Clamp
75
driver
8
OUT1
GND
1
75
driver
8
OUT1
75
driver
7
OUT2
IN1
2
75
driver
7
OUT2
75
driver
6
OUT3
IN2
3
75
driver
6
OUT3
5
VCC
IN3
4
5
VCC
20k
IN3
4
Bias
Fig.1 BA7622F
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig.2 BA7623F
2/16
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
●Measurement circuit
Vector
Scope
Analyzer
Audio
Vector
Scope
Analyzer
Audio
V
~
1
2
Vector
Scope
Analyzer
Audio
V
~
3
2
1
SWD
V
~
1
3
SWE
2
VCC5V
3
SWF
+
0.022 F
47F
75
driver
1
2
3
470
75
75
+
470
7
75
driver
Clamp
+
8
75
driver
Clamp
75
+ 75
470
6
They
shownininthe
thefigure
figurebelow
below
They
areare
asas
shown
when
driving
75Ω
loads.
twotwo
75Ω
loads.
when
driving
75
+
1000
75
20k
4
75
VCC5V
SWA
1
2
+
+
V CC5V
SWB
4
3
1
+
200A +
1 1  1 
~
OSC
4
2
3
+
+
V CC5V
SWC
1
200A +
1  1 1
600
600
~
~
V
SG
75
75
5
Bias
75
3
+
+
50A
1 1 1
600
~
OSC
4
2
~
V
SG
~
OSC
V
SG
Fig.3 BA7622F
Vector
Scope
Analyzer
Audio
Vector
Scope
V
~
1
2
Analyzer
Audio
Vector
Scope
Analyzer
Audio
V
~
3
1
SWD
2
V
~
3
1
2
3
VCC5V
SWF
SWE
+
47F
75
driver
1
75
driver
2
75
75
+
470
7
75
driver
3
+ 75
470
8
0.022F
+ 75
470
6
They are as shown in the figure
below
ただし、出力段負荷は75
1ドライブ時
when
driving two 75Ω loads.
75
2ドライブ時は下図となる。
75
+
75
75
75
5
4
75
1000
75
SWA
1
2
+
+
OSC
2.1V
1
1
~
SG
2.1V
1k
2.1V
3
+
~
OSC
2.1V
+
+
1
600 1k
1
1k
2
+
+
1
600 1k
~
SWC
1
SWB
3
1
~
SG
2.1V
3
+
+
1
600 1k
1
1k
2
1k
2.1V
~
OSC
2.1V
1
~
SG
1
1k
1k
2.1V
2.1V
Fig.4 BA7623F
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
3/16
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
●Measurement methods and conditions (BA7622F)
Parameter
Symbol
Circuit current
Icc
Vom12
Vom22
Vom32
Gv12
Gv22
Gv32
f12
f22
f32
CT112
CT113
CT211
CT213
CT311
CT312
ZIN3
THD12
THD22
THD32
Maximum output level
Voltage gain
Frequency characteristic
Interchannel crosstalk
Input impedance
Total harmonic distortion
IN1
SWA
3
1
3
3
1
3
3
1
3
3
1
1
3
3
3
3
3
1
3
3
IN2
SWB
3
3
1
3
3
1
3
3
1
3
3
3
1
1
3
3
3
3
1
3
IN3
SWC
3
3
3
1
3
3
1
3
3
1
3
3
3
3
1
1
4
3
3
1
OUT1
SWD
×
3
×
×
3
×
×
3
×
×
×
×
3
×
3
×
×
3
×
×
OUT2
SWE
×
×
3
×
×
3
×
×
3
×
3
×
×
×
×
3
×
×
3
×
OUT3
SWF
×
×
×
Conditions
*1
3
×
×
*2
3
×
×
-
3
×
3
×
3
×
×
×
×
×
-
*3
*4
3
×:Switches 1, 2, and 3 can be
* 1:Maximum output level
Connect a distortion meter to the output. Apply a f=1 kHz, 1 Vp-p sine wave to the input and adjust the input level so that the output distortion becomes 1.0%.
The maximum output level Vom (Vp-p) is the output voltage at that time.
* 2:Voltage gain
Apply a f=1MHz, 2.0 Vp-p sine wave to the input.. The voltage gain GV=20log[VOUT/VIN] (dB).
* 3:Input resistance
Measure the input pin voltage VIN50, when 50 μA is injected at the input pin. Measure the open voltage VIN0 of the input pin.
The input resistance Z=( VIN50- VIN0)/50×10-6 [Ω].
* 4:Total harmonic distortion
Apply a f=1kHz, 1.0 Vp-p sine wave to the input and measure by connecting a distortion meter to the output.
●Measurement methods and conditions (BA7623F)
Parameter
Circuit current
Maximum output level
Voltage gain
Frequency characteristic
Interchannel crosstalk
Total harmonic distortion
Differential gain (DG)
Differential phase (DP)
Symbol
Icc
Vom12
Vom22
Vom32
Gv12
Gv22
Gv32
f12
f22
f32
CT112
CT113
CT211
CT213
CT311
CT312
THD12
THD22
THD32
DG1
DG2
DG3
DP1
DP2
DP3
IN1
SWA
3
1
3
3
1
3
3
1
3
3
1
1
3
3
3
3
1
3
3
2
3
3
2
3
3
IN2
SWB
3
3
1
3
3
1
3
3
1
3
3
3
1
1
3
3
3
1
3
3
2
3
3
2
3
IN3
SWC
3
3
3
1
3
3
1
3
3
1
3
3
3
3
1
1
3
3
1
3
3
2
3
3
2
OUT1
SWD
×
3
×
×
3
×
×
3
×
×
×
×
3
×
3
×
3
×
×
1
×
×
1
×
×
OUT2
SWE
×
×
3
×
×
3
×
×
3
×
3
×
×
×
×
3
×
3
×
×
1
×
×
1
×
OUT3
SWF
×
×
×
Conditions
*1
3
×
×
*2
3
×
×
-
3
×
3
×
-
3
×
×
×
×
*3
3
×
×
-
1
×
×
-
1
×:Switches 1, 2, and 3 can be
* 1:Maximum output level
Connect a distortion meter to the output. Apply a f=1 kHz, 1 Vp-p sine wave to the input and adjust the input level so that the output distortion becomes 1.0%.
The maximum output level Vom (Vp-p), is the output voltage at that time.
* 2:Voltage gain
Apply a f=1MHz, 2.0 Vp-p sine wave to the input. The voltage gain is calculated as follows: GV=20log[VOUT/VIN] (dB)
* 3:Total harmonic distortion
Apply a f=1kHz, 1.0 Vp-p sine wave to the input and measure by connecting a distortion meter to the output.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
4/16
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
●Application circuit
V CC5V
+ 47 F
1
Composite
Video
Signal
Y Signal
+
2
Clamp
1F
+
1F
3
Clamp
75
driver
8
75
driver
7
75
driver
6
75
VIDEO
OUT1
1000F
75
VIDEO
OUT2
+
75
+
4
C
Y
C
75
+
1F
75
5
Bias
0.01 F
Y
1000F
20k
C Signal
0.022 F
75
Example of input VIDEO ,Y , and C signals.
Fig.5 BA7622F
Vcc=5V
+ 47F 0.022F
1
75
driver
2
75
driver
7
75
driver
6
3
8
75
R
OUT
75
R
OUT2
75
G
OUT
1000F
75
G
OUT2
+
75
B
OUT1
75
B
OUT
+
1000F
+
1000F
5
4
Example of input R, G, and B signals
Fig.6 BA7623F
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
5/16
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
●Pin descriptions (1/2)
BA7622F
Pin
No.
Pin
name
IN
OUT
1
GND
○
―
Typical
Equivalent Circuit
voltage
Function
GND terminal
GND
0V
GND
Clamp input pin
IN1,IN2
Inputs a video signal or
Y/C separated Y signal.
Vcc
2
IN1
○
―
Q1
1.4V
Q2
N
N
100µA
Clamp input pin
IN1,IN2
Inputs a video signal or
Y/C separated Y signal.
Vcc
3
IN2
○
―
Q1
1.4V
Q2
N
N
100µA
Bias input pin
Inputs a chroma signal.
IN1,IN2
4
IN3
○
―
2.7V
Vcc
Q1
N 20k
10k
Q2
N
100µA
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
6/16
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
Pin
No.
Pin
name
IN
OUT
Typical
voltage
Equivalent Circuit
VCC
5
VCC
○
―
Function
Vcc terminal
VCC
5.0V
Video driver output
(Bias input)
Vcc
Q4
Outputs a chroma signal.
20K
OUT1~ 3
Q3
6
OUT3
―
○
2.0V
When output is forced to
ground, the protection
circuit activates power
save mode.
Q1
Q5
Q2
Video driver output pin
(Clamp input)
Vcc
Q4
20K
OUT1~ 3
Q3
7
OUT2
―
○
Outputs a video signal or
Y/C separated Y signal
Q1
0.6V
When output is forced to
ground, the protection
circuit activates power
save mode.
Q5
Q2
Video driver output pin
(Clamp input)
Vcc
Outputs a video signal or
Y/C separated Y signal
Q4
20K
OUT1~ 3
8
OUT1
―
○
Q3
0.6V
Q1
Q2
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
7/16
Q5
When output is forced to
ground, the protection
circuit activates power
save mode.
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
●Pin descriptions (2/2)
BA7623F
Pin
No.
Pin
name
IN
OUT
Typical
voltage
Equivalent Circuit
Function
GND terminal
1
GND
○
―
0V
GND
GND
Base direct connect input
IN1~ IN3
Set the input signal as
composite video signal,
chroma signal, or RGB
signal.
Input signal range 0.5~
3.8 V.
Vcc
100µA
2
IN1
○
―
100µA
*1
300µA
300µA
Base direct connect input
pin
IN1~ IN3
Vcc
100µA
3
IN2
○
―
100µA
*1
300µA
300µA
Set the input signal as
composite video signal,
chroma signal, or RGB
signal.
Input signal range 0.5~
3.8 V.
Base direct connect input
pin
IN1~ IN3
Vcc
100µA
4
IN3
○
―
100µA
*1
300µA
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
8/16
300µA
Set the input signal as
composite video signal,
chroma signal, or RGB
signal.
Input signal range 0.5~
3.8 V.
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
Pin
No.
Pin
name
IN
OUT
Typical
voltage
5
VCC
○
―
5.0V
Equivalent Circuit
Function
VCC
Vcc terminal
VCC
Video driver output
(Base direct connect input)
Vcc
Q4
20K
OUT1~ 3
Q3
6
OUT3
―
○
*2
Q1
Q5
Q2
* 2 Output potential and * 1 input
potential have the same signal
level.
When output is forced to ground,
the protection circuit activates
power save mode.
Vcc
Video driver output
(Base direct connect input)
Q4
20K
OUT1~ 3
* 2 Output potential and * 1 input
potential have the same signal
level.
Q3
7
OUT2
―
○
Q1
*2
Q5
Q2
When output is forced to ground,
the protection circuit activates
power save mode.
Video driver output
(Base direct connect input)
Vcc
Q4
20K
OUT1~ 3
Q3
8
OUT1
―
○
*2
Q1
Q5
Q2
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
9/16
* 2 Output potential and * 1 input
potential have the same signal
level.
When grounded to ground, the
protection circuit operates to move
to power save mode.
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
●Operation Notes
1.
Numbers and data in entries are representative design values and are not guaranteed values of the items.
2.
Although ROHM is confident that the example application circuit reflects the best possible recommendations, be sure to
verify circuit characteristics for your particular application. Modification of constants for other externally connected circuits
may cause variations in both static and transient characteristics for external components as well as this Rohm IC. Allow
for sufficient margins when determining circuit constants.
3.
Absolute maximum ratings
Use of the IC in excess of absolute maximum ratings, such as the applied voltage or operating temperature range
(Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open
mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when using
the IC at times where the absolute maximum ratings may be exceeded.
4.
GND potential
Ensure a minimum GND pin potential in all operating conditions. Make sure that no pins are at a voltage below the
GND at any time, regardless of whether it is a transient signal or not.
5.
Thermal design
Perform thermal design, in which there are adequate margins, by taking into account the permissible dissipation (Pd)
in actual states of use.
6.
Short circuit between terminals and erroneous mounting
Pay attention to the assembly direction of the ICs. Wrong mounting direction or shorts between terminals, GND, or other
components on the circuits, can damage the IC.
7.
Operation in strong electromagnetic field
Using the ICs in a strong electromagnetic field can cause operation malfunction.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
10/16
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
●Reference data (1/5)
BA7623F
75C
20
0
4
5
6
7
8
MAXIMUM OUTPUT LEVEL:Vom[Vpp]
25C
5
4
3
2
-50
0
50
TEMPERATURE:Ta.[℃]
POWER SUPPLY VOLTAGE:Vcc[V]
Fig.7 Circuit current vs. Supply voltage
-5
-10
-25C
25C
-15
-5
-10
4.5V
5.0V
-15
75C
-20
0.1
1
10
1
Fig.11 Frequency characteristic
vs. Supply voltage
2Drive
0.6
0.4
1Drive
0.2
4
4.5
5
5.5
0.4
2Drive
0.2
1Drive
0
-0.2
-50
2Drive
83
1Drive
82.5
82
50
0
50
100
TEMPERATURE : Ta[℃]
Fig.16 Y system S/N vs. Temperature
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
1Drive
83.5
2Drive
83
82.5
0
50
TEMPERATURE : Ta[℃]
BA7623F
0.6
100
1Drive
Ta=25℃
0.4
2Drive
0.2
1Drive
0
-0.2
4.5
5
5.5
6
POWER SUPPLY VOLTAGE : Vcc[V]
Fig.15 Differential phase vs. Supply voltage
BA7623F VCC=5V
85.0
80.0
75.0
70.0
65.0
82
-50
0.2
4
100
BA7623F Ta=25℃
84
Y SYSTEM S/N : SNY[dB] .
83.5
0
Fig.14 Differential phase vs. Temperature
BA7623F VCC=5V
84
0.4
TEMPERATURE : Ta[℃]
POWER SUPPLY VOLTAGE : Vcc[V]
Fig.13 Differential gain vs. Supply voltage
0.6
Fig.12 Differential gain vs. Temperature
BA7623F VCC=5V
0.6
6
2Drive
-50
C SYSTEM AM S/N : SNCA[dB] .
0.8
6
BA7623F VCC=5V
0.8
100
Fig.10 Frequency characteristic
vs. Temperature
0
Y SYSTEM S/N : SNY[dB] .
10
INPUT FREQUENCY:fin[MHz]
BA7623F Ta=25℃
5.5
0
0.1
DIFFERENTIAL PHASE : DP[deg] .
DIFFERENTIAL GAIN : DG[%] .
5.5V
INPUT FREQUENCY:fin[MHz]
1
5
Fig.9 Maximum output level vs. Supply voltage
-20
100
4.5
1
0
VOLTAGE GAIN:Gv[dB]
VOLTAGE GAIN:Gv[dB] .
0
3
POWER SUPPLY VOLTAGE:Vcc[V]
BA7623F Ta=25℃
5
4
4
Fig.8 Maximum output level vs. Temperature
BA7623F VCC=5V
5
5
2
100
DIFFERENTIAL GAIN : DG[%] .
-25C
BA7623F Ta=25℃
6
DIFFERENTIAL PHASE : DP[deg] .
60
40
BA7623F VCC=5V
6
MAXIMUM OUTPUT LEVEL:Vom[Vpp] .
CIRCUIT CURRENT:Icc[mA]
80
4
4.5
5
5.5
6
POWER SUPPLY VOLTAGE : Vcc[V]
Fig.17 Y system S/N vs. Supply voltage
11/16
-50
0
50
TEMPERATURE : Ta[℃]
100
Fig.18 C system AM S/N vs. Temperature
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
●Reference data (2/5)
C SYSTEM PM S/N : SNCP[dB]
75
70
70
2Drive
65
1Drive
60
4.5
5
5.5
60
5
5.5
6
BA7623F
-55
CROSS TALK : CT[dB] .
-57
-59
-61
-63
-65
-57
-59
-61
-63
TEMPERATURE:Ta[℃]
4.5
5
5.5
6
POW ER SUPPLY VOLTAGE:VCC[V]
Fig.22 Cross talk vs. Temperature
Fig.23 Cross talk vs. Supply voltage
0
50
4
100
BA7623F Ta=25℃
0.4
0.3
0.2
0.1
BA7622F Ta=25℃
80
CIRCUIT CURRENT : Icc[mA]
0.5
60
-25C
25C
75C
40
20
0
0
4
4.5
5
5.5
4
6
6
7
Fig.25 Total harmonic distortion
vs. Supply voltage
4.0
3.0
2.0
5
5.5
0.1
0
-50
6
POWER SUPPLY VOLTAGE : Vcc[V]
Fig.28 Maximum output level (clamp)
vs. Supply voltage
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
0
50
TEMPERATURE:Ta[℃]
100
Fig.24 Total harmonic distortion vs. Temperature
BA7622F VCC=5V
6
5
4
3
2
-50
0
50
100
TEMPERATURE : Ta[℃]
4
3
2
1
4.5
0.2
Fig.27 Maximum output level vs. Temperature
Ta=25℃
BA7622F
5
MAXIMUM OUTPUT LEVEL : Vom[Vpp]
MAXIMUM OUTPUT LEVEL : Vom[Vpp]
5.0
4
0.3
BA7622F VCC=5V
5
100
0.4
8
Fig.26 Circuit current vs. Supply voltage
BA7622F Ta=25℃
50
BA7623F VCC=5V
0.5
POWER SUPLLY VOLTAGE : Vcc(V)
POWER SUPPLY VOLTAGE:VCC[V]
6.0
5
0
Fig.21 C system PM S/N vs. Temperature
Ta=25℃
-65
-50
-50
TEMPERATURE : Ta[℃]
Fig.20 C system PM S/N vs. Supply voltage
BA7623F VCC=5V
-55
4.5
POWER SUPPLY VOLTAGE : Vcc[V]
Fig.19 C system AM S/N vs. Supply voltage
CROSS TALK:CT[dB] .
1Drive
55
4
6
POWER SUPPLY VOLTAGE : Vcc[V]
TOTAL HARMONIC DISTORTION:THD[%] .
2Drive
65
TOTAL HARMONIC DISTORTION:THD[%] .
4
MAXIMUM OUTPUT LEVEL : Vom[Vpp]
70
55
65
BA7623F Ta=25℃
75
MAXIMUM OUTPUT LEVEL :Vom[Vpp] .
C SYSTEM AM S/N : SNCA[dB]
80
BA7623F VCC=5V
75
C SYSTEM PM S/N : SNCP[dB]
BA7623F Ta=25℃
85
4
3
2
1
-50
0
50
100
TEMPERATURE : Ta[℃]
Fig.29 Maximum output level (bias)
vs. Temperature
12/16
4
4.5
5
5.5
6
POWER SUPPLY VOLTAGE : Vcc[V]
Fig.30 Maximum output level (bias)
vs. Supply voltage
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
●Reference data (3/5)
BA7622F
10
VCC=5V
-5
-10
-25C
-15
25C
75C
5
0
-5
-10
5.5V
-15
4.5V
5.0V
-20
-25
10
100
0.1
Fig.31 Frequency characteristic (clamp)
vs. Temperature
DIFFERENTIAL GAIN : DG[%] .
-5
-10
-15
5.0V
4.5V
5.5V
0.6
2Drive
0.4
1Drive
0.2
-50
100
Fig.34 Frequency characteristic (bias)
vs. Supply voltage
DIFFERENTIAL GAIN : DG[%] .
DIFFERENTIAL GAIN : DG[%] .
0.8
2Drive
0.4
0
50
TEMPERATURE : Ta[℃]
1Drive
0.2
0
0
50
2Drive
0.4
1Drive
0.2
4
Ta=25℃
4.5
5
0.6
0.6
2Drive
5.5
1Drive
1Drive
0
4.5
5
5.5
6
POWER SUPLLY VOLTAGE : Vcc[V]
Fig.40 Differential phase (clamp)
vs. Supply voltage
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
5.5
6
BA7622F VCC=5V
0.8
0.6
2Drive
0.4
1Drive
0.2
-50
-50
0
50
100
TEM PERATURE : Ta[℃]
Fig.41 Differential phase (bias)
vs. Temperature
13/16
0
50
100
TEMPERATURE[ : Ta℃]
Fig.39 Differential phase (clamp)
vs. Temperature
0.2
0
5
1
6
2Drive
0.4
0.4
4.5
Fig.36 Differential gain (clamp)
vs. Supply voltage
BA7622F VCC=5V
1
0.8
4
1Drive
0.2
Fig.38 Differential gain (bias)
vs. Supply voltage
0.8
0.2
2Drive
0.4
POWER SUPLLY VOLTAGE : Vcc[V]
Fig.37 Differential gain (bias)
vs.Temperature
BA7622F
0.6
0
100
TEMPERATURE : Ta[℃]
1
0.8
4
0
-50
BA7622F Ta=25℃
POWER SUPLLY VOLTAGE : Vcc[V]
0.8
0.6
100
0
100
BA7622F Ta=25℃
1
10
1
Fig.35 Differential gain (clamp)
vs. Temperature
BA7622F VCC=5V
1
Fig.33 Frequency characteristic (bias)
vs. Temperature
VCC=5V
0.8
INPUT FREQUENCY [MHz]
0.6
75C
INPUT FREQUENCY:fin[dB]
DIFFERENTIAL PHASE : DP[deg] .
10
-25C
25C
0.1
0
-25
1
-15
100
BA7622F
1
DIFFERENTIAL PHASE : DP[deg] .
VOLTAGE GAIN:Gv[dB]
0
1
10
BA7622F
1
5
0.1
1
Fig.32 Frequency characteristic (clamp)
vs. Supply voltage
BA7622F Ta=25℃
-20
-10
INPUT FREQUENCY:fin(MHz)
INPUT FREQUENCY:fin[MHz]
10
-5
-25
DIFFERENTIAL GAIN : DG[%] .
1
0
-20
-25
0.1
BA7622F VCC=5V
10
VOLTAGE GAIN:Gv[dB]
VOLTAGE GAIN:Gv[dB]
0
-20
DIFFERENTIAL PHASE : DP[deg] .
Ta=25℃
5
5
VOLTAGE GAIN:Gv[dB]
BA7622F
10
Ta=25℃
0.8
0.6
0.4
2Drive
0.2
1Drive
0
4
4.5
5
5.5
6
POWER SUPLLY VOLTAGE : Vcc[V]
Fig.42 Differential phase (bias)
vs. Supply voltage
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
●Reference data (4/5)
Y SYSTEM S/N : SNY[dB] .
Y SYSTEM S/N : SNY[dB] .
88
86
84
2Drive
1Drive
82
0
50
86
84
2Drive
1Drive
82
4.5
5
5.5
2Drive
1Drive
5
5.5
VCC=5V
70
-50
6
0
50
70
65
100
BA7622F
4
75
70
Ta=25℃
80
75
70
4.5
5
5.5
6
POW ER SUPLLY VOLTAGE : Vcc[V]
Fig.48 C system AM S/N (clamp)
vs. Supply voltage
BA7622F VCC=5V
75
C SYSTEM PM S/N : SNCP[dB] .
C SYSTEM AM S/N : SNCA[dB]
80
Ta=25℃
75
Fig.47 C system AM S/N (clamp)
vs. Temperature
85
100
80
TEMPERATURE : Ta[℃]
VCC=5V
50
BA7622F
85
75
Fig.46 Y system S/N (bias)
vs. Supply voltage
BA7622F
0
TEMPERATURE : Ta[℃]
Fig.45 Y system S/N (bias)
vs. Temperature
80
POWER SUPLLY VOLTAGE : Vcc[V]
85
1Drive
-50
6
65
4.5
2Drive
82
C SYSTEM AM S/N : SNCA[dB] .
86
BA7622F
85
C SYSTEM AM S/N : SNCA[dB]
Y SYSTEM S/N : SNY[dB] .
88
4
C SYSTEM AM S/N : SNCA[dB]
84
POWER SUPLLY VOLTAGE : Vcc[V]
80
70
65
60
55
65
-50
0
50
100
65
-50
4
TEMPERATURE : Ta[℃]
5
5.5
6
Ta=25℃
BA7622F VCC=5V
75
67
70
66
65
2Drive
60
66
1Drive
55
65
4
0
50
TEMPERATURE : Ta[℃]
100
4.5
5
5.5
POWER SUPLLY VOLTAGE : Vcc[V]
6
Fig.52 C system PM S/N (clamp)
vs. Supply voltage
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig.51 C system PM S/N (clamp)
vs. Temperature
Fig.50 C system AM S/N (bias)
vs. Supply voltage
-50
0
50
TEM PERATURE : Ta[℃]
100
BA7622F
75
C SYSTEM PM S/N : SNCP[dB
BA7622F
67
4.5
POWER SUPLLY VOLTAGE : Vcc[V]
Fig.49 C system AM S/N (bias)
vs. Temperature
C SYSTEM PM S/N : SNCP[dB] .
86
Fig.44 Y system S/N (clamp)
vs. Supply voltage
BA7622F Ta=25℃
82
88
80
4
Fig.43 Y system S/N (clamp)
vs. Temperature
84
BA7622F VCC=5V
90
80
100
TEMPERATURE : Ta[℃]
90
Ta=25℃
88
80
-50
BA7622F
90
Y SYSTEM S/N : SNY[dB] .
BA7622F VCC=5V
90
Ta=25℃
70
2Drive
65
1Drive
60
55
4
4.5
5
5.5
6
POWER SUPLLY VOLTAGE : Vcc[V]
Fig.53 C system PM S/N (bias)
vs. Temperature
14/16
Fig.54 C system PM S/N (bias)
vs. Supply voltage
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
●Reference data (5/5)
BA7622F
-57.00
-57
-59.00
-61.00
-63.00
-59
-61
-63
-65.00
50
4
TEMPERATURE : Ta[℃]
BA7622F
4.5
5
5.5
TOTAL HARHONIC DISTORTION:THD[%]
.
INPUT IMPEDANCE : Zin[kΩ]
0.3
20.0
0.2
15.0
0.1
10.0
5
5.5
0
-50
6
0.2
0.1
0
0
50
BA7622F
0.5
0.4
0.3
0.2
0.1
4
bias
clamp
1
4.5
5
5.5
5.5
6
POWER SUPPLY VOLTAGE : Vcc[V]
BA7622F
4
6
VCC=5V
BA7622F
5
4
3
bias
2
clamp
1
3
bias
2
1
clamp
-50
-50
0
50
TEMPERATURE : Ta[℃]
0
50
100
Fig.63 Input terminal voltage
vs. Temperature
VCC=5V
100
BA7622F
4
Ta=25℃
3
bias
2
1
clamp
0
4
4.5
5
5.5
6
POWER SUPPLY VOLTAGE : Vcc[V]
Fig.65 Output terminal voltage
vs. Supply voltage
vs. Temperature
www.rohm.com
5.5
TEMPERATURE : Ta[℃]
Fig.64 Input terminal voltage
© 2009 ROHM Co., Ltd. All rights reserved.
5
Fig.60 Total harmonic distortion (clamp)
vs. Supply voltage
6
0
0
5
4.5
0
4
BA7622F Ta=25℃
4.5
0
4
0
100
Fig.62 Total harmonic distortion (bias)
vs. Supply voltage
4
0.1
Ta=25℃
Fig.61 Total harmonic distortion (bias)
vs. Temperature
2
0.2
POW ER SUPPLY VOLTAGE : Vcc[V]
POWER SUPPLY VOLTAGE : Vcc[V]
3
0.3
100
TEMPERATURE : Ta[℃]
5
INPUT TERMINAL VOLTAGE[V]
50
0.4
INPUT TERMINAL VOLTAGE[V] .
TOTAL HARHONIC DISTORTION:THD[%] .
0.3
OUTPUT TERMINAL VOLTAGE[V] .
TOTAL HARHONIC DISTORTION:THD[%] .
VCC=5V
0.4
-50
0
Fig.59 Total harmonic distortion (clamp)
vs. Temperature
Fig.58 Input impedance
vs. Supply voltage
BA7622F
100
BA7622F Ta=25℃
0.5
TEMPERATURE : Ta[℃]
POWER SUPPLY VOLTAGE : Vcc [V]
0.5
0
50
TEMPERATURE : Ta[℃]
Fig.57 Input impedance
vs. Temperature
VCC=5V
BA7622F
0.5
0.4
4.5
-50
6
Fig.56 Cross talk vs. Supply voltage
Ta=25℃
25.0
4
15.0
POWER SUPPLY VOLTAGE : Vcc [V]
Fig.55 Cross talk vs. Temperature
30.0
20.0
10.0
-65
100
VCC=5V
25.0
TOTAL HARHONIC DISTORTION:THD[%] .
0
BA7622F
30.0
OUTPUT TERMINAL VOLTAGE[V] .
-50
Ta=25℃
INPUT IMPEDANCE : Zin[kΩ]
-55
CROSS TALK : Cr[dB] .
CROSS TALK : Cr[dB]
BA7622F VCC=5V
-55.00
15/16
Fig.66 Output terminal voltage
vs. Supply voltage
2009.04 - Rev.A
Technical Note
BA7622F, BA7623F
●Selection of order type
A
B
7
2
6
2
E
F
Part No.
2
Tape and Reel information
BA7622F
BA7623F
SOP8
<Dimension>
<Tape and Reel information>
Tape
Embossed carrier tape
Quantity
5.0±0.2
5
1
4
6.2±0.3
4.4±0.2
(Correct direction: 1pin of product should be at the upper left when you
hold reel on the left hand, and you pull out the tape on the right hand)
0.15±0.1
1234
1234
1234
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
1Pin
1234
(Unit:mm)
1234
Reel
1234
0.1
1234
1.27
0.4±0.1
1234
1.5±0.1
0.11
Direction
of feed
0.3Min.
8
2500pcs
E2
Direction of feed
※Orders are available in complete units only.
16/16
2009.04 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of
any of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
R0039A