Thermal management info (PDF)

Heat Dissipation Design
Standard Type Ver.3
CLU024,CLU034,CLU044,CLU054
Heat dissipation design is a precondition in order to maximize the performance
of the LED. In this document, the data that is deemed necessary in the detailed
heat dissipation structure of the products and the heat dissipation design of the
lighting apparatus is provided as a reference for the appropriate thermal design.
CONTENTS
1.
Introduction
P.2
2.
Package structure and thermal resistance
P.2
3.
Thermal design outside the package
P.3
4.
Simulation
P.4
Appendix CLU024-1201,CLU024-1202
P.5
CLU024-1203,CLU024-1204
P.6
CLU034-1205,CLU034-1206
P.7
CLU034-1208,CLU044-1212
P.8
CLU044-1812,CLU044-1818
P.9
CLU054-1825
P.10
CITIZEN ELECTRONICS CO., LTD.
1-23-1, Kamikurechi, Fujiyoshida-shi, Yamanashi, 403-0001, Japan Tel. +81-555-23-4121 http://ce.citizen.co.jp
Copyright © 2014 CITIZEN ELECTRONICS CO., LTD. All Rights reserved.
Ref.CE-P2752 07/14_R1(0714)
Heat Dissipation Design
Standard Type Ver.3
Heat dissipation structure that can conduct heat
radiated from LEDs efficiently
1.
Introduction
Significance of the heat dissipation structure
The light-emitting diode of an LED package radiates light and
heat according to the input power. However, the surface area of
an LED package is quite small, and the package itself is
expected to release little heat into the atmosphere. An external
radiator such as a heat sink is thus required. The heat dissipation structure up to the connection portion of the external
radiator uses mainly heat conduction.
Regarding LED packages, to control the junction temperature of
the light-emitting diode Tj is important. The Tj must be kept
from exceeding the absolute maximum rating in the specifications under any conditions. As direct measurement of the
junction temperature of a light-emitting diode inside a package
is difficult, the temperature of a particular part on the external
2.
package ( the case temperature ) Tc [°C] is normally measured.
Tj [°C] is calculated using the thermal resistance between the
junction and the case Rj-c [°C/W], and the emitted heat amount
that is nearly equal to the input power Pi [W]. The heat
generated at the light-emitting diode can be conducted to the
external radiator efficiently because the package structure for the
COB LED package minimizes the thermal resistance Rj-c.
This document describes the detailed heat dissipation structure
of the COB LED package and provides data necessary for
thermal design of the lighting apparatus to maximize LED
performance.
Package structure and thermal resistance
Understanding the junction temperature
The cross-sectional structure example, where the package of the COB
LED package is connected to an external heat sink, is shown in
Figure-1 ( a ). The package has a laminated structure of an aluminum
substrate, insulating layers and conductive copper foil patterns.
A distinctive point is that the light-emitting diode is mounted directly on
the well conductive aluminum substrate not on the insulating layer,
which has low thermal conductivity. Thus, the heat generated at the
light-emitting diode can be efficiently conducted to the outside of the
package.
The aluminum substrate side of the package outer shell is thermally
connected to the heat sink via the TIM(Thermal interface material). As
described above, the heat generated in the junction section of the
light-emitting diode is transferred mainly to the heat sink using heat
conduction, through the light-emitting diode to the adhesive for
die-mounting to the aluminum substrate to the TIM. The thermal
resistance between the junction section of the light-emitting diode and
■Figure-1 ( a ) COB LED package
Cross-section diagram
LED die
TJ
Aluminum
TIM
Heatsink
the aluminum substrate side of the package outer shell is Rj-c, and the
specific thermal resistance value of the package.
Therefore, the following formula is used
Tj = Rj-c・Pi + Tc
In addition, the thermal resistance of the TIM outside the package is
R-TIM[°C/W], the thermal resistance with the heat sink is Rh [°C/W],
and the ambient temperature is Ta [°C].
Figure-1 ( b ) indicates the equivalent thermal resistance along the
cross-sectional diagram in Figure-1 ( a ).
■Figure-1 ( b )
Thermal Resistance
As indicated, the thermal resistances
Connection
Rj-c, Rb, and Rh are connected in series
between the junction temperature Tj and
Tj
Tj
the ambient temperature Ta. The
thermal resistances outside the package
Rj-c
Rj-c
R-TIM and Rh can be integrated into
Tc
Tc
the thermal resistance Rc-a at this point.
R-TIM
Rc-a
Thus, the following formula is also
Rh
used:
Tc
Rj-c
R-TIM
Ta
Tj = ( Rj-c + Rc-a )・Pi + Ta
Rh
Ta
Ta
2
Copyright © 2014 CITIZEN ELECTRONICS CO., LTD. All Rights reserved.
CITIZEN ELECTRONICS CO., LTD.
1-23-1, Kamikurechi, Fujiyoshida-shi, Yamanashi, 403-0001, Japan
Tel. +81-555-23-4121 http://ce.citizen.co.jp
Ref.CE-P2752 07/14_R1(0714)
Heat Dissipation Design
Standard Type Ver.3
Use the correlation between the thermal resistance
and the ambient temperature for design
of the external heat dissipation mechanism
3.
Thermal design of the outside the package
Point of the external heat dissipation mechanism
COB LED package.( As an example, the data of CLU0341205B8 is showing below.)
The higher the ambient temperature Ta and the larger the
driving current, the smaller the allowable thermal resistance
outside the package Rc-a = R-TIM + Rh.
In brief, the TIM and the heat sink, with smaller thermal
resistance ( this means better heat dissipation ) , are required
in order to keep Tj from exceeding, the absolute maximum
rating in the specifications, if the ambient temperature
becomes higher and/or the driving current is larger. Therefore, use Figure-2 as a guide when selecting the external heat
dissipation parts, and ultimately conduct thermal verification
on actual devices.
The equivalent charts for each package is showing in the last
part of this document.
The thermal resistance outside the package Rc-a [°C/W],
which is the combination of the heat-dissipation the TIM and
the heat sink, is limited by the input power Pd [W], the
ambient temperature Ta [°C], and the thermal resistance of
the package Rj-c [°C/W], i.e.,
Tj = ( Rj-c + Rc-a )・Pi + Ta Rc-a = ( Tj - Ta ) / Pi - Rj-c
Ta function converted from the above formula is
Rc-a = -Ta / Pi + Tj / Pi - Rj-c
and it is a straight line with the slope of -1 / Pi and the
intercept of Tj / Pi - Rj-c.
Figure-2 is the chart showing the relationship between the
ambient temperature Ta and the thermal resistance outside the
package Rc-a indicated by driving current, where Tj is
assumed to be the absolute maximum rating value in the
specifications for the
■Figure-2
Ta - Rc-a( CLU034-1205 B8 )
(°C/W)
15
Rj-c=1.1(°C/W)
900mA
600mA
450mA
300mA
Rc-a
10
5
0
0
20
40
60
Ta
3
80
(°C)
Copyright © 2014 CITIZEN ELECTRONICS CO., LTD. All Rights reserved.
CITIZEN ELECTRONICS CO., LTD.
1-23-1, Kamikurechi, Fujiyoshida-shi, Yamanashi, 403-0001, Japan
Tel. +81-555-23-4121 http://ce.citizen.co.jp
Ref.CE-P2752 07/14_R1(0714)
Heat Dissipation Design
Standard Type Ver.3
4.
Simulation
Structure figure of analytical model
For efficient thermal design
Tc point(Cathode)
A simulation is an effective procedure with regard to the
COB LED package
thermal design. Simulation results from when COB LED
Thermal conductive sheet
package was connected to the heat sink with a heat conductive
sheet are shown in Fig.3 ( a ), ( b ).( As an example, the data of
CLU034-1205B8 is showing below.)
The results of the simulation for each package is showing
in the last part of this document.
Boundary conditions
L
W
( Variable )
Environmental conditions : Ta = 25°C
Analysis space : 400mm×400mm×(350+L)mm
Wall condition : Top=Open, Others=25°C
H
Heat dispersion conditions : Natural convection
Model conditions
Thermal conductivirity of Thermal conductive sheet : 4.5W/m.K
Thickness of the heat conductive sheet : t=0.12mm
Material of the heat sink : Aluminum ( Number of the fin : 6 )
Outline dimensions of the heat sink : W 64mm x H 40mm
*Note : sectional area 1108mm2, Dimension“L” is variable
■Figure-3 ( a )
Junction temperature Tj
110
Input Power : 16.1W
100
90
80
70
60
50
40
Input power - junction temperature Tj (CLU034-1205B8)
(°C) 120
120
Junction Temperature Tj
(°C)
■Figure-3 ( b )
Heat sink surface area - junction temperature Tj (CLU034-1205B8)
0
50,000
100,000
150,000
200,000
250,000
Surface area of the heatsink
100
80
60
40
0
300,000
S = 200,000mm2
20
0
5
10
15
20
Input power
(mm2)
25
30
35
(W)
* Above data represents simulation values and is not guaranteed to represent actual measurement values.
Evaluation and verification shall be conducted under the conditions of actual use.
4
Copyright © 2014 CITIZEN ELECTRONICS CO., LTD. All Rights reserved.
CITIZEN ELECTRONICS CO., LTD.
1-23-1, Kamikurechi, Fujiyoshida-shi, Yamanashi, 403-0001, Japan
Tel. +81-555-23-4121 http://ce.citizen.co.jp
Ref.CE-P2752 07/14_R1(0714)
Heat Dissipation Design
Standard Type Ver.3
Appendix
CLU024-1201B8
■Figure2-1 Ta - Rc-a(CLU024-1201B8)
(°C/W)
Rj-c=4.2(°C/W)
80
Rc-a
60
180mA
90mA
120mA
60mA
40
20
0
■Figure3(a)-1 Heat sink surface area - junction temperature Tj
(CLU024-1201B8)
(°C)
40
60
Ta
80
(°C)
(°C) 80
58
70
Junction Temperature Tj
Input Power : 3.2W
56
Junction temperature Tj
20
■Figure3(b)-1 Input power - junction temperature Tj
(CLU024-1201B8)
60
54
52
50
48
46
44
60
50
40
30
S = 200,000mm2
20
10
42
40
0
0
50,000
100,000
150,000
200,000
250,000
Surface area of the heatsink
0
300,000
0
1
2
3
4
5
6
CLU024-1202B8
7
(W)
Input power
(mm )
2
■Figure2-2 Ta - Rc-a(CLU024-1202B8)
(°C/W)
Rj-c=2.4(°C/W)
60
360mA
180mA
240mA
90mA
Rc-a
40
20
0
0
20
40
60
80
Ta
■Figure3(b)-2 Input power - junction temperature Tj
(CLU024-1202B8)
■Figure3(a)-2 Heat sink surface area - junction temperature Tj
(CLU024-1202B8)
(°C) 90
80
80
Junction temperature Tj
75
Input Power : 6.4W
70
Junction Temperature Tj
(°C)
65
60
55
50
45
40
(°C)
70
60
50
40
30
S = 200,000mm2
20
10
0
50,000
100,000
150,000
200,000
250,000
Surface area of the heatsink
0
300,000
0
2
4
6
8
Input power
(mm2)
5
10
12
14
(W)
Copyright © 2014 CITIZEN ELECTRONICS CO., LTD. All Rights reserved.
CITIZEN ELECTRONICS CO., LTD.
1-23-1, Kamikurechi, Fujiyoshida-shi, Yamanashi, 403-0001, Japan
Tel. +81-555-23-4121 http://ce.citizen.co.jp
Ref.CE-P2752 07/14_R1(0714)
Heat Dissipation Design
Standard Type Ver.3
CLU024-1203B8
■Figure2-3 Ta - Rc-a(CLU024-1203B8)
(°C/W)
Rj-c=1.7(°C/W)
30
540mA
270mA
360mA
150mA
Rc-a
20
10
0
■Figure3(a)-3 Heat sink surface area - junction temperature Tj
(CLU024-1203B8)
(°C)
40
60
Ta
80
(°C)
(°C) 100
90
85
Junction Temperature Tj
Input Power : 9.6W
80
Junction temperature Tj
20
■Figure3(b)-3 Input power - junction temperature Tj
(CLU024-1203B8)
90
75
70
65
60
55
50
80
70
60
50
40
30
S = 200,000mm2
20
10
45
40
0
0
50,000
100,000
150,000
200,000
250,000
Surface area of the heatsink
0
300,000
0
5
10
15
20
(W)
Input power
(mm )
2
CLU024-1204B8
■Figure2-4 Ta - Rc-a(CLU024-1204B8)
(°C/W)
Rj-c=1.4(°C/W)
30
720mA
360mA
480mA
200mA
Rc-a
20
10
0
Input Power : 12.9W
Junction Temperature Tj
Junction temperature Tj
40
60
Ta
80
(°C)
(°C) 120
110
100
90
80
70
60
50
40
20
■Figure3(b)-4 Input power - junction temperature Tj
(CLU024-1204B8)
■Figure3(a)-4 Heat sink surface area - junction temperature Tj
(CLU024-1204B8)
(°C)
0
0
50,000
100,000
150,000
200,000
250,000
Surface area of the heatsink
100
80
60
40
0
300,000
S = 200,000mm2
20
0
5
10
15
Input power
(mm2)
6
20
25
30
(W)
Copyright © 2014 CITIZEN ELECTRONICS CO., LTD. All Rights reserved.
CITIZEN ELECTRONICS CO., LTD.
1-23-1, Kamikurechi, Fujiyoshida-shi, Yamanashi, 403-0001, Japan
Tel. +81-555-23-4121 http://ce.citizen.co.jp
Ref.CE-P2752 07/14_R1(0714)
Heat Dissipation Design
Standard Type Ver.3
CLU034-1205B8
■Figure2-5 Ta - Rc-a(CLU034-1205B8)
(°C/W)
Rj-c=1.1(°C/W)
15
900mA
450mA
600mA
300mA
Rc-a
10
5
0
0
20
40
60
80
Ta
■Figure3(a)-5 Heat sink surface area - junction temperature Tj
(CLU034-1205B8)
(°C) 120
120
110
Junction temperature Tj
■Figure3(b)-5 Input power - junction temperature Tj
(CLU034-1205B8)
Input Power : 16.1W
100
Junction Temperature Tj
(°C)
90
80
70
60
50
40
(°C)
0
50,000
100,000
150,000
200,000
250,000
Surface area of the heatsink
100
80
60
40
0
300,000
S = 200,000mm2
20
0
5
10
15
20
25
30
35
(W)
Input power
(mm )
2
CLU034-1206B8
■Figure2-6 Ta - Rc-a(CLU034-1206B8)
(°C/W)
Rj-c=0.98(°C/W)
12
10
1080mA
540mA
720mA
360mA
Rc-a
8
6
4
2
0
120
60
80
(°C)
120
Input Power : 19.3W
110
Junction Temperature Tj
Junction temperature Tj
40
Ta
(°C) 140
130
100
90
80
70
60
50
40
20
■Figure3(b)-6 Input power - junction temperature Tj
(CLU034-1206B8)
■Figure3(a)-6 Heat sink surface area - junction temperature Tj
(CLU034-1206B8)
(°C)
0
0
50,000
100,000
150,000
200,000
250,000
Surface area of the heatsink
100
80
60
40
0
300,000
S = 200,000mm2
20
0
5
10
15
20
25
Input power
(mm2)
7
30
35
40
45
(W)
Copyright © 2014 CITIZEN ELECTRONICS CO., LTD. All Rights reserved.
CITIZEN ELECTRONICS CO., LTD.
1-23-1, Kamikurechi, Fujiyoshida-shi, Yamanashi, 403-0001, Japan
Tel. +81-555-23-4121 http://ce.citizen.co.jp
Ref.CE-P2752 07/14_R1(0714)
Heat Dissipation Design
Standard Type Ver.3
CLU034-1208B8
■Figure2-7 Ta - Rc-a(CLU034-1208B8)
(°C/W)
Rj-c=0.78(°C/W)
10
8
1440mA
720mA
960mA
480mA
Rc-a
6
4
2
0
0
20
40
60
80
Ta
■Figure3(a)-7 Heat sink surface area - junction temperature Tj
(CLU034-1208B8)
(°C) 160
160
140
Junction temperature Tj
■Figure3(b)-7 Input power - junction temperature Tj
(CLU034-1208B8)
140
Input Power : 25.7W
Junction Temperature Tj
(°C)
120
100
80
60
40
(°C)
120
100
80
60
40
S = 200,000mm2
20
0
50,000
100,000
150,000
200,000
250,000
Surface area of the heatsink
0
300,000
0
10
20
30
40
50
60
(W)
Input power
(mm )
2
CLU044-1212B8
■Figure2-8 Ta - Rc-a(CLU044-1212B8)
(°C/W)
Rj-c=0.52(°C/W)
6
2160mA
1080mA
1440mA
720mA
Rc-a
4
2
0
0
20
40
60
80
Ta
■Figure3(b)-8 Input power - junction temperature Tj
(CLU044-1212B8)
■Figure3(a)-8 Heat sink surface area - junction temperature Tj
(CLU044-1212B8)
(°C) 160
160
Junction temperature Tj
140
140
Input Power : 38.6W
Junction Temperature Tj
(°C)
120
100
80
60
40
(°C)
120
100
80
60
40
S = 200,000mm2
20
0
50,000
100,000
150,000
200,000
250,000
Surface area of the heatsink
0
300,000
0
10
20
30
40
Input power
(mm2)
8
50
60
70
(W)
Copyright © 2014 CITIZEN ELECTRONICS CO., LTD. All Rights reserved.
CITIZEN ELECTRONICS CO., LTD.
1-23-1, Kamikurechi, Fujiyoshida-shi, Yamanashi, 403-0001, Japan
Tel. +81-555-23-4121 http://ce.citizen.co.jp
Ref.CE-P2752 07/14_R1(0714)
Heat Dissipation Design
Standard Type Ver.3
CLU044-1812B8
■Figure2-9 Ta - Rc-a(CLU044-1812B8)
(°C/W)
Rj-c=0.39(°C/W)
4
Rc-a
3
2160mA
1080mA
1440mA
720mA
2
1
0
0
20
40
60
80
Ta
■Figure3(a)-9 Heat sink surface area - junction temperature Tj
(CLU044-1812B8)
(°C) 160
160
140
Junction temperature Tj
■Figure3(b)-9 Input power - junction temperature Tj
(CLU044-1812B8)
140
Input Power : 53.6W
Junction Temperature Tj
(°C)
120
100
80
60
40
(°C)
120
100
80
60
40
S = 200,000mm2
20
0
100,000
200,000
300,000
400,000
500,000
Surface area of the heatsink
0
600,000
0
10
20
30
40
50
60
70
CLU044-1818B8
80
(W)
Input power
(mm )
2
■Figure2-10 Ta - Rc-a(CLU044-1818B8)
(°C/W)
Rj-c=0.26(°C/W)
4
Rc-a
3
2160mA
1080mA
1620mA
720mA
2
1
0
0
20
40
60
80
Ta
■Figure3(b)-10 Input power - junction temperature Tj
(CLU044-1818B8)
■Figure3(a)-10 Heat sink surface area - junction temperature Tj
(CLU044-1818B8)
(°C) 160
180
Junction temperature Tj
160
140
Input Power : 86.8W
Junction Temperature Tj
(°C)
140
120
100
80
60
40
(°C)
120
100
80
60
40
S = 400,000mm2
20
0
250,000
500,000
750,000
1,000,000
Surface area of the heatsink
0
1,250,000
0
20
40
Input power
(mm2)
9
60
80
100
(W)
Copyright © 2014 CITIZEN ELECTRONICS CO., LTD. All Rights reserved.
CITIZEN ELECTRONICS CO., LTD.
1-23-1, Kamikurechi, Fujiyoshida-shi, Yamanashi, 403-0001, Japan
Tel. +81-555-23-4121 http://ce.citizen.co.jp
Ref.CE-P2752 07/14_R1(0714)
Heat Dissipation Design
Standard Type Ver.3
CLU054-1825B8
■Figure2-11 Ta - Rc-a(CLU054-1825B8)
(°C/W)
Rj-c=0.25(°C/W)
3
3000mA
1500mA
2250mA
1000mA
Rc-a
2
1
0
0
20
40
60
80
Ta
■Figure3(a)-11 Heat sink surface area - junction temperature Tj
(CLU054-1825B8)
(°C) 160
180
160
Junction temperature Tj
■Figure3(b)-11 Input power - junction temperature Tj
(CLU054-1825B8)
140
Input Power : 120.1W
Junction Temperature Tj
(°C)
140
120
100
80
60
40
(°C)
120
100
80
60
40
S = 940,000mm2
20
0
500,000
1,000,000
1,500,000
2,000,000
Surface area of the heatsink
0
2,500,000
0
20
40
60
80
Input power
(mm )
2
10
100
120
140
(W)
Copyright © 2014 CITIZEN ELECTRONICS CO., LTD. All Rights reserved.
CITIZEN ELECTRONICS CO., LTD.
1-23-1, Kamikurechi, Fujiyoshida-shi, Yamanashi, 403-0001, Japan
Tel. +81-555-23-4121 http://ce.citizen.co.jp
Ref.CE-P2752 07/14_R1(0714)
● CITIZEN ELECTRONICS CO., LTD. shall not be liable for any disadvantages or damages
resulting from the use of technical information or data included in this document or the
impossibility of download and use, responsibility for the cause of lawsuit or any other
damages or losses.
● This technical information or data shall be provided ‘as is’ to users and CITIZEN ELECTRONICS CO., LTD. does not guarantee the absence of error or other defects in this
technical information or data, conformance of this technical information or data to specific
purpose, this technical information or data or its use will not infringe the rights of users or
third parties or any other content.
● CITIZEN ELECTRONICS CO., LTD. reserves the right to make changes to technical
information or data without notification.
Information contained in this document such as sentences,
photographs and images is subject to copyright, and is protected by law.
Unless it is for “duplication for private use” or “quotation” under copyright law,
any duplication or diversion of this information without permission of
CITIZEN ELECTRONICS CO., LTD. is prohibited by law.
CITIZEN ELECTRONICS CO., LTD.
1-23-1, Kamikurechi, Fujiyoshida-shi, Yamanashi, 403-0001, Japan
Tel. +81-555-23-4121
http://ce.citizen.co.jp
Requests / Inquiries
[email protected]
Website for LEDs for lighting
http://ce.citizen.co.jp/lighting_led/jp/
Ref.CE-P2752 07/14_R1(0714)