Typical Performance Characteristics

Typical Performance Characteristics
www.vishay.com
Vishay Sprague
Molded Chip Tantalum Capacitors
CAPACITOR ELECTRICAL PERFORMANCE CHARACTERISTICS
ITEM
PERFORMANCE CHARACTERISTICS
Category temperature range
-55 °C to +85 °C (to +125 °C with voltage derating)
Capacitance tolerance
± 20 %, ± 10 %. Tested via bridge method, at +25 °C, 120 Hz
Dissipation factor
Limit per Standard Ratings table. Tested via bridge method, at 25 °C, 120 Hz
ESR
Limit per Standard Ratings table. Tested via bridge method, at 25 °C, 100 kHz
Leakage current
After application of rated voltage applied to capacitors for 5 min using a steady source of power with
1 k resistor in series with the capacitor under test, leakage current at 25 °C is not more than 0.01 CV or
0.5 μA, whichever is greater. Note that the leakage current varies with temperature and applied voltage.
See graph below for the appropriate adjustment factor.
Capacitance change by
temperature
+20 % max. (at +125 °C) 
+10 % max. (at +85 °C)
-10 % max. (at -55 °C)
Reverse voltage
Capacitors are capable of withstanding peak voltages in the reverse direction equal to:
10 % of the DC rating at +25 °C
5 % of the DC rating at +85 °C
Vishay does not recommend intentional or repetitive application of reverse voltage
Ripple current
For maximum ripple current values (at 25 °C) refer to relevant datasheet. If capacitors are to be used at
temperatures above +25 °C, the permissible RMS ripple current (or voltage) shall be calculated using the
derating factors:
1.0 at +25 °C; 0.9 at +85 °C; 0.4 at +125 °C
Maximum operating and surge
voltages vs. temperature
+85 °C
+125 °C
RATED VOLTAGE
(V)
SURGE VOLTAGE
(V)
CATEGORY VOLTAGE
(V)
SURGE VOLTAGE
(V)
4
5.2
2.7
3.4
6.3
8
4
5
10
13
7
8
16
20
10
12
20
26
13
16
25
32
17
20
46
23
28
35
(3)
35
(4)
42
23
28
50
65
33
40
50 (1)
60
33
40
63
75
42
50
75
50
50
75
(2)
Notes
• All information presented in this document reflects typical performance characteristics.
(1) Capacitance values 15 μF and higher.
(2) For 293D and TR3 only.
(3) Capacitance values lower than 33 μF.
(4) Capacitance values 33 μF and higher.
Revision: 26-May-15
Document Number: 40192
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Typical Performance Characteristics
www.vishay.com
Vishay Sprague
TYPICAL LEAKAGE CURRENT TEMPERATURE FACTOR
100
+175 °C
+150 °C
+125 °C
10
Leakage Current Factor
+85 °C
+55 °C
1
+25 °C
0 °C
0.1
-55 °C
0.01
0.001
0
10
20
30
40
50
60
70
80
90 100
Percent of Rated Voltage
Note
• At +25 °C, the leakage current shall not exceed the value listed in the Standard Ratings table.
At +85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings table.
At +125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings table.
At +150 °C, the leakage current shall not exceed 15 times the value listed in the Standard Ratings table.
At +175 °C, the leakage current shall not exceed 18 times the value listed in the Standard Ratings table.
ENVIRONMENTAL PERFORMANCE CHARACTERISTICS
ITEM
CONDITION
POST TEST PERFORMANCE
Surge voltage
Post application of surge voltage (as specified in
the table above) in series with a 33  resistor at
the rate of 30 s ON, 30 s OFF, for 1000 successive
test cycles at 85 °C.
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
Life test at +85 °C
1000 h application of rated voltage at 85 °C.
MIL-STD-202, method 108
Capacitance change
Dissipation factor
Leakage current
Within -20 % / +10 % of initial value
Initial specified limit
Shall not exceed 125 % of initial limit
Life test at +125 °C
1000 h application 2/3 of rated voltage at 125 °C.
MIL-STD-202, method 108
Capacitance change
Dissipation factor
Leakage current
Within -20 % / +10 % of initial value
Initial specified limit
Shall not exceed 125 % of initial limit
Humidity tests
At 60 °C / 90 % RH 1000 h, biased
Capacitance change
Dissipation factor
Leakage current
Within -10 % / +20 % of initial value
Not to exceed 150 % of initial limit
Shall not exceed 200 % of initial limit
Thermal shock
MIL-STD-202, method 107, test condition A
(-55 °C / +85 °C, for 1000 cycles)
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
Revision: 26-May-15
Document Number: 40192
2
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Typical Performance Characteristics
www.vishay.com
Vishay Sprague
MECHANICAL PERFORMANCE CHARACTERISTICS
TEST CONDITION
CONDITION
POST TEST PERFORMANCE
Terminal strength /
shear force test
Apply a pressure load of 17.7 N for 60 s
horizontally to the center of capacitor side body.
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Vibration
MIL-STD-202, method 204, condition D,
10 Hz to 2000 Hz, 20 g peak, 8 h, at rated voltage
Electrical measurements are not applicable, since the
same parts are used for shock (specified pulse) test.
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Shock
(specified pulse)
MIL-STD-202, method 213, condition I,
100 g peak
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Resistance to
soldering heat
Recommended reflow profiles temperatures and
durations are located within the Capacitor Series
Guides
MIL-STD-202, method 210, condition B
Solderability and
dissolution of metallization
MIL-STD-202, method 208, ANSI/J-STD-002, test
B (SnPb) and B1 (lead (Pb)-free). Dissolution of
metallization: method D.
Does not apply to gold terminations.
Flammability
Encapsulation materials meet UL 94 V-0 with an
oxygen index of 32 %.
Revision: 26-May-15
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to
capacitors post-conditioning.
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Document Number: 40192
3
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000