AOZ1331DI Dual Channel Smart Load Switch General Description Features The AOZ1331DI is a dual channel load switch with typical 20mΩ on-resistance in a small package. It contains two n-channel MOSFETs for up to 5.5V input voltage operation and 6A current each channel with 2.5V to 5V bias supply. Each load switch is independently controlled by a low voltage control signal through ON1/ON2 pin. 0.8V to 5.5V input voltage range 6A continuous current per channel Low RDS(ON) internal NFETs The AOZ1331DI integrates an internal 220Ω load resistor in each channel for quick output discharge when load switch is off. The optional external capacitor connected CT1/CT2 for output slew rate control. The AOZ1331DI is available in a 3mm x 2mm DFN-14L package with bottom thermal pad and is rated over a -40°C to +85°C ambient temperature range. – 20mΩ at VBIAS = 2.5V to 5V & VBIAS > VIN Low quiescent current – 80µA (both channels) – 60µA (single channel) Adjustable rise time 2.5V to 5V bias voltage Integrated quick output discharge resistor Thermally enhanced 3mm x 2mm DFN-14L package Applications Portable computers Ultrabooks Tablet PC Set top boxes LCD TVs Telecom/Networking/Datacom equipment SSD Consumer electronics Typical Application VIN1 IN1 VOUT1 OUT1 CIN1 CL1 ON ON1 OFF CT1 AOZ1331DI VBIAS CT1 GND CT2 ON ON2 CT2 OFF IN2 VIN2 Rev. 1.0 January 2014 VOUT2 OUT2 CIN1 CL2 www.aosmd.com Page 1 of 14 AOZ1331DI Ordering Information Part Number Temperature Range Package Environmental AOZ1331DI -40°C to +85°C 3mm x 2mm DFN-14L Green All AOS products are offered in packages with Pb-free plating and compliant to RoHS standards. Please visit www.aosmd.com/media/AOSGreenPolicy.pdf for additional information. Pin Configuration IN1 1 14 OUT1 IN1 2 13 OUT1 ON1 3 12 CT1 VBIAS 4 11 GND ON2 5 10 CT2 IN2 6 IN2 7 EPAD 9 OUT2 8 OUT2 3mm x 2mm DFN-14 (Top View) Pin Description Pin Number Pin Name 1, 2 IN1 Switch 1 Input. Bypass capacitor is recommended to minimize input voltage dip. Recommended voltage range of this pin is 0.8V to VBIAS to obtain optimal RON. 3 ON1 Enable Input of Switch 1. Switch 1 is on when ON1 is pulled high, and is off when ON1 is pulled low. Do not leave floating. 4 VBIAS Bias Voltage. Power supply to this device. Recommended voltage range is 2.5V to 5.5V. 5 ON2 Enable Input of Switch 2. Switch 2 is on when ON2 is pulled high, and is off when ON2 is pulled low. Do not leave floating. 6, 7 IN2 Switch 2 Input. Bypass capacitor is recommended to minimize input voltage dip. Recommended voltage range of this pin is 0.8V to VBIAS to obtain optimal RON. 8, 9 OUT2 10 CT2 Slew rate control of switch 2. 11 GND Ground. Slew rate control of switch 1. 12 CT1 13, 14 OUT1 EPAD Exposed Pad Rev. 1.0 January 2014 Pin Function Switch 2 Output. Switch 1 Output. The exposed bottom pad must be connected to GND. www.aosmd.com Page 2 of 14 AOZ1331DI Functional Block Diagram IN1 CT1 ON1 VBIAS ON2 Typical Performance Characteristics Control Logic Timing Diagram OUT1 Charge Pump GND Control Logic OUT2 CT2 IN2 Rev. 1.0 January 2014 www.aosmd.com Page 3 of 14 AOZ1331DI Absolute Maximum Ratings Recommend Operating Ratings Exceeding the Absolute Maximum ratings may damage the device. The device is not guaranteed to operate beyond the Maximum Operating Ratings. Parameter Rating Parameter IN1, IN2, VBIAS, ON1, ON2 to GND -0.3V to 6V OUT1, OUT2 to GND -0.3V to 6V Junction Temperature (TJ) +150°C Storage Temperature (TS) -65°C to +150°C ESD Rating HBM/CDM 2kV/1kV Rating Supply Voltage (VIN) 5.5V Ambient Temperature (TA) -40°C to +85°C Package Thermal Resistance 3x2 DFN-14 (JC) 3x2 DFN-14 (JA) 10°C/W 65°C/W Electrical Characteristics TA = 25°C, VBIAS = 5V, unless otherwise specified. Specifications in BOLD indicate a temperature range of -40°C to +85°C. Symbol Parameter Conditions Min. Typ. Max. Units VINX IN Supply Voltage 0.8 VBIAS V VBIAS VBIAS Supply Voltage 2.5 5.5 V ID1, 2 Maximum Continuous Current VINX = VONX = 5V 6 A Maximum Pulsed Switch Current VINX = VONX = 5V Pulse < 300µs, 2% Duty Cycle 8 A Iq2 Quiescent Supply Current of VBIAS (Two Channels) IOUT1 = IOUT2 = 0V, VIN1,2 = VON1,2 = 5V 80 Iq1 Quiescent Supply Current of VBIAS (Single Channel) IOUT1 = IOUT2 = 0V, VIN1,2 = VON1 = 5V, VON2 = 0V 60 VBIAS Shutdown Supply Current VON1,2 = 0V, VOUT1,2 = 0V 1 2 VONX = 0V, VOUTX = 0V, VINX = 5V 2.1 8 VONX = 0V, VOUTX = 0V, VINX = 3.3V 0.3 3 VONX = 0V, VOUTX = 0V, VINX = 1.8V 0.07 2 VONX = 0V, VOUTX = 0V, VINX = 0.8V 0.04 1 IPLS1, 2 IOFF IINOFF ION1, 2 IN1, IN2 Shutdown Supply Current (Single Channel) ON1, 2 Leakage Current VON1,2 = 5V VONH1, 2 ON1, 2 High Level Voltage VINX = 0.8V to 5V VONL1, 2 ON1, 2 Low Level Voltage VINX = 0.8V to 5V 120 µA µA 1 1.2 µA µA µA V 0.5 V Switching ON Resistance RON Switch ON-State Resistance IOUTX = -200mA VINX = 0.8V to 5V 20 30 mΩ RPD Output Pull-Down Resistance IOUTX = 15mA VINX = 5V, VONX = 0V 220 300 Ω Note: Greater on-resistance if VIN > VBIAS. Rev. 1.0 January 2014 www.aosmd.com Page 4 of 14 AOZ1331DI Switching Characteristics VON 50% 50% t OFF tON 90% VOUT 90% tD-ON 50% 50% 10% 1% tR 10% tF Test conditions: TA = 25°C, CINX = 1µF, CTX = 1nF, CLX = 0.1µF, RLX = 10Ω (unless otherwise specified). Symbol Parameter Min. Typ. Max. Units VINX = 5V, VBIAS = VONX = 5V tON Turn-ON Time 1475 tD-ON Turn-ON Delay time 370 tR Turn-ON Rise Time 1875 tOFF tF Turn-OFF Time 5.8 Turn-OFF Fall Time 2.8 µs VINX = 0.8V, VBIAS = VONX = 5V Turn-ON Time 560 tD-ON Turn-ON Delay time 350 tR Turn-ON Rise Time 338 Turn-OFF Time 158 Turn-OFF Fall Time 20 tON tOFF tF µs VINX = 2.5V, VBIAS = VONX = 2.5V tON Turn-ON Time 2050 tD-ON Turn-ON Delay time 700 tR Turn-ON Rise Time 2150 tOFF tF Turn-OFF Time µs 6.5 Turn-OFF Fall Time 2 VINX = 0.8V, VBIAS = VONX = 2.5V Turn-ON Time 1230 tD-ON Turn-ON Delay time 650 tR Turn-ON Rise Time 730 Turn-OFF Time 135 Turn-OFF Fall Time 16 tON tOFF tF Rev. 1.0 January 2014 www.aosmd.com µs Page 5 of 14 AOZ1331DI Typical Characteristics Quiescent Current vs. VBIAS (Single Channel) (VBIAS=5.5V, IOUT=-200mA) 27 -40ºC 70 25ºC 70ºC 80ºC 25 RDSON (mΩ) 60 IBIAS (μA) RSDON vs. VIN (VIN=VBIAS, VON1=5V, VON2=0V) 80 50 40 30 23 21 -40ºC 25ºC 70ºC 80ºC 19 20 17 10 0 15 2.5 2.8 3.0 3.3 3.5 3.8 4.0 4.3 VBIAS (V) 4.5 4.8 5.0 0.8 5.3 5.5 1.3 1.8 2.3 Quiescent Current vs. VBIAS (Both Channels) 80 70 4.3 4.8 5.3 5.8 4.3 4.8 5.3 5.8 (VBIAS=5.5V) 228 -40ºC 226 25ºC 70ºC 80ºC 224 222 RPD (Ω) 60 IBIAS (μA) 3.3 3.8 VIN (V) RPD vs. VIN (VIN=VBIAS, VON1=5V, VON2=5V) 90 2.8 50 40 -40ºC 220 25ºC 70ºC 80ºC 218 30 216 20 214 10 212 210 0 2.5 2.8 3.0 29 3.3 3.5 3.8 4.0 4.3 VBIAS (V) 4.5 4.8 5.0 0.8 5.3 5.5 1.3 1.8 2.3 2.8 3.3 3.8 VIN (V) RDSON vs. VIN VOUT vs. VON (VBIAS=2.5V, IOUT=-200mA) (TA=25ºC, VIN=2V) 2.5 27 2.0 VOUT (V) RDSON (mΩ) 25 23 21 -40ºC 25ºC 70ºC 80ºC 19 1.5 1.0 VBIAS = 2.5V VBIAS = 3.3V VBIAS = 5.0V VBIAS = 5.5V 0.5 17 15 0 0.8 1.1 Rev. 1.0 January 2014 1.4 1.7 VIN (V) 2.0 2.3 2.6 www.aosmd.com 0.5 0.7 0.9 VON (V) 1.1 1.3 Page 6 of 14 AOZ1331DI Typical Characteristics (Continued) tON vs. VIN tD-ON vs. VIN (VBIAS=2.5V) 3000 (VBIAS=5.5V) 500 450 2500 400 350 tD-ON (μs) tON (μs) 2000 1500 1000 300 250 200 150 -40ºC -40ºC 100 25ºC 70ºC 80ºC 500 25ºC 70ºC 80ºC 50 0 0 0.8 1.0 1.2 1.4 1.6 1.8 VIN (V) 2.0 2.2 2.4 0.8 2.6 1.2 1.6 2.0 2.4 tON vs. VIN 3.2 3.6 VIN (V) 4.0 4.4 4.8 5.2 5.6 tR vs. VIN (VBIAS=5.5V) 2000 2.8 (VBIAS=2.5V) 3000 1800 2500 1600 2000 1200 tR (μs) tON (μs) 1400 1000 1500 800 1000 600 -40ºC -40ºC 400 25ºC 70ºC 80ºC 200 25ºC 70ºC 80ºC 500 0 0 0.8 1.2 1.6 2.0 2.4 1200 2.8 3.2 3.6 VIN (V) 4.0 4.4 4.8 0.8 5.2 5.6 1.0 1.2 1.4 1.6 1.8 VIN (V) tD-ON vs. VIN tR vs. VIN) (VBIAS=2.5V) (VBIAS=5.5V) 2500 1000 2.0 2.2 2.4 2.6 2000 tR (μs) tD-ON (μs) 800 600 1500 1000 400 -40ºC -40ºC 200 25ºC 70ºC 80ºC 500 25ºC 70ºC 80ºC 0 0 0.8 1.0 1.2 Rev. 1.0 January 2014 1.4 1.6 1.8 VIN (V) 2.0 2.2 2.4 2.6 www.aosmd.com 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 VIN (V) 4.0 4.4 4.8 5.2 5.6 Page 7 of 14 AOZ1331DI Typical Characteristics (Continued) tOFF vs. VIN tOFF vs. VIN (VBIAS=2.5V) 160 140 120 -40ºC 160 -40ºC 25ºC 70ºC 80ºC 140 25ºC 70ºC 80ºC 120 100 tOFF (μs) tOFF (μs) (VBIAS=5.5V) 180 80 60 100 80 60 40 40 20 20 0 0 0.8 1.0 1.2 1.4 1.6 1.8 VIN (V) 2.0 2.2 2.4 0.8 2.6 1.2 1.6 2.0 2.4 tF vs. VIN 4.0 4.4 4.8 (VBIAS=5.5V) 25 -40ºC -40ºC 25ºC 70ºC 80ºC 20 25ºC 70ºC 80ºC 20 15 15 tF (μs) tF (μs) 5.2 5.6 tF vs. VIN (VBIAS=2.5V) 25 2.8 3.2 3.6 VIN (V) 10 10 5 5 0 0 0.8 1.0 1.2 Rev. 1.0 January 2014 1.4 1.6 1.8 VIN (V) 2.0 2.2 2.4 2.6 www.aosmd.com 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 VIN (V) 4.0 4.4 4.8 5.2 5.6 Page 8 of 14 AOZ1331DI Functional Characteristics Turn-ON & Turn-ON Rise Times Turn-ON & Turn-ON Rise Times (VINX=0.8V, VBIAS=5V, CINX=1μF, CTX=1nF, CLX=0.1μF, RLX=10Ω) (VINX=5V, VBIAS=5V, CINX=1μF, CTX=1nF, CLX=0.1μF, RLX=10Ω) VON1 (5V/div) VON1 (5V/div) VOUT1 (2V/div) VOUT1 (500mV/div) VON2 (5V/div) VON2 (5V/div) VOUT2 (2V/div) VOUT2 (500mV/div) Turn-ON & Turn-ON Rise Times Turn-ON & Turn-ON Rise Times (VINX=0.8V, VBIAS=2.5V, CINX=1μF, CTX=1nF, CLX=0.1μF, RLX=10Ω) (VINX=2.5V, VBIAS=2.5V, CINX=1μF, CTX=1nF, CLX=0.1μF, RLX=10Ω) VON1 (5V/div) VON1 (5V/div) VOUT1 (1V/div) VOUT1 (500mV/div) VON2 (5V/div) VOUT2 (1V/div) VON2 (5V/div) VOUT2 (500mV/div) Turn-OFF & Turn-OFF Fall Times Turn-OFF & Turn-OFF Fall Times (VINX=0.8V, VBIAS=5V, CINX=1μF, CTX=1nF, CLX=0.1μF, RLX=10Ω) (VINX=5V, VBIAS=5V, CINX=1μF, CTX=1nF, CLX=0.1μF, RLX=10Ω) VON1 (5V/div) VON1 (5V/div) VOUT1 (2V/div) VOUT1 (500mV/div) VON2 (5V/div) VOUT2 (2V/div) Rev. 1.0 January 2014 www.aosmd.com VON2 (5V/div) VOUT2 (500mV/div) Page 9 of 14 AOZ1331DI Functional Characteristics (Continued) Turn-OFF & Turn-OFF Fall Times Turn-OFF & Turn-OFF Fall Times (VINX=0.8V, VBIAS=2.5V, CINX=1μF, CTX=1nF, CLX=0.1μF, RLX=10Ω) (VINX=2.5V, VBIAS=2.5V, CINX=1μF, CTX=1nF, CLX=0.1μF, RLX=10Ω) VON1 (5V/div) VON1 (5V/div) VOUT1 (500mV/div) VOUT1 (1V/div) VON2 (5V/div) VON2 (5V/div) VOUT2 (1V/div) VOUT2 (500mV/div) Turn-ON & Turn-OFF @ IOUT = 6A Turn-ON & Turn-OFF @ IOUT = 6A (VIN1=2.5V, VBIAS=5V, CIN1=4.7μF, CL1=4.7μF) (VIN1=5V, VBIAS=5V, CIN1=4.7μF, CL1=4.7μF) Rev. 1.0 January 2014 VON (5V/div) VON (5V/div) VOUT (2V/div) VOUT (1V/div) IOUT (2A/div) IOUT (2A/div) www.aosmd.com Page 10 of 14 AOZ1331DI Detailed Description Applications Information ON/OFF Control The basic AOZ1331DI application circuit is shown in the first page. Component selection is explained below. The AOZ1331DI is enabled when the ON pin is on active high with 1.2V or above voltage. The device is disabled when the ON pin voltage is 0.5V or lower. The EN input is compatible with both TTL and CMOS logic. VBIAS Voltage Range For optimal on-resistance of load switch, make sure VIN ≤ VBIAS and VBIAS is within the voltage range from 2.5V to 5.5V. On-resistance of load switch will be higher if VIN > VBIAS. Resistance curves of a typical sample device at different VBIAS and different VIN are shown as below. 55 VBIAS = 2.5V 50 VBIAS = 3.3V VBIAS = 3.6V VBIAS = 4.2V VBIAS = 5.0V VBIAS = 5.5V RDSON (mΩ) 45 40 Input Capacitor Selection A capacitor of 1μF or higher value is recommended to be place close to the IN pins of AOZ1331DI. This capacitor can reduce the voltage drop caused by the in-rush current during the turn-on transient of the load switch. A higher value capacitor can be used to further reduce the voltage drop during high-current application. Output Capacitor Selection A capacitor of 0.1μF or higher value is recommended to be place between the OUT pins and GND. The switching times are affected by the capacitance. A larger capacitor makes the initial turn-on transient smoother. This capacitor must be large enough to supply a fast transient load in order to prevent the output from dropping. Thermal Considerations To ensure proper operation, the maximum junction temperature of the AOZ1331DI should not exceed 150°C. Several factors attribute to the junction temperate rise: load current, MOSFET on-resistance, junction-to-ambient thermal resistance, and ambient temperature. The maximum load current can be determined by: 35 30 25 20 15 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VIN (V) I LOAD MAX = Adjustable Rise Time The slew rate of each channel can be adjusted individually by external capacitors connected to the corresponding CT and GND pins. Multiply the input voltage and the slew rate to obtain the rise time. The table below shows rise times, which are measured on a typical device at VBIAS = 5V. CTX (pF) Rise Time (µs) 10%~90%, CLX=0.1µF, CINX=1µF, RLX=10Ω (Typical values at 25°C, 25V X7R 10% Ceramic Cap) VINX=5V 3.3V 1.8V 1.5V 1.2V 1.05V 0.8V 0 85 68 49 45 40 37 34 220 431 297 172 147 122 106 89 470 888 583 332 269 218 189 161 1000 1700 1130 657 550 446 390 316 2200 3805 2534 1347 1152 966 867 701 4700 8053 5255 1997 2578 2101 1838 1483 10000 18330 12050 5545 5545 4155 4155 3329 Rev. 1.0 January 2014 T J MAX – T C ---------------------------------- JC R DSON It is noted that the maximum continuous load current is 6A. Layout Guidelines Good PCB is important for improving the thermal performance of AOZ1331DI. Place the input and output bypass capacitors close to the IN and OUT pins. The input and output PCB traces should be as wide as possible for the given PCB space. Use a ground plane to enhance the power dissipation capability of the device. www.aosmd.com Page 11 of 14 AOZ1331DI Package Dimensions, DFN3x2A_14L, EP1_S D1 D b(6x) 8 14 C45x0.20 E E1 L(14x) Pin #1 Dot By Marking L1(4x) TOP VIEW 7 b1(4x) e b2(4x) SIDE VIEW 1 A1 A2 BOTTOM VIEW A SIDE VIEW 0.30(4x) 0.50(14x) 2.60 0.90 2.30 0.20(2x) RECOMMENDED LAND PATTERN 0.40 Dimensions in millimeters Symbols A A1 A2 E E1 D D1 L L1 b b1 b2 e Min. 0.70 0.00 1.90 0.80 2.90 2.40 0.30 0.15 0.15 0.15 0.55 Typ. 0.75 --0.2 REF 2.00 0.90 3.00 2.50 0.35 0.20 0.20 0.20 0.60 0.40 BSC Max. 0.80 0.05 2.10 1.00 3.10 2.60 0.40 0.25 0.25 0.25 0.65 Dimensions in inches Symbols A A1 A2 E E1 D D1 L L1 b b1 b2 e Min. 0.028 0.000 Typ. 0.030 --0.008 REF 0.075 0.079 0.031 0.035 0.114 0.118 0.094 0.098 0.012 0.014 0.006 0.008 0.006 0.008 0.006 0.008 0.022 0.024 0.016 BSC Max. 0.031 0.002 0.083 0.039 0.122 0.102 0.016 0.010 0.010 0.010 0.026 0.20(14x) Unit: mm Notes: 1. Controlling dimensions are in millimeters. Converted inch dimensions are not necessarily exact. 2. Tolerance is ±0.05, unless otherwise specified. 3. Radius on all corners is 0.152 (max), unless otherwise specified. 4. Package wrapage is 0.012 (max). 5. No plastic flash allowed on the top or bottom lead surface. 6. Pad planarity is ±0.102. 7. Crack between plastic body and lead is not allowed. Rev. 1.0 January 2014 www.aosmd.com Page 12 of 14 AOZ1331DI Tape and Reel Dimensions, DFN3x2A_14L, EP1_S Carrier Tape P2 A P1 A-A D1 D0 E1 K0 E2 P0 T A0 B0 E A Feeding Direction UNIT: MM Package A0 B0 K0 D0 D1 E E1 E2 P0 P1 P2 T PIC DFN3x2 2.20 ±0.10 3.20 ±0.10 1.03 ±0.10 1.50 +0.10 -0.0 1.00 +0.25 -0.0 8.00 +0.30 -0.1 1.75 ±0.10 3.50 ±0.05 4.00 ±0.10 4.00 ±0.10 2.00 ±0.05 0.23 ±0.02 Reel W1 R S K M N H UNIT: MM Tape Size Reel Size 8mm Ø180 M Ø180.00 ±0.50 N W1 H S K R 60.00 ±0.50 8.40 +1.50 -0.0 13.00 ±0.20 1.50 MIN. 13.50 MIN. 3.00 ±0.50 Leader/Trailer and Orientation Unit Per Reel: 3000pcs Trailer Tape 300mm min. Rev. 1.0 January 2014 Components Tape Orientation in Pocket www.aosmd.com Leader Tape 500mm min. Page 13 of 14 AOZ1331DI Package Marking AOZ1331DI (DFN3x2-14) A Y XX Part Number Code Y W LT Week & Year Code Assembly Location Code Option Code Assembly Lot Code LEGAL DISCLAIMER Alpha and Omega Semiconductor makes no representations or warranties with respect to the accuracy or completeness of the information provided herein and takes no liabilities for the consequences of use of such information or any product described herein. Alpha and Omega Semiconductor reserves the right to make changes to such information at any time without further notice. This document does not constitute the grant of any intellectual property rights or representation of non-infringement of any third party’s intellectual property rights. LIFE SUPPORT POLICY ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. Rev. 1.0 January 2014 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.aosmd.com Page 14 of 14