ROHM BA7658AFS

Multimedia ICs
Input selector switch for high
definition displays
BA7658AFS
The BA7658AFS is an IC designed for high definition displays, and has an internal selector circuit for broadband
RGB signals and HD / VD signals, a synchronization separator circuit, and a NUTEK signal detector circuit. This IC
chip simplifies the configuration of input blocks for high-end displays.
Applications
•CRT
displays, HDTV, video board for personal computer, etc.
•1)Features
Operates on a single 5V power supply.
4) Internal separator for synchronization signal superimposed on the G signal.
5) Internal detector for NUTEK power saving signals.
2) Internal broadband RGB selector with a frequency
characteristic of 230MHz ( – 3dB)
3) Internal HD / VD selector.
•Absolute maximum ratings (Ta = 25°C)
Parameter
Symbol
Limits
Unit
Power supply voltage
VCC
7.0
V
Power dissipation
Pd
850∗
mW
Operating temperature
Topr
– 25 ~ + 75
°C
Storage temperature
Tstg
– 55 ~ + 125
°C
∗ Reduced by 8.5mW for each increase in Ta of 1°C over 25°C.
•Recommended operating conditions (Ta = 25°C)
Parameter
Power supply voltage
Symbol
Min.
Typ.
Max.
Unit
VCC
4.5
5.0
5.5
V
1
Multimedia ICs
BA7658AFS
•Block diagram
Blue 1 input
1
Ground
2
1
Green 1 input
3
Ground
4
32
HD 1 input
31
HD 2 input
30
HD output
29
Blue output
2
1
2
Red 1 input
5
28
Signal detector input
Ground
6
27
VCC
Blue 2 input
7
26
Green output
25
Composite video input
(sync on green)
24
Setting of time constant
23
Signal detector output
22
Blanking pulse input
21
N.C.
20
HD Sync signal detector
19
Composite sync output
18
Control
17
Red output
1
2
Ground
8
Signal
DET
Green 2 input
9
1
Ground
10
2
DET
2
Red 2 input
11
N.C.
12
Ground
13
VD 1 input
14
VD 2 input
15
VD output
16
Sync
Sepa
2
1
Logic
Multimedia ICs
BA7658AFS
•Pin descriptions
Pin No. Pin name
Function
Pin No.
Blue 1 input B1 color signal input
1
Ground
2
20
GND
21
Green 1 input G1 color signal input
3
Ground
4
GND
Red 1 input R1 color signal input
5
Ground
6
GND
Blue 2 input B2 color signal input
7
Ground
8
Ground
10
GND
Red 2 input R2 color signal input
11
12
N.C.
N.C.
13
Ground
GND
VD 1 input Vertical synchronization signal VD1 input
15
VD 2 input Vertical synchronization signal VD2 input
16
VD output
17
Red output R color signal output
Control
18
Vertical synchronization signal VD output
N.C.
N.C.
Blanking pulse
Blanking pulse input
input
23
Signal detector
Signal detector output
output
24
Setting of time
Setting of time constant
constant
25
Composite video
Composite video input
input
26
Green output G signal output
27
14
Function
22
GND
Green 2 input G2 color signal input
9
Pin name
HD Sync signal
Synchronization signal detector
detector
VCC
VCC
28
Signal detector
Signal detector input
input
29
Blue output
B signal output
30
HD output
Horizontal synchronization signal HD output
31
HD 2 input
Horizontal synchronization signal HD2 input
32
HD 1 input
Horizontal synchronization signal HD1 input
CTL (H = IN1, L = IN2)
Composite sync
Synchronization signal output
output
19
•Output selection setting table
CTL
B
G
R
HD
VD
H
IN1
IN1
IN1
IN1
IN1
L
IN2
IN2
IN2
IN2
IN2
3
Multimedia ICs
BA7658AFS
•Input / output circuits
R. G. B. input
R. G. B. output
VCC
VCC
50
6.8k
100
1, 3, 5
7, 9, 11pin
21k
17, 26, 29pin
1k
400
5mA
Control
VCC
35k
1k
18pin
50k
15k
Composite sync output
Composite video input
Setting of time constant
VCC
VCC
VCC
from DET out
25k
25pin
100
19pin
25k
4
50µA
24pin
Multimedia ICs
BA7658AFS
Signal detector input
Signal detector output
VCC
VCC
6k
7k
10k
100
28pin
23pin
F.F.
6k
6k
VCC
HD. VD input
HD. VD input
VCC
2.7k
100
35k
16, 30pin
1k
14, 15
31, 32pin
50k
15k
HD sync signal detector
from HD out to sync sepa
VCC
25k
670
20pin
25k
5
Multimedia ICs
BA7658AFS
•Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 5.0V)
Parameter
Quiescent current
Symbol
Min.
Typ.
Max.
Unit
ICC
26
37
48
mA
Conditions
Measurement circuit
Fig. 1
〈Analog switches〉
Maximum output level
Vom
2.8
—
—
VP-P
f = 1kHz
Fig. 1
Voltage gain
GV
– 1.0
– 0.5
0
dB
f = 1MHz, VIN = 1VP-P
Fig. 1
Voltage gain differential (Input pin)
∆GVI
– 0.2
0
0.2
dB
f = 1MHz, VIN = 1VP-P
Fig. 1
Voltage gain differential (Block)
∆GVB
– 0.2
0
0.2
dB
f = 1MHz, VIN = 1VP-P
Fig. 1
Input pin crosstalk 1
CTI1
—
– 50
– 40
dB
f = 10MHz, VIN = 1VP-P
Fig. 2
Block crosstalk 1
CTB1
—
– 50
– 40
dB
f = 10MHz, VIN = 1VP-P
Fig. 2
Input voltage "H" level
VIH
1.8
—
—
V
Input voltage "L" level
VIL
—
—
1.2
V
Input current "H" level
IIH
80
100
130
µA
VIN = 5.0V
Input current "L" level
IIL
–3
–1
—
µA
VIN = 0V
Rising time
TR
—
30
50
ns
Fig. 1
Falling time
TF
—
30
50
ns
Fig. 1
Rising delay time
TRD
—
30
50
ns
Fig. 1
Falling delay time
TFD
—
40
60
ns
Fig. 1
Output voltage "H" level
VOH
3.8
4.2
—
V
Fig. 1
Output voltage "L" level
VOL
—
0.2
0.4
V
Fig. 1
Output current "H" level
IOH
– 400
—
—
µA
Fig. 1
Output current "L" level
IOL
4
—
—
mA
Fig. 1
VSMin.
—
—
50
mVP-P
Fig. 1
Output voltage "H" level
VOH
4.5
4.8
—
V
Fig. 1
Output voltage "L" level
VOL
—
0.2
0.5
V
Fig. 1
Output current "H" level
IOH
– 1.8
—
—
mA
Fig. 1
Output current "L" level
IOL
3.6
—
—
mA
Fig. 1
Rising time
TR
—
60
110
ns
Fig. 1
Falling time
TF
—
50
100
ns
Fig. 1
Rising delay time
TRD
—
100
150
ns
Fig. 1
Falling delay time
TFD
—
150
200
ns
Fig. 1
〈Digital switches〉
Fig. 1
Fig. 1
Fig. 1
Fig. 1
〈SYNC separation unit〉
Minimum SYNC separation level
6
Multimedia ICs
Parameter
BA7658AFS
Symbol
Min.
Typ.
Max.
Unit
Conditions
Measurement circuit
Minimum signal detection level
VDMin.
320
400
480
mVP-P
Fig. 1
Minimum signal detection time
TDMin.
—
—
30
ns
Fig. 1
〈Signal detection block〉
〈Blanking input〉
Input voltage "H" level
VIH
3
—
—
V
Fig. 1
Input voltage "L" level
VIL
—
—
1.5
V
Fig. 1
Input current "H" level
IIH
—
120
180
µA
VIN = 5.0V
Fig. 1
Input current "L" level
IIL
–3
0
—
µA
VIN = 0V
Fig. 1
Io = 0
Fig. 1
〈Signal detection output〉
Output voltage "H" level
VOH
4.5
5.0
—
V
Output voltage "L" level
VOL
—
0.2
0.5
V
Fig. 1
Output current "L" level
IOL
1.2
—
—
mA
Fig. 1
Pull-up resistance
RL
7
10
13
kΩ
Fig. 1
VIH
1.8
—
—
V
Fig. 1
〈Control block〉
Input voltage "H" level
Input voltage "L" level
VIL
—
—
1.2
V
Input current "H" level
VIH
80
100
130
µA
VIN = 5.0V
Fig. 1
Input current "L" level
VIL
–3
—
µA
VIN = 0V
Fig. 1
–1
Fig. 1
•Guaranteed design parameters (unless otherwise noted, Ta = 25°C, Vcc = 5.0V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Measurement circuit
–6
–3
–1
dB
1MHz / 230MHz, VIN = 1VP-P
Fig. 2
〈Analog switch unit〉
Frequency characteristics
Gf
Input pin frequency characteristic deviation
∆GfI
–1
0
+1
dB
1MHz / 100MHz, VIN = 1VP-P
Fig. 2
Block frequency characteristic deviation
∆GfB
–1
0
+1
dB
1MHz / 230MHz, VIN = 1VP-P
Fig. 2
Input pin crosstalk 2
CTIZ
—
– 30
– 15
dB
f = 230MHz, VIN = 1VP-P
Fig. 2
Block crosstalk 2
CTBZ
—
– 30
– 15
dB
f = 230MHz, VIN = 1VP-P
Fig. 2
7
Multimedia ICs
BA7658AFS
•Measurement circuit
1.2V
5
1.8V
4
OSC5
SW20
75Ω
3
5V
A
A
2
1
C1
SW1
+
C2
C1
1
1
1
2
32
SW19
Oscilloscope
2
Oscilloscope
Spectrum
Analyzer
3
C2
SW18
2
SW16
3
2
V
SW2
1
30
1
C2
75Ω
+
C1 = 0.01µF
C2 = 47µF
4
C1
SW17 2
SW3
5
28
+
47µF
6
C1
6
2
7
20µA
Vcc = 5V
3
75Ω
0.01µF
SW4
+
C2
C1
5
27
1
SW7 4
1µF
1
A
2
C2
2
3
1µF OSC4
+
OSC1
29
1
+
C2
C1
1
75Ω
31
1
+
C2
C1
V
+
2
C1
1µF OSC3
SW15 2
26
1µF
1
C2
+
8
Oscilloscope
220kΩ 5V
SW5
+
2
9
24
10
23
11
22
4
4.7µF
3
C2
+
SW14
C1
2
3V
21 N. C.
A
3
75Ω
OSC5
2
470kΩ
2
13
20
14
19
15
18
16
17
1
470pF
2
4
1.2
5 SW9 SW8
Oscilloscope
3
V
1.8
1
SW12
2
1
1
A
N. C. 12
5V
SW13
A
+
3
A
5V
A
1.5V
4
C2
1
V
1
SW6
+
C2
C1
2
1
V
C2
C1
25
1
V
C1
V
2
3
SW11
SW10
V
1.8V
3
1
Oscilloscope
Fig. 1
8
1.2V
2
2
3
Multimedia ICs
BA7658AFS
•Measurement circuit for frequency characteristics and crosstalk characteristics
C1
1
C2
+
Terminating
resistor
2
C1
3
C2
+
Terminating
resistor
C1: 0.01µF
C2: 47µF
270Ω
C1
Network
Analyzer
29
4
5
C2
+
Terminating
resistor
6
27
VCC = 5V
+
0.01µF
C1
47µF
7
C2
+
Terminating
resistor
270Ω
8
C1
Network
Analyzer
26
9
C2
+
Terminating
resistor
10
1.8V
SW
C1
1
18
11
1.2V
2
C2
+
Terminating
resistor
270Ω
17
13
Network
Analyzer
Fig. 2
9
Multimedia ICs
BA7658AFS
Procedure for measurement of frequency character•istics
and crosstalk characteristics
(1) Frequency characteristics 1
Use an oscilloscope to input a sine wave (VIN = 1.0VP-P,
f = 1MHz / 150MHz) to the color signal input pins. Set
the switch to 1 to select B1, G1 and R1, or to 2 to
select B2, G2 and R2.
Gf1 = Gv (f = 1MHz) – Gv (150MHz) [dB]
(2) Frequency characteristic 2
Use an oscilloscope to input a sine wave (VIN = 1.0VP-P,
f = 1MHz / 230MHz) to the color signal input pins. Set
the switch to 1 to select B1, G1 and R1, or to 2 to
select B2, G2 and R2.
Gf1 = Gv (f = 1MHz) – Gv (250MHz) [dB]
(3) Input pin crosstalk 1
Use an oscilloscope to input a sine wave (VIN = 1.0VP-P,
f = 10MHz) to IN1. Connect IN2 to the ground through
a capacitor. Set the switch to 2, input to IN2, then measure.
CTI1 = 20log (VOUT / VIN) [dB]
(4) Input pin crosstalk 2
Use an oscillator to input a sine wave (VIN = 1.0VP-P, f =
230MHz) to IN1. Connect IN2 to the ground through a
10
capacitor. Set the switch to 2, input to IN2, then measure.
CTI2 = 20log (VOUT / VIN) [dB]
(5) Block crosstalk 1
Use an oscillator to input a sine wave (VIN = 1.0VP-P, f =
10MHz) to G1 and R1. Connect B1 to the ground
through a capacitor. Set the switch to 1 and measure
the B output.
CTB1B = 20log (VOUTB / VING1) [dB]
Similarly,
CTB1G = 20log (VOUTG / VINR1) [dB]
CTB1R = 20log (VOUTR / VINB1) [dB]
(6) Block crosstalk 2
Use an oscillator to input a sine wave (VIN = 1.0VP-P, f =
230MHz) to G1 and R1. Connect B1 to the ground
through a capacitor. Set the switch to 1 and measure
the B output.
CTB2B = 20log (VOUTB / VING1) [dB]
Similarly,
CTB2G = 20log (VOUTG / VINR1) [dB]
CTB2R = 20log (VOUTR / VINB1) [dB]
Multimedia ICs
BA7658AFS
operation
•(1)Circuit
Analog switches
level voltage is output. The time that the synchronization separator is stopped can be set by changing the
time constant attached to the synchronization signal
detection pin.
(4) Signal detection block
When the signal input exceeds the level set inside the
IC (typically 400mVP-P, VCC = 5.0V), the high level voltage is output to the color signal detection output pin.
The low level voltage is output when the signal input is
lower than the set level. The quiescent circuit reaction
time can be set by changing the time constant attached
to pin used to set the time constant for color signal
detection. The signal detector stops while the high level
is being input to the blanking pulse input pin, thereby
preventing malfunctioning due setup signal block during the synchronization signal period.
Switch between the two sets of R, G and B color signals. IN1 is selected by impressing the high level voltage on the CTL pin, IN2 by impressing the low level
voltage.
(2) Digital switches
These switch between the two sets of HD and VD synchronization signals. HD and VD synchronization signals for IN1 are output by impressing the high level
voltage on the CTL pin, HD and VD synchronization
signals for IN2 by impressing the low level voltage.
(3) Synchronization separation block
Outputs the synchronization signals by separating
them from composite signals (Sync on Green). When
HD signals are being input, the synchronization signal
detector stops the synchronization separator. The low
The relationship between inputs and outputs
Output
Input
HD
Sync on Green
HD
VD
Composite Sync
—
䊊
䊊
—
—
䊊
䊊
䊊
䊊
䊊
䊊
—
䊊
䊊
䊊
—
—
䊊
䊊
—
—
—
—
—
䊊
VD
—
—
䊊
—
—
䊊
䊊
—
䊊
䊊
䊊
—
䊊
䊊
—
—
—
11
Multimedia ICs
BA7658AFS
•Application example
0.01µF
+
IN1
B
2
31
1
2
0.01µF
R
+
V
32
75Ω
G
H
1
47µF / 6.3V
3
30
HD OUT
47µF / 6.3V
75Ω
1
Ro
4
B OUT
29
2
0.01µF
1µF
+
5
28
47µF / 6.3V
VCC 5V
75Ω
6
27
0.01µF
0.01µF
+
47µF / 6.3V
1
+
IN2
B
G OUT
Ro
1µF
25
VCC 5V
Signal
DET
0.01µF
R
220kΩ
+
V
26
2
8
G
H
7
47µF / 6.3V
75Ω
9
24
47µF / 6.3V
4.7µF
75Ω
1
10
Signal
DET OUT
23
2
Signal: H
No Signal: L
DET
0.01µF
+
11
22
47µF / 6.3V
Blanking pulse
75Ω
N. C.
Sync
Sepa
12
13
21 N. C.
20
470kΩ
14
2
1
470pF
19
Syncsepa out
Logic
15
VD OUT
CTL
IN1: H
IN2: L
Ro
16
17
Fig. 3
12
18
R OUT
Multimedia ICs
BA7658AFS
•Electrical characteristic curves
10
2
0
0
– 10
CROSSTALK: CT (dB)
VOLTAGE GAIN: GV (dB)
4
–2
–4
–6
–8
– 10
– 20
– 30
– 40
– 50
– 60
– 12
– 70
– 14
– 80
1M
10M
100M
300M
– 90
1M
10M
FREQUENCY: f (Hz)
100M
300M
FREQUENCY: f (Hz)
Fig. 4 Frequency characteristics
Fig. 5 Interchannel crosstalk characteristics
Operation notes
•Resistors
attached to the analog switch block output
Frequency characteristics of the analog switches vary
according to the output load capacity. Set the attached
resistor so that frequency characteristics remain flat. A
too-large resistance will lower the characteristics peak.
•External dimensions (Units: mm)
17
1
16
5.4 ± 0.2
32
0.8
0.36 ± 0.1
0.15 ± 0.1
1.8 ± 0.1
0.11
7.8 ± 0.3
13.6 ± 0.2
0.3Min.
0.15
SSOP-A32
13