Multimedia ICs Input selector switch for high definition displays BA7658AFS The BA7658AFS is an IC designed for high definition displays, and has an internal selector circuit for broadband RGB signals and HD / VD signals, a synchronization separator circuit, and a NUTEK signal detector circuit. This IC chip simplifies the configuration of input blocks for high-end displays. Applications •CRT displays, HDTV, video board for personal computer, etc. •1)Features Operates on a single 5V power supply. 4) Internal separator for synchronization signal superimposed on the G signal. 5) Internal detector for NUTEK power saving signals. 2) Internal broadband RGB selector with a frequency characteristic of 230MHz ( – 3dB) 3) Internal HD / VD selector. •Absolute maximum ratings (Ta = 25°C) Parameter Symbol Limits Unit Power supply voltage VCC 7.0 V Power dissipation Pd 850∗ mW Operating temperature Topr – 25 ~ + 75 °C Storage temperature Tstg – 55 ~ + 125 °C ∗ Reduced by 8.5mW for each increase in Ta of 1°C over 25°C. •Recommended operating conditions (Ta = 25°C) Parameter Power supply voltage Symbol Min. Typ. Max. Unit VCC 4.5 5.0 5.5 V 1 Multimedia ICs BA7658AFS •Block diagram Blue 1 input 1 Ground 2 1 Green 1 input 3 Ground 4 32 HD 1 input 31 HD 2 input 30 HD output 29 Blue output 2 1 2 Red 1 input 5 28 Signal detector input Ground 6 27 VCC Blue 2 input 7 26 Green output 25 Composite video input (sync on green) 24 Setting of time constant 23 Signal detector output 22 Blanking pulse input 21 N.C. 20 HD Sync signal detector 19 Composite sync output 18 Control 17 Red output 1 2 Ground 8 Signal DET Green 2 input 9 1 Ground 10 2 DET 2 Red 2 input 11 N.C. 12 Ground 13 VD 1 input 14 VD 2 input 15 VD output 16 Sync Sepa 2 1 Logic Multimedia ICs BA7658AFS •Pin descriptions Pin No. Pin name Function Pin No. Blue 1 input B1 color signal input 1 Ground 2 20 GND 21 Green 1 input G1 color signal input 3 Ground 4 GND Red 1 input R1 color signal input 5 Ground 6 GND Blue 2 input B2 color signal input 7 Ground 8 Ground 10 GND Red 2 input R2 color signal input 11 12 N.C. N.C. 13 Ground GND VD 1 input Vertical synchronization signal VD1 input 15 VD 2 input Vertical synchronization signal VD2 input 16 VD output 17 Red output R color signal output Control 18 Vertical synchronization signal VD output N.C. N.C. Blanking pulse Blanking pulse input input 23 Signal detector Signal detector output output 24 Setting of time Setting of time constant constant 25 Composite video Composite video input input 26 Green output G signal output 27 14 Function 22 GND Green 2 input G2 color signal input 9 Pin name HD Sync signal Synchronization signal detector detector VCC VCC 28 Signal detector Signal detector input input 29 Blue output B signal output 30 HD output Horizontal synchronization signal HD output 31 HD 2 input Horizontal synchronization signal HD2 input 32 HD 1 input Horizontal synchronization signal HD1 input CTL (H = IN1, L = IN2) Composite sync Synchronization signal output output 19 •Output selection setting table CTL B G R HD VD H IN1 IN1 IN1 IN1 IN1 L IN2 IN2 IN2 IN2 IN2 3 Multimedia ICs BA7658AFS •Input / output circuits R. G. B. input R. G. B. output VCC VCC 50 6.8k 100 1, 3, 5 7, 9, 11pin 21k 17, 26, 29pin 1k 400 5mA Control VCC 35k 1k 18pin 50k 15k Composite sync output Composite video input Setting of time constant VCC VCC VCC from DET out 25k 25pin 100 19pin 25k 4 50µA 24pin Multimedia ICs BA7658AFS Signal detector input Signal detector output VCC VCC 6k 7k 10k 100 28pin 23pin F.F. 6k 6k VCC HD. VD input HD. VD input VCC 2.7k 100 35k 16, 30pin 1k 14, 15 31, 32pin 50k 15k HD sync signal detector from HD out to sync sepa VCC 25k 670 20pin 25k 5 Multimedia ICs BA7658AFS •Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 5.0V) Parameter Quiescent current Symbol Min. Typ. Max. Unit ICC 26 37 48 mA Conditions Measurement circuit Fig. 1 〈Analog switches〉 Maximum output level Vom 2.8 — — VP-P f = 1kHz Fig. 1 Voltage gain GV – 1.0 – 0.5 0 dB f = 1MHz, VIN = 1VP-P Fig. 1 Voltage gain differential (Input pin) ∆GVI – 0.2 0 0.2 dB f = 1MHz, VIN = 1VP-P Fig. 1 Voltage gain differential (Block) ∆GVB – 0.2 0 0.2 dB f = 1MHz, VIN = 1VP-P Fig. 1 Input pin crosstalk 1 CTI1 — – 50 – 40 dB f = 10MHz, VIN = 1VP-P Fig. 2 Block crosstalk 1 CTB1 — – 50 – 40 dB f = 10MHz, VIN = 1VP-P Fig. 2 Input voltage "H" level VIH 1.8 — — V Input voltage "L" level VIL — — 1.2 V Input current "H" level IIH 80 100 130 µA VIN = 5.0V Input current "L" level IIL –3 –1 — µA VIN = 0V Rising time TR — 30 50 ns Fig. 1 Falling time TF — 30 50 ns Fig. 1 Rising delay time TRD — 30 50 ns Fig. 1 Falling delay time TFD — 40 60 ns Fig. 1 Output voltage "H" level VOH 3.8 4.2 — V Fig. 1 Output voltage "L" level VOL — 0.2 0.4 V Fig. 1 Output current "H" level IOH – 400 — — µA Fig. 1 Output current "L" level IOL 4 — — mA Fig. 1 VSMin. — — 50 mVP-P Fig. 1 Output voltage "H" level VOH 4.5 4.8 — V Fig. 1 Output voltage "L" level VOL — 0.2 0.5 V Fig. 1 Output current "H" level IOH – 1.8 — — mA Fig. 1 Output current "L" level IOL 3.6 — — mA Fig. 1 Rising time TR — 60 110 ns Fig. 1 Falling time TF — 50 100 ns Fig. 1 Rising delay time TRD — 100 150 ns Fig. 1 Falling delay time TFD — 150 200 ns Fig. 1 〈Digital switches〉 Fig. 1 Fig. 1 Fig. 1 Fig. 1 〈SYNC separation unit〉 Minimum SYNC separation level 6 Multimedia ICs Parameter BA7658AFS Symbol Min. Typ. Max. Unit Conditions Measurement circuit Minimum signal detection level VDMin. 320 400 480 mVP-P Fig. 1 Minimum signal detection time TDMin. — — 30 ns Fig. 1 〈Signal detection block〉 〈Blanking input〉 Input voltage "H" level VIH 3 — — V Fig. 1 Input voltage "L" level VIL — — 1.5 V Fig. 1 Input current "H" level IIH — 120 180 µA VIN = 5.0V Fig. 1 Input current "L" level IIL –3 0 — µA VIN = 0V Fig. 1 Io = 0 Fig. 1 〈Signal detection output〉 Output voltage "H" level VOH 4.5 5.0 — V Output voltage "L" level VOL — 0.2 0.5 V Fig. 1 Output current "L" level IOL 1.2 — — mA Fig. 1 Pull-up resistance RL 7 10 13 kΩ Fig. 1 VIH 1.8 — — V Fig. 1 〈Control block〉 Input voltage "H" level Input voltage "L" level VIL — — 1.2 V Input current "H" level VIH 80 100 130 µA VIN = 5.0V Fig. 1 Input current "L" level VIL –3 — µA VIN = 0V Fig. 1 –1 Fig. 1 •Guaranteed design parameters (unless otherwise noted, Ta = 25°C, Vcc = 5.0V) Parameter Symbol Min. Typ. Max. Unit Conditions Measurement circuit –6 –3 –1 dB 1MHz / 230MHz, VIN = 1VP-P Fig. 2 〈Analog switch unit〉 Frequency characteristics Gf Input pin frequency characteristic deviation ∆GfI –1 0 +1 dB 1MHz / 100MHz, VIN = 1VP-P Fig. 2 Block frequency characteristic deviation ∆GfB –1 0 +1 dB 1MHz / 230MHz, VIN = 1VP-P Fig. 2 Input pin crosstalk 2 CTIZ — – 30 – 15 dB f = 230MHz, VIN = 1VP-P Fig. 2 Block crosstalk 2 CTBZ — – 30 – 15 dB f = 230MHz, VIN = 1VP-P Fig. 2 7 Multimedia ICs BA7658AFS •Measurement circuit 1.2V 5 1.8V 4 OSC5 SW20 75Ω 3 5V A A 2 1 C1 SW1 + C2 C1 1 1 1 2 32 SW19 Oscilloscope 2 Oscilloscope Spectrum Analyzer 3 C2 SW18 2 SW16 3 2 V SW2 1 30 1 C2 75Ω + C1 = 0.01µF C2 = 47µF 4 C1 SW17 2 SW3 5 28 + 47µF 6 C1 6 2 7 20µA Vcc = 5V 3 75Ω 0.01µF SW4 + C2 C1 5 27 1 SW7 4 1µF 1 A 2 C2 2 3 1µF OSC4 + OSC1 29 1 + C2 C1 1 75Ω 31 1 + C2 C1 V + 2 C1 1µF OSC3 SW15 2 26 1µF 1 C2 + 8 Oscilloscope 220kΩ 5V SW5 + 2 9 24 10 23 11 22 4 4.7µF 3 C2 + SW14 C1 2 3V 21 N. C. A 3 75Ω OSC5 2 470kΩ 2 13 20 14 19 15 18 16 17 1 470pF 2 4 1.2 5 SW9 SW8 Oscilloscope 3 V 1.8 1 SW12 2 1 1 A N. C. 12 5V SW13 A + 3 A 5V A 1.5V 4 C2 1 V 1 SW6 + C2 C1 2 1 V C2 C1 25 1 V C1 V 2 3 SW11 SW10 V 1.8V 3 1 Oscilloscope Fig. 1 8 1.2V 2 2 3 Multimedia ICs BA7658AFS •Measurement circuit for frequency characteristics and crosstalk characteristics C1 1 C2 + Terminating resistor 2 C1 3 C2 + Terminating resistor C1: 0.01µF C2: 47µF 270Ω C1 Network Analyzer 29 4 5 C2 + Terminating resistor 6 27 VCC = 5V + 0.01µF C1 47µF 7 C2 + Terminating resistor 270Ω 8 C1 Network Analyzer 26 9 C2 + Terminating resistor 10 1.8V SW C1 1 18 11 1.2V 2 C2 + Terminating resistor 270Ω 17 13 Network Analyzer Fig. 2 9 Multimedia ICs BA7658AFS Procedure for measurement of frequency character•istics and crosstalk characteristics (1) Frequency characteristics 1 Use an oscilloscope to input a sine wave (VIN = 1.0VP-P, f = 1MHz / 150MHz) to the color signal input pins. Set the switch to 1 to select B1, G1 and R1, or to 2 to select B2, G2 and R2. Gf1 = Gv (f = 1MHz) – Gv (150MHz) [dB] (2) Frequency characteristic 2 Use an oscilloscope to input a sine wave (VIN = 1.0VP-P, f = 1MHz / 230MHz) to the color signal input pins. Set the switch to 1 to select B1, G1 and R1, or to 2 to select B2, G2 and R2. Gf1 = Gv (f = 1MHz) – Gv (250MHz) [dB] (3) Input pin crosstalk 1 Use an oscilloscope to input a sine wave (VIN = 1.0VP-P, f = 10MHz) to IN1. Connect IN2 to the ground through a capacitor. Set the switch to 2, input to IN2, then measure. CTI1 = 20log (VOUT / VIN) [dB] (4) Input pin crosstalk 2 Use an oscillator to input a sine wave (VIN = 1.0VP-P, f = 230MHz) to IN1. Connect IN2 to the ground through a 10 capacitor. Set the switch to 2, input to IN2, then measure. CTI2 = 20log (VOUT / VIN) [dB] (5) Block crosstalk 1 Use an oscillator to input a sine wave (VIN = 1.0VP-P, f = 10MHz) to G1 and R1. Connect B1 to the ground through a capacitor. Set the switch to 1 and measure the B output. CTB1B = 20log (VOUTB / VING1) [dB] Similarly, CTB1G = 20log (VOUTG / VINR1) [dB] CTB1R = 20log (VOUTR / VINB1) [dB] (6) Block crosstalk 2 Use an oscillator to input a sine wave (VIN = 1.0VP-P, f = 230MHz) to G1 and R1. Connect B1 to the ground through a capacitor. Set the switch to 1 and measure the B output. CTB2B = 20log (VOUTB / VING1) [dB] Similarly, CTB2G = 20log (VOUTG / VINR1) [dB] CTB2R = 20log (VOUTR / VINB1) [dB] Multimedia ICs BA7658AFS operation •(1)Circuit Analog switches level voltage is output. The time that the synchronization separator is stopped can be set by changing the time constant attached to the synchronization signal detection pin. (4) Signal detection block When the signal input exceeds the level set inside the IC (typically 400mVP-P, VCC = 5.0V), the high level voltage is output to the color signal detection output pin. The low level voltage is output when the signal input is lower than the set level. The quiescent circuit reaction time can be set by changing the time constant attached to pin used to set the time constant for color signal detection. The signal detector stops while the high level is being input to the blanking pulse input pin, thereby preventing malfunctioning due setup signal block during the synchronization signal period. Switch between the two sets of R, G and B color signals. IN1 is selected by impressing the high level voltage on the CTL pin, IN2 by impressing the low level voltage. (2) Digital switches These switch between the two sets of HD and VD synchronization signals. HD and VD synchronization signals for IN1 are output by impressing the high level voltage on the CTL pin, HD and VD synchronization signals for IN2 by impressing the low level voltage. (3) Synchronization separation block Outputs the synchronization signals by separating them from composite signals (Sync on Green). When HD signals are being input, the synchronization signal detector stops the synchronization separator. The low The relationship between inputs and outputs Output Input HD Sync on Green HD VD Composite Sync — 䊊 䊊 — — 䊊 䊊 䊊 䊊 䊊 䊊 — 䊊 䊊 䊊 — — 䊊 䊊 — — — — — 䊊 VD — — 䊊 — — 䊊 䊊 — 䊊 䊊 䊊 — 䊊 䊊 — — — 11 Multimedia ICs BA7658AFS •Application example 0.01µF + IN1 B 2 31 1 2 0.01µF R + V 32 75Ω G H 1 47µF / 6.3V 3 30 HD OUT 47µF / 6.3V 75Ω 1 Ro 4 B OUT 29 2 0.01µF 1µF + 5 28 47µF / 6.3V VCC 5V 75Ω 6 27 0.01µF 0.01µF + 47µF / 6.3V 1 + IN2 B G OUT Ro 1µF 25 VCC 5V Signal DET 0.01µF R 220kΩ + V 26 2 8 G H 7 47µF / 6.3V 75Ω 9 24 47µF / 6.3V 4.7µF 75Ω 1 10 Signal DET OUT 23 2 Signal: H No Signal: L DET 0.01µF + 11 22 47µF / 6.3V Blanking pulse 75Ω N. C. Sync Sepa 12 13 21 N. C. 20 470kΩ 14 2 1 470pF 19 Syncsepa out Logic 15 VD OUT CTL IN1: H IN2: L Ro 16 17 Fig. 3 12 18 R OUT Multimedia ICs BA7658AFS •Electrical characteristic curves 10 2 0 0 – 10 CROSSTALK: CT (dB) VOLTAGE GAIN: GV (dB) 4 –2 –4 –6 –8 – 10 – 20 – 30 – 40 – 50 – 60 – 12 – 70 – 14 – 80 1M 10M 100M 300M – 90 1M 10M FREQUENCY: f (Hz) 100M 300M FREQUENCY: f (Hz) Fig. 4 Frequency characteristics Fig. 5 Interchannel crosstalk characteristics Operation notes •Resistors attached to the analog switch block output Frequency characteristics of the analog switches vary according to the output load capacity. Set the attached resistor so that frequency characteristics remain flat. A too-large resistance will lower the characteristics peak. •External dimensions (Units: mm) 17 1 16 5.4 ± 0.2 32 0.8 0.36 ± 0.1 0.15 ± 0.1 1.8 ± 0.1 0.11 7.8 ± 0.3 13.6 ± 0.2 0.3Min. 0.15 SSOP-A32 13