ROHM BA9756FS

BA9756FS
Multimedia ICs
High-voltage control circuit for CRT
displays
BA9756FS
The BA9756FS is LSIs that control CRT anode voltage in multi-scan monitors and similar devices, using
a chopper-type voltage control circuit. The internal sawtooth wave generator circuit uses automatic gain control
(AGC) to enable coverage of a wide range from 30kHz to over 150kHz. The BA9756FS is equipped with an internal
high-precision voltage source featuring an output voltage precision of ± 0.7%.
!Block diagram
!Applications
CRT displays, HDTVs, others
20
19
18
17
16
15
VCC1
!Features
1) Internal chopper-type voltage
control circuit.
2) Internal buffer circuit enables direct
drive of Power MOSFET for output
drive.
3) Internal high-precision voltage
source offers output voltage
precision of ± 0.7%.
11
–
SAW GEN.
9.0V
REF
M/M
GND
2
3
4
5
Symbol
Limits
Unit
Power supply voltage 1
VCC1
18
V
Power supply voltage 2
VCC2
20
V
750*1
Pd
mW
Operating temperature
Topr
- 25~+80
˚C
Storage temperature
Tstg
- 55~+125
˚C
*1 When mounted on a 70mm × 70mm × 1.6mm glass epoxy board.
Reduced by 7.5mW for each increase in Ta of 1˚C over 25˚C.
!Recommended operating conditions (Ta=25°C)
Parameter
12
+
+
!Absolute maximum ratings (Ta=25°C)
Power dissipation
13
Buffer
–
+
1
Parameter
14
VCC2
Symbol
Min.
Typ.
Max.
Unit
Power supply voltage 1
VCC1
11
-
17
V
Power supply voltage 2
VCC2
11
-
17
V
6
7
8
9
10
BA9756FS
Multimedia ICs
!Pin descriptions
Pin No.
1
Pin name
Function
ERRIN
This is the recovery voltage input pin.
(error amplifier + input)
2
AGC
(constant for AGC)
3
N.C.
4
SAWOUT
(constant for
sawtooth wave)
5
N.C.
6
Capacitance should be determined taking into consideration the linearity at the minimum
oscillation frequency, and the response time when the frequency changes.
See*1.
This is the output pin for optimized sawtooth waves, based on the maximum oscillation
frequency.
fMax120kHz C = 1000pF fMax100kHz C = 1200pF
fMax 80kHz C = 1500pF fMax 60kHz C = 2000pF
See*1.
MMCR
A charging resistance of 4.7kΩ or higher should be used.
(delay constant for
The threshold level is 4.5V.
monostable multivibrator)
7
HDIN
(Hd pulse input)
The threshold level is approximately 2.1V.
8
VREF9
(Ref 9V output)
An output deviation of ± 0.7% is assured through trimming.
9
N.C.
10
GND
(Signal GND)
This may be shared with the power GND, but make sure sufficiently stable grounding
is provided.
11
GND
(Power GND)
This may be shared with the signal GND, but make sure sufficiently stable grounding
is provided.
12
PWMOUT
(PWM output)
If a voltage of less than GND or higher than VCC is applied because of external back
electromotive force, a protective diode should be inserted (*2).
If the protector circuit and thermal shutdown circuit are tripped, output is fixed at high (VCC)
level.
13
N.C.
14
VCC2
(Power VCC)
A decoupling capacitor should be positioned in the vicinity of this pin.
15
DTC IN
(dead time
control input)
The voltage input to this pin enables restriction of the PWM output duty.
The duty control is between 0V and 9V, and approximately 0% to 100% is enabled. At 0V,
however, restrictions apply.
The minimum pulse width for the PWM is 0.85µs (Typ. at 90kHz).
16
See*1.
See*1.
ERROUT
This is the output pin for the error amplifier.
(error amplifier output)
17
N.C.
See*1.
18
N.C.
See*1.
19
20
ERRREF
This is the input pin for the reference voltage.
(error amplifier input)
VCC1
A decoupling capacitor should be positioned in the vicinity of this pin.
(signal VCC)
*1 N.C. pin processing
In order to boost the thermal effect of the IC, we recommend connecting this to the GND or to an adjacent pin.
*2
11
12
14
VCC2
+
TO FET gate
BA9756FS
Multimedia ICs
!Input / output circuits
VCC
VCC
VCC
1
ERRIN
2
4
AGC
SAW OUT
Fig.1
Fig.2
VCC
VCC
7
6
HDIN
MMCR
Fig.3
Fig.4
BA9756FS
Multimedia ICs
VCC2
VCC
14
8
VREG9
12
PWMOUT
11
PGND
Fig.5
Fig.6
VCC1
VCC
VCC
20
19
ERRREF
15
DTC
10
GND
16
ERROUT
Fig.7
Fig.8
Fig.9
BA9756FS
Multimedia ICs
!Electrical characteristics (unless otherwise noted, Ta=25°C, Vcc=15V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Test Circuit
Input high level voltage
VIH
3.0
-
VCC
V
-
Fig.10
Input low level voltage
VIL
-
-
1.5
V
-
Fig.10
Input high level current
IIH
-
360
Input low level current
IIL
-
0
Tdl
1.80
HOS
<Hd input pin>
530
µA
-1
µA
2.15
2.50
µs
8.0
9.0
10.0
V
Fig.10
VIN = 15V
-
Fig.10
<Monostable multivibrator>
Delay time
R = 10kΩ,C = 220pF
Fig.10
<SAW GEN>
Output high level
-
Fig.10
Output low level
LOS
0
0.15
0.35
V
Output level f characteristic
fSAW
150
200
-
kHz
VREF9
8.937
9.0
9.063
V
-
Fig.10
Irmax9
10
-
-
mA
-
Fig.10
TREF9
-
Tdow
100
-1dB drop from 30kHz
Fig.10
<Reference voltage supply>
Output voltage
Max. output current
Output voltage thermal
characteristics
Thermal shutdown
± 0.1
-
± 0.3
-
%
deg
—
Guaranteed design parameter
Fig.10
at Ta = 25→0°C, 25→75°C
Guaranteed design parameter
Fig.10
BA9756FS
Multimedia ICs
!Measurement circuits
Vs15
A
Is12
2
1
2
1
SW12
SW15
V
20
19
18
17
16
15
14
13
12
11
VCC
Buffer
SAW GEN.
9.0V
ref
M/M
GND
1
2
3
4
5
6
7
+
8
220µ
6V
Vs6
1µ
SW4
1
2
SW6
1
+
10
V
A
SW7
1500p
SW8
10k
2
9
1
2
1
3
2
Is8
SG7
220p
VCC
Fig.10
1
5k
2
100k
SWb
100k
SWa
2
VCC
2
1
V
SWc
1
100k
SW1
1
16
6.8k
SW16
1
Vs19
15µ
+
2
16
1
Vs1
19
19
50
1
A
5.6k
+
V
10µ
2
50
SG1
Fig.11
50
Fig.12
BA9756FS
Multimedia ICs
!Measurement conditions (unless otherwise noted, Ta=25°C, Vcc=15V)
Parameter
Switch position
Symbol
Conditions
SW1 SW3 SW4 SW5 SW6 SW9 SW11 SW12 SWa SWb SWc
ICC
-
1
1
1
1
1
1
-
-
-
-
-
Input bias current
IB
1
1
1
1
1
1
1
1
1
1
1
Vs1 = 6V, IB = - VIN ×10–5
Input offset voltage
VIO
1
1
1
1
1
1
1
1
2
2
2
Vs1 = 6V, VIO = (V12 – 6) × 10–2
Output low level voltage
VOL
1
1
1
1
1
1
1
1
2
1
1
Vs1 = 5V, Vs13 = 6V
Output high level voltage
VOH
1
1
1
1
1
1
1
1
2
1
1
Vs1 = 7V, Vs13 = 6V
Open voltage gain
AV
-
1
1
1
1
1
1
-
-
-
-
SG1: f = 1kHz,VIN = 10mVP-P
Max. output current
IOM
1
1
1
1
1
1
1
2
2
1
1
Vs1 = 7V, Vs13 = 6V
VOH
-
2
1
1
1
2
2
-
-
-
-
Vs3 = 6V,Vs11 = 5V, Is9 = - 100mA
1
1
2
2
-
Circuit current
<Error amplifier>
*1
<PWM amplifier>
Output high level voltage
Output low level voltage
VOL
-
2
1
-
-
-
Vs3 = 6V,Vs11 = 7V, Is9 = ± 100mA
Rise time
Tr
-
1
1
3
1
1
1
-
-
-
-
SG5: f = 90kHz
*2
Fall time
Td
-
1
1
3
1
1
1
-
-
-
-
SG5: f = 90kHz
*2
TMin
-
1
1
3
1
1
1
-
-
-
-
SG5: f = 90kHz
*2
Input high level voltage
VIH
-
1
1
3
1
1
1
-
-
-
-
SG5: f = 90kHz
*2
Input low level voltage
VIL
-
1
1
3
1
1
1
-
-
-
-
SG5: f = 90kHz
*2
Input high level current
IIH
-
1
1
2
1
1
1
-
-
-
-
-
Input low level current
IIL
-
1
1
1
1
1
1
-
-
-
-
-
Tdl
-
1
2
3
1
1
1
-
-
-
-
SG5: f = 90kHz, Vs4 = 9V *2
Output high level
HOS
-
1
1
3
1
1
1
-
-
-
-
SG5: f = 90kHz
*2
Output low level
LOS
-
1
1
3
1
1
1
-
-
-
-
SG5: f = 90kHz
*2
Output level f
characteristic
fsaw
-
1
1
3
1
1
1
-
-
-
-
SG5: f = 30kHz
Min. pulse width
<HD input pin>
<Monostable multivibrator>
Delay time
<SAW GEN>
*3
<Reference voltage supply>
Output voltage
VREF9
-
1
1
1
1
1
1
-
-
-
-
Max. output current
Irmax9
-
1
1
1
2
1
1
-
-
-
-
Is = – 10mA
1
1
1
1
1
1
-
-
-
-
Ta = 0˚C→ 75 ˚C
1
1
1
1
1
1
-
-
-
-
Ta = 75˚C
Output voltage thermal
characteristic
Thermal shutdown
TREF9
Tdow
-
-
*4
*1 The pin 12 output amplitude should be set to VO. AV = 20log (VO / VIN) [dB]
*2 For the method by which the output waveform is determined, refer to Fig. 14.
*3 An input frequency should be measured that produces a level of -1dB for a high output level (HOS) for the sawtooth waveform at an input frequency of
30kHz.
*4 The temperature is measured at the point where the temperature is raised to above Ta = 75˚C and the output level of pin 9 is high.
BA9756FS
Multimedia ICs
!Application example
Hd in
10kΩ
220µF
10
9
GND
N.C.
+
1500pF
220pF
8
7
6
5
4
N.C.
REF
9.0V
+
3
2
SAW GEN.
–
+
+
+
–
N.C.
12
13
14
1
N.C.
M/M
Buffer
11
1µF
15
16
N.C.
N.C.
17
18
VCC
19
20
15V
15V
+
+
+
+B
HRC
FBT
Anode Voltage
Hd pulse
Note: N.C. pin processing
In order to boost the thermal effect of the IC, we recommend connecting this to the GND or to an adjacent pin.
Fig.13
BA9756FS
Multimedia ICs
Input / output waveforms
3.0V
SG5
(Hd IN)
1.5V
HOS
(SAW OUT)
LOS
100%
90%
50%
(PWM OUT)
10%
0%
Td
Tdl
TMin.
Fig.14
!External dimensions (Units: mm)
BA9756FS
1
10
5.4 ± 0.2
11
0.8
0.15 ± 0.1
1.8 ± 0.1
0.11
7.8 ± 0.3
8.7 ± 0.2
20
0.36 ± 0.1
0.3Min.
0.15
SSOP-A20
Tr