LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability February 2012 Technical Note TN1196 Introduction This technical note describes a 1000BASE-X physical/MAC layer Gigabit Ethernet interoperability test between a LatticeECP3™ device and the Marvell 88E1111 PHY. Specifically, the document discusses the following topics: • Overview of LatticeECP3 devices and Marvell 88E1111 PHY • 1000BASE-X physical/MAC layer interoperability setup and results LatticeECP3 Overview The LatticeECP3 (EConomy Plus, third generation) family of FPGA devices is optimized to deliver high-performance features such as an enhanced DSP architecture, high-speed SERDES and high-speed source synchronous interfaces in an economical FPGA fabric. This combination is achieved through advances in device architecture and the use of 65nm technology, making the devices suitable for high-volume, high-speed, low-cost applications. The LatticeECP3 device family also features high-speed SERDES with dedicated PCS functions. High jitter tolerance and low transmit jitter allow the SERDES and PCS blocks to be configured to support an array of popular data protocols including PCI Express, SMPTE, Ethernet (XAUI, Gigabit Ethernet and SGMII) and CPRI. Transmit Preemphasis and Receive Equalization settings make the SERDES suitable for transmission and reception over various forms of media. LatticeECP3 PCS Each channel of PCS logic contains dedicated transmit and receive SERDES for high-speed, full-duplex serial data transfer at data rates up to 3.2 Gbps. The PCS logic in each channel can be configured to support an array of popular data protocols including Gigabit Ethernet, XAUI, PCI Express, Serial RapidIO, CPRI, OBSAI, SD-SDI, HD-SDI and 3G-SDI. In addition, the protocol-based logic can be fully or partially bypassed in a number of configurations to allow users flexibility in designing their own high-speed data interface. The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA logic. Each SERDES pin can also be independently DC-coupled and can allow for both high-speed and low-speed operation on the same SERDES pin for applications such as Serial Digital Video. LatticeECP3 1000BASE-X PCS/TSMAC Reference Design Figure 1 describes the Tri-Speed Ethernet MAC/SGMII reference design targeting the LatticeECP3 device. The reference design includes the SGMII and Gigabit Ethernet IP Core, the Tri-Speed Ethernet MAC IP Core, as well as test logic. ORCAstra logic controls and monitors the test logic, Tri-Speed Ethernet MAC and SGMII/Gb Ethernet PCS IP core registers. Register mapping information for all registers is described in Appendix A. Please refer to the Tri-Speed Ethernet MAC IP Core User’s Guide and the SGMII and Gb Ethernet PCS IP Core User’s Guide for more information on the specific IP registers. © 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 1 tn1196_01.1 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability Figure 1. LatticeECP3 Tri-Speed Ethernet MAC + SGMII and Gb Ethernet IP Reference Design MAC FIFO Client Interface Test Logic SERDES GMII Len pkt_gen Write Control Add Swap & Loopback Tx FIFO Control Data Len Swap Address /filter pkt Read Control Rx FIFO Control Data Tri-Speed Ethernet MAC SGMII and SERDES SGMII Registers ORCAstra Interface Register Interface Rate Resolution JTAG Lattice SGMII/Gb Ethernet PCS IP Core The Lattice SGMII and Gb Ethernet PCS IP core implements the PCS functions of both the Cisco SGMII and the IEEE 802.3z (1000BaseX) specifications. The PCS mode is pin-selectable. This IP core may be used in bridging applications and/or PHY implementations. Features: • Implements PCS functions of the Cisco SGMII Specification, Revision 1.7 • Implements PCS functions for IEEE 802.3z (1000BaseX) • Dynamically selects SGMII/1000BaseX PCS operation • Supports MAC or PHY mode for SGMII auto-negotiation • Supports (G)MII data rates of 1Gbps, 100Mbps, 10Mbps • Provides Management Interface Port for control and maintenance • Includes Easy Connect option for seamless integration with the Lattice Tri-Speed Ethernet MAC IP core Tri-Speed Ethernet MAC IP Core The Tri-Speed Ethernet MAC transmits and receives data between a host processor and an Ethernet network. The main function of the Ethernet MAC is to ensure that the Media Access rules specified in the 802.3 IEEE standard are met while transmitting a frame of data over Ethernet. Features: • Compliant to IEEE 802.3z standard • Generic 8-bit host interface • 8-bit wide internal data path • Generic transmit and receive FIFO interface • Full-duplex operation in 1G mode 2 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability • Full- and half-duplex operation in 10/100 mode • Transmit and receive statistics vector • Programmable Inter-Packet Gap (IPG) • Multicast address filtering • Selectable MAC operating options – Classic Tri-Speed Ethernet MAC with G/MII – Gigabit MAC with GMII – SGMII Easy Connect MAC with GMII, configurable option available on LatticeECP3, LatticeECP2/M, and LatticeSC/M devices • Supports: – Full-duplex control using PAUSE frames – VLAN tagged frames – Automatic re-transmission on collision – Automatic padding of short frames – Multicast and Broadcast frames – Optional FCS transmission and reception – Optional MII management interface module – Jumbo frames of any length Marvell Alaska™ Ultra 88E1111 Overview 88E1111 Features The Alaska Ultra 88E1111 Gigabit Ethernet Transceivers is a physical layer device for Ethernet 1000BASE-T, 100BASE-TX and 10BASE-T applications. It contain all the active circuitry required to implement the physical layer functions to transmit and receive data on standard CAT 3 and CAT 5 unshielded twisted pair. The 88E1111 device supports the Gigabit Media Independent Interface (GMII), Reduced GMII (RGMII), Serial GMII (Gigabit Ethernet), the Ten-Bit Interface (TBI) and Reduced TBI (RTBI) for direct connection to a MAC/Switch port. The 88E1111 device incorporates a 1.25GHz SERDES, which may be directly connected to a fiber-optic transceiver for 1000BASE-T/1000BASE-X media conversion applications. Additionally, the 88E1111 device may be used to implement 1000BASE-T Gigabit Interface Converter (GBIC) or Small Form Factor Pluggable (SFP) modules. The Alaska Ultra 88E1111 features include: • 10/100/100BASE-T IEEE 802.3 compliant • Support for GMII, TBI, RGMII, RTBI and Gigabit Ethernet • Integrated 1.25GHz SERDES for 1000BASE-X fiber applications • The 88E1112 device also supports 100BASE-FX • Four RGMII timing modes • Three energy detect modes and a low-power COMA mode • Three loopback modes for diagnostics • Fully integrated digital adaptive equalizers, echo cancellers, and crosstalk cancellers • Advanced digital baseline wander correction • Automatic polarity correction • IEEE 802.3u compliant Auto-Negotiation 3 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability • CRC checker, packet counter • Automatic detection of fiber or copper media • Virtual Cable Tester (VCT) • Selectable MDC/MDIO interface or Two-Wire Serial Interface. Test Equipment The sections below describe the equipment used in the interoperability test. LatticeECP3 Serial Protocol Board (Revision D) Figure 2 shows the LatticeECP3 reference design and other components on the Serial Protocol Board. All board components are described in detail in EB44, LatticeECP3 Serial Protocol Board Revision D User’s Guide. An external SmartBits box auto-negotiates and transmits BASE-T frames to the Marvell 88E1111 PHY via the RJ45 connector. The Marvell PHY converts this data to 1000BASE-X and sends it to the LatticeECP3 PCS (PCSC) channel 2 SERDES inputs. The data is transferred to the SGMII/Gb Ethernet PCS IP Core and the Tri-Speed Ethernet MAC IP Core. Test Logic at the Tri-Speed Ethernet MAC client interface then loops data back in the other direction. The Tri-Speed Ethernet MAC keeps statistical information about Ethernet frames received and re-transmitted. This information can be accessed via ORCAstra. ORCAstra can also control the 88E111 internal registers via an MDIO interface from the Tri-Speed Ethernet MAC to the 88E1111. 88E1111 Hardware Configuration options such as PHY address, HWCFG_MODE and auto-negotiation abilities are all accessed using this scheme. Refer to the Alaska Ultra 88E1111 Data Sheet for further information on programmable registers. Table 1 provides a description of the LatticeECP3 Reference Design Signals accessible on the LatticeECP3 Serial Protocol Board. Figure 2. LatticeECP3 Serial Protocol Board, Revision D D16-D19: 88E1111 Speed & Duplex Mode LEDs PCSC_SMA_P/N U18B J30/ J34 PCSC_REFCLKP/N REFCLK SELECT Y2 MAC FIFO Client Interface Test Logic 125 MHz Oscillator Write Control Add Swap & Loopback Data Tx FIFO Control Len Swap Address /filter pkt Read Control Data Rx FIFO Control Register Interface GBE_MODE SGMII and SERDES ORCAstra Interface RJ-45 Connector to External Copper Ethernet Traffic SGMII Interface between PCSC CH 2 and Marvell PHY Rate Resolution SGMII_MODE 1 U1 ECP3-95-1156 ispVM/ORCAstra JTAG J12 SW1 RESET 12V J37 88E1111 Tri-Speed Ethernet MAC SGMII Registers 2 Marvell PHY U12 Len pkt_gen 8 SW14 SERDES GMII J1 LED3 (D25) PCS CH2 RX Link State Machine OK LED4 (D27) SGMII/Gb E PCS IP Autonegotiation Complete 4 LED2 (D24) PCS CH2 RX CDR Loss of Lock LED1 (D21) PCS TX PLL Loss of Lock LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability Table 1. LatticeECP3 Reference Design Signals Signal Name Signal Type LatticeECP3 Serial Protocol Board (Version C or Newer) Connection Description General Signals reset_n I SW1 Pushbutton FPGA Global active low reset Reference Design Signals LatticeECP3 SGMII/Gb Ethernet IP GBE_MODE input. This signal is controlled by SW14, switch 2. GBE_MODE I Output of SW14, switch 2 Press switch 2 down (0V) to set GBE_MODE low. The SGMII/Gb Ethernet IP is running in SGMII mode. Pull switch 2 up (3.3V) to set GBE_MODE high. The SGMII/Gb Ethernet IP is running in 1000BASE-X mode. LatticeECP3 SGMII/Gb Ethernet IP SGMII_MODE input. This input is valid when GBE_MODE=0 (SGMII mode). This signal is controlled by SW14, switch 1. SGMII_MODE I Output of SW14, switch 1 Press switch 1 down (0V) to set SGMII_MODE low. The SGMII/Gb Ethernet IP is in MAC mode. Pull switch 1 up (3.3V) to set SGMII_MODE high. The SGMII/Gb Ethernet IP is in PHY mode. PCS TX PLL LOSS OF LOCK O LED1 (D21) Red LED - LatticeECP3 Tx PLL loss of lock indication. The LED will not glow when a valid 125 MHz reference clock is provided to the LatticeECP3 PCS. PCS CH2 RX CDR LOSS OF LOCK O LED2 (D24) Yellow LED - LatticeECP3 channel 2 RX CDR loss of lock indication. The LED will not glow when valid 1.25 Gbps data is provided to the LatticeECP3 Channel 2 SERDES inputs. SGMII/GBE PCS IP AUTONEG COMPLETE O LED4 (D27) Blue LED - This LED will glow upon successful SGMII autonegotiation with the Marvell PHY. Traffic will not flow through the system unless auto-negotiation completes. LED3 (D25) Green LED - Indicates that the LatticeECP3 channel Rx Gb Ethernet link state machine is successfully synchronized to incoming Ethernet traffic. The LED will not glow when valid 1.25 Gbps Ethernet data is provided to the LatticeECP3 Channel 2 SERDES inputs. To J12 JTAG header Connect the ispVM™ USB download cable to this header PCS CH2 RX LINK STATE MACHINE OK O JTAG Signals tck I tdi I tdo O tms I PCS Quad LatticeECP3 PCS Quad C reference clock. The source of this clock is controlled by SW14, switch 8. PCSC_REFCLKP/N I Output of U18B on-board Press switch 8 down (0V) to select the Y2 125 MHz on-board clock MUX oscillator. Pull switch 8 up (3.3V) to select the J30/J34 SMA clock inputs. Spirent SmartBits 2000 Protocol Analyzer Spirent Communications’ SmartBits 2000 (SMB-2000) has become the industry standard for measuring the performance limits of everything from an emerging technology in a development lab to the largest enterprise network. The SMB-2000 is widely used to test a variety of network devices and complex network configurations, including 10/100 Mbps Ethernet, Gigabit Ethernet, ATM and Frame Relay. 5 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability Figure 3 illustrates the SMB-2000 analyzer with a 100/1000BASE-T copper module (GX-1420B, rightmost module with RJ-45 cable attached). Figure 4 illustrates the GUI command console for the SMB-2000. The GX-1420B module is also shown to the right of the screen. Figure 5 illustrates the Transmit Setup Window for the GX-1420B module. This window controls the size and field format of transmitted Ethernet frames. Figure 3. SmartBits 2000 Protocol Analyzer with 100/1000BASE-T Module Figure 4. SmartBits 2000 GUI Controls 6 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability Figure 5. SmartBits Transmit Setup Window ispVM System The ispVM System software is included with Lattice’s ispLEVER® development tool suite, and is also available as a stand-alone device programming manager. ispVM is a comprehensive design download package that provides an efficient method of programming in-system programmable devices using JEDEC and bitstream files generated by Lattice design tools and tools from other vendors. This complete device programming tool allows the user to quickly and easily download designs through an ispSTREAM to devices and includes features that facilitate ispATE™, ispTEST and ispSVF programming as well as gang-programming with DLxConnect. The ispVM system is used in this interoperability test to download the LatticeECP3 bitstream, which configures the flexiPCS™ in Gigabit Ethernet mode. Figure 6 shows a screen shot of the ispVM System. 7 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability Figure 6. ispVM System ORCAstra System The Lattice ORCAstra software is a PC-based graphical user interface that allows the user to configure the operational mode of an FPGA by programming control bits in the on-chip registers. This helps users quickly explore configuration options without going through a lengthy re-compile process or making changes to their board. Configurations created in the GUI can be saved to memory and re-loaded for later use. A macro capability is also available to support script-based configuration and testing. The GUI can also be used to display system status information in real time. Use of the ORCAstra software does not interfere with the programming of the FPGA portion of the LatticeECP3. Figure 7 is a screen shot of ORCAstra system. 8 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability Figure 7. ORCAstra System Interoperability Testing This section provides details on the 1 GbE (1000BASE-X) Physical/MAC layer interoperability between a LatticeECP3 device and the Marvell 88E1111 PHY. This interoperability tests the correct processing of Gigabit Ethernet data from the 88E1111 PHY to the Tri-Speed Ethernet MAC IP core, and then back in the reverse direction. The test verifies the ability to transfer packets across the system in an asynchronous way. LatticeECP3 Serial Protocol Board Setup • Ensure the ispVM JTAG cable is connected to the J12 header. • Ensure an RJ-45 source of Ethernet traffic (SmartBits, PC) is connected to the 88E111 to the RJ-45 J37 connector. • SW14, switch 2 should be in the upper position for Gigabit Ethernet 1000BASE-X mode and pressed down for SGMII mode. For this application, the switch is in the upper position. • SW14, switch 1 should be in the upper position for SGMII PHY mode and pressed down for SGMII MAC mode (Note: this is only valid in SGMII mode). For this application, the switch position is irrelevant. • Make sure SW14, switch 8 is pressed down (selects internal Y2 125 MHz oscillator as reference clock for the LatticeECP3 reference design). • Make sure the 88E1111 hardware configuration switches on the back of the LatticeECP3 Serial Protocol Board are set according to Table 2 (HWCFG_MODE= 1000 + other settings). Note that ORCAstra scripts are used after the LatticeECP3 loads to configure/monitor both the LattieECP3 reference design and 88E1111 registers. 9 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability Table 2. LatticeECP3 Serial Protocol Board, Alaska Ultra 88E1111 HWCFG_MODE Settings Switch#/CONFIG# Switch # Pulled Down (Other Switches in Upper Position) Selection/Value SW7/CONFIG0 8 VSS/000 SW8/CONFIG1 4 LED_LINK1000/100 SW9/CONFIG2 1 VDD/111 SW10/CONFIG3 4 LED_LINK1000/100 SW11/CONFIG4 8 VSS/000 SW12/CONFIG5 1 VDD/111 SW13/CONFIG6 8 VSS/000 SmartBits Setup The SmartBits box is configured to advertise and run at 1000BASE-T speed. The transmit Traffic Setup is as shown in Figure 5. Once a link is established and auto-negotiation completes (1000 Mbps) on both the copper and serial SERDES sides, traffic is started and SmartBits counters record statistical information on frames transmitted and received back error-free. This is shown in Figure 8. Figure 8. SmartBits Counters ORCAstra Setup After the LatticeECP3 Serial Protocol Board is powered up and the LatticeECP3 bitstream is downloaded, the following steps explain the procedure for configuring the test logic/Tri-Speed Ethernet MAC/SGMII IP/Marvell PHY registers via ORCAstra: 1. Ensure that a valid Ethernet link exists at the J37 RJ-45 connector and that the SmartBits Box is up and running. 2. Start ORCAstra from the ispLEVER installation directory 3. Select Interface > 3. ispVM JTAG USB Interface. If the Select Target JTAG Device window appears, select the first device, and click OK. 4. From the ORCAstra main window, select ORCAstra > CustomProgrammability > Scripts > VBScripts. 5. From the new window, choose File > Open > < PROJECT_PATH>\init_mac_1000BASE-X.vbs. This file is shown in Appendix B. This file configures both LatticeECP3 (MAC/SGMII AUTONEG) and Marvell PHY regis10 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability ters to run at 1000 Mbps full duplex and advertises full pause capabilities. It also configures the MAC in UNICAST mode and the local address is set to AA CD EF 12 34 56. This means that a link partner sending frames to the LatticeECP3 Serial Protocol Board will have to set the destination address to this value. Note that the SmartBits box traffic options do configure the Ethernet frames destination value to this address as shown in Figure 5. Click Run. The scripts will perform loops as it constantly checks whether auto-negotiation completes or restarts and for the link partner advertised PAUSE, ASYM pause capabilities to reconfigure its own MAC pause capabilities. 6. The 88E1111 D16-19 LED will indicate a valid copper side negotiated speed (D19 lit for dull duplex, and D18 lit for 1000 Mbps). D25 should also be green indicating a good LatticeECP3 PCS link. D21 should be blue, indicating proper 1000BASE-X side auto-negotiation is complete. To exit the loop, use the Shift key while the mouse is inside the VBScript window. Results SmartBits traffic was run for just over an hour. Figure 8 shows that about 340 million Ethernet packets were successfully transmitted and recovered error-free. Summary In conclusion, the LatticeECP3 FPGA family offers users built-in 1000BASE-X Physical/MAC layer support and is fully interoperable with the Marvell 88E1111 PHY. Technical Support Assistance Hotline: 1-800-LATTICE (North America) +1-503-268-8001 (Outside North America) e-mail: [email protected] Internet: www.latticesemi.com Revision History Date Version December 2009 01.0 Initial release. Change Summary February 2012 01.1 Updated document with new corporate logo. 11 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability Appendix A. Lattice Tri-Speed Ethernet MAC/SGMII Reference Design Test Logic Map and Bit Descriptions There are three address spaces in the test application design. The first address space (Table 3) starts at offset 0x00 and ends at 0x35. This space contains the SGMII Tri-Speed Ethernet MAC core user registers as described in the Tri-Speed Ethernet MAC IP Core User’s Guide. The second address space (Table 4) starts at offset 0x40 and ends at 0x4D. This space contains SGMII/Gb Ethernet PCS IP registers as described in the SGMII and Gb Ethernet PCS IP Core User’s Guide. The third address space (Table 5) starts at offset 0x880 and ends at 0x8C1. This space contains ID, control, status and statistics registers used by the Test Logic Application. Table 3. Tri-Speed Ethernet MAC Internal Registers Register Description Mode Register Transmit and Receive Control Register Maximum Packet Size Register Inter Packet Gap Register Mnemonic I/O Address POR Value MODE 00H - 01H 0000H TX_RX_CTL 02H - 03H 0000H MAX_PKT_SIZE 04H - 05H 05EEH IPG_VAL 08H - 09H 0048H Tri-Speed MAC Address Register 0 MAC_ADDR_0 0AH - 0BH 0000H Tri-Speed MAC Address Register 1 MAC_ADDR_1 0CH - 0DH 0000H Tri-Speed MAC Address Register 2 MAC_ADDR_2 0EH - 0FH 0000H TX_RX_STS 12H - 13H 0000H Transmit and Receive Status GMII Management Interface Control Register GMII_MNG_CTL 14H - 15H 0000H GMII Management Data Register GMII_MNG_DAT 16H - 17H 0000H VLAN Tag Length/Type Register VLAN_TAG 32H - 33H 0000H Multicast_table_0 MLT_TAB_0 22H - 23H 0000H Multicast_table_1 MLT_TAB_1 24H - 25H 0000H Multicast_table_2 MLT_TAB_2 26H - 27H 0000H Multicast_table_3 MLT_TAB_3 28H - 29H 0000H Multicast_table_4 MLT_TAB_4 2AH - 2BH 0000H Multicast_table_5 MLT_TAB_5 2CH - 2DH 0000H Multicast_table_6 MLT_TAB_6 2EH - 2FH 0000H Multicast_table_7 MLT_TAB_7 30H - 31H 0000H PAUS_OP 34H - 35H 0080H Pause_opcode Table 4. SGMII/Gb Ethernet PCS IP Registers Register Description Mnemonic I/O Address POR Value Control Register LO [7:0] Control Register 40H 00H Control Register HI [15:8] Control Register 41H 10H Status Register LO [7:0] Status Register 42H — Status Register HI [15:8] Status Register 43H — Advertised Ability LO[7:0] mr_adv_ability 48H 01H ** read-only in Advertised Ability HI[15:8] mr_adv_ability 49H 40H Link Partner Ability LO[7:0] mr_lp_adv_ability 4AH MAC Mode — Link Partner Ability HI[15:8] mr_lp_adv_ability 4BH — Auto Neg Expansion LO [7:0] Auto Neg Expansion 4CH — Auto Neg Expansion HI [15:8] Auto Neg Expansion 4DH — 12 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability The REGINTF logic block in the test application provides the address decoding for the read-only and read/write registers used by the test logic and statistics counters. All registers are 8 bits wide and are byte addressable. Note that the statistics counter registers are composed of two 8-bit registers, a low and a high byte register. Therefore, in order to access these registers, two byte accesses must be made. For example, to access all 16 bits of the RXOKCNT requires access to both 0x899 (high byte) and 0x898 (low byte). Note that since the statistics counter registers are Clear On Read (COR), the high byte should be read first, before reading the low byte, since a read of the low byte clears all the combined 16 bits of the low and high registers. The address map for the test application related resisters is provided in Table 5. Table 5. Test Logic Application Related Registers Address Register Description 0x0880 VERsion/IDentification Register 0x0881 TeST CoNTroL Register Mnemonic TYPE VERID RO TSTCNTL RW 0x0882 TeST CoNTroL Register 2 0x0883 MAC CoNTroL Register TSTCNTL_2 RW MACCNTL RW 0x0884 PAUSe TiMeR Register - Low byte PAUSTMRL RW 0x0885 PAUSe TiMeR Register - High byte PAUSTMRH RW 0x0886 FIFO Almost Full Threshold Register - Low FIFOAFTL RW 0x0887 FIFO Almost Full Threshold Register - High FIFOAFTH RW 0x0888 FIFO Almost Empty Threshold Register - Low FIFOAETL RW 0x0889 FIFO Almost Empty Threshold Register - High FIFOAETH RW 0x088a RX Status Register RXSTATUS RO/COR 0x088b TX Status Register TXSTATUS RO/COR 0x088c, 0x088d RX Packet Ignored Counter Register (L,H) 0x088e, 0x088f RX Length Check Error CouNTer (L,H) RXPICNT RO/COR RXLCECNT RO/COR 0x0890, 0x0891 0x0892, 0x0893 RX Long Frames CouNTer Register (L,H) RXLFCNT RO/COR RX Short Frames CouNTer Register (L,H) RXSFCNT RO/COR 0x0894, 0x0895 RX IPG violations CouNTer Register (L,H) RXIPGCNT RO/COR 0x0896, 0x0897 RX CRC errors CouNTer Register (L,H) RXCRCCNT RO/COR 0x0898, 0x0899 RX OK packets CouNTer Register (L,H) RXOKCNT RO/COR 0x089a, 0x089b RX Control Frame CouNTer Register (L,H) RXCFCNT RO/COR 0x089c, 0x089d RX Pause Frame CouNTer Register (L,H) RXPFCNT RO/COR 0x089e, 0x089f RX Multicast Frame CouNTer Register (L,H) RXMFCNT RO/COR 0x08a0, 0x08a1 RX Broadcast Frame CouNTer Register (L,H) RXBFCNT RO/COR 0x08a2, 0x08a3 RX VLAN tagged Frame CouNTer Register (L,H) RXVFCNT RO/COR 0x08a4, 0x08a5 TX Unicast Frame CouNTer Register (L,H) TXUFCNT RO/COR 0x08a6, 0x08a7 TX Pause Frame CouNTer Register (L,H) TXPFCNT RO/COR 0x08a8, 0x08a9 TX Multicast Frame CouNTer Register (L,H) TXMFCNT RO/COR 0x08aa, 0x08ab TX Broadcast Frame CouNTer Register (L,H) TXBFCNT RO/COR 0x08ac, 0x08ad TX VLAN tagged Frame CouNTer Register (L,H) 0x08ae, 0x08af TX BAD FCS Frame CouNTer Register (L,H) TXVFCNT RO/COR TXBFCCNT RO/COR TXJFCNT RO/COR 0x08b0, 0x08b1 TX Jumbo Frame CouNTer Register (L,H) 0x08b2, 0x08b3 Unused 0x08b4, 0x08b5 TX Packet Generator DEST ADD (B1,B2) PG_DA_W1 RW 0x08b6, 0x08b7 TX Packet Generator DEST ADD (B3,B4) PG_DA_W2 RW 0x08b8, 0x08b9 TX Packet Generator DEST ADD (B5,B6) PG_DA_W3 RW 0x08ba, 0x08bb TX Packet Generator SRC ADD (B1,B2) PG_SA_W1 RW 0x08bc, 0x08bd TX Packet Generator SRC ADD (B3,B4) PG_SA_W2 RW 13 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability Table 5. Test Logic Application Related Registers Address Register Description Mnemonic TYPE 0x08be, 0x08bf TX Packet Generator SRC ADD (B5,B6) PG_SA_W3 RW 0x08c0, 0x08c1 TX Packet Generator PYLD LEN (L,H) PG_PL RW 0x08c2 - 0x0FFF Unused Register Bit Descriptions 0x0880 VERsion/IDentification Register default value = 0xA3 0x0881 TeST CoNTroL Register default value = 0x00 VERID Read Only TSTCNTL Read/Write bit_0 = destination/source address swap - 1 = swap, 0 = no swap bit_1 = loop back enable - 1 = loopback, 0 = no loopback bit_2 = reset_phy_n - 1 = no reset, 0 = reset PHY device bit_3 = pkt_loop_clksel 1 = sys_clk tied to rx_clk, 0 = sys_clk from external pin bit_4 = flag_large_pkt_en – 1 = enables Rx pkts larger than those set in Max_PKT_SIZE reg to be flagged bit_5 = flag_errored_pkt_en – 1 = enables Rx errored pkts (Rx_error set) to be flagged bit_6 = flag_pause_pkt_en – 1 = enables pause pkts be flagged bit_7 = drop_flagged_en – 1 = Enables the Discarding of flagged pkts. 0x0882 TeST CoNTroL Register 2 default value = 0x00 TSTCNTL 2 Read/Write bit_0 = pkt_gen_en – 1 = enable Tx packet generator bit_1 = pkt_mode[0] – mode 00 = gen single pkt, 01 = continous pkts, 10 = a burst of pkts bit_2 = pkt_mode[1] – mode 00 = gen single pkt, 01 = continous pkts, 10 = a burst of pkts bit_3 = pkt_gen_burst_size [0] = 0000 – 1 pkt, 0001 – 2pkts , …, 1111 – 15 pkts bit_4 = pkt_gen_burst_size [1] = 0000 – 1 pkt, 0001 – 2pkts , …, 1111 – 15 pkts bit_5 = pkt_gen_burst_size [2] = 0000 – 1 pkt, 0001 – 2pkts , …, 1111 – 15 pkts bit_6 = pkt_gen_burst_size [3] = 0000 – 1 pkt, 0001 – 2pkts , …, 1111 – 15 pkts bit_7 = not used 0x0883 MAC CoNTroL Register default value = 0x00 MACCNTL Read/Write bit_0 = send pause request - 1 = send request, 0 = don't send request This reg bit gets ORed with the tx_fifo almost full signal. The ORed output sets the tx_sndpausreq pin on the tsmac core - see TSMAC user’s guide for more information. bit_1 = fifo control frame This reg bit sets the tx_fifoctrl pin on the Tri-Speed Ethernet MAC IP Core. See the Tri-Speed Ethernet MAC IP Core User’s Guide for more information. bit_2 = Not used. bit_3 = tx_fifo empty This register bit is “OR’d” with the tx_fifo empty signal. The OR’d output sets the tx_fifo_empty pin on the Tri-Speed Ethernet MAC IP Core. See the Tri-Speed Ethernet MAC IP Core User’s Guide for more information. Note that by setting this bit you can mimic the TX FIFO being empty. 14 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability bit_4 = ignore next packet This register bit sets the ignore_next_pkt pin on the Tri-Speed Ethernet MAC IP Core. See the Tri-Speed Ethernet MAC IP Core User’s Guide for more information. bit_5 = Rx_fifo_flush – 1 = flush Rx FIFO bit_6 = Tx_fifo_flush – 1 = flush Tx FIFO bit_7 =Not used. 0x0884 PAUSe TiMeR Register - Low byte 0x0885 PAUSe TiMeR Register - High byte default value = 0x0000 PAUSTMRL Read/Write PAUSTMRH Read/Write Low Register: bit[7:0] = pause timer low bits These register bits set the tx_sndpaustim[7:0] pins on the Tri-Speed Ethernet MAC IP Core. See the TriSpeed Ethernet MAC IP Core User’s Guide for more information. High Register: bit[7:0] = pause timer high bits These register bits set the tx_sndpaustim[15:8] pins on the Tri-Speed Ethernet MAC IP Core. See the Tri-Speed Ethernet MAC IP Core User’s Guide for more information. 0x0886 FIFO Almost Full Threshold Register - Low 0x0887 FIFO Almost Full Threshold Register - High default value = 0x0000 FIFOAFTL Read/Write FIFOAFTH Read/Write Low Register: bit[7:0] = FIFO Almost Full Threshold - Low These reg bits set the loopback fifo threshold [7:0] bits High Register: bit[0] = FIFO Almost Full Threshold - High This reg bit set the loopback fifo [8] bit bit[7:1] = Not Used 15 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability 0x0888 FIFO Almost Empty Threshold Register - Low 0x0889 FIFO Almost Empty Threshold Register - High default value = 0x0000 FIFOAETL Read/Write FIFOAETH Read/Write Low Register: bit[7:0] = FIFO Almost Empty Threshold - Low These register bits set the loopback FIFO threshold [7:0] bit. High Register: bit[0] = FIFO Almost Empty Threshold - High This register bit sets the loopback FIFO [8] bit. bit[7:1] = Not used. 0x088a RX Status Register default value = 0x00 RXSTATUS Read Only/clear on read 0x088b TX Status Register default value = 0x00 TXSTATUS Read Only/clear on read RX status: bit_0 = latches rx_error value from tsmac core pin bit_1 = latches rx_fifo_error value from tsmac core pin bit_2 = latches rx_fifo_full value from test logic loopback fifo bit_3 = Not used bit_4 = Not used bit_5 = Not used bit_6 = Not used bit_7 = Not used TX status: bit_0 = latches tx_discfrm value from tsmac core pin bit_1 = latches tx_fifo_full value from test logic loopback fifo bit_2 = Not used bit_3 = Not used bit_4 = Not used bit_5 = Not used bit_6 = Not used bit_7 = Not used The following counter registers are all 16 bits with 8-bit low and 8-bit high address locations. The counters count different Rx and Tx statistics as defined by the statistics vectors in the Tri-Speed Ethernet MAC IP Core User’s Guide. All counters have a power-on default value of 0x0000. 0x088c 0x088e 0x0890 0x0892 0x0894 0x0896 RX Packet Ignored Counter Register RX Length Check Error CouNTer RX Long Frames CouNTer Register RX Short Frames CouNTer Register RX IPG violations CouNTer Register RX CRC errors CouNTer Register RXPICNT RXLCECNT RXLFCNT RXSFCNT RXIPGCNT RXCRCCNT 16 RO/COR RO/COR RO/COR RO/COR RO/COR RO/COR LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability 0x0898 0x089a 0x089c 0x089e 0x08a0 0x08a2 RX OK packets CouNTer Register RX Control Frame CouNTer Register RX Pause Frame CouNTer Register RX Multicast Frame CouNTer Register RX Broadcast Frame CouNTer Register RX VLAN tagged Frame CouNTer Register RXOKCNT RXCFCNT RXPFCNT RXMFCNT RXBFCNT RXVFCNT RO/COR RO/COR RO/COR RO/COR RO/COR RO/COR 0x08a4 0x08a6 0x08a8 0x08aa 0x08ac 0x08ae 0x08b0 TX Unicast Frame CouNTer Register TX Pause Frame CouNTer Register TX Multicast Frame CouNTer Register TX Broadcast Frame CouNTer Register TX VLAN tagged Frame CouNTer Register TX BAD FCS Frame CouNTer Register TX Jumbo Frame CouNTer Register TXUFCNT TXPFCNT TXMFCNT TXBFCNT TXVFCNT TXBFCCNT TXJFCNT RO/COR RO/COR RO/COR RO/COR RO/COR RO/COR RO/COR 17 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability Appendix B. init_mac_1000BASE-X.vbs ORCAstra Visual Basic Script Sub Main() 'NOTE; 1000 Mbps Half Duplex is not supported Call V.SPut(&H00800,&h00) ' to host bus - mode reg 00 DISABLE TX/RX Call V.SPut(&H00884,&h0F) ' TX PAUTE TIME LOW BYTE-0F Call V.SPut(&H00886,&hC1) 'fifo AFL C1 Call V.SPut(&H00887,&h01) 'fifo AFH 01 Call V.SPut(&H00888,&h05) 'fifo AEL 05 Call V.SPut(&H00881,&hFE) 'tstcntl (b0=swap,b1=loop_en,b2=reset_phy_n,b3(0=sys_clk from external pin),b4=flaglargepackets,b5=flarerrorpkt,b6=flagpause,b7-dropflagged)-FE ' 1518 bytes = 0x5ee 'Call V.SPut(&H008b2,&h77) 'max_pkt_sz L EE 'Call V.SPut(&H008b3,&hA0) 'max_pkt_sz H 05 ' Pkt generator registers Call V.SPut(&H008b4,&h0A) Call V.SPut(&H008b5,&h0B) Call V.SPut(&H008b6,&h0C) Call V.SPut(&H008b7,&h0D) Call V.SPut(&H008b8,&h0E) Call V.SPut(&H008b9,&h0F) Call V.SPut(&H008ba,&h01) Call V.SPut(&H008bb,&h02) Call V.SPut(&H008bc,&h03) Call V.SPut(&H008bd,&h04) Call V.SPut(&H008be,&h05) Call V.SPut(&H008bf,&h06) ' ' ' ' ' ' ' ' ' ' ' ' ' 46 bytes = 0x2e Call V.SPut(&H008c0,&h2E) ' Call V.SPut(&H008c1,&h00) ' ' ' ' ' ' ' ' ' ' pkt_gen_destadd_B1 0A pkt_gen_destadd_B2 0B pkt_gen_destadd_B3 0C pkt_gen_destadd_B4 0D pkt_gen_destadd_B5 0E pkt_gen_destadd_B6 0F pkt_gen_srcadd_B1 01 pkt_gen_srcadd_B2 02 pkt_gen_srcadd_B3 03 pkt_gen_srcadd_B4 04 pkt_gen_srcadd_B5 05 pkt_gen_srcadd_B6 06 pkt_gen_pyld_len L 2e pkt_gen_pyld_len H ' MDIO registers `ifdef MIIM_MODULE Call V.SPut(&H00816,&h00) ' to - MDIO DATA reg Call V.SPut(&H00817,&h80) ' to - MDIO DATA reg Call V.SPut(&H00814,&h00) ' to - MDIO ACCESS CTL Call V.SPut(&H00815,&h21) ' to - MDIO ACCESS CTL #20000 jtag_drv.JTAG_read_byte(&H00814, read_data) ' to jtag_drv.JTAG_read_byte(&H00815, read_data) ' to `endif ' MAC registers AA CD EF 12 34 56 Call V.SPut(&H0080a,&hCD) Call V.SPut(&H0080b,&hAA) Call V.SPut(&H0080c,&h12) Call V.SPut(&H0080d,&hEF) Call V.SPut(&H0080e,&h56) Call V.SPut(&H0080f,&h34) ' ' ' ' ' ' MAC MAC MAC MAC MAC MAC Addr Addr Addr Addr Addr Addr reg reg reg reg reg reg reg reg - MDIO ACCESS CTL reg - MDIO ACCESS CTL reg 0 0 1 1 2 2 CD AA 12 EF 56 34 'Don't Drop Control (will be dropped by test logic), UNICAST :9A Call V.SPut(&H00802,&h9A) ' to host bus - TX_RX_CTL H reg 9A Call V.SPut(&H00803,&h00) ' to host bus - TX_RX_CTL L -NO short pkts 18 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability '12 Bytes IPG Call V.SPut(&H00808,&h0C) ' to host bus - IPG reg 0C 'Gbit enable Call V.SPut(&H00800,&h0F) ' to host bus - mode reg 0F 'WRITE TO 88E1111 CONFIG REGS 'write to register 22 to switch to page 0 (copper mode) Temp0="&H00" 'Most significant byte Temp1="&H00" 'Least significant , page 0 'GMII_MNGMT_DAT [15:0] Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 22 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'write to register 4 (COPPER AUTONEG register 'Most significant byte,bits 15=NP,14=Ack,13=remotefault,12=reserved 'Most significant byte,bits 11(asym pause=1),10(Pause=1),9=100BASE-T4,8=100BASE-TX-FD Temp0="&H0C" 'Least significant byte,bits 7=100BASE-TX-HD,6=10BASE-TX-FD),5=10BASE-TX-HD,4=0 'Least significant byte,bits 3-0=0001 Temp1="&H01" 'Least significant byte,don't advertise 10/100 speeds 'GMII_MNGMT_DAT [15:0] Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 4 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'write to register 9 (COPPER 1000BASE-T control register 'bits 15-13=000(NORMAL),12=0=Automatic Master Slave 'bits 11=0=ManualconfigSlave),10=0(Prefer single port),9=1000BASE-T-FD,8=1000BASE-T-HD Temp0="&H02" 'Most significant byte,bit9(Full Duplex=1), bit8(Half Duplex=0), 'Least significant byte,bits 7-0=RESERVED Temp1="&H00" 'Least significant Reserved 'GMII_MNGMT_DAT [15:0] Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 9 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'write to register 16 (PHY SPECIFIC control register Temp0="&H03" 'Most significant byte Temp1="&H68" 'Least significant , bit4=Disable 125CLK=0 'GMII_MNGMT_DAT [15:0] Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 16 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr 19 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'write to register 27 (Extended PHY SPECIFIC status register Temp0="&H84" 'Most significant byte, bit15=1 (disable copper/fiber auto detection Temp1="&H88" 'Least significant , bit3:0=HWCFG_MODE=1000=GBIC MODE 'GMII_MNGMT_DAT [15:0] Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 27 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'write to register 22 to switch to page 1 (fiber mode) Temp0="&H00" 'Most significant byte Temp1="&H01" 'Least significant , page 1 'GMII_MNGMT_DAT [15:0] Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 22 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'write to register page 1, reg 0 (Fiber Control Register to enable SGMII AN 'BIT15=Reset,BIT14=Loopback,BIT13=SPEED(0), BIT12=ANEGENABLE 'BIT11=PWRDWN,BIT10=Isolate,BIT9=ANRESTART, BIT8=ENDUPLEX Temp0="&H11" 'Most significant byte 'BIT7=ENCOL,BIT6=SPEED(1),BIT5:4=RESERVED 'BIT3:0=RESERVED Temp1="&H40" 'Least significant 'GMII_MNGMT_DAT [15:0] Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 0 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'PROGRAM Lattice SGMII AN register 'USE 1000BASE-X ADV FORMAT 'DEVICE ALSO DOES NOT ADVERTISE PAUSE ' mr_adv_ability[7:0], bit7=PAUSE=1,bit6=HALFDUP=0,bit5=FULLDUP=1,bit4:0=RES=00000 Call V.SPut(&H00848,&hA0) ' mr_adv_ability[7:0] A0 ' mr_adv_ability[15:8], bit15=NP=0,bit14=RES=0,bit13:12=REmoreFault=00,bit11:9=RES=000,bit8=ASYM_PAUSE=1 Call V.SPut(&H00849,&h01) ' mr_adv_ability[15:8] 01 ' mr_autoneg expansion [7:0], bit1=mr_page_rx=0 Call V.SPut(&H0084C,&h00) ' mr_autoneg expansion [7:0] 00 ' mr_control[15:8], bit 15=ANRESET=0, bit12=ANENABLE=1, bit9=ARRESTART=1 Call V.SPut(&H00841,&h12) ' mr_control[15:8] 12 V.Wait(100) 'write to register 22 to switch to page 0 (copper mode) Temp0="&H00" 'Most significant byte Temp1="&H00" 'Least significant , page 0 'GMII_MNGMT_DAT [15:0] 20 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 22 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'write to register page 0, reg 0 (Copper Control Register to Soft Reset 'BIT15=Reset,BIT14=Loopback,BIT13=SPEED(0), BIT12=ANEGENABLE 'BIT11=PWRDWN,BIT10=Isolate,BIT9=ANRESTART, BIT8=ENDUPLEX Temp0="&H91" 'Most significant byte 'BIT7=ENCOL,BIT6=SPEED(1),BIT5:4=RESERVED 'BIT3:0=RESERVED Temp1="&H40" 'Least significant 'GMII_MNGMT_DAT [15:0] Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 0 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'write to register 22 to switch to page 0 (copper mode) Temp0="&H00" 'Most significant byte Temp1="&H00" 'Least significant , page 0 'GMII_MNGMT_DAT [15:0] Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 22 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'V.Show_Display() 'V.Clear_Display() 'write to register 22 to switch to page 0 (copper mode) Temp0="&H00" 'Most significant byte Temp1="&H00" 'Least significant , page 0 'GMII_MNGMT_DAT [15:0] Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 22 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'V.Echo("PAGE 0, REG 1 : Status Register-Copper [15:0]:") addr = 1 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H00)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'GMII_MNGMT_DAT [15:0] Temp0 = V.SGet(&H00816) '[7:0] Temp1 = V.SGet(&H00817) '[15:8] Total = Temp0 + (Temp1*2^8) myhex = hex(Total) 'V.Echo("BITS 15-9 are ABILITY registers") 'V.Echo("BIT15=100BASE-T4,BIT14=100BASE-X-FD,BIT13=100BASE-X-HD), BIT12=10Mbps-FD") 21 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability 'V.Echo("BIT11=10Mbps-HD ,BIT10=100BASE-T2-FD,BIT9=100BASE-T2-HD, BIT8=ExtendedStatus") 'V.Echo("BIT7=RESERVED,BIT6=MFPreambSupp,BIT5=Copper-AN-Complete,BIT4=COPPER_REMOTE_FAULT") 'V.Echo("BIT3=AN_ABILITY(1),BIT2=Copper_LINK_STATUS,BIT1=JABBER_DETECTED,BIT0=EXTENDEDREGISTERS") 'V.Echo("=0x"& HexX(Total,4) &"") 'V.Echo("") ANStatusReg=HexX(Total,4) '2 bytes 'V.Echo("PAGE 0, REG 1 : Status Register-Copper [15:0]:= 0x" & ANStatusReg &"") ANcomplete= "&H" & ANStatusReg And &H0020 'bit 5 'V.Echo("ANcomplete= 0x" & HexX(ANcomplete,4) &"") Do Do until ( ANcomplete <> &H0000) 'wait until ANcomplete bit is 1 'V.Echo("WAITING FOR ANCOMPLETE=1") 'write to register 22 to switch to page 0 (copper mode) Temp0="&H00" 'Most significant byte Temp1="&H00" 'Least significant , page 0 'GMII_MNGMT_DAT [15:0] Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 22 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'V.Echo("PAGE 0, REG 1 : Status Register-Copper [15:0]:") addr = 1 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H00)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'GMII_MNGMT_DAT [15:0] Temp0 = V.SGet(&H00816) '[7:0] Temp1 = V.SGet(&H00817) '[15:8] Total = Temp0 + (Temp1*2^8) myhex = hex(Total) 'V.Echo("BITS 15-9 are ABILITY registers") 'V.Echo("BIT15=100BASE-T4,BIT14=100BASE-X-FD,BIT13=100BASE-X-HD), BIT12=10Mbps-FD") 'V.Echo("BIT11=10Mbps-HD ,BIT10=100BASE-T2-FD,BIT9=100BASE-T2-HD, BIT8=ExtendedStatus") 'V.Echo("BIT7=RESERVED,BIT6=MFPreambSupp,BIT5=Copper-AN-Complete,BIT4=COPPER_REMOTE_FAULT") 'V.Echo("BIT3=AN_ABILITY(1),BIT2=Copper_LINK_STATUS,BIT1=JABBER_DETECTED,BIT0=EXTENDEDREGISTERS") 'V.Echo("=0x"& HexX(Total,4) &"") 'V.Echo("") ANStatusReg=HexX(Total,4) '2 bytes 'V.Echo("PAGE 0, REG 1 : Status Register-Copper [15:0]:= 0x" & ANStatusReg &"") ANcomplete= "&H" & ANStatusReg And &H0020 'bit 5 'V.Echo("ANcomplete= 0x" & HexX(ANcomplete,4) &"") V.DO_EVENTS 'allow other events to happen while in loop If V.shiftkey_pressed Then Exit Sub 'If shift Key pressed, then exit Loop 'write to register 22 to switch to page 0 (copper mode) Temp0="&H00" 'Most significant byte Temp1="&H00" 'Least significant , page 0 'GMII_MNGMT_DAT [15:0] 22 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 22 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) ' ' ' ' ' ' ' V.Echo("PAGE 0, REG 5 :Link Partner Ability-Base Page-Copper[15:0]:") addr = 5 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H00)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'GMII_MNGMT_DAT [15:0] Temp0 = V.SGet(&H00816) '[7:0] Temp1 = V.SGet(&H00817) '[15:8] Total = Temp0 + (Temp1*2^8) myhex = hex(Total) V.Echo("BIT15=NP_ABLE,BIT14=ACK,BIT13=REMOTE_FAULT, BIT12=TECH_ABILITY") V.Echo("BIT11=ASYM_PAUSE ,BIT10=PAUSED,BIT9=100BASE-T4, BIT8=100BASE-TX-FD") V.Echo("BIT7=100BASE-TX-HD,BIT6=10BASE-TX-FD,BIT5=10BASE-TX-HD,BIT4=SelectField[[4]") V.Echo("BIT3-0: SelectField[[3:0]") V.Echo("=0x"& HexX(Total,4) &"") V.Echo("") LPAdvReg=HexX(Total,4) '2 bytes 'V.Echo("PAGE 0, REG 5 :Link Partner Ability-Base Page-Copper[15:0] = 0x" & LPAdvReg &"") LPPause= "&H" & LPAdvReg And &H0400 'bit 10 'V.echo ("LPPause=" & HexX(LPPause,4) & "")' LPAsymPause= "&H" & LPAdvReg And &H0800 ' bit 11 'V.echo ("LPAsymPause=" & HexX(LPAsymPause,4) & "") LP100FDUP= "&H" & LPAdvReg And &H0100 ' bit 8 LP100HDUP= "&H" & LPAdvReg And &H0080 ' bit 7 LP10FDUP= "&H" & LPAdvReg And &H0040 ' bit 6 LP10HDUP= "&H" & LPAdvReg And &H0020 ' bit 5 ' V.Echo("PAGE 0, REG 10 : 1000BASE-T Status Register-Copper [15:0]:") addr = 10 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H00)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'GMII_MNGMT_DAT [15:0] Temp0 = V.SGet(&H00816) '[7:0] Temp1 = V.SGet(&H00817) '[15:8] Total = Temp0 + (Temp1*2^8) myhex = hex(Total) ' V.Echo("BITS 15=MASTER_SLAVE_FAULT,14=MASTER_NOTSLAVE,13=LOCAL_RECEIVER_OK,12=REMOTE_RECEIVER_OK") ' V.Echo("BIT11=LP_1000BASE-T-FD-ABLE ,BIT10=LP_1000BASE-T-HD-ABLE,BIT9-8=RESERVED") ' V.Echo("BIT7-0=IDLE ERROR COUNTER-CLEARONREAD") ' V.Echo("=0x"& HexX(Total,4) &"") ' V.Echo("") LP1000BStatus=HexX(Total,4) '2 bytes LP1000FDUP= "&H" & LP1000BStatus And &H0800 ' bit 11 LP1000HDUP= "&H" & LP1000BStatus And &H0800 ' bit 11 If (LP1000FDUP <> &H0000) Then ' 1000 Mbps FULL DUPLEX If (LPPause = &H0000) Then If (LPAsymPause = &H0000) Then 23 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability 'PAUSE=0, ASYM_PAUSE=0 'DISABLE PAUSE TRANSMIT AND RECEIVE Call V.SPut(&H00800,&H00)' DISABLE MAC FIRST NEWMACCONTROLREG= &H92 ' DISABLE RX PAUSE, BIT3 Call V.SPut(&H00802,NEWMACCONTROLREG) Call V.SPut(&H00800,&H0D) ' DISABLE TX MAC PAUSE , bit 1 Else 'PAUSE=0, ASYM_PAUSE=1 'DISABLE PAUSE TRANSMIT , Enable PAUSE RECEIVE Call V.SPut(&H00800,&H00)' DISABLE MAC FIRST NEWMACCONTROLREG= &H9A ' Enable RX PAUSE,BIT3 Call V.SPut(&H00802,NEWMACCONTROLREG) Call V.SPut(&H00800,&H0D) ' DISABLE TX MAC PAUSE , bit 1 End If Else 'PAUSE=1, ASYM_PAUSE=DON'T CARE 'Enable PAUSE TRANSMIT , Enable PAUSE RECEIVE Call V.SPut(&H00800,&H00)' DISABLE MAC FIRST NEWMACCONTROLREG= &H9A ' Enable RX PAUSE,BIT3 'V.echo ("NEWMACCONTROLREG=" & Hex(NEWMACCONTROLREG) & "")' Call V.SPut(&H00802,NEWMACCONTROLREG) Call V.SPut(&H00800,&H0F) ' Enable TX MAC PAUSE , bit 1 End If Else ' NO MATCH Call V.SPut(&H00800,&H00)' DISABLE TX/RX MAC End If Do until ( ANcomplete = &H0000) 'wait until ANcomplete bit is 0 'V.Echo("WAITING FOR ANCOMPLETE=0") 'write to register 22 to switch to page 0 (copper mode) Temp0="&H00" 'Most significant byte Temp1="&H00" 'Least significant , page 0 'GMII_MNGMT_DAT [15:0] Call V.SPut(&H00816,Temp1)'[7:0] Call V.SPut(&H00817,Temp0)'[15:8] addr = 22 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H20)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'V.Echo("PAGE 0, REG 1 : Status Register-Copper [15:0]:") addr = 1 'address Call V.SPut(&H00814, addr)'[7:0] bits 4-0=addr Call V.SPut(&H00815,&H00)'[15:8] bit15=CMD_FIN, bit13=Write bit12:8=PHYADDDR V.Wait(100) 'GMII_MNGMT_DAT [15:0] Temp0 = V.SGet(&H00816) '[7:0] Temp1 = V.SGet(&H00817) '[15:8] Total = Temp0 + (Temp1*2^8) 24 LatticeECP3 Marvell 1 GbE (1000BASE-X) Physical/MAC Layer Interoperability myhex = hex(Total) 'V.Echo("BITS 15-9 are ABILITY registers") 'V.Echo("BIT15=100BASE-T4,BIT14=100BASE-X-FD,BIT13=100BASE-X-HD), BIT12=10Mbps-FD") 'V.Echo("BIT11=10Mbps-HD ,BIT10=100BASE-T2-FD,BIT9=100BASE-T2-HD, BIT8=ExtendedStatus") 'V.Echo("BIT7=RESERVED,BIT6=MFPreambSupp,BIT5=Copper-AN-Complete,BIT4=COPPER_REMOTE_FAULT") 'V.Echo("BIT3=AN_ABILITY(1),BIT2=Copper_LINK_STATUS,BIT1=JABBER_DETECTED,BIT0=EXTENDEDREGISTERS") 'V.Echo("=0x"& HexX(Total,4) &"") 'V.Echo("") ANStatusReg=HexX(Total,4) '2 bytes 'V.Echo("PAGE 0, REG 1 : Status Register-Copper [15:0]:= 0x" & ANStatusReg &"") ANcomplete= "&H" & ANStatusReg And &H0020 'bit 5 'V.Echo("ANcomplete= 0x" & HexX(ANcomplete,4) &"") V.DO_EVENTS If V.shiftkey_pressed Then Exit Sub 'If shift Key pressed, then exit Loop V.DO_EVENTS Loop end sub Function HexX(Num, Lngth) TempStr = Hex(Num) HexX = Mid((String(8 - Len(TempStr), "0") & TempStr), (9 - Lngth)) End Function 25