ORCA™ OR3LxxxB Series Device Datasheet June 2010 All Devices Discontinued! Product Change Notifications (PCNs) have been issued to discontinue all devices in this data sheet. The original datasheet pages have not been modified and do not reflect those changes. Please refer to the table below for reference PCN and current product status. Product Line OR3L165B OR3L225B Ordering Part Number OR3L165B8PS208-DB OR3L165B7PS208-DB OR3L165B7PS208I-DB OR3L165B8PS240-DB OR3L165B7PS240-DB OR3L165B7PS240I-DB OR3L165B8BA352-DB OR3L165B7BA352-DB OR3L165B7BA352I-DB OR3L165B8BC432-DB OR3L165B7BC432-DB OR3L165B7BC432I-DB OR3L165B8BM680-DB OR3L165B7BM680-DB OR3L165B7BM680I-DB OR3L225B8BC432-DB OR3L225B7BC432-DB OR3L225B7BC432I-DB OR3L225B8BM680-DB OR3L225B7BM680-DB OR3L225B7BM680I-DB Product Status Reference PCN PCN#06-07 Discontinued PCN#09-10 Discontinued PCN#06-07 `` 5555 N.E. Moore Ct. Hillsboro, Oregon 97124-6421 Phone (503) 268-8000 FAX (503) 268-8347 Internet: http://www.latticesemi.com Data Addendum March 2002 ORCA® OR3LxxxB Series Field-Programmable Gate Arrays shared inputs and the logic flexibility of LUTs with independent inputs. Fast-carry logic and routing to adjacent PFUs for nibble-wide, byte-wide, or longer arithmetic functions, with the option to register the PFU carry-out. Softwired LUTs (SWL) allow fast cascading of up to three levels of LUT logic in a single PFU. Supplemental logic and interconnect cell (SLIC) provides 3-statable buffers, up to 10-bit decoder, and PAL*-like AND-OR-INVERT (AOI) in each programmable logic cell (PLC). Abundant hierarchical routing resources based on routing two data nibbles and two control lines per set provide for faster place and route implementations and less routing delay. Individually programmable drive capability: 12 mA sink/6 mA source or 6 mA sink/3 mA source. Built-in boundary scan (IEEE † 1149.1 JTAG) and testability function to 3-state all I/O pins. Enhanced system clock routing for low-skew, highspeed clocks originating on-chip or at any I/O. Up to four ExpressCLK inputs allow extremely fast clocking of signals on- and off-chip plus access to internal general clock routing. StopCLK feature to glitchlessly stop/start the ExpressCLKs independently by user command. A D LL IS C DE O N VIC TI N ES U ED Introduction This data addendum refers to the information found in the ORCA® Series 3C and 3T Field-Programmable Gate Arrays Data Sheet. ■ ■ Features ■ ■ ■ ■ ■ ■ ■ ■ High-performance, cost-effective, 0.25 µm 5-level metal technology. 2.5 V internal supply voltage and 3.3 V I/O supply voltage for speed and compatibility. Up to 340,000 usable gates‡ in 0.25 µm. Up to 612 user I/Os in 0.25 µm. (OR3LxxxB I/Os are 5 V tolerant to allow interconnection to both 3.3 V and 5 V devices, selectable on a per-pin basis, when using 3.3 V I/O supply.) Twin-quad programmable function unit (PFU) architecture with eight 16-bit look-up tables (LUTs) per PFU, organized in two nibbles for use in nibbleor byte-wide functions. Allows for mixed arithmetic and logic functions in a single PFU. Nine user registers per PFU, one following each LUT, plus one extra. All have programmable clock enable and local set/reset, plus a global set/reset that can be disabled per PFU. Flexible input structure (FINS) of the PFUs provides a routability enhancement for LUTs with ■ ■ ■ ■ ■ ■ * PAL is a trademark of Lattice Semiconductor † IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc. Table 1. ORCA OR3LxxxB Series FPGAs Device System Gates‡ LUTs Registers Max User RAM OR3L165B OR3L225B 120K—244K 166K—340K 8192 11552 10752 14820 131K 185K User I/Os Array Size 516 612 32 × 32 38 × 38 Process Technology 0.25 µm/5 LM 0.25 µm/5 LM ‡ The usable gate counts range from a logic-only gate count to a gate count assuming 30% of the PFUs/SLICs being used as RAMs. The logic-only gate count includes each PFU/SLIC (counted as 108 gates/PFU), including 12 gates per LUT/FF pair (eight per PFU), and 12 gates per SLIC/FF pair (one per PFU). Each of the four PIOs per PIC is counted as 16 gates (three FFs, fast-capture latch, output logic, CLK, and I/O buffers). PFUs used as RAM are counted at four gates per bit, with each PFU capable of implementing a 32 × 4 RAM (or 512 gates) per PFU. Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Table of Contents Contents Page Page Estimating Power Dissipation................................. 37 OR3LxxxB............................................................ 37 Pin Information ....................................................... 38 Absolute Maximum Ratings.................................... 76 Recommended Operating Conditions .................... 76 Electrical Characteristics ........................................ 77 Package Thermal Characteristics .......................... 78 ΘJA ...................................................................... 78 ψJC ...................................................................... 78 ΘJC ...................................................................... 78 ΘJB ...................................................................... 78 FPGA Maximum Junction Temperature .............. 79 Package Coplanarity .............................................. 80 Package Parasitics................................................. 80 Package Outline Diagrams..................................... 81 Terms and Definitions .......................................... 81 208-Pin SQFP2.................................................... 82 240-Pin SQFP2.................................................... 83 352-Pin PBGA ..................................................... 84 432-Pin EBGA ..................................................... 85 680-Pin PBGAM .................................................. 86 Ordering Information .............................................. 87 A D LL IS C DE O N VIC TI N ES U ED Introduction................................................................ 1 Features .................................................................... 1 System-Level Features.............................................. 4 Support...................................................................... 5 Description ................................................................ 5 FPGA Overview ...................................................... 5 PLC Logic ............................................................... 5 PIC Logic ................................................................ 8 System Features..................................................... 9 Routing.................................................................... 9 Configuration........................................................... 9 Configuration Data Format...................................... 9 Series 3L I/Os and 5 V Tolerance......................... 10 Designing with ORCA Series 3T Parts with Series 3L in Mind................................................ 10 Powerup Sequencing for Series 3L Devices......... 10 ORCA Foundry Development System .................. 11 Additional Information ........................................... 11 Timing Characteristics ............................................. 12 Configuration Timing............................................. 12 PFU Timing ........................................................... 13 PLC Timing ........................................................... 19 SLIC Timing .......................................................... 19 PIO Timing ............................................................ 20 Special Function Blocks Timing ............................ 23 Clock Timing ......................................................... 25 Description ............................................................ 35 Contents 2 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Table of Contents (continued) Figure Page Page Table 14. ExpressCLK (ECLK) and Fast Clock (FCLK) Timing Characteristics ............................ 25 Table 15. General-Purpose Clock Timing Characteristics (Internally Generated Clock)....... 26 Table 16. OR3Lxxx ExpressCLK to Output Delay (Pin-to-Pin) .................................... 27 Table 17. OR3Lxxx Fast Clock (FCLK) to Output Delay (Pin-to-Pin) .................................... 28 Table 18. OR3Lxxx General System Clock (SCLK) to Output Delay (Pin-to-Pin).................... 29 Table 19. OR3Lxxx Input to ExpressCLK (ECLK) Fast-Capture Setup/Hold Time (Pin-to-Pin) ......... 30 Table 20. OR3Lxxx Input to Fast Clock Setup/Hold Time (Pin-to-Pin)............................... 32 Table 21. OR3Lxxx Input to General System Clock (SCLK) Setup/Hold Time (Pin-to-Pin) .................. 34 Table 22. Derating for Commercial/Industrial OR3Lxxx Devices (I/O Supply VDD) .................... 36 Table 23. Derating for Commercial/Industrial OR3Lxxx Devices (I/O Supply VDD2) .................. 36 Table 24. 208-Pin SQFP2 Pinout .............................. 38 Table 25. 240-Pin SQFP2 Pinout ............................. 41 Table 26. 352-Pin PBGA Pinout ................................ 44 Table 27. 432-Pin EBGA Pinout ............................... 49 Table 28. 680-Pin PBGAM Pinout ............................. 60 Table 29. Absolute Maximum Ratings....................... 76 Table 30. Recommended Operating Conditions ....... 76 Table 31. Electrical Characteristics ........................... 77 Table 32. Plastic Package Thermal Characteristics for the ORCA Series............................................ 79 Table 33. Package Coplanarity.................................. 80 Table 34. Package Parasitics .................................... 80 Table 35. Voltage Options ......................................... 87 Table 36. Temperature Options ................................. 87 Table 37. Package Options ....................................... 87 Table 38. ORCA OR3LxxxB Series Package Matrix .................................................... 87 A D LL IS C DE O N VIC TI N ES U ED Figure 1. Simplified PFU Diagram ............................... 6 Figure 2. SLIC All Modes Diagram .............................. 7 Figure 3. OR3Lxxx Programmable Input/Output Image from ORCA Foundry.................................... 8 Figure 4. Synchronous Memory Write Characteristics ............................................ 17 Figure 5. Synchronous Memory Read Cycle............. 18 Figure 6. ExpressCLK to Output Delay ..................... 27 Figure 7. Fast Clock to Output Delay......................... 28 Figure 8. System Clock to Output Delay ................... 29 Figure 9. Input to ExpressCLK Setup/Hold Time....... 31 Figure 10. Input to Fast Clock Setup/Hold Time ........ 33 Figure 11. Input to System Clock Setup/Hold Time... 34 Figure 12. Package Parasitics ................................... 80 Table Table Page Table 1. ORCA OR3LxxxB Series FPGAs ..................1 Table 2. ORCA Series 3L System Performance ..........4 Table 3. Configuration Frame Size .............................. 9 Table 4. General Configuration Mode Timing Characteristics ..................................................... 12 Table 5. Combinatorial PFU Timing Characteristics .. 13 Table 6. Sequential PFU Timing Characteristics ....... 14 Table 7. Ripple Mode PFU Timing Characteristics .... 15 Table 8. Synchronous Memory Write Characteristics............................................ 17 Table 9. Synchronous Memory Read Characteristics............................................ 18 Table 10. PFU Output MUX and Direct Routing Timing Characteristics.................. 19 Table 11. Supplemental Logic and Interconnect Cell Timing Characteristics.............. 19 Table 12. Programmable I/O Timing Characteristics ......................................... 20 Table 13. Microprocessor Interface (MPI) Timing Characteristics...................................................... 23 Lattice Semiconductor 3 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Features (continued) ■ Programmable I/O (PIO) has: — Fast-capture input latch and input flip-flop (FF)/ latch for reduced input setup time and zero hold time. — Capability to (de)multiplex I/O signals. — Fast access to SLIC for decodes and PAL-like functions. — Output FF and two-signal function generator to reduce CLK to output propagation delay. — Fast open-drain drive capability. ■ Programmable clock manager (PCM) adjusts clock phase and duty cycle for input clock rates from 5 MHz to 120 MHz. The PCM may be combined with FPGA logic to create complex functions, such as digital phase-locked loops (DPLL), frequency counters, and frequency synthesizers. Two PCMs are provided per device. ■ A D LL IS C DE O N VIC TI N ES U ED ■ Dual-use microprocessor interface (MPI) can be used for configuration, readback, device control, and device status, as well as for a general-purpose interface to the FPGA. Glueless interface to i960 * and PowerPC† processors with user-configurable address space provided. Parallel readback of configuration data capability with the built-in microprocessor interface. ■ New programmable I/O 3-state FF allows 3-state buffer control signals to be set up a clock cycle early for improved clock to output delays. True internal 3-state, bidirectional buses with simple control provided by the SLIC. 32 × 4 RAM per PFU, configurable as single- or dualport. Create large, fast RAM/ROM blocks (128 × 8 in only eight PFUs) using the SLIC decoders as bank drivers. Full UTOPIA Level III I/O compliance (6.0 ns CLK -> OUT, 2.0 ns setup with 0 ns hold). ■ System-Level Features System-level features reduce glue logic requirements and make a system on a chip possible. These features in the ORCA OR3LxxxB include the following: ■ Full PCI local bus compliance for all devices in 3.3 V and 5 V PCI systems. Pin-selectable I/O clamping diodes provide 3.3 V and 5 V compliance and 5 V tolerance. ■ ■ * i960 is a registered trademark of Intel Corporation. † PowerPC is a registered trademark of International Business Machines, Inc. Table 2. ORCA Series 3L System Performance Parameter 16-bit Loadable Up/Down Counter 16-bit Accumulator 8 × 8 Parallel Multiplier: Multiplier Mode, Unpipelined1 ROM Mode, Unpipelined2 Multiplier Mode, Pipelined3 32 × 16 RAM (synchronous): Single-port, 3-state Bus4 Dual-port5 128 × 8 RAM (synchronous): Single-port, 3-state Bus4 Dual-port5 8-bit Address Decode (internal): Using Softwired LUTs Using SLICs6 32-bit Address Decode (internal): Using Softwired LUTs Using SLICs7 36-bit Parity Check (internal) # PFUs -7 -8 Unit 2 2 151 151 176 176 MHz MHz 11.5 8 15 38 93 129 46 116 152 MHz MHz MHz 4 4 173 231 209 277 MHz MHz 8 8 151 151 181 181 MHz MHz 0.25 0 2.30 1.29 2.00 1.12 ns ns 2 0 2 7.97 3.75 7.97 6.84 3.16 6.84 ns ns ns 1. Implemented using 8 × 1 multiplier mode (unpipelined), register-to-register, two 8-bit inputs, one 16-bit output. 2. Implemented using two 32 × 12 ROMs and one 12-bit adder, one 8-bit input, one fixed operand, one 16-bit output. 3. Implemented using 8 × 1 multiplier mode (fully pipelined), two 8-bit inputs, one 16-bit output (seven of 15 PFUs contain only pipelining registers). 4. Implemented using 32 × 4 RAM mode with read data on 3-state buffer to bidirectional read/write bus. 5. Implemented using 32 × 4 dual-port RAM mode. 6. Implemented in one partially occupied SLIC with decoded output set up to CE in same PLC. 7. Implemented in five partially occupied SLICs. 4 Lattice Semiconductor Data Addendum March 2002 Support ■ ORCA Foundry development system support. ■ Supported by industry-standard CAE tools for design entry, synthesis, simulation, and timing analysis. Description PLC Logic Each PFU within a PLC contains eight 4-input (16-bit) LUTs, eight latches/FFs, and one additional FF that may be used independently or with arithmetic functions. The PFU is organized in a twin-quad fashion: two sets of four LUTs and FFs that can be controlled independently. LUTs may also be combined for use in arithmetic functions using fast-carry chain logic in either 4-bit or 8-bit modes. The carry-out of either mode may be registered in the ninth FF for pipelining. Each PFU may also be configured as a synchronous 32 × 4 single- or dual-port RAM or ROM. The FFs (or latches) may obtain input from LUT outputs or directly from invertible PFU inputs, or they can be tied high or tied low. The FFs also have programmable clock polarity, clock enables, and local set/reset. A D LL IS C DE O N VIC TI N ES U ED FPGA Overview ORCA OR3LxxxB Series FPGAs The ORCA OR3LxxxB FPGAs are a new generation of SRAM-based FPGAs built on the successful Series 2 and Series 3 FPGA lines, with enhancements and innovations geared toward today’s high-speed designs and tomorrow’s systems on a single chip. Designed from the start to be synthesis friendly and to reduce place and route times while maintaining the complete routability of the ORCA Series 2 devices, the OR3LxxxB Series more than doubles the logic available in each logic block and incorporates system-level features that can further reduce logic requirements and increase system speed. ORCA OR3LxxxB devices contain many new patented enhancements and are offered in a variety of packages, speed grades, and temperature ranges. The ORCA OR3LxxxB Series FPGAs consist of three basic elements: PLCs, programmable input/output cells (PICs), and system-level features. An array of PLCs is surrounded by PICs. Each PLC contains a PFU, a SLIC, local routing resources, and configuration RAM. Most of the FPGA logic is performed in the PFU (see Figure 1), but decoders, PAL-like functions, and 3-state buffering can be performed in the SLIC (see Figure 2). The PICs provide device inputs and outputs and can be used to register signals and to perform input demultiplexing, output multiplexing, and other functions on two output signals (see Figure 3). Some of the system-level functions include the MPI and the PCM. Lattice Semiconductor The SLIC is connected to PLC routing resources and to the outputs of the PFU. It contains 3-state, bidirectional buffers and logic to perform up to a 10-bit AND function for decoding, or an AND-OR with optional INVERT to perform PAL-like functions. The 3-state drivers in the SLIC and their direct connections to the PFU outputs make fast, true 3-state buses possible within the FPGA, reducing required routing and allowing for realworld system performance. 5 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Description (continued) F7 F5D 0 K7_0 K7_1 K7_2 K7 A B K7_3 C D K6_0 K6_1 K6_2 K6 A B C K6_3 D 0 DIN6 0 1 0 REG6 D0 D1 DSEL CE CK S/R F5MODE67 Q7 F6 Q6 F5 REG5 D0 D1 DSEL CE CK S/R A D LL IS C DE O N VIC TI N ES U ED K5 A B C D K4 A B C D DIN7 REG7 D0 D1 DSEL CE CK S/R K5_0 K5_1 K5_2 K5_3 K4_0 K4_1 K4_2 K4_3 DIN5 0 1 0 F4 DIN4 0 F5C F5MODE45 0 Q5 CLK REG4 D0 D1 DSEL CE CK S/R Q4 0 SEL 0 CIN COUT 0 CE 1 1 FF8 1 D CE CK S/R ASWE REGCOUT 1 0 LSR 0 0 0 F3 F5B 0 K3_0 DIN3 K3 A B C D K3_1 K3_2 K3_3 K2_0 K2 A B C K2_1 K2_2 K2_3 D K1_0 K1_1 K1_2 K1_3 K1 A B C D K0_0 K0_1 K0_2 K0_3 K0 A B C D 0 DIN2 0 1 0 REG2 D0 D1 DSEL CE CK S/R F5MODE23 REG1 D0 D1 DSEL CE CK S/R 1 0 F2 Q2 Q1 F0 DIN0 F5MODE01 Q3 F1 DIN1 0 F5A 0 REG3 D0 D1 DSEL CE CK S/R 0 REG0 D0 D1 DSEL CE CK S/R Q0 5-5743 Note: All multiplexers without select inputs are configuration selector multiplexers. Figure 1. Simplified PFU Diagram 6 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Description (continued) BRI9 I9 BLI9 BL09 BR09 BRI8 I8 BLI8 BL08 BR08 BRI7 I7 BLI7 BL07 A D LL IS C DE O N VIC TI N ES U ED BR07 BRI6 I6 BLI6 BL06 BR06 BRI5 I5 BLI5 BL05 BR05 DEC BRI4 I4 BLI4 BL04 BR04 TRI 0/1 0/1 DEC HIGH Z WHEN LOW 0/1 0/1 BRI3 I3 BLI3 BRI2 I2 BLI2 BRI1 I1 BLI1 BRI0 I0 BLI0 BL03 BR03 BL02 BR02 BL01 BR01 BL00 BR00 5-5744(F) Figure 2. SLIC All Modes Diagram Lattice Semiconductor 7 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Description (continued) On the output side of each PIO, two outputs from the PLC array can be routed to each output flip-flop, and logic can be associated with each I/O pad. The output logic associated with each pad allows for multiplexing of output signals and other functions of two output signals. PIC Logic The OR3LxxxB PIC addresses the demand for everincreasing system clock speeds. Each PIC contains four programmable inputs/outputs (PIOs) and routing resources. On the input side, each PIO contains a fastcapture latch that is clocked by an ExpressCLK. This latch is followed by a latch/FF that is clocked by a system clock from the internal general clock routing. The combination provides for very low setup requirements and zero hold times for signals coming on-chip. It may also be used to demultiplex an input signal, such as a multiplexed address/data signal, and register the signals without explicitly building a demultiplexer. Two input signals are available to the PLC array from each PIO, and the ORCA Series 2 capability to use any input pin as a clock or other global input is maintained. A D LL IS C DE O N VIC TI N ES U ED The output FF, in combination with output signal multiplexing, is particularly useful for registering address signals to be multiplexed with data, allowing a full clock cycle for the data to propagate to the output. The I/O buffer associated with each pad is very similar to the Series 2 buffer with a new, fast, open-drain option for ease of use on system buses. These features may also be combined with the new 3-state FF that allows the 3-state control signal to be registered. This allows for early control setup and faster clock-to-out times. PIO LOGIC AND NAND OR NOR XOR XNOR PULL-MODE OUT1 FROM ROUTING UP DOWN NONE 0 PAD OUT2 0 ECLK SCLK D Q CK SP LSR CE 0 RESET SET D0 Q CK 1 LSR 1 TS CE_OVER_LSR LSR_OVER_CE ASYNC LSR LEVEL MODE BUFFER MODE FAST SLEW SINK TTL CMOS CLKIN PD ECLK SCLK NORMAL INVERTED 1 INREGMODE LATCHFF LATCH FF D Q CK D0 D1 Q IN1 CK SP SD LSR TO ROUTING PMUX OUT1OUTREG OUT2OUTREG OUT1OUT2 RESET SET IN2 ENABLE_GSR DISABLE_GSR 5-5805(F).a Figure 3. OR3Lxxx Programmable Input/Output Image from ORCA Foundry 8 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Description (continued) Routing System Features The abundant routing resources of the ORCA 3LxxxB FPGAs are organized to route signals individually or as buses with related control signals. Clocks are routed on a low-skew, high-speed distribution network and may be sourced from PLC logic, externally from any I/O pad, or from the very fast ExpressCLK pins. ExpressCLKs may be glitchlessly and independently enabled and disabled with a programmable control signal using the new StopCLK feature. The improved PIC routing resources are now similar to the patented intraPLC routing resources and provide great flexibility in moving signals to and from the PIOs. This flexibility translates into an improved capability to route designs at the required speeds when the I/O signals have been locked to specific pins. The OR3LxxxB Series also provides system-level functionality by means of its dual-use MPI and its innovative PCM. These functional blocks allow for easy glueless system interfacing and the capability to adjust to varying conditions in today’s high-speed systems. A D LL IS C DE O N VIC TI N ES U ED The MPI provides a glueless interface between the FPGA, PowerPC, and i960 microprocessors. It can be used for configuration and readback, as well as for monitoring FPGA status. The MPI also provides a general-purpose microprocessor interface to the FPGA user-defined logic following configuration. Two PCMs are provided on each ORCA 3L device. Each PCM can be used to manipulate the frequency, phase, and duty cycle of a clock signal. Clocks may be input from the dedicated corner ExpressCLK input (in the same corner as the PCM block) or from general routing. Output clocks from the PCM can be sent to the system clock spines, and/or to the ExpressCLK and fast clock spines on the edges of the device adjacent to the PCM. ExpressCLK/fast clock and system clock output frequencies can differ by up to a factor of eight to allow slow I/O clocking with fast internal processing (or vice versa). Each PCM is capable of manipulating clocks from 5 MHz to 120 MHz. Frequencies can be adjusted from 1/8× to 64× the input clock frequency, duty cycles, and phase delays can be adjusted from 3.125% to 96.875%. Configuration The FPGA’s functionality is determined by internal configuration RAM. The FPGA’s internal initialization/configuration circuitry loads the configuration data at powerup or under system control. The RAM is loaded by using one of several configuration modes. The configuration data resides externally in an EEPROM or any other storage media. Serial EEPROMs provide a simple, low pin count method for configuring FPGAs. A new, easy method for configuring the devices is through the microprocessor interface. Configuration Data Format The length and number of data frames and information on the PROM size for the Series OR3LxxxB FPGAs are given in Table 3. Table 3. Configuration Frame Size Devices 3L165B 3L225B Number of Frames Data Bits/Frame Configuration Data (number of frames × number of data bits/frame) Maximum Total Number Bits/Frame (align bits, 01 frame start, 8-bit checksum, eight stop bits) Maximum Configuration Data (number bits/frame × number of frames) Maximum PROM Size (bits) (add configuration header and postamble) 2136 502 1,072,272 2520 592 1,552,320 520 610 1,110,720 1,537,200 1,110,760 1,537,240 Lattice Semiconductor 9 ORCA OR3LxxxB Series FPGAs Description (continued) Series 3L I/Os and 5 V Tolerance Design with two power planes: one for the internal supply (2.5 V), and one for the I/O supply (3.3 V). For Series 3T operation, connect both the internal supply and I/O voltage planes to 3.3 V. For Series 3L operation, change the core plane connection from 3.3 V to 2.5 V. Powerup Sequencing for Series 3L Devices ORCA Series 3L devices use two power supplies: one to power the device I/Os (VDD) which is set to 3.3 V for 3.3 V operation and 5 V tolerance, and another supply for the internal logic (VDD2) which is set to 2.5 V. It is understood that many users will derive the 2.5 V core logic supply from a 3.3 V power supply, so the following recommendations are made as to the powerup sequence of the supplies and allowable delays between power supplies reaching stable voltages. A D LL IS C DE O N VIC TI N ES U ED Series 3L devices use the same I/O structure as ORCA Series 3T devices. ORCA Series 3L devices use a 3.3 V supply (VDD) to power the I/Os and a 2.5 V supply (VDD2) to power the internal logic. Because the I/O structure and voltage is common between 3T and 3L devices, the Series 3L devices maintain 5 V tolerance and the same I/O characteristics as Series 3T devices. Data Addendum March 2002 The OR3LxxxB uses a default mode that maintains a 5 V tolerant setting on all I/Os. Designing with ORCA Series 3T Parts with Series 3L in Mind Due to many package compatibilities across device sizes and families, it is possible to design using a Series 3T device today, and migrate to a Series 3L device later. The pinouts are the same on both families with the exception of additional I/O voltage pins for the Series 3L family. To design a board that is both Series 3T compatible and Series 3L compatible, using the following procedures will allow easy and fast component swapping from Series 3T to Series 3L. Design to the Series 3L pinouts, especially if planning to use the OR3L225B pinout. The OR3L225B has additional power pins that are not on smaller Series 3L parts. (Note that if the designer is using a Series 3L device smaller than the OR3L225B, but may eventually migrate to a OR3L225B, the OR3L225B pinout should also be used). Designing for Series 3L in this manner does sacrifice some user I/O pins available in the Series 3T (or smaller Series 3L devices if using the OR3L225B). These I/Os will have power applied to them when a Series 3T device is used on the board. However, this is acceptable and these I/Os will default to 3-state outputs which eliminates any contention risk. 10 In general, both the 3.3 V and the 2.5 V supplies should ramp-up and become stable as close together in time as possible. There is no delay requirement if the VDD2 (2.5 V) supply becomes stable prior to the VDD (3.3 V) supply. There is a delay requirement imposed if the VDD supply becomes stable prior to the VDD2 supply. The requirement is that the VDD2 (2.5 V) supply transitions from 0.8 V to 2.3 V within 15.7 ms when the VDD (3.3 V) supply is already stable at a minimum of 3.0 V. If the chosen power supplies cannot meet this delay requirement, it is always possible to delay configuration of the FPGA by asserting INIT or PRGM until the VDD2 supply has reached 2.3 V. This process eliminates any power supply sequencing issues. Lattice Semiconductor Data Addendum March 2002 Description (continued) ORCA Foundry Development System Timing and simulation output files from ORCA Foundry are also compatible with many third-party analysis tools. Its bit stream generator is then used to generate the configuration data, which is loaded into the FPGA’s internal configuration RAM. When using the bit stream generator, the user selects options that affect the functionality of the FPGA. Combined with the front-end tools, ORCA Foundry produces configuration data that implements the various logic and routing options discussed in this product brief. A D LL IS C DE O N VIC TI N ES U ED The ORCA Foundry development system is used to process a design from a netlist to a configured FPGA. This system is used to map a design onto the ORCA architecture and then place and route it using ORCA Foundry’s timing-driven tools. The development system also includes interfaces to, and libraries for, other popular CAE tools for design entry, synthesis, simulation, and timing analysis. ORCA OR3LxxxB Series FPGAs The ORCA Foundry development system interfaces to front-end design entry tools and provides the tools to produce a configured FPGA. In the design flow, the user defines the functionality of the FPGA at two points in the design flow: at design entry and at the bit stream generation stage. Additional Information Contact your local Lattice representative for additional information regarding the ORCA OR3LxxxB FPGA devices, or visit our website at: http://www.latticesemi.com. Following design entry, the development system’s map, place, and route tools translate the netlist into a routed FPGA. A static timing analysis tool is provided to determine device speed, and a back-annotated netlist can be created to allow simulation. Lattice Semiconductor 11 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics Configuration Timing Table 4. General Configuration Mode Timing Characteristics OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Symbol Parameter Min Max Unit A D LL IS C DE O N VIC TI N ES U ED All Configuration Modes TSMODE THMODE TRW TPGW M[3:0] Setup Time to INIT High M[3:0] Hold Time from INIT High RESET Pulse Width Low to Start Reconfiguration PRGM Pulse Width Low to Start Reconfiguration 0.00 600.00 50.00 50.00 — — — — ns ns ns ns 15.70 60.00 480.00 52.40 200.00 1600.00 ms ns ns 66.65 533.16 92.23 737.88 222.15* 1777.22* 307.45* 2459.8* ms ms ms ms 15.70 52.40 ms 147,405 202,251 — — write cycles write cycles 69 81 — — write cycles write cycles 3.90 15.00 13.10 ms ns 16.66 23.06 — — ms ms 3.90 15.00 13.10 ms ns 2.08 2.88 — — 1.0 1.2 — — Master and Asynchronous Peripheral Modes TPO TCCLK TCL Power-on Reset Delay CCLK Period (M3 = 0) (M3 = 1) Configuration Latency (autoincrement mode): OR3L165B (M3 = 0) (M3 = 1) OR3L225B (M3 = 0) (M3 = 1) Microprocessor (MPI) Mode TPO TCL TPR Power-on Reset Delay Configuration Latency (autoincrement mode): OR3L165B OR3L225B Partial Reconfiguration (explicit mode): OR3L165B OR3L225B Slave Serial Mode TPO TCCLK TCL Power-on Reset Delay CCLK Period Configuration Latency (autoincrement mode): OR3L165B OR3L225B Slave Parallel Mode TPO TCCLK TCL TPR Power-on Reset Delay CCLK Period: Configuration Latency (normal mode): OR3L165B OR3L225B Partial Reconfiguration (explicit mode): OR3L165B OR3L225B µs/frame µs/frame * Not applicable to asynchronous peripheral mode. Note: TPO is triggered when VDD reaches between 2.7 V and 3.0 V for the OR3LxxxB. 12 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Propagation Delay—The time between the specified reference points. The delays provided are the worst case of the tphh and tpll delays for noninverting functions, tplh and tphl for inverting functions, and tphz and tplz for 3-state enable. A D LL IS C DE O N VIC TI N ES U ED In addition to supply voltage, process variation, and operating temperature, circuit and process improvements of the ORCA Series FPGAs over time will result in significant improvement of the actual performance over those listed for a speed grade. Even though lower speed grades may still be available, the distribution of yield to timing parameters may be several speed grades higher than that designated on a product brand. Design practices need to consider best-case timing parameters (e.g., delays = 0), as well as worst-case timing. The waveform test points are given in the Input/Output Buffer Measurement Conditions section of this data sheet. The timing parameters given in the electrical characteristics tables in this data sheet follow industry practices, and the values they reflect are described below. The routing delays are a function of fan-out and the capacitance associated with the configurable interface points (CIPs) and metal interconnect in the path. The number of logic elements that can be driven (fan-out) by PFUs is unlimited, although the delay to reach a valid logic level can exceed timing requirements. It is difficult to make accurate routing delay estimates prior to design compilation based on fan-out. This is because the CAE software may delete redundant logic inserted by the designer to reduce fan-out, and/or it may also automatically reduce fan-out by net splitting. Setup Time—The interval immediately preceding the transition of a clock or latch enable signal, during which the data must be stable to ensure it is recognized as the intended value. Hold Time—The interval immediately following the transition of a clock or latch enable signal, during which the data must be held stable to ensure it is recognized as the intended value. 3-State Enable—The time from when a 3-state control signal becomes active and the output pad reaches the high-impedance state. PFU Timing Table 5. Combinatorial PFU Timing Characteristics OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Symbol Parameter F4_DEL F5_DEL SWL2_DEL SWL2F5_DEL SWL3_DEL SWL3F5_DEL CO_DEL Combinatorial Delays (TJ = +85 °C, VDD = min, VDD2 = min): Four-input Variables (Kz[3:0] to F[z])* Five-input Variables (F5[A:D] to F[0, 2, 4, 6]) Two-level LUT Delay (Kz[3:0] to F w/feedbk)* Two-level LUT Delay (F5[A:D] to F w/feedbk) Three-level LUT Delay (Kz[3:0] to F w/feedbk)* Three-level LUT Delay (F5[A:D] to F w/feedbk) CIN to COUT Delay (logic mode) -7 -8 Min Max Min Max — — — — — — — 1.03 0.85 2.30 1.91 3.40 3.02 1.66 — — — — — — — 0.90 0.74 2.00 1.66 2.96 2.63 1.44 Unit ns ns ns ns ns ns ns * Four-input variables’ (KZ[3:0]) path delays are valid for LUTs in both F4 (four-input LUT) and F5 (five-input LUT) modes. Lattice Semiconductor 13 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 6. Sequential PFU Timing Characteristics OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. -7 Symbol -8 Parameter Unit Min Max Min Max Input Requirements Clock Low Time 1.00 — 0.87 — ns CLKH_MPW Clock High Time 0.76 — 0.66 — ns GSR_MPW Global S/R Pulse Width (GSRN) 1.00 — 0.87 — ns LSR_MPW Local S/R Pulse Width 1.00 — 0.87 — ns Combinatorial Setup Times (TJ = +85 °C, VDD = min, VDD2 = min): Four-input Variables to Clock (Kz[3:0] to CLK)* Five-input Variables to Clock (F5[A:D] to CLK) Data In to Clock (DIN[7:0] to CLK) Carry-in to Clock, DIRECT to REGCOUT (CIN to CLK) Clock Enable to Clock (CE to CLK) Clock Enable to Clock (ASWE to CLK) Local Set/Reset to Clock (SYNC) (LSR to CLK) Data Select to Clock (SEL to CLK) Two-level LUT to Clock (Kz[3:0] to CLK w/feedbk)* Two-level LUT to Clock (F5[A:D] to CLK w/feedbk) Three-level LUT to Clock (Kz[3:0] to CLK w/feedbk)* Three-level LUT to Clock (F5[A:D] to CLK w/feedbk) 0.90 0.51 0.21 0.68 1.41 1.11 0.69 0.64 1.79 1.46 3.06 2.67 — — — — — — — — — — — — 0.78 0.44 0.18 0.59 1.23 0.97 0.60 0.55 1.55 1.27 2.66 2.32 — — — — — — — — — — — — ns ns ns ns ns ns ns ns ns ns ns ns 0.0 0.0 — — 0.0 0.0 — — ns ns 0.0 0.0 0.0 0.0 0.0 — — — — — 0.0 0.0 0.0 0.0 0.0 — — — — — ns ns ns ns ns — 2.82 — 2.46 ns — — 2.21 1.22 — — 1.92 1.06 ns ns — — 1.30 1.43 — — 1.13 1.25 ns ns A D LL IS C DE O N VIC TI N ES U ED CLKL_MPW F4_SET F5_SET DIN_SET CINDIR_SET CE1_SET CE2_SET LSR_SET SEL_SET SWL2_SET SWL2F5_SET SWL3_SET SWL3F5_SET DIN_HLD CINDIR_HLD CE1_HLD CE2_HLD LSR_HLD SEL_HLD — Combinatorial Hold Times (TJ = all, VDD = all): Data In (DIN[7:0] from CLK) Carry-in from Clock, DIRECT to REGCOUT (CIN from CLK) Clock Enable (CE from CLK) Clock Enable from Clock (ASWE from CLK) Local Set/Reset from Clock (sync) (LSR from CLK) Data Select from Clock (SEL from CLK) All Others Output Characteristics LSR_DEL GSR_DEL REG_DEL LTCH_DEL LTCHD_DEL Sequential Delays (TJ = +85 °C, VDD = min, VDD2 = min): Local S/R (async) to PFU Out (LSR to Q[7:0], REGCOUT) Global S/R to PFU Out (GSRN to Q[7:0], REGCOUT) Clock to PFU Out—Register (CLK to Q[7:0], REGCOUT) Clock to PFU Out—Latch (CLK to Q[7:0]) Transparent Latch (DIN[7:0] to Q[7:0]) * Four-input variables’ (KZ[3:0]) setup times are valid for LUTs in both F4 (four-input LUT) and F5 (five-input LUT) modes. Note: The table shows worst-case delays. ORCA Foundry reports the delays for individual paths within a group of paths representing the same timing parameter and may accurately report delays that are less than those listed. 14 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 7. Ripple Mode PFU Timing Characteristics OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. -8 Unit (TJ = +85 °C, VDD = min, VDD2 = min) Min Max Min Max Full Ripple Setup Times (byte-wide): Operands to Clock (Kz[1:0] to CLK) Bitwise Operands to Clock (Kz[1:0] to CLK at F[z]) Fast Carry-in to Clock (FCIN to CLK) Carry-in to Clock (CIN to CLK) Add/Subtract to Clock (ASWE to CLK) Operands to Clock (Kz[1:0] to CLK at REGCOUT) Fast Carry-in to Clock (FCIN to CLK at REGCOUT) Carry-in to Clock (CIN to CLK at REGCOUT) Add/Subtract to Clock (ASWE to CLK at REGCOUT) 1.58 0.90 1.21 1.68 4.70 1.02 1.03 1.48 4.51 — — — — — — — — 1.37 0.78 1.05 1.46 4.09 0.89 0.90 1.29 3.92 — — — — — — — — — ns ns ns ns ns ns ns ns ns 0.0 — 0.0 — ns 0.0 — 0.0 — ns 1.74 0.90 1.21 1.68 4.70 1.37 1.03 1.48 4.51 — — — — — — — — — 1.51 0.78 1.05 1.46 4.09 1.19 0.90 1.29 3.92 — — — — — — — — — ns ns ns ns ns ns ns ns ns 0.0 — 0.0 — ns 0.0 — 0.0 — ns A D LL IS C DE O N VIC TI N ES U ED RIP_SET FRIP_SET FCIN_SET CIN_SET AS_SET RIPRC_SET FCINRC_SET CINRC_SET ASRC_SET -7 Parameter Symbol FCINRC_HLD —— HRIP_SET HFRIP_SET HFCIN_SET HCIN_SET HAS_SET HRIPRC_SET HFCINRC_SET HCINRC_SET HASRC_SET HFCINRC_HLD —— Full Ripple Hold Times (TJ = all, VDD = all): Fast Carry-in from Clock (FCIN from CLK at REGCOUT) All Others Half Ripple Setup Times (nibble wide): Operands to Clock (Kz[1:0] to CLK) Bitwise Operands to Clock (Kz[1:0] to CLK at F[z]) Fast Carry-in to Clock (FCIN to CLK) Carry-in to Clock (CIN to CLK) Add/Subtract to Clock (ASWE to CLK) Operands to Clock (Kz[1:0] to CLK at REGCOUT) Fast Carry-in to Clock (FCIN to CLK at REGCOUT) Carry-in to Clock (CIN to CLK at REGCOUT) Add/Subtract to Clock (ASWE to CLK at REGCOUT) Half Ripple Hold Times (TJ = all, VDD = all): Fast Carry-in from Clock (HFCIN from CLK at RECOUT) All Others Note: The table shows worst-case delay for the ripple chain. ORCA Foundry reports the delay for individual paths within the ripple chain that will be less than or equal to those listed above. Lattice Semiconductor 15 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 7. Ripple Mode PFU Timing Characteristics (continued) OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Symbol Parameter (TJ = +85 °C, VDD = min, VDD2 = min) -7 -8 Unit Min Max Min Max Full Ripple Delays (byte-wide): Operands to Carry-out (Kz[1:0] to COUT) Operands to Carry-out (Kz[1:0] to FCOUT) Operands to PFU Out (Kz[1:0] to F[7:0]) Bitwise Operands to PFU Out (Kz[1:0] to F[z]) Fast Carry-in to Carry-out (FCIN to COUT) Fast Carry-in to Fast Carry-out (FCIN to FCOUT) Carry-in to Carry-out (CIN to COUT) Carry-in to Fast Carry-out (CIN to FCOUT) Fast Carry-in PFU Out (FCIN to F[7:0]) Carry-in PFU Out (CIN to F[7:0]) Add/Subtract to Carry-out (ASWE to COUT) Add/Subtract to Carry-out (ASWE to FCOUT) Add/Subtract to PFU Out (ASWE to F[7:0]) — — — — — — — — — — — — — 2.26 2.23 3.21 1.03 1.36 1.33 1.66 1.61 2.03 2.65 4.67 4.58 5.61 — — — — — — — — — — — — — 1.97 1.94 2.79 0.90 1.18 1.15 1.44 1.40 1.77 2.31 4.06 3.98 4.88 ns ns ns ns ns ns ns ns ns ns ns ns ns HRIPCO_DEL HRIPFCO_DEL HRIP_DEL HFRIP_DEL HFCINCO_DEL HFCINFCO_DEL HCINCO_DEL HCINFCO_DEL HFCIN_DEL HCIN_DEL HASCO_DEL HASFCO_DEL HAS_DEL Half Ripple Delays (nibble wide): Operands to Carry-out (Kz[1:0] to COUT) Operands to Fast Carry-out (Kz[1:0] to FCOUT) Operands to PFU Out (Kz[1:0] to F[3:0]) Bitwise Operands to PFU Out (Kz[1:0] to F[z]) Fast Carry-in to Carry-out (FCIN to COUT) Fast Carry-in to Fast Carry-out (FCIN to FCOUT) Carry-in to Carry-out (CIN to COUT) Carry-in to Carry-out (CIN to FCOUT) Fast Carry-in PFU Out (FCIN to F[3:0]) Carry-in PFU Out (CIN to F[3:0]) Add/Subtract to Carry-out (ASWE to COUT) Add/Subtract to Carry-out (ASWE to FCOUT) Add/Subtract to PFU Out (ASWE to F[3:0]) — — — — — — — — — — — — — 2.26 2.23 2.61 1.03 1.36 1.33 1.66 1.61 1.72 2.40 4.67 4.58 5.00 — — — — — — — — — — — — — 1.97 1.94 2.27 0.90 1.18 1.15 1.44 1.40 1.50 2.09 4.06 3.98 4.34 ns ns ns ns ns ns ns ns ns ns ns ns ns A D LL IS C DE O N VIC TI N ES U ED RIPCO_DEL RIPFCO_DEL RIP_DEL FRIP_DEL FCINCO_DEL FCINFCO_DEL CINCO_DEL CINFCO_DEL FCIN_DEL CIN_DEL ASCO_DEL ASFCO_DEL AS_DEL Note: The table shows worst-case delay for the ripple chain. ORCA Foundry reports the delay for individual paths within the ripple chain that will be less than or equal to those listed above. 16 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 8. Synchronous Memory Write Characteristics OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Symbol -7 Parameter Min -8 Max Min Max Unit — 266.4 — 333.0 MHz 1.03 — 0.90 — ns 1.96 — 1.71 — ns — 4.39 — 3.82 ns Write Operation Setup Time WA4_SET Address to Clock (CIN to CLK) WA_SET Address to Clock (DIN[7, 5, 3, 1] to CLK) WD_SET Data to Clock (DIN[6, 4, 2, 0] to CLK) WE_SET Write Enable (WREN) to Clock (ASWE to CLK) WPE0_SET Write-port Enable 0 (WPE0) to Clock (CE to CLK) WPE1_SET Write-port Enable 1 (WPE1) to Clock (LSR to CLK) 0.68 0.35 0.21 0.37 0.87 1.10 — — — — — — 0.59 0.30 0.18 0.32 0.75 0.95 — — — — — — ns ns ns ns ns ns Write Operation Hold Time WA4_HLD Address from Clock (CIN from CLK) WA_HLD Address from Clock (DIN[7, 5, 3, 1] from CLK) WD_HLD Data from Clock (DIN[6, 4, 2, 0] from CLK) WE_HLD Write Enable (WREN) from Clock (ASWE from CLK) WPE0_HLD Write-port Enable 0 (WPE0) from Clock (CE from CLK) WPE1_HLD Write-port Enable 1 (WPE1) from Clock (LSR from CLK) 0.0 0.0 0.33 0.0 0.0 0.0 — — — — — — 0.0 0.0 0.29 0.0 0.0 0.0 — — — — — — ns ns ns ns ns ns A D LL IS C DE O N VIC TI N ES U ED Write Operation for RAM Mode SMCLK_FRQ Maximum Frequency SMCLKL_MPW Clock Low Time SMCLKH_MPW Clock High Time MEM_DEL Clock to Data Valid (CLK to F[6, 4, 2, 0])* * The RAM is written on the inactive clock edge following the active edge that latches the address, data, and control signals. Note: The table shows worst-case delays. ORCA Foundry reports the delays for individual paths within a group of paths representing the same timing parameter and may accurately report delays that are less than those listed. WA4_SET WA_SET WA4_HLD WA_HLD WD_SET WD_HLD CIN, DIN[7, 5, 3, 1] DIN[6, 4, 2, 0] WE_SET WE_HLD ASWE (WREN) WPE0_SET WPE1_SET WPE0_HLD WPE1_HLD CE (WPE0), LSR(WPE1) SMCLKH_MPW SMCLKL_MPW CK MEM_DEL F[6, 4, 2, 0] 5-4621 (F)b Figure 4. Synchronous Memory Write Characteristics Lattice Semiconductor 17 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 9. Synchronous Memory Read Characteristics OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Symbol Parameter (TJ = 85 °C, VDD = min, VDD2 = min) -7 -8 Unit Min Max Min Max — — 1.03 0.85 — — 0.90 0.74 ns ns 0.90 — 0.78 — 0.51 — 0.44 — — 0.0 — 0.0 — 0.0 0.0 — — 1.22 — 1.06 — 5.38 — 4.68 ns ns ns ns ns ns Read Operation Data Valid After Address (Kz[3:0] to F[6, 4, 2, 0]) Data Valid After Address (F5[A:D] to F[6, 4, 2, 0]) A D LL IS C DE O N VIC TI N ES U ED RA_DEL RA4_DEL Read Operation, Clocking Data into Latch/FF RA_SET RA4_SET RA_HLD RA4_HLD REG_DEL SMRD_CYC Address to Clock Setup Time (Kz[3:0] to CLK) Address to Clock Setup Time (F5[A:D] to CLK) Address from Clock Hold Time (Kz[3:0] from CLK) Address from Clock Hold Time (F5[A:D] from CLK) Clock to PFU Output—Register (CLK to Q[6, 4, 2, 0]) Read Cycle Delay Note: The table shows worst-case delays. ORCA Foundry reports the delays for individual paths within a group of paths representing the same timing parameter and may accurately report delays that are less than those listed. Kz[3:0], F5[A:D] RA_DEL RA4_DEL f[6, 4, 2, 0] CK RA_SET RA4_SET RA_HLD RA4_HLD REG_DEL Q[3:0] 5-4622(F) Figure 5. Synchronous Memory Read Cycle 18 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) PLC Timing Table 10. PFU Output MUX and Direct Routing Timing Characteristics OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Parameter (TJ = 85 °C, VDD = min, VDD2 = min) -7 -8 Unit Min Max Min Max A D LL IS C DE O N VIC TI N ES U ED Symbol PFU Output MUX (Fan-out = 1) OMUX_DEL Output MUX Delay (F[7:0]/Q[7:0] to O[9:0]) COO9_DEL Carry-out MUX Delay (COUT to O9) RCOO8_DEL Registered Carry-out MUX Delay (REGCOUT to O8) — — — 0.76 0.74 0.74 — — — 0.66 0.64 0.64 ns ns ns — — — 0.75 0.89 1.61 — — — 0.65 0.78 1.40 ns ns ns Direct Routing FDBK_DEL ODIR_DEL DDIR_DEL PFU Feedback (xSW)* PFU to Orthogonal PFU Delay (xSW to xSW) PFU to Diagonal PFU Delay (xBID to xSW) * This is general feedback using switching segments. See the combinatorial PFU timing table for softwired look-up table feedback timing. SLIC Timing Table 11. Supplemental Logic and Interconnect Cell Timing Characteristics OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Parameter (TJ = 85 °C, VDD = min, VDD2 = min) Symbol -7 -8 Unit Min Max Min Max BIDI Delay (BRx to BLx, BLx to BRx) BIDI Delay (Ox to BRx, Ox to BLx) BIDI 3-state Enable/Disable Delay (TRI to BL, BR) BIDI 3-state Enable/Disable Delay (BL, BR via DEC, TRI to BL, BR) — — — — 0.70 0.61 1.18 2.01 — — — — 0.61 0.53 1.03 1.75 ns ns ns ns Decoder Delay (BR[9:8], BL[9:8] to DEC) Decoder Delay (BR[7:0], BL[7:0] to DEC) — — 1.16 1.29 — — 1.01 1.12 ns ns 3-Statable BIDIs BUF_DEL OBUF_DEL TRI_DEL DECTRI_DEL Decoder DEC98_DEL DEC_DEL Lattice Semiconductor 19 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) PIO Timing. Table 12. Programmable I/O Timing Characteristics OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Symbol Parameter Min -8 Max Min Max Unit A D LL IS C DE O N VIC TI N ES U ED Input Delays (TJ = 85 °C, VDD = min, VDD2 = min) IN_RIS Input Rise Time IN_FAL Input Fall Time PIO Direct Delays: CKIN_DEL Pad to In (pad to CLK IN) IN_DEL Pad to In (pad to IN1, IN2) IND_DEL Pad to In Delayed (pad to IN1, IN2) PIO Transparent Latch Delays: LATCH_DEL Pad to In (pad to IN1, IN2) LATCHD_DEL Pad to In Delayed (pad to IN1, IN2) Input Latch/FF Setup Timing: Pad to ExpressCLK (fast-capture latch/FF) INREGE_SET INREGED_SET Pad Delayed to ExpressCLK (fast-capture latch/FF) Pad to Clock (input latch/FF) INREG_SET Pad Delayed to Clock (input latch/FF) INREGD_SET Clock Enable to Clock (CE to CLK) INCE_SET Local Set/Reset (sync) to Clock (LSR to CLK) INLSR_SET Input FF/Latch Hold Timing: Pad from ExpressCLK (fast-capture latch/FF) INREGE_HLD INREGED_HLD Pad Delayed from ExpressCLK (fast-capture latch/FF) Pad from Clock (input latch/FF) INREG_HLD Pad Delayed from Clock (input latch/FF) INREGD_HLD Clock Enable from Clock (CE from CLK) INCE_HLD INLSR_HLD Local Set/Reset (sync) from Clock (LSR from CLK) INREG_DEL Clock-to-in Delay (FF CLK to IN1, IN2) INLTCH_DEL Clock-to-in Delay (latch CLK to IN1, IN2) INLSR_DEL Local S/R (async) to IN (LSR to IN1, IN2) INLSRL_DEL Local S/R (async) to IN (LSR to IN1, IN2) Latch/FF in Latch Mode INGSR_DEL Global S/R to In (GSRN to IN1, IN2) -7 — — 575 575 — — 500 500 ns ns — — — 0.77 1.35 11.55 — — — 0.55 1.07 9.89 ns ns ns — — 2.79 12.46 — — 2.42 10.87 ns ns 4.54 14.53 — — 2.62 11.63 — — ns ns 0.65 10.90 0.92 0.81 — — — — 0.46 9.50 0.82 0.73 — — — — ns ns ns ns 0.0 0.0 — — 0.0 0.0 — — ns ns 0.0 0.0 0.0 0.0 — — — — 0.0 0.0 0.0 0.0 — — — — ns ns ns ns — — — — 1.94 1.94 2.95 2.64 — — — — 1.68 1.68 2.55 2.30 ns ns ns ns — 2.69 — 2.34 ns Note: The delays for all input buffers assume an input rise/fall time of <1 V/ns. 20 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 12. Programmable I/O Timing Characteristics (continued) OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Symbol Parameter Min -8 Max Min Max Unit A D LL IS C DE O N VIC TI N ES U ED Output Delays (TJ = 85 °C, VDD = min, CL = 50 pF) Output to Pad (OUT2, OUT1 direct to pad): OUTF_DEL Fast OUTSL_DEL Slewlim OUTSI_DEL Sinklim 3-state Enable/Disable Delay (TS to pad): TSF_DEL Fast TSSL_DEL Slewlim TSSI_DEL Sinklim Local Set/Reset (async) to Pad (LSR to pad): OUTLSRF_DEL Fast OUTLSRSL_DEL Slewlim OUTLSRSI_DEL Sinklim Global Set/Reset to Pad (GSRN to pad): OUTGSRF_DEL Fast OUTGSRSL_DEL Slewlim OUTGSRSI_DEL Sinklim Output FF Setup Timing: Out to ExpressCLK (OUT[2:1] to ECLK) OUTE_SET Out to Clock (OUT[2:1] to CLK) OUT_SET Clock Enable to Clock (CE to CLK) OUTCE_SET Local Set/Reset (sync) to Clock (LSR to CLK) OUTLSR_SET Output FF Hold Timing: Out from ExpressCLK (OUT[2:1] from ECLK) OUTE_HLD Out from Clock (OUT[2:1] from CLK) OUT_HLD Clock Enable from Clock (CE from CLK) OUTCE_HLD Local Set/Reset (sync) from Clock (LSR from CLK) OUTLSR_HLD Clock to Pad Delay (ECLK, SCLK to pad): OUTREGF_DEL Fast OUTREGSL_DEL Slewlim OUTREGSI_DEL Sinklim OD_DEL Additional Delay If Using Open Drain -7 — — — 3.79 4.71 10.14 — — — 3.21 3.91 8.84 ns ns ns — — — 3.86 4.66 10.24 — — — 3.29 3.99 8.92 ns ns ns — — — 5.70 6.58 12.09 — — — 4.90 5.60 10.52 ns ns ns — — — 5.05 5.75 10.60 — — — 4.81 5.51 10.43 ns ns ns 0.0 0.0 0.44 0.05 — — — — 0.0 0.0 0.39 0.04 — — — — ns ns ns ns 0.32 0.32 0.0 0.0 — — — — 0.28 0.28 0.0 0.0 — — — — ns ns ns ns — — — — 4.67 5.55 11.05 0.11 — — — — 4.02 4.72 9.64 0.09 ns ns ns ns Note: The delays for all input buffers assume an input rise/fall time of <1 V/ns Lattice Semiconductor 21 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 12. Programmable I/O Timing Characteristics (continued) OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Symbol Parameter -7 Min Max Min Max Unit A D LL IS C DE O N VIC TI N ES U ED PIO Logic Block Delays Out to Pad (OUT[2:1] via logic to pad): OUTLF_DEL Fast — OUTLSL_DEL Slewlim — OUTLSI_DEL Sinklim — Outreg to Pad (OUTREG via logic to pad): OUTRF_DEL Fast — OUTRSL_DEL Slewlim — OUTRSI_DEL Sinklim — Clock to Pad (ECLK, CLK via logic to pad): OUTCF_DEL Fast — OUTCSL_DEL Slewlim — OUTCSI_DEL Sinklim — 3-State FF Delays 3-state Enable/Disable Delay (TS direct to pad): Fast — TSF_DEL Slewlim — TSSL_DEL Sinklim — TSSI_DEL Local Set/Reset (async) to Pad (LSR to pad): Fast — TSLSRF_DEL Slewlim — TSLSRSL_DEL Sinklim — TSLSRSI_DEL Global Set/Reset to Pad (GSRN to pad): TSGSRF_DEL Fast — TSGSRSL_DEL Slewlim — TSGSRSI_DEL Sinklim — 3-State FF Setup Timing: TSE_SET TS to ExpressCLK (TS to ECLK) 0.0 TS_SET TS to Clock (TS to CLK) 0.0 TSLSR_SET Local Set/Reset (sync) to Clock (LSR to CLK) 0.0 3-State FF Hold Timing: TS from ExpressCLK (TS from ECLK) 0.34 TSE_HLD TS from Clock (TS from CLK) 0.34 TS_HLD Local Set/Reset (sync) from Clock 0.0 TSLSR_HLD (LSR from CLK) Clock to Pad Delay (ECLK, SCLK to pad): TSREGF_DEL Fast — TSREGSL_DEL Slewlim — TSREGSI_DEL Sinklim — -8 3.79 4.71 10.14 — — — 3.21 3.91 8.84 ns ns ns 4.67 5.55 11.05 — — — 4.02 4.72 9.64 ns ns ns 4.54 5.44 10.92 — — — 3.90 4.60 9.53 ns ns ns 3.86 4.66 10.24 — — — 3.29 3.99 8.92 ns ns ns 5.13 5.93 11.51 — — — 4.38 5.08 10.01 ns ns ns 4.65 5.35 10.20 — — — 4.28 4.98 9.91 ns ns ns — — — 0.0 0.0 0.0 — — — ns ns ns — — — 0.30 0.30 0.0 — — — ns ns ns 4.09 4.90 10.48 — — — 3.49 4.19 9.12 ns ns ns Note: The delays for all input buffers assume an input rise/fall time of <1 V/ns. 22 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Special Function Blocks Timing Table 13. Microprocessor Interface (MPI) Timing Characteristics OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. –7 Symbol –8 Parameter Unit Min Max Min Max A D LL IS C DE O N VIC TI N ES U ED PowerPC Interface Timing (TJ = 85 °C, VDD = min, VDD2 = min) TA_DEL BI_DEL TA_DELZ BI_DELZ WD_SET WD_HLD A_SET A_HLD RW_SET RW_HLD CS_SET CS_HLD UA_DEL URDWR_DEL Transfer Acknowledge Delay (CLK to TA) — 9.50 — 8.30 Burst Inhibit Delay (CLK to BIN) — 9.40 — 8.20 — Transfer Acknowledge Delay to High Impedance2 — — — — — Burst Inhibit Delay to High Impedance2 — — — 0.0 — Write Data Setup Time (data to TS) 0.0 — 0.0 — Write Data Hold Time (data from CLK while MPI_ACK low) 0.0 — 0.0 — Address Setup Time (addr to TS) 0.0 — 0.0 — Address Hold Time (addr from CLK while MPI_ACK low) 0.0 0.0 — Read/Write Setup Time (R/W to TS) 0.0 — 0.0 — Read/Write Hold Time (R/W from CLK while MPI_ACK low) 0.0 — Chip Select Setup Time (CS0, CS1 to TS) 0.46 — 0.40 — — 0.0 — Chip Select Hold Time (CS0, CS1 from CLK) 0.0 User Address Delay (pad to UA[3:0]) — 2.20 — 1.90 User Read/Write Delay (pad to URDWR_DEL) — 4.60 — 4.00 ns ns ns ns ns ns ns ns ns ns ns ns ns ns i960 Interface Timing (TJ = 85 °C, VDD = min, VDD2 = min) ADSN_SET ADSN_HLD RDYRCV_DEL RDYRCV_DELZ WD_SET WD_HLD A_SET A_HLD BE_SET BE_HLD Addr/Data Select to ALE (ADS, to ALE low) Addr/Data Select to ALE (ADS, from ALE low) Ready/Receive Delay (CLK to RDYRCV) Ready/Receive Delay to High Impedance2 Write Data Setup Time3 Write Data Hold Time4 Address Setup Time (addr to ALE low) Address Hold Time (addr from ALE low) Byte Enable Setup Time (BE0, BE1 to ALE low) Byte Enable Hold Time (BE0, BE1 from ALE low) — — — — 0.0 — 0.0 — — 9.50 — 8.30 — — — — — — — — — — — — — 0.12 — 0.10 0.80 — 0.70 — — 0.12 — 0.10 0.80 — 0.70 — ns ns ns ns ns ns ns ns ns ns 1. For user system flexibility, CS0 and CS1 may be set up to any one of the three rising clock edges, beginning with the rising clock edge when MPI_STRB is low. If both chip selects are valid and the setup time is met, the MPI will latch the chip select state, and CS0 and CS1 may go inactive before the end of the read/write cycle. 2. 0.5 MPI_CLK. 3. Write data and W/R have to be valid starting from the clock cycle after both ADS and CS0 and CS1 are recognized. 4. Write data and W/R have to be held until the microprocessor receives a valid RDYRCV. 5. User Logic Delay has no predefined value. The user must generate a UEND signal to complete the cycle. 6. USTART_DEL is based on the falling clock edge. 7. There is no specific time associated with this delay. The user must assert UEND low to complete this cycle. 8. The user must assert interrupt request low until a service routine is executed. 9. This should be at least one MPI_CLK cycle. 10. User should set up read data so that RDS_SET and RDS_HLD can be met for the microprocessor timing. Notes: Read and write descriptions are referenced to the host microprocessor; e.g., a read is a read by the host (PowerPC, i960) from the FPGA. PowerPC and i960 timings to/from the clock are relative to the clock at the FPGA microprocessor interface clock pin (MPI_CLK). Lattice Semiconductor 23 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 13. Microprocessor Interface (MPI) Timing Characteristics (continued) OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Symbol Parameter –7 Min –8 Max Min Max Unit i960 Interface Timing (TJ = 85 °C, VDD = min, VDD2 = min) (continued) Read/Write Setup Time3 Read/Write Hold Time4 Chip Select Setup Time (CS0, CS1 to CLK)1 Chip Select Hold Time (CS0, CS1 from CLK)1 User Address Delay (CLK low to UA[3:0]) User Read/Write Delay (pad to URDWR_DEL) — — — — — — — — 0.80 — 0.70 — 0.0 — 0.0 — — 6.21 — 5.40 — 4.60 — 4.00 ns ns ns ns ns ns A D LL IS C DE O N VIC TI N ES U ED RW_SET RW_HLD CS_SET CS_HLD UA_DEL URDWR_DEL User Logic Delay5 USTART_DEL User Start Delay (MPI_CLK falling to USTART)6 USTARTCLR_DEL User Start Clear Delay (MPI_CLK to USTART) UEND_DEL User End Delay (USTART low to UEND low)7 — — — 3.80 6.90 — — — — 3.30 6.00 — ns ns ns 0.0 1.40 — — — — — — 0.0 1.20 — — — — — — ns ns ns ns — — — — — — — — — — — — ns ns ns Synchronous User Timing UEND_SET UEND_HLD RDS_SET RDS_HLD User End Setup (UEND to MPI_CLK) User End Hold (UEND to MPI_CLK) Data Setup for Read (D[7:0] to MPI_CLK)9 Data Hold for Read (D[7:0] from MPI_CLK)9 Asynchronous User Timing RDA_DEL RDA_HLD TUIRQ_PW User End to Read Data Delay (UEND to D[7:0])10 Data Hold from User Start (low)9 Interrupt Request Pulse Width8 1. For user system flexibility, CS0 and CS1 may be set up to any one of the three rising clock edges, beginning with the rising clock edge when MPI_STRB is low. If both chip selects are valid and the setup time is met, the MPI will latch the chip select state, and CS0 and CS1 may go inactive before the end of the read/write cycle. 2. 0.5 MPI_CLK. 3. Write data and W/R have to be valid starting from the clock cycle after both ADS and CS0 and CS1 are recognized. 4. Write data and W/R have to be held until the microprocessor receives a valid RDYRCV. 5. User Logic Delay has no predefined value. The user must generate a UEND signal to complete the cycle. 6. USTART_DEL is based on the falling clock edge. 7. There is no specific time associated with this delay. The user must assert UEND low to complete this cycle. 8. The user must assert interrupt request low until a service routine is executed. 9. This should be at least one MPI_CLK cycle. 10. User should set up read data so that RDS_SET and RDS_HLD can be met for the microprocessor timing. Notes: Read and write descriptions are referenced to the host microprocessor; e.g., a read is a read by the host (PowerPC, i960) from the FPGA. PowerPC and i960 timings to/from the clock are relative to the clock at the FPGA microprocessor interface clock pin (MPI_CLK). 24 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Clock Timing Table 14. ExpressCLK (ECLK) and Fast Clock (FCLK) Timing Characteristics OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Symbol Device (TJ = 85 °C, VDD = min, VDD2 = min) -8 Unit Min Max Min Max 0.31 — 0.27 — ns 1.06 — 0.92 — ns 0.41 0.0 0.41 0.0 — — — — 0.36 0.0 0.36 0.0 — — — — ns ns ns ns — — 2.32 2.37 — — 2.02 2.07 ns ns — — 5.02 5.27 — — 4.23 4.45 ns ns — — 5.74 6.04 — — 5.06 5.35 ns ns — — 8.41 8.89 — — 7.24 7.68 ns ns A D LL IS C DE O N VIC TI N ES U ED ECLKC_DEL Clock Control Timing Delay Through CLKCNTRL (input from corner) ECLKM_DEL Delay Through CLKCNTRL (input from internal clock controller PAD) Clock Shutoff Timing: OFFM_SET Setup from Middle ECLK (shut off to CLK) OFFM_HLD Hold from Middle ECLK (shut off from CLK) OFFC_SET Setup from Corner ECLK (shut off to CLK) OFFC_HLD Hold from Corner ECLK (shut off from CLK) ECLKM_DEL ECLK Delay (middle pad): OR3L165 OR3L225 ECLKC_DEL ECLK Delay (corner pad): OR3L165 OR3L225 FCLKM_DEL FCLK Delay (middle pad): OR3L165 OR3L225 FCLKC_DEL FCLK Delay (corner pad): OR3L165 OR3L225 -7 Notes: The ECLK delays are to all of the PICs on one side of the device for middle pin input, or two sides of the device for corner pin input. The delay includes both the input buffer delay and the clock routing to the PIC clock input. The FCLK delays are for a fully routed clock tree that uses the ExpressCLK input into the fast clock network. It includes both the input buffer delay and the clock routing to the PFU CLK input. The delay will be reduced if any of the clock branches are not used. Lattice Semiconductor 25 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 15. General-Purpose Clock Timing Characteristics (Internally Generated Clock) OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. -7 -8 Device (TJ = 85 °C, VDD = min, VDD2 = min) Min Max Min Max CLK_DEL CLK_DEL OR3L165 OR3L225 — — 4.56 4.58 — — 3.98 3.99 Unit ns ns A D LL IS C DE O N VIC TI N ES U ED Symbol Notes: This table represents the delay for an internally generated clock from the clock tree input in one of the four middle PICs (using pSW routing) on any side of the device which is then distributed to the PFU/PIO clock inputs. If the clock tree input used is located at any other PIC, see the results reported by ORCA Foundry. This clock delay is for a fully routed clock tree that uses the general clock network. The delay will be reduced if any of the clock branches are not used. See pin-to-pin timing in Table 18 for clock delays of clocks input on general I/O pins. 26 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 16. OR3Lxxx ExpressCLK to Output Delay (Pin-to-Pin) OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Description (TJ = 85 °C, VDD = min, VDD2 = min) -7 -8 Device Unit Min Max Min Max OR3L165 OR3L225 — — 6.94 6.99 — — 5.84 5.89 ns ns ECLK Middle Input Pin→OUTPUT Pin (Slewlim) OR3L165 OR3L225 — — 7.79 7.84 — — 6.64 6.69 ns ns ECLK Middle Input Pin→OUTPUT Pin (Sinklim) OR3L165 OR3L225 — — 12.91 12.96 — — 11.08 ns 11.13 ns Additional Delay if ECLK Corner Pin Used OR3L165 OR3L225 — — 2.70 2.90 — — 2.21 2.38 A D LL IS C DE O N VIC TI N ES U ED ECLK Middle Input Pin→OUTPUT Pin (Fast) ns ns Notes: Timing is without the use of the PCM. This clock delay is for a fully routed clock tree that uses the ExpressCLK network. It includes both the input buffer delay, the clock routing to the PIO CLK input, the clock→Q of the FF, and the delay through the output buffer. The given timing requires that the input clock pin be located at one of the six ExpressCLK inputs of the device, and that a PIO FF be used. PIO FF D Q OUTPUT (50 pF LOAD) ECLK 5-4846 (F)c Figure 6. ExpressCLK to Output Delay Lattice Semiconductor 27 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 17. OR3Lxxx Fast Clock (FCLK) to Output Delay (Pin-to-Pin) OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Description (TJ = 85 °C, VDD = min, VDD2 = min) -7 -8 Device Unit Min Max Min Max A D LL IS C DE O N VIC TI N ES U ED Output Not on Same Side of Device as Input Clock (Fast Clock Delays Using ExpressCLK Inputs) ECLK Middle Input Pin →OUTPUT Pin (Fast) OR3L165 OR3L225 — — 10.37 10.66 — — 8.89 9.17 ns ns ECLK Middle Input Pin →OUTPUT Pin (Slewlim) OR3L165 OR3L225 — — 11.22 11.54 — — 9.69 9.97 ns ns ECLK Middle Input Pin →OUTPUT Pin (Sinklim) OR3L165 OR3L225 — — 16.33 16.63 — — 14.13 14.41 ns ns Additional Delay if ECLK Corner Pin Used OR3L165 OR3L225 — — 2.66 2.85 — — 2.17 2.33 ns ns Notes: Timing is without the use of the PCM. This clock delay is for a fully routed clock tree that uses the primary clock network. It includes both the input buffer delay, the clock routing to the PIO CLK input, the clock→Q of the FF, and the delay through the output buffer. The delay will be reduced if any of the clock branches are not used. The given timing requires that the input clock pin be located at one of the six ExpressCLK inputs of the device and that a PIO FF be used. PIO FF D Q OUTPUT (50 pF LOAD) CLKCNTRL ECLK FCLK 5-4846(F).b Figure 7. Fast Clock to Output Delay 28 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 18. OR3Lxxx General System Clock (SCLK) to Output Delay (Pin-to-Pin) OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Description (TJ = 85 °C, VDD = min, VDD2 = min) -7 -8 Device Unit Min Max Min Max A D LL IS C DE O N VIC TI N ES U ED Output On Same Side of Device As Input Clock (System Clock Delays Using General User I/O Inputs) Clock Input Pin (mid-PIC) →OUTPUT Pin (Fast) OR3L165 OR3L225 — — 11.81 12.32 — — 10.06 10.54 ns ns Clock Input Pin (mid-PIC) →OUTPUT Pin (Slewlim) OR3L165 OR3L225 — — 12.66 13.16 — — 11.85 11.34 ns ns Clock Input Pin (mid-PIC) →OUTPUT Pin (Sinklim) OR3L165 OR3L225 — — 17.78 18.28 — — 15.29 15.78 ns ns Additional Delay if Non-mid-PIC Used as Clock Pin OR3L165 OR3L225 — — 1.04 1.43 — — 1.03 1.43 ns ns Output Not on Same Side of Device As Input Clock (System Clock Delays Using General User I/O Inputs) Additional Delay if Output Not on Same Side as Input Clock Pin OR3L165 OR3L225 — — 1.04 1.43 — — 1.03 1.43 ns ns Note: This clock delay is for a fully routed clock tree that uses the primary clock network. It includes both the input buffer delay, the clock routing to the PIO CLK input, the clock→Q of the FF, and the delay through the output buffer. The delay will be reduced if any of the clock branches are not used. The given timing requires that the input clock pin be located at one of the four center PICs on any side of the device and that a PIO FF be used. For clock pins located at any other PIO, see the results reported by ORCA Foundry. PIOFF D Q OUTPUT (50 pF LOAD) SCLK 5-4846(F) Figure 8. System Clock to Output Delay Lattice Semiconductor 29 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 19. OR3Lxxx Input to ExpressCLK (ECLK) Fast-Capture Setup/Hold Time (Pin-to-Pin) OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Description (TJ = 85 °C, VDD = min, VDD2 = min) -7 -8 Device Unit Min Max Min Max OR3L165 OR3L225 2.63 2.61 — — 0.96 0.95 — — ns ns Input to ECLK Setup Time OR3L165 (middle ECLK pin, delayed data input) OR3L225 12.62 12.60 — — 9.97 9.96 — — ns ns 0.0 0.0 — — 0.0 0.0 — — ns ns 10.33 10.13 — — 8.09 7.93 — — ns ns OR3L165 OR3L225 0.0 0.0 — — 0.0 0.0 — — ns ns Input to ECLK Hold Time OR3L165 (middle ECLK pin, delayed data input) OR3L225 0.0 0.0 — — 0.0 0.0 — — ns ns A D LL IS C DE O N VIC TI N ES U ED Input to ECLK Setup Time (middle ECLK pin) Input to ECLK Setup Time (corner ECLK pin) OR3L165 OR3L225 Input to ECLK Setup Time OR3L165 (corner ECLK pin, delayed data input) OR3L225 Input to ECLK Hold Time (middle ECLK pin) Notes: The pin-to-pin timing parameters in this table should be used instead of results reported by ORCA Foundry. The ECLK delays are to all of the PIOs on one side of the device for middle pin input, or two sides of the device for corner pin input. The delay includes both the input buffer delay and the clock routing to the PIO clock input. 30 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 19. OR3Lxxx Input to ExpressCLK (ECLK) Fast-Capture Setup/Hold Time (Pin-to-Pin) (continued) OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Description (TJ = 85 °C, VDD = min, VDD2 = min) -7 -8 Device Unit Min Max Min Max OR3L165 OR3L225 0.0 0.0 — — 0.0 0.0 — — ns ns Input to ECLK Hold Time OR3L165 (corner ECLK pin, delayed data input) OR3L225 0.0 0.0 — — 0.0 0.0 — — ns ns A D LL IS C DE O N VIC TI N ES U ED Input to ECLK Hold Time (corner ECLK pin) Notes: The pin-to-pin timing parameters in this table should be used instead of results reported by ORCA Foundry. The ECLK delays are to all of the PIOs on one side of the device for middle pin input, or two sides of the device for corner pin input. The delay includes both the input buffer delay and the clock routing to the PIO clock input. PIO ECLK LATCH INPUT D Q CLKCNTRL CLK ECLK 5-4847(F).b Figure 9. Input to ExpressCLK Setup/Hold Time Lattice Semiconductor 31 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 20. OR3Lxxx Input to Fast Clock Setup/Hold Time (Pin-to-Pin) OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. Description (TJ = 85 °C, VDD = min, VDD2 = min) -7 -8 Device Unit Min Max Min Max A D LL IS C DE O N VIC TI N ES U ED Output Not on Same Side of Device As Input Clock (Fast Clock Delays Using ExpressCLK Inputs) Input to FCLK Setup Time (middle ECLK pin) OR3L165 OR3L225 0.0 0.0 — — 0.0 0.0 — — ns ns Input to FCLK Setup Time (middle ECLK pin, delayed data input) OR3L165 OR3L225 6.39 6.37 — — 5.56 5.55 — — ns ns Input to FCLK Setup Time (corner ECLK pin) OR3L165 OR3L225 0.0 0.0 — — 0.0 0.0 — — ns ns Input to FCLK Setup Time (corner ECLK pin, delayed data input) OR3L165 OR3L225 4.17 3.97 — — 3.76 3.58 — — ns ns Input to FCLK Hold Time (middle ECLK pin) OR3L165 OR3L225 4.93 5.22 — — 4.44 4.72 — — ns ns Notes: The pin-to-pin timing parameters in this table should be used instead of results reported by ORCA Foundry. The FCLK delays are for a fully routed clock tree that uses the ExpressCLK input into the fast clock network. It includes both the input buffer delay and the clock routing to the PFU CLK input. The delay will be reduced if any of the clock branches are not used. 32 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 20. OR3Lxxx Input to Fast Clock Setup/Hold Time (Pin-to-Pin) (continued) OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. -7 Description (TJ = 85 °C, VDD = min, VDD2 = min) Device Input to FCLK Hold Time (middle ECLK pin, delayed data input) -8 Unit Max Min Max OR3L165 OR3L225 0.0 0.0 — — 0.0 0.0 — — ns ns Input to FCLK Hold Time (corner ECLK pin) OR3L165 OR3L225 7.59 8.08 — — 6.61 7.06 — — ns ns Input to FCLK Hold Time (corner ECLK pin, delayed data input) OR3L165 OR3L225 0.0 0.0 — — 0.0 0.0 — — ns ns A D LL IS C DE O N VIC TI N ES U ED Min Notes: The pin-to-pin timing parameters in this table should be used instead of results reported by ORCA Foundry. The FCLK delays are for a fully routed clock tree that uses the ExpressCLK input into the fast clock network. It includes both the input buffer delay and the clock routing to the PFU CLK input. The delay will be reduced if any of the clock branches are not used. PIO FF INPUT D Q CLKCNTRL ECLK FCLK 5-4847(F).a Figure 10. Input to Fast Clock Setup/Hold Time Lattice Semiconductor 33 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 21. OR3Lxxx Input to General System Clock (SCLK) Setup/Hold Time (Pin-to-Pin) OR3LxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. -7 Description (TJ = 85 °C, VDD = min, VDD2 = min) -8 Device Unit Min Max Min Max OR3L165 OR3L225 0.0 0.0 — — 0.0 0.0 — — ns ns Input to SCLK Setup Time (delayed data input) OR3L165 OR3L225 5.69 5.57 — — 5.07 4.96 — — ns ns Input to SCLK Hold Time OR3L165 OR3L225 6.46 6.96 — — 5.67 6.16 — — ns ns Input to SCLK Hold Time (delayed data input) OR3L165 OR3L225 0.0 0.0 — — 0.0 0.0 — — ns ns Additional Hold Time if Non-mid-PIC Used as SCLK Pin (no delay on data input) OR3L165 OR3L225 1.04 1.43 — — 1.03 1.43 — — ns ns A D LL IS C DE O N VIC TI N ES U ED Input to SCLK Setup Time Notes: The pin-to-pin timing parameters in this table should be used instead of results reported by ORCA Foundry. This clock delay is for a fully routed clock tree that uses the clock network. It includes both the input buffer delay and the clock routing to the PIO FF CLK input. The delay will be reduced if any of the clock branches are not used. The given setup (delayed and no delay) and hold (delayed) timing allows the input clock pin to be located in any PIO on any side of the device, but a PIO FF must be used. The hold (no delay) timing assumes the clock pin is located at one of the four middle PICs on any side of the device and that a PIO FF is used. If the clock pin is located elsewhere, then the last parameter in the table must be added to the hold (no delay) timing. PIO ECLK LATCH INPUT D Q CLKCNTRL CLK ECLK 5-4847 (F) Figure 11. Input to System Clock Setup/Hold Time 34 Lattice Semiconductor Data Addendum March 2002 Timing Characteristics (continued) Description The values given for the parameters are the same as those used during production testing and speed binning of the devices. The junction temperature and supply voltage used to characterize the devices are listed in the delay tables. Actual delays at nominal temperature and voltage for best-case processes can be much better than the values given. It should be noted that the junction temperature used in the tables is generally 85 °C. The junction temperature for the FPGA depends on the power dissipated by the device, the package thermal characteristics (ΘJA), and the ambient temperature, as calculated in the following equation and as discussed further in the Package Thermal Characteristics section: A D LL IS C DE O N VIC TI N ES U ED To define speed grades, the ORCA Series part number designation (see Ordering Information) uses a singledigit number to designate a speed grade. This number is not related to any single ac parameter. Higher numbers indicate a faster set of timing parameters. The actual speed sorting is based on testing the delay in a path consisting of an input buffer, combinatorial delay through all PLCs in a row, and an output buffer. Other tests are then done to verify other delay parameters, such as routing delays, setup times to FFs, etc. ORCA OR3LxxxB Series FPGAs The most accurate timing characteristics are reported by the timing analyzer in the ORCA Foundry Development System. A timing report provided by the development system after layout divides path delays into logic and routing delays. The timing analyzer can also provide logic delays prior to layout. While this allows routing budget estimates, there is wide variance in routing delays associated with different layouts. The logic timing parameters noted in the Electrical Characteristics section of this data sheet are the same as those in the design tools. In the PFU timing, symbol names are generally a concatenation of the PFU operating mode and the parameter type. The setup, hold, and propagation delay parameters, defined below, are designated in the symbol name by the SET, HLD, and DEL characters, respectively. Lattice Semiconductor TJmax = TAmax + (P • ΘJA) °C Note: The user must determine this junction temperature to see if the delays from ORCA Foundry should be derated based on the following derating tables. Table 22 and Table 23 provide approximate power supply and junction temperature derating for OR3Lxxx commercial and industrial devices. The delay values in this data sheet and reported by ORCA Foundry are shown as 1.00 in the tables. The method for determining the maximum junction temperature is defined in the Package Thermal Characteristics section. Taken cumulatively, the range of parameter values for best-case vs. worst-case processing, supply voltage, and junction temperature can approach three to one. 35 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Timing Characteristics (continued) Table 22. Derating for Commercial/Industrial OR3Lxxx Devices (I/O Supply VDD) Power Supply Voltage 3.0 V 3.3 V 3.6 V –40 0 25 85 100 125 0.82 0.91 0.98 1.00 1.23 1.34 0.72 0.80 0.85 0.99 1.07 1.15 0.66 0.72 0.77 0.90 0.94 1.01 A D LL IS C DE O N VIC TI N ES U ED TJ (°C) In addition to supply voltage, process variation, and operating temperature, circuit and process improvements of the ORCA Series FPGAs over time will result in significant improvement of the actual performance over those listed for a speed grade. Even though lower speed grades may still be available, the distribution of yield to timing parameters may be several speed grades higher than that designated on a product brand. Design practices need to consider best-case timing parameters (e.g., delays = 0), as well as worst-case timing. Table 23. Derating for Commercial/Industrial OR3Lxxx Devices (I/O Supply VDD2) Power Supply Voltage TJ (°C) 2.3 V 2.5 V 2.6 V –40 0 25 85 100 125 0.86 0.94 0.99 1.00 1.23 1.33 0.71 0.79 0.84 0.99 1.05 1.13 0.67 0.73 0.77 0.92 0.96 1.03 The routing delays are a function of fan-out and the capacitance associated with the CIPs and metal interconnect in the path. The number of logic elements that can be driven (fan-out) by PFUs is unlimited, although the delay to reach a valid logic level can exceed timing requirements. It is difficult to make accurate routing delay estimates prior to design compilation based on fan-out. This is because the CAE software may delete redundant logic inserted by the designer to reduce fanout, and/or it may also automatically reduce fan-out by net splitting. Note: The derating tables shown above are for a typical critical path that contains 33% logic delay and 66% routing delay. Since the routing delay derates at a higher rate than the logic delay, paths with more than 66% routing delay will derate at a higher rate than shown in the table. The approximate derating values vs. temperature are 0.26% per °C for logic delay and 0.45% per °C for routing delay. The approximate derating values vs. voltage are 0.13% per mV for both logic and routing delays at 25 °C. 36 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Estimating Power Dissipation OR3L165B Clock Power OR3LxxxB P The total operating power dissipated is estimated by adding the standby (IDDSB), internal, and external power dissipated. The internal and external power is the power consumed in the PLCs and PICs, respectively. In general, the standby power is small and may be neglected. The total operating power is as follows: For a quick estimate, the worst-case (typical circuit) OR3L165B clock power = 9.8 mW/MHz OR3L225B Clock Power A D LL IS C DE O N VIC TI N ES U ED PT = Σ PPLC + Σ PPIC = [0.039 mW/MHz + (0.046 mW/MHz/Branch) (# Branches) + (0.008 mW/MHz/PFU) (# PFUs) + (0.002 mW/MHz/PIO (# PIOs)] The internal operating power is made up of two parts: clock generation and PFU output power. The PFU output power can be estimated based upon the number of PFU outputs switching when driving an average fan-out of two: PPFU = 0.078 mW/MHz For each PFU output that switches, 0.136 mW/MHz needs to be multiplied times the frequency (in MHz) that the output switches. Generally, this can be estimated by using one-half the clock rate, multiplied by some activity factor; for example, 20%. The power dissipated by the clock generation circuitry is based upon four parts: the fixed clock power, the power/clock branch row or column, the clock power dissipated in each PFU that uses this particular clock, and the power from the subset of those PFUs that are configured as synchronous memory. Therefore, the clock power can be calculated for the four parts using the following equations. P = [0.045 mW/MHz + (0.053 mW/MHz/Branch) (# Branches) + (0.008 mW/MHz/PFU) (# PFUs) + (0.002 mW/MHz/PIO (# PIOs)] For a quick estimate, the worst-case (typical circuit) OR3L225B clock power = 13.5 mW/MHz The power dissipated in a PIC is the sum of the power dissipated in the four PIOs in the PIC. This consists of power dissipated by inputs and ac power dissipated by outputs. The power dissipated in each PIO depends on whether it is configured as an input, output, or input/ output. If a PIO is operating as an output, then there is a power dissipation component for PIN, as well as POUT. This is because the output feeds back to the input. The power dissipated by an input buffer is (VIH = VDD – 0.3 V or higher) estimated as: PIN = 0.09 mW/MHz The ac power dissipation from an output or bidirectional is estimated by the following: POUT = (CL + 8.8 pF) × VDD2 × F Watts where the unit for CL is farads, and the unit for F is Hz. Lattice Semiconductor 37 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information Table 24. 208-Pin SQFP2 Pinout Pin OR3L165B Function Pin OR3L165B Function 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 VSS VSS PL1D PL3D VDD2 PL6D PL8D PL9A PL10D PL10B PL10A VDD PL11D PL11A PL12D PL12A PL13D PL13A PL14D PL14A VSS PECKL PL15A PL16C PL16A VDD PL17D VDD2 PL18C PL18A VSS PL19D PL19A PL20D PL20A PL21D PL21A PL22D PL22A VDD PL23D PL23B VSS VSS I/O 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 PL24D PL24B PL25D PL27A PL29D PL30D PL30A PL32A VSS PCCLK VSS VSS PB1A PB3A VDD2 PB4D PB5D PB6D PB7D PB8D PB9D PB10D VDD PB11A PB11D PB12A PB12D PB13A PB13D PB14A PB14D VSS PB15A PB15D PB16B PB16D VSS PECKB PB17D PB18B PB18D VSS I/O I/O-A13 I/O I/O-A14 I/O I/O I/O-SECKLL I/O-A15 VSS CCLK VSS VSS I/O-A16 I/O VDD2 I/O I/O-A17 I/O I/O I/O I/O I/O VDD I/O I/O I/O I/O I/O I/O I/O I/O VSS I/O I/O I/O I/O VSS I/O-ECKB I/O I/O I/O VSS A D LL IS C DE O N VIC TI N ES U ED I/O-A0/MPI_BE0 VDD2 I/O 38 I/O-A1/MPI_BE1 I/O-A2 I/O I/O I/O-A3 VDD I/O I/O I/O I/O-A4 I/O-A5 I/O I/O I/O-A6 VSS I/O-ECKL I/O I/O I/O-A7/MPI_CLK VDD I/O VDD2 I/O I/O-A8/MPI_RW VSS I/O-A9/MPI_ACK I/O I/O I/O-A10/MPI_BI I/O I/O I/O I/O-A11/MPI_IRQ VDD I/O-A12 I/O Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 24. 208-Pin SQFP2 Pinout (continued) OR3L165B Function Pin OR3L165B Function 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 VDD2 PB19D PB20A PB20D PB21A PB21D PB22A PB22D VDD PB23A PB24D PB25A PB26D PB27A PB28A PB29A PB30D PB32D VSS PDONE VSS PRESETN PPRGMN PR32A PR30A PR29A PR28A PR25D PR24A VDD2 PR23A VDD PR22A PR22D PR21A PR21D PR20A PR20D PR19A PR19D VSS PR18A VDD2 I/O I/O I/O I/O-HDC I/O I/O I/O VDD 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 PR18D PR17B PR17D VDD PECKR PR16D PR15B PR15D VSS VDD2 PR14D PR13A PR13D PR12A PR12D PR11A PR11D VDD PR10A PR10B PR9B PR9D PR8A PR6A PR5A PR4A PR3A PR2A VSS PRD_CFGN VSS VSS PT32D PT30A PT28D PT28A PT27D VDD2 PT25D PT24D PT23D VDD I/O I/O I/O VDD I/O-ECKR I/O I/O I/O VSS VDD2 I/O I/O I/O I/O-CS1 I/O I/O I/O VDD A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor I/O-LDC I/O I/O I/O I/O-INIT I/O I/O I/O I/O VSS DONE VSS RESET PRGM I/O-M0 I/O I/O I/O I/O-M1 I/O VDD2 I/O VDD I/O-M2 I/O I/O I/O I/O-M3 I/O I/O I/O VSS I/O I/O-CS0 I/O I/O I/O I/O-RD/MPI_STRB I/O I/O I/O-WR I/O I/O VSS RD_CFG VSS VSS I/O-SECKUR I/O-RDY/RCLK/MPI_ALE I/O I/O I/O-D7 VDD2 I/O I/O I/O-D6 VDD 39 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 24. 208-Pin SQFP2 Pinout (continued) OR3L165B Function Pin OR3L165B Function 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 PT22D PT22A PT21D PT21A PT20D PT20A PT19D PT19A VSS PECKT PT18B PT17D PT17A VSS PT16D PT16C VDD2 PT15A VSS PT14D I/O I/O I/O I/O-D5 I/O I/O I/O I/O-D4 VSS I/O-ECKT I/O I/O I/O-D3 VSS I/O I/O VDD2 I/O-D2 VSS I/O-D1 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 PT14A PT13D PT13A PT12D PT12A PT11D PT11A VDD PT10D PT9A PT8A PT7A PT6A PT5A PT4A PT3A PT2D PT1A VSS PRD_DATA I/O I/O I/O-D0/DIN I/O I/O I/O I/O-DOUT VDD I/O I/O I/O I/O-TDI I/O I/O-TMS I/O I/O I/O I/O-TCK VSS RD_DATA/TDO A D LL IS C DE O N VIC TI N ES U ED Pin 40 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 25. 240-Pin SQFP2 Pinout OR3L165B Function Pin OR3L165B Function 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 VSS VDD PL1D PL1A PL2D PL3D VSS VDD2 PL6D PL7D PL8D PL9A PL10D PL10B PL10A VDD PL11D PL11A PL12D PL12A PL13D PL13A PL14D PL14A VSS PECKL PL15A PL16C PL16A VDD PL17D VDD2 PL18C PL18A VSS PL19D PL19A PL20D PL20A PL21D PL21A VSS VDD I/O I/O I/O I/O-A0/MPI_BE0 VSS VDD2 I/O I/O I/O-A1/MPI_BE1 I/O-A2 I/O I/O I/O-A3 VDD I/O I/O I/O I/O-A4 I/O-A5 I/O I/O I/O-A6 VSS I/O-ECKL I/O I/O I/O-A7/MPI_CLK VDD I/O VDD2 I/O I/O-A8/MPI_RW VSS I/O-A9/MPI_ACK I/O I/O I/O-A10/MPI_BI I/O I/O 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 PL22D PL22A VDD PL23D PL23B PL24D PL24B PL24A PL25D PL26D PL27A VSS PL29D PL30D PL30A PL32A VSS PCCLK VDD VSS VSS PB1A PB3A VDD2 PB4D VSS PB5D PB6D PB7A PB7D PB8D PB9A PB9D PB10D VDD PB11A PB11D PB12A PB12D PB13A PB13D I/O I/O-A11/MPI_IRQ VDD I/O-A12 I/O I/O I/O-A13 I/O I/O I/O I/O-A14 VSS I/O I/O I/O-SECKLL I/O-A15 VSS CCLK VDD VSS VSS I/O-A16 I/O VDD2 I/O VSS I/O-A17 I/O I/O I/O I/O I/O I/O I/O VDD I/O I/O I/O I/O I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 41 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 25. 240-Pin SQFP2 Pinout (continued) OR3L165B Function Pin OR3L165B Function 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 PB14A PB14D VSS PB15A PB15D PB16B PB16D VSS PECKB PB17D PB18B PB18D VSS VDD2 PB19D PB20A PB20D PB21A PB21D PB22A PB22D VDD PB23A PB24D PB25A PB26D PB27A PB27D PB28A PB28D VSS PB29A PB30A PB30D PB32D VSS PDONE VDD VSS PRESETN PPRGMN PR32A I/O I/O VSS I/O I/O I/O I/O VSS I/O-ECKB I/O I/O I/O VSS VDD2 I/O I/O I/O I/O-HDC I/O I/O I/O VDD I/O-LDC I/O I/O I/O I/O-INIT I/O I/O I/O VSS I/O I/O I/O I/O VSS DONE VDD VSS RESET PRGM I/O-M0 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 PR31D PR30A PR29A VSS PR28A PR27A PR26A PR26D PR25D PR24A VDD2 PR23A VDD PR22A PR22D PR21A PR21D PR20A PR20D PR19A PR19D VSS PR18A PR18D PR17B PR17D VDD PECKR PR16D PR15B PR15D VSS VDD2 PR14D PR13A PR13D PR12A PR12D PR11A PR11D VDD PR10A I/O I/O I/O VSS I/O I/O I/O I/O I/O-M1 I/O VDD2 I/O VDD I/O-M2 I/O I/O I/O I/O-M3 I/O I/O I/O VSS I/O I/O I/O I/O VDD I/O-ECKR I/O I/O I/O VSS VDD2 I/O I/O I/O I/O-CS1 I/O I/O I/O VDD I/O-CS0 A D LL IS C DE O N VIC TI N ES U ED Pin 42 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 25. 240-Pin SQFP2 Pinout (continued) OR3L165B Function Pin OR3L165B Function 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 PR10B PR9B PR9D PR8A PR7A PR6A PR5A VSS PR4A PR3A PR2A PR1D VSS PRD_CFGN VSS VDD VSS PT32D PT31A PT30D PT30A VSS PT28D PT28C PT28A PT27D VDD2 PT25D PT24D PT23D VDD PT22D PT22A PT21D PT21A PT20D PT20A I/O I/O I/O I/O-RD/MPI_STRB I/O I/O I/O VSS I/O-WR I/O I/O I/O VSS RD_CFG VSS VDD VSS I/O-SECKUR I/O I/O I/O-RDY/RCLK/MPI_ALE VSS I/O I/O I/O I/O-D7 VDD2 I/O I/O I/O-D6 VDD I/O I/O I/O I/O-D5 I/O I/O 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 PT19D PT19A VSS PECKT PT18B PT17D PT17A VSS PT16D PT16C VDD2 PT15A VSS PT14D PT14A PT13D PT13A PT12D PT12A PT11D PT11A VDD PT10D PT9A PT8A PT7A PT6D PT6A PT5D PT5A VSS PT4A PT3A PT2D PT1A VSS PRD_DATA I/O I/O-D4 VSS I/O-ECKT I/O I/O I/O-D3 VSS I/O I/O VDD2 I/O-D2 VSS I/O-D1 I/O I/O I/O-D0/DIN I/O I/O I/O I/O-DOUT VDD I/O I/O I/O I/O-TDI I/O I/O I/O I/O-TMS VSS I/O I/O I/O I/O-TCK VSS RD_DATA/TDO A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 43 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 26. 352-Pin PBGA Pinout OR3L165B Function Pin OR3L165B Function B1 C2 C1 D2 D3 D1 E2 E4 E3 E1 F2 G4 F3 F1 G2 G1 G3 H2 J4 H1 H3 J2 J1 K2 J3 K1 K4 L2 K3 L1 M2 M1 L3 N2 M4 N1 M3 PL1D PL1A PL2D PL2A PL3D PL3A PL4D PL4B PL4A VDD2 PL5C PL5B PL6D PL7D PL7C PL7B PL8D PL9D PL9C PL9B PL9A PL10D PL10C PL10B PL10A PL11D PL11A PL12D PL12A PL13D PL13A PL14D PL14A PECKL PL15A PL16C PL16A I/O I/O I/O I/O I/O-A0/MPI_BE0 I/O I/O I/O I/O VDD2 I/O I/O I/O I/O I/O I/O I/O-A1/MPI_BE1 I/O I/O I/O I/O-A2 I/O I/O I/O I/O-A3 I/O I/O I/O I/O-A4 I/O-A5 I/O I/O I/O-A6 I/O-ECKL I/O I/O I/O-A7/MPI_CLK P2 P4 P1 N3 R2 P3 R1 T2 R3 T1 R4 U2 T3 U1 U4 V2 U3 V1 W2 W1 V3 Y2 W4 Y1 W3 AA2 Y4 AA1 Y3 PL17D VDD2 PL18C PL18A PL19D PL19A PL20D PL20A PL21D PL21A PL22D PL22A PL23D PL23C PL23B PL23A PL24D PL24C PL24B PL24A PL25D PL25C PL26D PL27D PL27A PL28C PL28B PL28A VDD2 I/O VDD2 I/O I/O-A8/MPI_RW I/O-A9/MPI_ACK I/O I/O I/O-A10/MPI_BI I/O I/O I/O I/O-A11/MPI_IRQ I/O-A12 I/O I/O I/O I/O I/O I/O-A13 I/O I/O I/O I/O I/O I/O-A14 I/O I/O I/O AB2 AB1 AA3 AC2 AB4 AC1 AB3 AD2 PL29C PL29A PL30D PL30C PL30A PL31A PL32C PL32B A D LL IS C DE O N VIC TI N ES U ED Pin 44 VDD2 I/O I/O I/O I/O I/O-SECKLL I/O I/O I/O Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 26. 352-Pin PBGA Pinout (continued) OR3L165B Function Pin OR3L165B Function AC3 AD1 AF2 AE3 AF3 AE4 AD4 AF4 AE5 AC5 AD5 AF5 AE6 AC7 AD6 AF6 AE7 AF7 AD7 AE8 AC9 AF8 AD8 AE9 AF9 AE10 AD9 AF10 AC10 AE11 AD10 AF11 AE12 AF12 AD11 AE13 AC12 AF13 AD12 PL32A PCCLK PB1A PB1B PB2A PB2D PB3A VDD2 PB4A PB4C PB4D PB5A PB5B PB5C PB5D PB6A PB6B PB6C PB6D PB7A PB7D PB8A PB8D PB9A PB9D PB10A PB10D PB11A PB11D PB12A PB12D PB13A PB13D PB14A PB14D PB15A PB15D PB16B PB16D I/O-A15 CCLK I/O-A16 I/O I/O I/O I/O VDD2 I/O I/O I/O I/O I/O I/O I/O-A17 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O AE14 AC14 AF14 AD13 AE15 AD14 AF15 AE16 AD15 AF16 AC15 AE17 AD16 AF17 AC17 AE18 AD17 AF18 AE19 AF19 AD18 AE20 AC19 AF20 AD19 AE21 AC20 AF21 AD20 AE22 AF22 AD21 AE23 AC22 AF23 AD22 AE24 AD23 AF24 PECKB PB17D PB18B PB18D VDD2 PB19D PB20A PB20D PB21A PB21D PB22A PB22D PB23A PB23D PB24A PB24D PB25A PB26A PB26C PB26D PB27A PB27B PB27C PB27D VDD2 PB28B PB28C PB28D PB29A PB29B PB29D PB30A PB30B PB30D PB31A PB31D PB32C PB32D PDONE I/O-ECKB I/O I/O I/O VDD2 I/O I/O I/O I/O-HDC I/O I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor I/O-LDC I/O I/O I/O I/O I/O I/O I/O I/O-INIT I/O I/O I/O VDD2 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O DONE 45 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 26. 352-Pin PBGA Pinout (continued) OR3L165B Function Pin OR3L165B Function AE26 AD25 AD26 AC25 AC24 AC26 AB25 AB23 AB24 AB26 AA25 Y23 AA24 AA26 Y25 Y26 Y24 W25 V23 W26 W24 V25 V26 U25 V24 U26 U23 T25 U24 T26 R25 R26 T24 P25 R23 P26 R24 N25 N23 PRESETN PPRGMN PR32A PR31A PR31D PR30A PR30D PR29A PR29B PR29D PR28A PR28B PR28C PR27A PR26A PR26B PR26D PR25D PR24A PR24B PR24C VDD2 PR23A PR23B PR23C PR23D PR22A PR22D PR21A PR21D PR20A PR20D PR19A PR19D PR18A PR18D PR17B PR17D PECKR RESET PRGM I/O-M0 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-M1 I/O I/O I/O VDD2 I/O I/O I/O I/O I/O-M2 I/O I/O I/O I/O-M3 I/O I/O I/O I/O I/O I/O I/O I/O-ECKR N26 P24 M25 N24 M26 L25 M24 L26 M23 K25 L24 K26 K23 J25 K24 J26 H25 H26 J24 G25 H23 G26 H24 F25 G23 F26 G24 E25 PR16D PR15B PR15D VDD2 PR14D PR13A PR13D PR12A PR12D PR11A PR11D PR10A PR10B PR10C PR10D PR9A PR9B PR9C PR9D PR8A PR7A PR7C PR6A VDD2 PR5B PR5C PR5D PR4A I/O I/O I/O VDD2 I/O I/O I/O I/O-CS1 I/O I/O I/O E26 F24 D25 E23 D26 E24 C25 D24 C26 A25 B24 PR4B PR4D PR3A PR3D PR2A PR2D PR1A PR1D PRD_CFGN PT32D PT32A A D LL IS C DE O N VIC TI N ES U ED Pin 46 I/O-CS0 I/O I/O I/O I/O I/O I/O I/O I/O-RD/MPI_STRB I/O I/O I/O VDD2 I/O I/O I/O I/O-WR I/O I/O I/O I/O I/O I/O I/O I/O RD_CFG I/O-SECKUR I/O Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 26. 352-Pin PBGA Pinout (continued) OR3L165B Function Pin OR3L165B Function A24 B23 C23 A23 B22 D22 C22 A22 B21 D20 C21 A21 B20 A20 C20 B19 D18 A19 C19 B18 A18 B17 C18 A17 D17 B16 C17 A16 B15 A15 C16 B14 D15 A14 C15 B13 D13 A13 PT31B PT31A PT30D PT30A PT29D PT29C PT29A PT28D PT28C PT28B PT28A PT27D PT27C PT27B PT27A VDD2 PT26C PT26B PT25D PT24D PT24A PT23D PT23A PT22D PT22A PT21D PT21A PT20D PT20A PT19D PT19A PECKT PT18B PT17D PT17A PT16D PT16C VDD2 I/O I/O I/O I/O-RDY/RCLK/MPI_ALE I/O I/O I/O I/O I/O I/O I/O I/O-D7 I/O I/O I/O VDD2 I/O I/O I/O I/O I/O I/O-D6 I/O I/O I/O I/O I/O-D5 I/O I/O I/O I/O-D4 I/O-ECKT I/O I/O I/O-D3 I/O I/O C14 PT15A B12 C13 A12 B11 C12 A11 D12 B10 C11 A10 D10 B9 C10 A9 B8 A8 C9 B7 D8 A7 C8 B6 D7 A6 C7 B5 A5 C6 B4 D5 A4 C5 B3 C4 A3 A1 A2 A26 AC13 PT14D PT14A PT13D PT13A PT12D PT12A PT11D PT11A PT10D PT10A PT9D PT9A PT8D PT8A PT7D PT7A PT6D PT6C PT6B VDD2 PT5D PT5C PT5B PT5A PT4D PT4A PT3D PT3C PT3B PT3A PT2D PT2A PT1D PT1A PRD_DATA VSS VSS VSS VSS I/O-D1 I/O I/O I/O-D0/DIN I/O I/O I/O I/O-DOUT I/O I/O I/O I/O I/O I/O I/O I/O-TDI I/O I/O I/O VDD2 I/O I/O I/O I/O-TMS I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-TCK RD_DATA/TDO VSS VSS VSS VSS A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor VDD2 I/O-D2 47 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 26. 352-Pin PBGA Pinout (continued) OR3L165B Function Pin OR3L165B Function AC18 AC23 AC4 AC8 AD24 AD3 AE1 AE2 AE25 AF1 AF25 AF26 B2 B25 B26 C24 C3 D14 D19 D23 D4 D9 H4 J23 N4 P23 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS N11 N12 N13 N14 N15 N16 P11 P12 P13 P14 P15 P16 R11 R12 R13 R14 R15 R16 T11 T12 T13 T14 T15 T16 AA23 AA4 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VDD VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VDD V4 W23 L11 L12 L13 L14 L15 L16 M11 M12 M13 M14 M15 M16 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS AC11 AC16 AC21 AC6 D11 D16 D21 D6 F23 F4 L23 L4 T23 T4 VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD A D LL IS C DE O N VIC TI N ES U ED Pin 48 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 27. 432-Pin EBGA Pinout OR3L165B OR3L225B Function E4 D3 D2 D1 F4 E3 E2 E1 F3 F2 F1 H4 G3 G2 G1 J4 H3 H2 J3 K4 J2 J1 K3 K2 K1 L3 M4 L2 L1 M3 N4 M2 N3 N2 P4 N1 P3 P2 P1 R3 R2 PRD_CFGN PR1D PR1A PR2D PR2A PR3D PR3C PR3B PR3A PR4D PR4C PR4B PR4A PR5D PR5C PR5B VDD2 PR6A PR7C PR7A PR8A PR9D PR9C PR9B PR9A PR10D PR10C PR10B PR10A PR11D PR11A PR12D PR12A PR13D PR13C PR13A PR14D PR14C VDD2 PR15D PR15B PRD_CFGN PR1D PR1A PR2D PR2A PR3D PR3C PR3B PR3A PR4D PR4C PR4B PR4A PR5D PR5C PR5B VDD2 PR6A PR7C PR7A PR8A PR9D PR9A PR10D PR10C PR10A PR11D PR11C PR11A PR12D PR12A PR13D PR13A PR14D PR14A PR15A PR16D PR16A VDD2 PR18D PR18B RD_CFG I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-WR I/O I/O I/O VDD2 I/O I/O I/O I/O-RD/MPI_STRB I/O I/O I/O I/O I/O I/O I/O I/O-CS0 I/O I/O I/O I/O-CS1 I/O I/O I/O I/O I/O VDD2 I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 49 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 27. 432-Pin EBGA Pinout (continued) OR3L165B OR3L225B Function R1 T2 T4 T3 U1 U2 U3 V1 V2 V3 W1 V4 W2 W3 Y2 W4 Y3 AA1 AA2 Y4 AA3 AB1 AB2 AB3 AC1 AC2 AB4 AC3 AD2 AD3 AC4 AE1 AE2 AE3 AD4 AF1 AF2 AF3 AG1 AG2 AG3 PR16D PECKR PR17D PR17B PR18D PR18A PR19D PR19B PR19A PR20D PR20A PR21D PR21B PR21A PR22D PR22A PR23D PR23C PR23B PR23A VDD2 PR24C PR24B PR24A PR25D PR26D PR26B PR26A PR27A PR28C PR28B PR28A PR29D PR29C PR29B PR29A PR30D PR30C PR30B VDD2 PR31D PR19D PECKR PR20D PR20B PR21D PR21A PR22D PR23D PR23A PR24D PR25A PR26D PR26B PR26A PR27D PR27A PR28D PR28C PR28B PR28A VDD2 PR29A PR30D PR30A PR31D PR32D PR32B PR32A PR33A PR34C PR34B PR34A PR35D PR35C PR35B PR35A PR36D PR36C PR36B VDD2 PR37D I/O I/O-ECKR I/O I/O I/O I/O I/O I/O I/O I/O I/O-M3 I/O I/O I/O I/O I/O-M2 I/O I/O I/O I/O VDD2 I/O I/O I/O I/O-M1 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VDD2 I/O A D LL IS C DE O N VIC TI N ES U ED Pin 50 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 27. 432-Pin EBGA Pinout (continued) OR3L165B OR3L225B Function AF4 AH1 AH2 AH3 AG4 AH5 AJ4 AK4 AL4 AH6 AJ5 AK5 AL5 AJ6 AK6 AL6 AH8 AJ7 AK7 AL7 AH9 AJ8 AK8 AJ9 AH10 AK9 AL9 AJ10 AK10 AL10 AJ11 AH12 AK11 AL11 AJ12 AH13 AK12 AJ13 AK13 AH14 AL13 PR31A PR32B PR32A PPRGMN PRESETN PDONE PB32D PB32C PB31D PB31A PB30D PB30C PB30B PB30A PB29D PB29C PB29B PB29A PB28D PB28C PB28B VDD2 PB27D PB27C PB27B PB27A PB26D PB26C PB26A PB25A PB24D PB24A PB23D PB23A PB22D PB22B PB22A PB21D PB21B PB21A PB20D PR37A PR38B PR38A PPRGMN PRESETN PDONE PB38D PB38C PB37D PB37A PB36D PB36C PB36B PB36A PB35D PB35C PB35B PB35A PB34D PB34C PB34B VDD2 PB33D PB33C PB33B PB33A PB32D PB32C PB32A PB31A PB30D PB30A PB29D PB29A PB28D PB27D PB27A PB26D PB25D PB25A PB24D I/O I/O I/O-M0 PRGM RESET DONE I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VDD2 I/O I/O I/O I/O-INIT I/O I/O I/O I/O I/O I/O I/O I/O-LDC I/O I/O I/O I/O I/O I/O-HDC I/O A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 51 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 27. 432-Pin EBGA Pinout (continued) OR3L165B OR3L225B Function AJ14 AK14 AL14 AJ15 AK15 AL15 AK16 AH16 AJ16 AL17 AK17 AJ17 AL18 AK18 AJ18 AL19 AH18 AK19 AJ19 AK20 AH19 AJ20 AL21 AK21 AH20 AJ21 AL22 AK22 AJ22 AL23 AK23 AH22 AJ23 AK24 AJ24 AH23 AL25 AK25 AJ25 AH24 AL26 PB20B PB20A PB19D VDD2 PB18D PB18B PB17D PECKB PB16D PB16B PB15D PB15A PB14D PB14B PB14A PB13D PB13A PB12D PB12B PB12A PB11D PB11B VDD2 PB10D PB10A PB9D PB9A PB8D PB8A PB7D PB7A PB6D PB6C PB6B PB6A PB5D PB5C PB5B PB5A PB4D PB4C PB24B PB24A PB23D VDD2 PB22D PB21D PB20D PECKB PB19D PB18D PB17D PB17A PB16D PB15D PB15A PB14D PB13A PB12D PB12B PB12A PB11D PB11B VDD2 PB10D PB10A PB9D PB9A PB8D PB8A PB7D PB7A PB6D PB6C PB6B PB6A PB5D PB5C PB5B PB5A PB4D PB4C I/O I/O I/O VDD2 I/O I/O I/O I/O-ECKB I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VDD2 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-A17 I/O I/O I/O I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin 52 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 27. 432-Pin EBGA Pinout (continued) OR3L165B OR3L225B Function AK26 AJ26 AL27 AK27 AJ27 AH26 AL28 AK28 AJ28 AH27 AG28 AH29 AH30 AH31 AF28 AG29 AG30 AG31 AF29 AF30 AF31 AD28 AE29 AE30 AE31 AC28 AD29 AD30 AC29 AB28 AC30 AC31 AB29 AB30 AB31 AA29 Y28 AA30 AA31 Y29 W28 PB4B PB4A VDD2 PB3C PB3B PB3A PB2D PB2A PB1B PB1A PCCLK PL32A PL32B PL32C PL31A PL30A PL30B PL30C PL30D PL29A PL29B PL29C VDD2 PL28A PL28B PL28C PL27A PL27D PL26D PL25C PL25D PL24A PL24B PL24C PL24D PL23A PL23B PL23C PL23D PL22A PL22D PB4B PB4A VDD2 PB3C PB3B PB3A PB2D PB2A PB1B PB1A PCCLK PL38A PL38B PL38C PL37A PL36A PL36B PL36C PL36D PL35A PL35B PL35C VDD2 PL34A PL34B PL34C PL33A PL33D PL32D PL31C PL31D PL30A PL30B PL30C PL30D PL29C PL29D PL28B PL28D PL27A PL27D I/O I/O VDD2 I/O I/O I/O I/O I/O I/O I/O-A16 CCLK I/O-A15 I/O I/O I/O I/O-SECKLL I/O I/O I/O I/O I/O I/O VDD2 I/O I/O I/O I/O-A14 I/O I/O I/O I/O I/O I/O-A13 I/O I/O I/O I/O I/O I/O-A12 I/O-A11/MPI_IRQ I/O A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 53 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 27. 432-Pin EBGA Pinout (continued) OR3L165B OR3L225B Function Y30 W29 W30 V28 W31 V29 V30 V31 U29 U30 U31 T30 T28 T29 R31 R30 R29 P31 P30 P29 N31 P28 N30 N29 M30 N28 M29 L31 L30 M28 L29 K31 K30 K29 J31 J30 K28 J29 H30 H29 J28 PL21A PL21C PL21D PL20A PL20C PL20D PL19A PL19C PL19D PL18A PL18C VDD2 PL17D PL16A PL16C PL15A PECKL PL14A PL14D PL13A PL13C PL13D PL12A PL12C PL12D PL11A PL11C VDD2 PL10A PL10B PL10C PL10D PL9A PL9B PL9C PL9D PL8D PL7B PL7C PL7D PL6D PL26A PL26C PL26D PL25A PL24A PL24D PL23A PL22A PL22D PL21A PL21C VDD2 PL20D PL19A PL19C PL18A PECKL PL17A PL16D PL15A PL14A PL14D PL13A PL13C PL13D PL12A PL12C VDD2 PL11A PL11D PL10A PL10D PL9A PL9B PL9C PL9D PL8D PL7B PL7C PL7D PL6D I/O I/O I/O I/O-A10/MPI_BI I/O I/O I/O I/O I/O-A9/MPI_ACK I/O-A8/MPI_RW I/O VDD2 I/O I/O-A7/MPI_CLK I/O I/O I/O-ECKL I/O-A6 I/O I/O I/O I/O-A5 I/O-A4 I/O I/O I/O I/O VDD2 I/O-A3 I/O I/O I/O I/O-A2 I/O I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin 54 I/O-A1/MPI_BE1 I/O I/O I/O I/O Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 27. 432-Pin EBGA Pinout (continued) OR3L165B OR3L225B Function G31 G30 G29 H28 F31 F30 F29 E31 E30 E29 F28 D31 D30 D29 E28 D27 C28 B28 A28 D26 C27 B27 A27 C26 B26 A26 D24 C25 B25 A25 D23 C24 B24 C23 D22 B23 A23 C22 B22 A22 C21 PL5B PL5C VDD2 PL4A PL4B PL4C PL4D PL3A PL3B PL3C PL3D PL2A PL2D PL1A PL1D PRD_DATA PT1A PT1D PT2A PT2D PT3A PT3B PT3C PT3D PT4A PT4B PT4C PT4D PT5A PT5B PT5C PT5D VDD2 PT6B PT6C PT6D PT7A PT7D PT8A PT8D PT9A PL5B PL5C VDD2 PL4A PL4B PL4C PL4D PL3A PL3B PL3C PL3D PL2A PL2D PL1A PL1D PRD_DATA PT1A PT1D PT2A PT2D PT3A PT3B PT3C PT3D PT4A PT4B PT4C PT4D PT5A PT5B PT5C PT5D VDD2 PT6B PT6C PT6D PT7A PT7D PT8A PT8D PT9A I/O I/O VDD2 I/O I/O I/O I/O I/O I/O I/O I/O-A0/MPI_BE0 I/O I/O I/O I/O RD_DATA/TDO I/O-TCK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-TMS I/O I/O I/O VDD2 I/O I/O I/O I/O-TDI I/O I/O I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 55 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 27. 432-Pin EBGA Pinout (continued) OR3L165B OR3L225B Function D20 B21 A21 C20 D19 B20 C19 B19 D18 A19 C18 B18 A18 C17 B17 A17 B16 D16 C16 A15 B15 C15 A14 B14 C14 A13 D14 B13 C13 B12 D13 C12 A11 B11 D12 C11 A10 B10 C10 A9 B9 PT9D PT10A PT10D PT11A PT11D PT12A PT12C PT12D PT13A PT13C PT13D PT14A PT14C PT14D PT15A VDD2 PT16C PT16D PT17A PT17D PT18B PECKT PT19A PT19B PT19D PT20A PT20B PT20D PT21A PT21B VDD2 PT22A PT22D PT23A PT23D PT24A PT24D PT25D PT26B PT26C VDD2 PT9D PT10A PT10D PT11A PT12D PT13A PT14A PT14D PT15A PT15C PT15D PT16A PT16C PT16D PT17A VDD2 PT18D PT19D PT20A PT21A PT22A PECKT PT23A PT23D PT24D PT25A PT25D PT26D PT27A PT27B VDD2 PT28A PT28D PT29A PT29D PT30A PT30D PT31D PT32B PT32C VDD2 I/O I/O I/O I/O-DOUT I/O I/O I/O I/O I/O-D0/DIN I/O I/O I/O I/O I/O-D1 I/O-D2 VDD2 I/O I/O I/O-D3 I/O I/O I/O-ECKT I/O-D4 I/O I/O I/O I/O I/O I/O-D5 I/O VDD2 I/O I/O I/O I/O-D6 I/O I/O I/O I/O I/O VDD2 A D LL IS C DE O N VIC TI N ES U ED Pin 56 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 27. 432-Pin EBGA Pinout (continued) OR3L165B OR3L225B Function D10 C9 B8 C8 D9 A7 B7 C7 D8 A6 B6 C6 A5 B5 C5 D6 A4 B4 C4 D5 A12 A16 A2 A20 A24 A29 A3 A30 A8 AD1 AD31 AJ1 AJ2 AJ30 AJ31 AK1 AK29 AK3 AK31 AL12 AL16 PT27A PT27B PT27C PT27D PT28A PT28B PT28C PT28D PT29A PT29B PT29C PT29D PT30A PT30B PT30C PT30D PT31A PT31B PT32A PT32D VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS PT33A PT33B PT33C PT33D PT34A PT34B PT34C PT34D PT35A PT35B PT35C PT35D PT36A PT36B PT36C PT36D PT37A PT37B PT38A PT38D VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS I/O I/O I/O I/O-D7 I/O I/O I/O I/O I/O I/O I/O I/O I/O-RDY/RCLK/MPI_ALE I/O I/O I/O I/O I/O I/O I/O-SECKUR VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 57 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 27. 432-Pin EBGA Pinout (continued) OR3L165B OR3L225B Function AL2 AL20 AL24 AL29 AL3 AL30 AL8 B1 B29 B3 B31 C1 C2 C30 C31 H1 H31 M1 M31 T1 T31 Y1 Y31 A1 A31 AA28 AA4 AE28 AE4 AH11 AH15 AH17 AH21 AH25 AH28 AH4 AH7 AJ29 AJ3 AK2 AK30 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD A D LL IS C DE O N VIC TI N ES U ED Pin 58 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 27. 432-Pin EBGA Pinout (continued) OR3L165B OR3L225B Function AL1 AL31 B2 B30 C29 C3 D11 D15 D17 D21 D25 D28 D4 D7 G28 G4 L28 L4 R28 R4 U28 U4 VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 59 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout OR3L165B OR3L225B Function D1 E2 E1 F4 F3 F2 F1 G5 G4 G2 G1 H5 H4 H2 H1 J5 J4 J3 J2 J1 K5 K4 K3 K2 K1 L5 L4 L2 L1 M5 M4 M2 M1 N5 N4 N3 N2 N1 P5 P4 P3 P2 P1 PL1D PL1C PL1B PL1A PL2D PL2A PL3D PL3C PL3B PL3A PL4D PL4C PL4B PL4A PL5C PL5B PL5A PL6D PL6C PL6B PL6A PL7D PL7C PL7B PL7A PL8D PL8C PL8B PL8A PL9D PL9C PL9B PL9A PL10D PL10C PL10B PL10A PL11C PL11B PL11A PL12D PL12C PL12B PL1D PL1C PL1B PL1A PL2D PL2A PL3D PL3C PL3B PL3A PL4D PL4C PL4B PL4A PL5C PL5B PL5A PL6D PL6C PL6B PL6A PL7D PL7C PL7B PL7A PL8D PL8C PL8B PL8A PL9D PL9C PL9B PL9A PL10D PL10A PL11D PL11A PL12C PL12B PL12A PL13D PL13C PL13B I/O I/O I/O I/O I/O I/O I/O-A0/MPI_BE0 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-A1/MPI_BE1 I/O I/O I/O I/O I/O I/O I/O-A2 I/O I/O I/O I/O-A3 I/O I/O I/O I/O I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin 60 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function R5 R4 R2 R1 T5 T4 T2 T1 U5 U4 U3 U2 U1 V1 V2 V3 V4 V5 W1 W2 W4 W5 Y1 Y2 Y4 Y5 AA1 AA2 AA3 AA4 AA5 AB1 AB2 AB3 AB4 AB5 AC1 AC2 AC4 AC5 AD1 AD2 AD4 PL12A PL13D PL13C PL13B PL14D PL14C PL14B PL14A PECKL PL15C PL15A PL16C PL16A PL17D PL18C PL18A PL19D PL19C PL19B PL19A PL20D PL20C PL20B PL20A PL21D PL21C PL21B PL21A PL22D PL22C PL22B PL22A PL23D PL23C PL23A PL24D PL24C PL24B PL24A PL25D PL25C PL25B PL25A PL13A PL14D PL14A PL15D PL16D PL16A PL17D PL17A PECKL PL18C PL18A PL19C PL19A PL20D PL21C PL21A PL22D PL22A PL23D PL23A PL24D PL24A PL25D PL25A PL26D PL26C PL26B PL26A PL27D PL27C PL27B PL27A PL28D PL28B PL29C PL30D PL30C PL30B PL30A PL31D PL31C PL31B PL31A I/O-A4 I/O-A5 I/O I/O I/O I/O I/O I/O-A6 I/O-ECKL I/O I/O I/O I/O-A7/MPI_CLK I/O I/O I/O-A8/MPI_RW I/O-A9/MPI_ACK I/O I/O I/O I/O I/O I/O I/O-A10/MPI_B1 I/O I/O I/O I/O I/O I/O I/O I/O-A11/MPI_IRQ I/O-A12 I/O I/O I/O I/O I/O-A13 I/O I/O I/O I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 61 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function AD5 AE1 AE2 AE3 AE4 AE5 AF1 AF2 AF3 AF4 AF5 AG1 AG2 AG4 AG5 AH1 AH2 AH4 AH5 AJ1 AJ2 AJ3 AJ4 AK1 AK2 AL1 AP4 AN5 AP5 AL6 AM6 AN6 AP6 AK7 AL7 AN7 AP7 AK8 AL8 AN8 AP8 AK9 AL9 PL26D PL26C PL26B PL26A PL27D PL27C PL27B PL27A PL28D PL28C PL28B PL28A PL29C PL29B PL29A PL30D PL30C PL30B PL30A PL31D PL31C PL31A PL32C PL32B PL32A PCCLK PB1A PB1B PB1C PB1D PB2A PB2D PB3A PB3B PB3C PB4A PB4B PB4C PB4D PB5A PB5B PB5C PB5D PL32D PL32C PL32B PL32A PL33D PL33C PL33B PL33A PL34D PL34C PL34B PL34A PL35C PL35B PL35A PL36D PL36C PL36B PL36A PL37D PL37C PL37A PL38C PL38B PL38A PCCLK PB1A PB1B PB1C PB1D PB2A PB2D PB3A PB3B PB3C PB4A PB4B PB4C PB4D PB5A PB5B PB5C PB5D I/O I/O I/O I/O I/O I/O I/O I/O-A14 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-SECKLL I/O I/O I/O I/O I/O I/O-A15 CCLK I/O-A16 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-A17 A D LL IS C DE O N VIC TI N ES U ED Pin 62 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function AM9 AN9 AP9 AK10 AL10 AM10 AN10 AP10 AK11 AL11 AN11 AP11 AK12 AL12 AN12 AP12 AK13 AL13 AM13 AN13 AP13 AK14 AL14 AM14 AN14 AP14 AK15 AL15 AN15 AP15 AK16 AL16 AN16 AP16 AK17 AL17 AM17 AN17 AP17 AP18 AN18 AM18 AL18 PB6A PB6B PB6C PB6D PB7A PB7B PB7C PB7D PB8A PB8B PB8C PB8D PB9A PB9B PB9C PB9D PB10A PB10B PB10C PB10D PB11B PB11C PB11D PB12A PB12B PB12C PB12D PB13A PB13B PB13C PB13D PB14A PB14B PB14C PB14D PB15B PB15D PB16A PB16B PB16D PECKB PB17D PB18B PB6A PB6B PB6C PB6D PB7A PB7B PB7C PB7D PB8A PB8B PB8C PB8D PB9A PB9B PB9C PB9D PB10A PB10B PB10C PB10D PB11B PB11C PB11D PB12A PB12B PB12C PB12D PB13A PB13D PB14A PB14D PB15A PB15D PB16A PB16D PB17B PB17D PB18A PB18D PB19D PECKB PB20D PB21D I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-ECKB I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 63 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function AK18 AP19 AN19 AL19 AK19 AP20 AN20 AL20 AK20 AP21 AN21 AM21 AL21 AK21 AP22 AN22 AM22 AL22 AK22 AP23 AN23 AL23 AK23 AP24 AN24 AL24 AK24 AP25 AN25 AM25 AL25 AK25 AP26 AN26 AM26 AL26 AK26 AP27 AN27 AL27 AK27 AP28 AN28 PB18D PB19B PB19C PB19D PB20A PB20B PB20C PB20D PB21A PB21B PB21C PB21D PB22A PB22B PB22C PB23A PB23B PB23C PB23D PB24A PB24B PB24C PB24D PB25A PB25B PB25C PB25D PB26A PB26B PB26C PB26D PB27A PB27B PB27C PB27D PB28B PB28C PB28D PB29A PB29B PB29C PB29D PB30A PB22D PB23B PB23C PB23D PB24A PB24B PB24C PB24D PB25A PB25D PB26A PB26D PB27A PB27D PB28A PB29A PB29B PB29C PB29D PB30A PB30B PB30C PB30D PB31A PB31B PB31C PB31D PB32A PB32B PB32C PB32D PB33A PB33B PB33C PB33D PB34B PB34C PB34D PB35A PB35B PB35C PB35D PB36A I/O I/O I/O I/O I/O I/O I/O I/O I/O-HDC I/O I/O I/O I/O I/O I/O I/O-LDC I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-INIT I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin 64 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function AL28 AK28 AP29 AN29 AM29 AL29 AP30 AN30 AP31 AL34 AK33 AK34 AJ31 AJ32 AJ33 AJ34 AH30 AH31 AH33 AH34 AG30 AG31 AG33 AG34 AF30 AF31 AF32 AF33 AF34 AE30 AE31 AE32 AE33 AE34 AD30 AD31 AD33 AD34 AC30 AC31 AC33 AC34 AB30 PB30B PB30C PB30D PB31A PB31D PB32A PB32C PB32D PDONE PRESETN PPRGMN PR32A PR32B PR31A PR31D PR30B PR30C PR30D PR29A PR29B PR29C PR29D PR28A PR28B PR28C PR28D PR27A PR27B PR27C PR27D PR26A PR26B PR26C PR26D PR25A PR25B PR25C PR25D PR24A PR24B PR24C PR23A PR23B PB36B PB36C PB36D PB37A PB37D PB38A PB38C PB38D PDONE PRESETN PPRGMN PR38A PR38B PR37A PR37D PR36B PR36C PR36D PR35A PR35B PR35C PR35D PR34A PR34B PR34C PR34D PR33A PR33B PR33C PR33D PR32A PR32B PR32C PR32D PR31A PR31B PR31C PR31D PR30A PR30D PR29A PR28A PR28B I/O I/O I/O I/O I/O I/O I/O I/O DONE RESET PRGM I/O-M0 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-M1 I/O I/O I/O I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 65 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function AB31 AB32 AB33 AB34 AA30 AA31 AA32 AA33 AA34 Y30 Y31 Y33 Y34 W30 W31 W33 W34 V30 V31 V32 V33 V34 U34 U33 U32 U31 U30 T34 T33 T31 T30 R34 R33 R31 R30 P34 P33 P32 P31 P30 N34 N33 N32 PR23C PR23D PR22A PR22B PR22C PR22D PR21A PR21B PR21C PR21D PR20A PR20B PR20C PR20D PR19A PR19B PR19C PR18A PR18B PR18D PR17B PR17D PECKR PR16D PR15B PR15D PR14B PR14C PR14D PR13A PR13B PR13C PR13D PR12A PR12B PR12C PR12D PR11A PR11B PR11C PR10A PR10B PR10C PR28C PR28D PR27A PR27B PR27C PR27D PR26A PR26B PR26C PR26D PR25A PR25D PR24A PR24D PR23A PR23D PR22B PR21A PR21B PR21D PR20B PR20D PECKR PR19D PR18B PR18D PR17D PR16A PR16D PR15A PR15D PR14A PR14D PR13A PR13B PR13C PR13D PR12A PR12B PR12C PR11A PR11C PR11D I/O I/O I/O-M2 I/O I/O I/O I/O I/O I/O I/O I/O-M3 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-ECKR I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-CS1 I/O I/O I/O I/O I/O I/O I/O-CS0 I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin 66 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function N31 N30 M34 M33 M31 M30 L34 L33 L31 L30 K34 K33 K32 K31 K30 J34 J33 J32 J31 J30 H34 H33 H31 H30 G34 G33 G31 G30 F34 F33 F32 F31 E34 E33 D34 A31 B30 A30 D29 C29 B29 A29 E28 PR10D PR9A PR9B PR9C PR9D PR8A PR8B PR8C PR8D PR7A PR7B PR7C PR7D PR6A PR6B PR6C PR6D PR5B PR5C PR5D PR4A PR4B PR4C PR4D PR3A PR3B PR3C PR3D PR2A PR2B PR2D PR1A PR1B PR1D PRD_CFGN PT32D PT32C PT32A PT31D PT31B PT31A PT30D PT30C PR10A PR10C PR10D PR9A PR9D PR8A PR8B PR8C PR8D PR7A PR7B PR7C PR7D PR6A PR6B PR6C PR6D PR5B PR5C PR5D PR4A PR4B PR4C PR4D PR3A PR3B PR3C PR3D PR2A PR2B PR2D PR1A PR1B PR1D PRD_CFGN PT38D PT38C PT38A PT37D PT37B PT37A PT36D PT36C I/O I/O I/O I/O I/O I/O-RD/MPI_STRB I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-WR I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O RD_CFG I/O-SECKUR I/O I/O I/O I/O I/O I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 67 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function D28 B28 A28 E27 D27 B27 A27 E26 D26 C26 B26 A26 E25 D25 C25 B25 A25 E24 D24 B24 A24 E23 D23 B23 A23 E22 D22 C22 B22 A22 E21 D21 C21 B21 A21 E20 D20 B20 A20 E19 D19 B19 A19 PT30B PT30A PT29D PT29C PT29B PT29A PT28D PT28C PT28B PT28A PT27D PT27C PT27B PT27A PT26C PT26B PT26A PT25D PT25C PT25B PT25A PT24D PT24C PT24B PT24A PT23D PT23C PT23B PT23A PT22D PT22C PT22B PT22A PT21C PT21B PT21A PT20D PT20C PT20B PT20A PT19D PT19C PT19B PT36B PT36A PT35D PT35C PT35B PT35A PT34D PT34C PT34B PT34A PT33D PT33C PT33B PT33A PT32C PT32B PT32A PT31D PT31C PT31B PT31A PT30D PT30C PT30B PT30A PT29D PT29C PT29B PT29A PT28D PT28C PT28B PT28A PT27C PT27B PT27A PT26D PT26A PT25D PT25A PT24D PT24A PT23D I/O I/O-RDY/RCLK/MPI_ALE I/O I/O I/O I/O I/O I/O I/O I/O I/O-D7 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-D6 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-D5 I/O I/O I/O I/O I/O I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin 68 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function E18 D18 C18 B18 A18 A17 B17 C17 D17 E17 A16 B16 D16 E16 A15 B15 D15 E15 A14 B14 C14 D14 E14 A13 B13 C13 D13 E13 A12 B12 D12 E12 A11 B11 D11 E11 A10 B10 C10 D10 E10 A9 B9 PT19A PECKT PT17D PT17C PT17A PT16D PT16C PT15A PT14D PT14C PT14B PT14A PT13D PT13C PT13B PT13A PT12D PT12C PT12B PT12A PT11D PT11C PT11B PT11A PT10C PT10B PT10A PT9D PT9C PT9B PT9A PT8D PT8C PT8B PT8A PT7D PT7C PT7B PT7A PT6D PT6C PT6B PT5D PT23A PECKT PT21A PT20D PT20A PT19D PT18D PT17A PT16D PT16C PT16B PT16A PT15D PT15C PT15B PT15A PT14D PT14A PT13D PT13A PT12D PT12A PT11D PT11A PT10C PT10B PT10A PT9D PT9C PT9B PT9A PT8D PT8C PT8B PT8A PT7D PT7C PT7B PT7A PT6D PT6C PT6B PT5D I/O-D4 I/O-ECKT I/O I/O I/O-D3 I/O I/O I/O-D2 I/O-D1 I/O I/O I/O I/O I/O I/O I/O-D0/DIN I/O I/O I/O I/O I/O I/O I/O I/O-DOUT I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-TDI I/O I/O I/O I/O A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 69 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function C9 D9 E9 A8 B8 D8 E8 A7 B7 D7 E7 A6 B6 C6 D6 A5 B5 A4 A1 A2 A33 A34 B1 B2 B33 B34 C3 C8 C12 C16 C19 C23 C27 C32 D4 D31 H3 H32 M3 M32 N13 N14 N15 PT5C PT5B PT5A PT4D PT4C PT4B PT4A PT3D PT3C PT3B PT3A PT2D PT2C PT2A PT1D PT1C PT1A PRD_DATA VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS PT5C PT5B PT5A PT4D PT4C PT4B PT4A PT3D PT3C PT3B PT3A PT2D PT2C PT2A PT1D PT1C PT1A PRD_DATA VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS I/O I/O I/O-TMS I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O-TCK RD_DATA/TDO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS A D LL IS C DE O N VIC TI N ES U ED Pin 70 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function N20 N21 N22 P13 P14 P15 P20 P21 P22 R13 R14 R15 R20 R21 R22 T3 T16 T17 T18 T19 T32 U16 U17 U18 U19 V16 V17 V18 V19 W3 W16 W17 W18 W19 W32 Y13 Y14 Y15 Y20 Y21 Y22 AA13 AA14 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 71 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function AA15 AA20 AA21 AA22 AB13 AB14 AB15 AB20 AB21 AB22 AC3 AC32 AG3 AG32 AL4 AL31 AM3 AM8 AM12 AM16 AM19 AM23 AM27 AM32 AN1 AN2 AN33 AN34 AP1 AP2 AP33 AP34 C5 C30 D5 D30 E3 E4 E5 E6 E29 E30 E31 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 A D LL IS C DE O N VIC TI N ES U ED Pin 72 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function E32 F5 F30 N16 N17 N18 N19 P16 P17 P18 P19 R16 R17 R18 R19 T13 T14 T15 T20 T21 T22 U13 U14 U15 U20 U21 U22 V13 V14 V15 V20 V21 V22 W13 W14 W15 W20 W21 W22 Y16 Y17 Y18 Y19 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 73 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function AA16 AA17 AA18 AA19 AB16 AB17 AB18 AB19 AJ5 AJ30 AK3 AK4 AK5 AK6 AK29 AK30 AK31 AK32 AL5 AL30 AM5 AM30 A3 A32 B3 B4 B31 B32 C1 C2 C4 C7 C11 C15 C20 C24 C28 C31 C33 C34 D2 D3 D32 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD A D LL IS C DE O N VIC TI N ES U ED Pin 74 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Pin Information (continued) Table 28. 680-Pin PBGAM Pinout (continued) OR3L165B OR3L225B Function D33 G3 G32 L3 L32 R3 R32 Y3 Y32 AD3 AD32 AH3 AH32 AL2 AL3 AL32 AL33 AM1 AM2 AM4 AM7 AM11 AM15 AM20 AM24 AM28 AM31 AM33 AM34 AN3 AN4 AN31 AN32 AP3 AP32 VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD A D LL IS C DE O N VIC TI N ES U ED Pin Lattice Semiconductor 75 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Absolute Maximum Ratings Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of this data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability. The ORCA Series FPGAs include circuitry designed to protect the chips from damaging substrate injection currents and to prevent accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use to avoid exposure to excessive electrical stress. A D LL IS C DE O N VIC TI N ES U ED Table 29. Absolute Maximum Ratings Parameter Symbol Min Max Unit Storage Temperature Tstg –65 150 °C I/O Supply Voltage with Respect to Ground VDD — <4.2 V Internal Supply Voltage VDD2 — <3.2 V Input Signal with Respect to Ground CMOS I/O 5 V tolerant I/O — — –0.5 –0.5 VDD + 0.3 5.8 V V Signal Applied to High-impedance Output — –0.5 VDD + 0.3 V Maximum Package Body Temperature — — 220 °C Junction Temperature TJ –40 125 °C Recommended Operating Conditions Table 30. Recommended Operating Conditions OR3LxxxB Mode Commercial Industrial 76 Temperature Range (Ambient) I/O Supply Voltage (VDD) Internal Supply Voltage (VDD2) 0 °C to 70 °C 3.0 V to 3.6 V 2.5 V ± 5% –40 °C to +85 °C 3.0 V to 3.6 V 2.5 V ± 5% Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Electrical Characteristics Table 31. Electrical Characteristics OR3LxxxB Commercial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, 0 °C < TA < 70 °C; Industrial: VDD = 3.0 V to 3.6 V, VDD2 = 2.38 V to 2.63 V, –40 °C < TA < +85 °C. OR3LxxxB Parameter Symbol Input Voltage: High Low VIH VIL Input Voltage: High Low VIH VIL Output Voltage: High Low VOH VOL Test Conditions Unit Min Max 50% VDD GND – 0.5 VDD + 0.5 30% VDD V V 50% VDD GND – 0.5 5.8 V 30% VDD V V VDD = min, IOH = 6 mA or 3 mA VDD = min, IOL = 12 mA or 6 mA 2.4 — — 0.4 V V VDD = max, VIN = VSS or VDD –10 10 µA A D LL IS C DE O N VIC TI N ES U ED Input configured as CMOS (clamped to VDD) Input Leakage Current Input configured as TTL (5 V tolerant) IL Standby Current: OR3L165B OR3L225B IDDSB Standby Current: OR3L165B OR3L225B IDDSB Powerup Current: OR3L165B OR3L225B Ipp Input Capacitance CIN COUT Output Capacitance (TA = 25 °C, VDD = 3.3 V, VDD2 = 2.5 V) internal oscillator running, no output loads, inputs VDD or GND VDD2 VDD — — 1.5 2.0 1.0 1.0 mA mA (TA = 25 °C, VDD = 3.3 V, VDD2 = 2.5 V) internal oscillator stopped, no output loads, inputs VDD or GND (after configuration) — — 1.1 1.5 1.0 1.0 mA mA Power supply current at approximately 1 V, within a recommended power supply ramp rate of 1 ms—200 ms 0.4 0.8 — — mA mA TA = 25 °C, VDD = 3.3 V, VDD2 = 2.5 V Test frequency = 1 MHz — 8 pF TA = 25 °C, VDD = 3.3 V, VDD2 = 2.5 V Test frequency = 1 MHz — 8 pF DONE Pull-up Resistor* RDONE — 100 — kΩ M[3:0] Pull-up Resistors* RM — 100 — kΩ I/O Pad Static Pull-up Current* IPU VDD = 3.6 V, VIN = VSS, TA = 0 °C 14.4 50.9 µA I/O Pad Static Pull-down Current IPD VDD = 3.6 V, VIN = VSS, TA = 0 °C 26 103 µA I/O Pad Pull-up Resistor* RPU VDD = all, VIN = VSS, TA = 0 °C 100 — kΩ I/O Pad Pull-down Resistor RPD VDD = all, VIN = VSS, TA = 0 °C 50 — kΩ * On the Series 3L devices, the pull-up resistor will externally pull the pin to a level 1.0 V below VDD. Lattice Semiconductor 77 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Package Thermal Characteristics There are four thermal parameters that are in common use: ΘJA, ψJC, ΘJC, and ΘJB. It should be noted that all the parameters are affected, to varying degrees, by package design (including paddle size) and choice of materials, the amount of copper in the test board or system board, and system airflow. This JEDEC designated parameter correlates the junction temperature to the case temperature. It is generally used to infer the junction temperature while the device is operating in the system. It is not considered a true thermal resistance, and it is defined by the following: TJ – TC ψ JC = ------------------Q where TC is the case temperature at top dead center, TJ is the junction temperature, and Q is the chip power. During the ΘJA measurements described above, besides the other parameters measured, an additional temperature reading, TC, is made with a thermocouple attached at top-dead-center of the case. ψJC is also expressed in units of °C/watt. A D LL IS C DE O N VIC TI N ES U ED Table 32 contains the currently available thermal specifications for Lattice’s FPGA packages mounted on both JEDEC and non-JEDEC test boards. The thermal values for the newer package types correspond to those packages mounted on a JEDEC four-layer board. The values for the older packages, however, correspond to those packages mounted on a non-JEDEC, singlelayer, sparse copper board (see Note 2). It should also be noted that the values for the older packages are considered conservative. ψJC ΘJC ΘJA This is the thermal resistance from junction to ambient (a.k.a. Θ-JA, R-Θ, etc.). It is defined by the following: This is the thermal resistance from junction to case. It is most often used when attaching a heat sink to the top of the package. It is defined by the following: TJ – TA Θ JA = ------------------- TJ – TC Θ JC = ------------------- where TJ is the junction temperature, TA is the ambient air temperature, and Q is the chip power. The parameters in this equation have been defined above. However, the measurements are performed with the case of the part pressed against a water-cooled heat sink so as to draw most of the heat generated by the chip out the top of the package. It is this difference in the measurement process that differentiates ΘJC from ψJC. ΘJC is a true thermal resistance and is expressed in units of °C/watt. Q Q Experimentally, ΘJA is determined when a special thermal test die is assembled into the package of interest, and the part is mounted on the thermal test board. The diodes on the test chip are separately calibrated in an oven. The package/board is placed either in a JEDEC natural convection box or in the wind tunnel, the latter for forced convection measurements. A controlled amount of power (Q) is dissipated in the test chip’s heater resistor, the chip’s temperature (TJ) is determined by the forward drop on the diodes, and the ambient temperature (TA) is noted. Note that ΘJA is expressed in units of °C/watt. ΘJB This is the thermal resistance from junction to board (a.k.a. ΘJL). It is defined by the following: TJ – TB Θ JB = ------------------Q where TB is the temperature of the board adjacent to a lead measured with a thermocouple. The other parameters on the right-hand side have been defined above. This is considered a true thermal resistance, and the measurement is made with a water-cooled heat sink pressed against the board so as to draw most of the heat out of the leads. Note that ΘJB is expressed in units of °C/watt, and that this parameter and the way it is measured is still in JEDEC committee. 78 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Package Thermal Characteristics (continued) FPGA Maximum Junction Temperature Once the power dissipated by the FPGA has been determined (see the Estimating Power Dissipation section), the maximum junction temperature of the FPGA can be found. This is needed to determine if speed derating of the device from the 85 °C junction temperature used in all of the delay tables is needed. Using the maximum ambient temperature, TAmax, and the power dissipated by the device, Q (expressed in °C), the maximum junction temperature is approximated by the following: TJmax = TAmax + (Q × ΘJA) A D LL IS C DE O N VIC TI N ES U ED Table 32 lists the plastic package thermal characteristics for the ORCA Series FPGAs. Table 32. Plastic Package Thermal Characteristics for the ORCA Series1 ΘJA (°C/W) Package 208-Pin SQFP21 240-Pin SQFP21 352-Pin PBGA1, 2 352-Pin PBGA1, 3 432-Pin EBGA1 680-Pin PBGAM1 0 fpm 200 fpm 500 fpm TA = 70 °C max TJ = 125 °C max at 0 fpm (W) 12.8 13.0 19.0 25.5 11.0 14.5 10.3 10.0 16.0 22.0 8.5 TBD 9.1 9.0 15.0 20.5 7.5 TBD 4.3 4.2 2.9 2.1 5.0 3.8 1. Mounted on 4-layer JEDEC standard test board with two power/ground planes. 2. With thermal balls connected to board ground plane. 3. Without thermal balls connected to board ground plane. Lattice Semiconductor 79 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Package Coplanarity package, which include the bond wires, all internal package routing, and the external leads. The coplanarity limits of the ORCA Series 3 packages are as follows. Four inductances in nH are listed: LSW and LSL, the self-inductance of the lead; and LMW and LML, the mutual inductance to the nearest neighbor lead. These parameters are important in determining ground bounce noise and inductive crosstalk noise. Three capacitances in pF are listed: CM, the mutual capacitance of the lead to the nearest neighbor lead; and C1 and C2, the total capacitance of the lead to all other leads (all other leads are assumed to be grounded). These parameters are important in determining capacitive crosstalk and the capacitive loading effect of the lead. The lead resistance value, RW, is in mΩ. Table 33. Package Coplanarity Coplanarity Limit (mils) EBGA PBGA SQFP2 PBGAM1 8.0 8.0 3.15 8.0 A D LL IS C DE O N VIC TI N ES U ED Package Type Package Parasitics The electrical performance of an IC package, such as signal quality and noise sensitivity, is directly affected by the package parasitics. Table 34 lists eight parasitics associated with the ORCA packages. These parasitics represent the contributions of all components of a The parasitic values in Table 34 are for the circuit model of bond wire and package lead parasitics. If the mutual capacitance value is not used in the designer’s model, then the value listed as mutual capacitance should be added to each of the C1 and C2 capacitors. Table 34. Package Parasitics Package Type 208-Pin SQFP2 240-Pin SQFP2 352-Pin PBGA 432-Pin EBGA 680-Pin PBGAM1 LSW LMW RW C1 C2 CM LSL LML 4 4 5 4 3.8 2 2 2 1.5 1.3 200 200 220 500 250 1 1 1.5 1 1 1 1 1.5 1 1 1 1 1.5 0.3 0.3 6—9 7—11 7—12 3—5.5 2.8—5.0 4—6 4—7 3—6 0.5—1 0.5—1 LSW RW LSL BOARD PAD PAD N C1 LMW CM C2 LML PAD N + 1 LSW RW LSL C1 C2 5-3862(F).a Figure 12. Package Parasitics 80 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Package Outline Diagrams Terms and Definitions The basic size of a dimension is the size from which the limits for that dimension are derived by the application of the allowance and the tolerance. Design Size: The design size of a dimension is the actual size of the design, including an allowance for fit and tolerance. Typical (TYP): When specified after a dimension, this indicates the repeated design size if a tolerance is specified or repeated basic size if a tolerance is not specified. A D LL IS C DE O N VIC TI N ES U ED Basic Size (BSC): Reference (REF): Minimum (MIN) or Maximum (MAX): The reference dimension is an untoleranced dimension used for informational purposes only. It is a repeated dimension or one that can be derived from other values in the drawing. Indicates the minimum or maximum allowable size of a dimension. Lattice Semiconductor 81 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Package Outline Diagrams (continued) 208-Pin SQFP2 Dimensions are in millimeters. 30.60 ± 0.20 28.00 ± 0.20 21.0 REF PIN #1 IDENTIFIER ZONE 1.30 REF 157 A D LL IS C DE O N VIC TI N ES U ED 208 156 0.25 GAGE PLANE SEATING PLANE 21.0 REF 0.50/0.75 28.00 ± 0.20 DETAIL A 30.60 ± 0.20 0.090/0.200 0.17/0.2 105 53 0.10 M DETAIL B 104 EXPOSED HEAT SINK APPEARS ON BOTTOM SURFACE: CHIP BONDED FACE UP. (SEE DETAIL C.) DETAIL A DETAIL B 3.40 ± 0.20 4.10 MAX SEATING PLANE 0.08 0.50 TYP 5-3828(F) 0.25 MIN CHIP BONDED FACE UP CHIP COPPER HEAT SINK DETAIL C (SQFP2 CHIP-UP) 5-4946(F) 82 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Package Outline Diagrams (continued) 240-Pin SQFP2 Dimensions are in millimeters. 34.60 ± 0.20 32.00 ± 0.20 24.2 REF 240 1.30 REF PIN #1 IDENTIFIER ZONE 181 180 A D LL IS C DE O N VIC TI N ES U ED 1 0.25 GAGE PLANE SEATING PLANE 24.2 REF 0.50/0.75 DETAIL A 32.00 ± 0.20 34.60 ± 0.20 0.090/0.200 0.17/0.27 0.10 M DETAIL B 60 121 61 120 EXPOSED HEAT SINK APPEARS ON BOTTOM SURFACE: CHIP BONDED FACE UP. (SEE DETAIL C.) DETAIL B DETAIL A 3.40 ± 0.20 4.10 MAX SEATING PLANE 0.08 0.50 TYP 0.25 MIN 5-3825 (F).a CHIP BONDED FACE UP CHIP COPPER HEAT SINK DETAIL C (SQFP2 CHIP-UP) 5-4946(F) Lattice Semiconductor 83 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Package Outline Diagrams (continued) 352-Pin PBGA Dimensions are in millimeters. 35.00 ± 0.20 +0.70 30.00 –0.00 A D LL IS C DE O N VIC TI N ES U ED A1 BALL IDENTIFIER ZONE 30.00 +0.70 –0.00 35.00 ± 0.20 MOLD COMPOUND PWB 1.17 ± 0.05 0.56 ± 0.06 2.33 ± 0.21 SEATING PLANE 0.20 0.60 ± 0.10 SOLDER BALL 25 SPACES @ 1.27 = 31.75 CENTER ARRAY FOR THERMAL ENHANCEMENT (OPTIONAL) (SEE NOTE BELOW) A1 BALL CORNER AF AE AD AC AB AA Y W V U T R P N M L K J H G F E D C B A 0.75 ± 0.15 25 SPACES @ 1.27 = 31.75 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 11 13 15 17 19 21 23 25 5-4407(F) Note: Although the 36 thermal enhancement balls are stated as an option, they are standard on the 352 FPGA package. 84 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Package Outline Diagrams (continued) 432-Pin EBGA Dimensions are in millimeters. 40.00 ± 0.10 A D LL IS C DE O N VIC TI N ES U ED A1 BALL IDENTIFIER ZONE 40.00 ± 0.10 0.91 ± 0.06 1.54 ± 0.13 SEATING PLANE 0.20 SOLDER BALL 0.63 ± 0.07 30 SPACES @ 1.27 = 38.10 AL AK AJ AH AG AF AD AB Y AE 0.75 ± 0.15 AC AA W V U T P M K H F 30 SPACES @ 1.27 = 38.10 R N L J G E D C B A A1 BALL CORNER 1 3 2 5 4 7 6 9 8 11 10 12 13 15 17 19 21 23 25 27 29 31 14 16 18 20 22 24 26 28 30 5-4409(F) Lattice Semiconductor 85 Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Package Outline Diagrams (continued) 680-Pin PBGAM Dimensions are in millimeters. 35.00 + 0.70 30.00 – 0.00 A D LL IS C DE O N VIC TI N ES U ED A1 BALL IDENTIFIER ZONE 35.00 + 0.70 30.00 – 0.00 1.170 0.61 ± 0.08 SEATING PLANE 0.20 SOLDER BALL 0.50 ± 0.10 2.51 MAX 33 SPACES @ 1.00 = 33.00 AP AN AM AL AK AJ AH AG AF 0.64 ± 0.15 AE AD AC AB AA Y W 33 SPACES @ 1.00 = 33.00 V U T R P N M L K J H G F E D C B A A1 BALL CORNER 1 3 2 5 4 7 6 9 8 11 13 15 17 19 21 23 25 27 29 31 33 10 12 14 16 18 20 22 24 26 28 30 32 34 5-4406(F) 86 Lattice Semiconductor Data Addendum March 2002 ORCA OR3LxxxB Series FPGAs Ordering Information OR3LXXXB X XX XXX X XX Packing Designator DB = Dry Packed Tray Device Family OR3L165B OR3L225B Grade Blank = Commercial I = Industrial A D LL IS C DE O N VIC TI N ES U ED Speed Grade Package Type BA = Plastic Ball Grid Array (PBGA) BC = Enhanced Ball Grid Array (EBGA) BM = Fine-Pitch Ball Grid Array, Multilayer (PBGAM) PS = Power Quad Shrink Flat Package (SQFP2) Pin/Ball Count Table 35. Voltage Options Device Voltage OR3LxxxB 2.5 V internal/3.3 V I/O Table 36. Ordering Information Commercial Device Family OR3L165B OR3L225B Part Number OR3L165B8PS208-DB1 OR3L165B8PS240-DB1 OR3L165B8BA352-DB OR3L165B8BC432-DB OR3L165B8BM680-DB OR3L165B7PS208-DB1 OR3L165B7PS240-DB1 OR3L165B7BA352-DB OR3L165B7BC432-DB OR3L165B7BM680-DB OR3L225B8BC432-DB1 OR3L225B8BM680-DB1 OR3L225B7BC432-DB1 OR3L225B7BM680-DB1 Speed Grade Package Type Pin/Ball Count Grade Packing Designator 8 SQFP2 208 C DB 8 SQFP2 240 C DB 8 PBGA 352 C DB 8 EBGA 432 C DB 8 PBGAM 680 C DB 7 SQFP2 208 C DB 7 SQFP2 240 C DB 7 PBGA 352 C DB 7 EBGA 432 C DB 7 PBGAM 680 C DB 8 EBGA 432 C DB 8 PBGAM 680 C DB 7 EBGA 432 C DB 7 PBGAM 680 C DB 1. Discontinued per PCN #06-07. Contact Rochester Electronics for available inventory. Lattice Semiconductor 87 Industrial Device Family OR3L165B OR3L165B7PS208I-DB1 OR3L165B7PS240I-DB1 OR3L165B7BA352I-DB OR3L165B7BC432I-DB OR3L165B7BM680I-DB OR3L225B7BC432I-DB1 OR3L225B7BM680I-DB1 Speed Grade Package Type Pin/Ball Count Grade Packing Designator 7 SQFP2 208 I DB 7 SQFP2 240 I DB 7 PBGA 352 I DB 7 EBGA 432 I DB 7 PBGAM 680 I DB 7 EBGA 432 I DB A D LL IS C DE O N VIC TI N ES U ED OR3L225B Part Number 7 PBGAM 1. Discontinued per PCN #06-07. Contact Rochester Electronics for available inventory www.latticesemi.com Copyright © 2002 Lattice Semiconductor All Rights Reserved March 2002 DA99-011FPGA (Replaces DA99-008FPGA and must accompany DS99-087FPGA) 680 I DB