TM ispMACH 5000VG Family 3.3V In-System Programmable SuperBIG, SuperWIDE High Density PLDs TM TM December 2001 Data Sheet ■ Ease of Design Features • Product term sharing • Extensive clocking and OE capability ■ High Density • 768 to 1,024 macrocells • 196 to 384 I/Os ■ Easy System Integration • • • • • • • • ■ sysCLOCK™ PLL – Timing Control • • • • Multiply and divide factors between 1 and 32 Clock shifting capability ± 3.5ns in 500ps steps Multiple output frequencies External feedback capability for board-level clock deskew • LVDS/LVPECL clock input capability ■ High Speed Logic Implementation • SuperWIDE 68-input logic block • Up to 160 product terms per output • Hierarchical routing structure provides fast interconnect ispMACH 5000VG Introduction The ispMACH 5000VG represents the third generation of Lattice’s SuperWIDE CPLD architecture. Through their wide 68-input blocks, these devices give significantly improved speed performance for typical designs over architectures with fewer inputs. ■ sysIO™ Capability • • • • • • • • • • • 3.3V power supply Hot socketing Input pull-up, pull-down or bus-keeper Open drain capability Slew rate control Macrocell-based power management IEEE 1149.1 boundary scan testable In-system programmable via IEEE 1532 ISC compliant interface LVCMOS 1.8, 2.5 and 3.3 LVTTL SSTL 2 (I & II) SSTL 3 (I & II) CTT 3.3, CTT 2.5 HSTL (I & III) PCI-X, PCI 3.3 GTL+ AGP-1X 5V tolerance Programmable drive strength The ispMACH 5000VG takes the unique benefits of the SuperWIDE architecture and extends it to higher densities referred to as SuperBIG, by using the combination of an innovative product term architecture and a twotiered hierarchical routing architecture. Additionally, sysCLOCK and sysIO capabilities have been added to maximize system-level performance and integration. Table 1. ispMACH 5000VG Family Selection Guide Macrocells User I/O Options ispMACH 5768VG ispMACH 51024VG 768 1,024 196/304 304/384 tPD (ns) 5.0 5.0 tS – Set-up with 0 Hold (ns) 3.0 3.0 tCO (ns) 4.4 4.4 fMAX (MHz) 178 178 Supply Voltage (V) 3.3V 3.3V 256-ball fpBGA 484-ball fpBGA 484-ball fpBGA 676-ball fpBGA Package www.latticesemi.com 1 5kvg_09 Lattice Semiconductor ispMACH 5000VG Family Data Sheet RESETB GOE1 GOE2 TOE Figure 1. Functional Block Diagram I/O Bank 0 GLB I/O Bank 3 GLB GLB SRP VCCO0 VREF0 GCLK0 GLB GLB GLB GLB GLB GLB SRP GLB VCCP0 GNDP0 GLB GLB GLB GLB Global Routing Pool PLL0 GLB GLB VCCP1 GNDP1 GLB SRP GLB GLB GLB GLB SRP GLB PLL1 GLB SRP GLB VCCO3 VREF3 GCLK3 SRP GLB GLB GCLK1 VREF1 VCCO1 GLB SRP GLB GCLK2 VREF2 VCCO2 GLB SRP GLB GLB I/O Bank 2 TDI TDO TMS TCK VCCJ I/O Bank 1 GLB Overview The ispMACH 5000VG devices consist of multiple SuperWIDE 68-input, 32-macrocell Generic Logic Blocks (GLBs) interconnected by a tiered routing system. Figure 1 shows the functional block diagram of the ispMACH 5000VG. Groups of four GLBs, referred to as segments, are interconnected via a Segment Routing Pool (SRP). Segments are interconnected via the Global Routing Pool (GRP.) Together the GLBs and the routing pools allow designers to create large designs in a single device without compromising performance. Each GLB has 68 inputs coming from the SRP and contains 163 product terms. These product terms form groups of five product term clusters, which feed the PT sharing array or the macrocell directly. The ispMACH 5000VG allows up to 160 product terms to be connected to a single macrocell via the product term expanders and PT Sharing Array. The macrocell is designed to provide flexible clocking and control functionality with the capability to select between global, product term and block-level resources. The outputs of the macrocells are fed back into the switch matrices and, if required, the sysIO cell. All I/Os in the ispMACH 5000VG family are sysIOs, which are split into four banks. Each bank has a separate I/O power supply and reference voltage. The sysIO cells allow operation with a wide range of today’s emerging interface standards. Within a bank, inputs can be set to a variety of standards, providing the reference voltage requirements of the chosen standards are compatible. Within a bank, the outputs can be set to differing standards, providing the I/O power supply voltage and the reference voltage requirements of the chosen standard are compatible. Support for this wide range of standards allows designers to achieve significantly higher board-level performance compared to the more traditional LVCMOS standards. 2 Lattice Semiconductor ispMACH 5000VG Family Data Sheet The ispMACH5000VG devices also contain sysCLOCK Phase Locked Loops (PLLs) that provide designers with increased clocking flexibility. The PLLs can be used to synthesize new clocks for use on-chip or elsewhere within the system. They can also be used to deskew clocks, again both at the chip and system levels. A variable delay line capability further improves this and allows designers to retard or advance the clock in order to tune set-up and clock-to-out times for optimal results. The ispMACH 5000VG Family Selection Guide (Table 1) details the key attributes and packages for the ispMACH 5000VG devices. ispMACH 5000VG Architecture The ispMACH 5000VG Family of In-System Programmable High Density Logic Devices is based on segments containing four Generic Logic Blocks (GLBs) and a hierarchical routing pool (GRP) structure interconnecting the segments. A segment routing pool (SRP) connects each GLB in a segment allowing the maximum flexibility and speed. Outputs from the GLBs drive the Segment Routing Pool (SRP) and the Global Routing Pool (GRP). Enhanced switching resources are provided to allow signals in the Segment Routing Pool to drive any or all the GLBs in the segment. Optimal switching is provided to allow all signals in the Global Routing Pool to be routed to any or all SRPs. This mechanism allows fast, efficient connections across the entire device. Segment Each segment contains four GLBs and a segment routing pool (SRP). Each GLB has 32 internal feedback outputs and 16 external feedback outputs, for a total of 48 outputs from each GLB feeding the SRP. The SRP contains up to 384 signals, 48 from each GLB and 192 from the GRP, with full routing capability. This routing scheme maximizes the flexibility and speed of the device without sacrificing the routing. Figure 2. Segment To GRP To GRP 48 48 Clocks 4 Clocks 48 GLB 68 48 GLB Segment Routing Pool (SRP) 68 4 48 To GRP Clocks 48 68 GLB 48 GLB 68 192 From GRP 4 Clocks 4 48 To GRP Generic Logic Block Each GLB contains 32 macrocells and a fully populated, programmable AND-array with 160 logic product terms and three control product terms. The GLB has 68 inputs from the Segment Routing Pool, which are available in both true and complement form for every product term. The three control product terms are used for shared reset, clock and output enable functions. Figure 3 shows the structure of the GLB from the macrocell perspective. This is referred to as a macrocell slice. There are 32 macrocell slices per GLB. AND-Array The programmable AND-Array consists of 68 inputs and 163 output product terms. The 68 inputs from the SRP are used to form 136 lines in the AND-Array (true and complement of the inputs). Each line in the array can be connected to any of the 163 output product terms via a wired AND. Each of the 160 logic product terms feed the DualOR Array with the remaining three control product terms feeding the Shared PT Clock, Shared PT Reset and Shared PT OE. Every set of five product terms from the 160 logic product terms forms a product term cluster start3 Lattice Semiconductor ispMACH 5000VG Family Data Sheet Figure 3. Macrocell Slice From SRP PT OE to I/O Block From I/O Cell From n-7 68 PTSA Bypass Output to I/O Block D Q PTSA PT Clock Clk En To n+7 GRP and SRP R/L Shared PT Clock BCLK0 BCLK1 BCLK2 BCLK3 Speed/ Power Clk P R PT Preset PT Reset Shared PT Reset Global Reset AND Array Dual-OR Array Macrocell Figure 4. AND-Array In[0] In[66] In[67] PT0 PT1 PT2 PT3 PT4 Cluster 0 PT155 PT156 PT157 Cluster 31 PT158 PT159 PT160 Shared clock PT161 Shared reset PT162 Shared OE Note: Indicates programmable fuse. ing with PT0. There is one product term cluster for every macrocell in the GLB. In addition to the three control product terms, the first, third, fourth and fifth product terms of each cluster can be used as a PTOE (output macrocells only), PT Clock, PT Preset and PT Reset, respectively. Figure 4 is a graphical representation of the AND-Array. 4 Lattice Semiconductor ispMACH 5000VG Family Data Sheet Enhanced Dual-OR Array To facilitate logic functions requiring a very large number of product terms, the ispMACH 5000VG architecture has been enhanced with an innovative product term expander capability. This capability is embedded in the Dual-OR Array. The Dual-OR Array consists of 64 OR gates. There are two OR gates per macrocell in the GLB. These OR gates are referred to as the Expandable PTSA OR gate and the PTSA-Bypass OR gate. The PTSA-Bypass OR gate receives its five inputs from the combination of product terms associated with the product term cluster. The PTSA-Bypass OR gate feeds the macrocell directly for fast narrow logic. The Expandable PTSA OR gate receives five inputs from the combination of product terms associated with the product term cluster. It also receives an additional input from the Expanded PTSA OR gate of the N-7 macrocell, where N is the number of the macrocell associated with the current OR gate. The Expandable PTSA OR gate feeds the PTSA for sharing with other product terms and the N+7 Expandable PTSA OR gate. This allows cascading of multiple OR gates for wide functions. There is a small timing adder for each level of expansion. Figure 5 is a graphical representation of the Enhanced Dual-OR Array. Figure 5. Enhanced Dual-OR Array From PT0 PT OE To I/O Block From n-7 From PT1 PTSA Bypass n To PTSA From PT2 PT Clock From PT3 To Macrocell To Macrocell To n+7 PT Preset To Macrocell From PT4 PT Reset 5 To Macrocell Lattice Semiconductor ispMACH 5000VG Family Data Sheet Product Term Sharing Array The Product Term Sharing Array (PTSA) consists of 32 inputs from the Dual-OR Array (Expandable PTSA OR) and 32 outputs directly to the macrocells. Each output is the OR term of any combination of the seven Expandable PTSA OR terms connected to that output. Every Nth macrocell is connected to N-3, N-2, N-1, N, N+1, N+2 and N+3 PTSA OR terms via a programmable connection. This wraps around the logic, Macrocell 0 gets its logic from 29, 30, 31, 0, 1, 2, 3. The Expandable PTSA OR used in conjunction with the PTSA allows wide functions to be implemented easily and efficiently. Without using the Expandable PTSA OR capability, the greatest number of product terms that can be included in a single function with one pass of delay is 35. Figure 6 shows the graphical representation of the PTSA. Figure 6. Product Term Sharing Array PTSA OR 0 Macrocell 0 PTSA OR 1 PTSA OR 2 Macrocell 1 Macrocell 2 PTSA OR 3 PTSA OR 29 Macrocell 29 PTSA OR 30 Macrocell 30 PTSA OR 31 Macrocell 31 Macrocell The 32 registered macrocells in the GLB are driven by the 32 outputs from the PTSA or the PTSA bypass. Each macrocell contains a programmable XOR gate, a programmable register/latch flip-flop and the necessary clocks and control logic to allow combinatorial or registered operation. The macrocells each have two outputs, which can be fed to the SRP, GRP and I/O cell. This dual or concurrent output capability from the macrocell gives efficient use of the hardware resources. One output can be a registered function for example, while the other output can be an unrelated combinatorial function. A direct register input from the I/O cell facilitates efficient use of the macrocell to construct high-speed input registers. Macrocell registers can be clocked from one of several global or product term clocks available on the device. A global and product term clock enable is also provided, eliminating the need to gate the clock to the macrocell registers directly. Reset and preset for the macrocell register is provided from both global and product term signals. The macrocell register can be programmed to operate as a D-type register or a D-type latch. Figure 7 is a graphical representation of the ispMACH 5000VG macrocell. 6 Lattice Semiconductor ispMACH 5000VG Family Data Sheet Figure 7. Macrocell From I/O Cell PTSA Bypass Output to I/O Block From PTSA D Q PT Clock Clk En GRP and SRP R/L Shared PT Clock BCLK0 BCLK1 BCLK2 BCLK3 Clk P R PT Preset PT Reset Shared PT Reset Global Reset I/O Cell The I/O cell of the ispMACH 5000VG device provides a high degree of flexibility. It includes the sysIO feature and an enhanced output enable MUX for optimal performance both on- and off-chip. The sysIO feature allows I/O cells to be configured to different I/O standards, drive strengths and slew rates. The enhanced output enable MUX provides up to 14 different output enable choices per I/O cell. The I/O cell contains an output enable (OE) MUX, a programmable tri-state output buffer, a programmable input buffer, a programmable pull-up resistor, a programmable pull-down resistor and a programmable bus-keeper latch. The I/O cell receives its input from its associated macrocell. The I/O cell has a feedback line to its associated macrocell and a direct path to the GRP and SRP. The output enable (OE) MUX selects the OE signal per I/O cell. The inputs to the OE MUX are the four Shared PTOE signals, PTOE and the two GOE signals. The OE MUX also has the ability to choose either the true or inverse of each of these signals. The output of the OE MUX goes through a logical AND with the TOE signal to allow easy tri-stating of the outputs for testing purposes. The four shared PTOE signals are derived from PT163 of each GLB in the segment. The PTOE signal is derived from the first product term in each macrocell cluster, which is directly routed to the OE MUX. Therefore, every I/O cell can have a different OE signal. Figure 8 is a graphical representation of the I/O cell. 7 Lattice Semiconductor ispMACH 5000VG Family Data Sheet Figure 8. I/O Cell Shared (Segment) PTOE 0 Shared (Segment) PTOE 1 Shared (Segment) PTOE 2 Shared (Segment) PTOE 3 PTOE GOE0 GOE1 VCCO for this bank VCCO to all other I/Os in bank TOE Data Output from Macrocell Output Buffer (VCCO independent for open drain outputs) Data Input to Routing GND CMOS/TTL Input Buffer (VREF independent) I/O Pad Data Input to Macrocell + – VREF dependent Input Buffer VREF to all other I/Os in bank sysIO Capability The ispMACH 5000VG devices are divided into four sysIO banks, where each bank is capable of supporting 14 different I/O standards. Each sysIO bank has its own I/O supply voltage (VCCO) and reference voltage (VREF) resources allowing each bank complete independence from the others. Each I/O within a bank is individually configurable based on the VCCO and VREF settings. Table 2 lists the sysIO standards with the typical values for VCCO, VREF and VTT. Table 2. ispMACH 5000VG Supported I/O Standards sysIO Standard VCCO VREF VTT LVTTL 3.3V N/A N/A LVCMOS-3.3 3.3V N/A N/A LVCMOS-2.5 2.5V N/A N/A LVCMOS-1.8 1.8V N/A N/A PCI 3.3 3.3V N/A N/A PCI-X 3.3V N/A N/A AGP-1X 3.3V N/A N/A SSTL3, Class I & II 3.3V 1.5V 1.5V SSTL2, Class I & II 2.5V 1.25V 1.25V CTT 3.3 3.3V 1.5V 1.5V CTT 2.5 2.5V 1.25V 1.25V HSTL, Class I 1.5V 0.75V 0.75V HSTL, Class III 1.5V 0.9V 1.5V GTL+ N/A 1.0V 1.5V LVPECL, Differential1 N/A N/A N/A LVDS1 N/A N/A N/A 1. LVDS and LVPECL are only supported on the dedicated clock pins. 8 Lattice Semiconductor ispMACH 5000VG Family Data Sheet Global clock pins have additional capabilities that allow for higher performance applications. Two global clock pins can be paired together to create a single global clock pin that can interface with certain differential signals. The TOE and JTAG pins of the ispMACH 5000VG device are the only pins that do not have sysIO capabilities. These pins only support the LVTTL and LVCMOS standards. There are three classes of I/O interface standards that are implemented in the ispMACH 5000VG devices. The first is the unterminated, single-ended interface. It includes the 3.3V LVTTL standard along with the 1.8V, 2.5V and 3.3V LVCMOS interface standards. Additionally, PCI 3.3, PCI-X and AGP-1X are all subsets of this type of interface. The second type of interface implemented is the terminated, single-ended interface standard. This group of interfaces includes different versions of SSTL and HSTL interfaces along with CTT and GTL+. Usage of these particular I/O interfaces requires the use of an additional VREF signal. At the system level, a termination voltage, VTT, is also required. Typically, an output will be terminated to VTT at the receiving end of the transmission line it is driving. The final types of interfaces implemented are the differential standards LVDS and LVPECL. These interfaces are implemented on clock pins only. When using one of the differential standards, a pair of global clock pins (GCLK0 and GCLK1 or GCLK3 and GCLK2) is combined to create a single clock signal. For more information on the sysIO capability, please refer to Technical Note TN1000: ispMACH 5000VG sysIO Design and Usage Guidelines . GLB Clock Distribution The ispMACH 5000VG family has four dedicated clock input pins: GCLK0-GCLK3. GLCK0 and GCLK3 can be routed through a PLL circuit or routed directly to the internal clock nets. The internal clock nets (CLK0-CLK3) are directly related to the dedicated clock pins (see Secondary Clock Divider exception when using the sysCLOCK circuit). These feed the GLB clock multiplexes which generate the GLB clock signals (BCLK0-BCLK3). The GLB clock multiplexer allows a variety of true and complementary versions of the clocks to be used within the GLB. Each block clock can be the true or inverse of its associated global clock or the inverse of the adjacent global clock. Figure 9 shows the clock distribution network. Figure 9. Clock Distribution Network I/O/CLK_OUT0 GCLK0 CLK0 CLK_OUT0 VREF0 Clock Net BCLK0 To Macrocells BCLK1 To Macrocells PLL0 SEC_OUT0 CLK1 GCLK1 Clock Net VREF1 sysCLOCK PLLs Global Clock Routing GLB Clock Routing VREF2 GCLK2 CLK2 Clock Net SEC_OUT1 BCLK2 To Macrocells BCLK3 To Macrocells PLL1 VREF3 CLK_OUT1 CLK3 GCLK3 Clock Net I/O/CLK_OUT1 9 Lattice Semiconductor ispMACH 5000VG Family Data Sheet sysCLOCK PLL The sysCLOCK PLL circuitry consists of Phase-Lock Loops (PLLs) and the various dividers, reset and feedback signals associated with the PLLs. This feature gives the user the ability to synthesize clock frequencies and generate multiple clock signals for routing within the device. Furthermore, it can generate clock signals that are deskewed either at the board level or the device level. The ispMACH 5000VG devices provide two PLL circuits. PLL0 receives its clock inputs from GCLK 0 and provides outputs to CLK 0 (CLK 1 when using the secondary clock). PLL1 operates with signals from GCLK 3 and CLK 3 (CLK 2 when using the secondary clock). The PLL outputs (CLK_OUT) are routed via a dedicated net to a dedicated pad. Further the buffers at these dedicated pads are regular I/O buffers that can select either the I/O macrocell or the CLK_OUT (CLK_OUT0/CLK_OUT1) signal. The CLK_OUT nets are not routed through the GRP. Additionally, there are two sets of signals used for external control. Each PLL has a set of PLL_RST, PLL_FBK and PLL_LOCK signals. Figure 10 shows the ispMACH 5000VG PLL block diagram. Figure 10. PLL Block Diagram CLK_IN Input Clock (M) Divider Programable Delay PLL_RST VCO and Phase Detector Post-scalar (V) Divider CLK_OUT Clock Net PLL_LOCK Feedback Loop (N) Divider Secondary Clock (K) Divider SEC_OUT Clock Net PLL_FBK In order to facilitate the multiply and divide capabilities of the PLL, each PLL has dividers associated with it: M, N and K. The M divider is used to divide the clock signal, while the N divider is used to multiply the clock signal. The K divider is only used when a secondary clock output is needed. This divider divides the primary clock output and feeds to a separate global clock net. The V divider is used to provide lower frequency output clocks, while maintaining a stable, high frequency output from the PLL’s VCO circuit. The PLL also has a delay feature that allows the output clock to be advanced or delayed to improve set-up and clock-to-out times for better performance. This operates by inserting delay on the input or feedback lines in 0.5ns increments from 0 to 3.5ns. For more information on the PLL, please refer to Technical Note TN1003: ispMACH 5000VG PLL Usage Guidelines . Power Management The ispMACH 5000VG devices provide unique power management controls. The devices have two power settings, high power and low power, on a per node basis. Low power consumption is approximately 50% of high power consumption with a timing delay adder (tLP) to the routing delay of the low power node. Each node can be configured as either high power or low power. However, care should be taken when sharing product terms between nodes with different power settings. The ispMACH 5000VG devices also have a power-off feature for unused product terms. By default, any product term that is not used is configured as such. This allows the device to operate at minimal power consumption without affecting the timing of the design. For more information on power management, please refer to Technical Note TN1002: Power Estimation in ispMACH 5000VG Devices. 10 Lattice Semiconductor ispMACH 5000VG Family Data Sheet IEEE 1149.1-Compliant Boundary Scan Testability All ispMACH 5000VG devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked into a board-level serial scan path for more board-level testing. The test access port has its own supply voltage and can operate with LVCMOS3.3, 2.5 and 1.8V standards. sysIO Quick Configuration To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continuity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os’ physical nature should be minimal so that board test time is minimized. The ispMACH 5000VG family of devices allows this by offering the user the ability to quickly configure the physical nature of the sysIO cells. This quick configuration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice's ispVM™ System programming software can either perform the quick configuration through the PC parallel port, or can generate the ATE or test vectors necessary for a third-party test system. IEEE 1532-Compliant In-System Programming In-system programming of devices provides a number of significant benefits including rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 5000VG devices provide In-System Programming (ISPTM) capability through their Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains compliant to the IEEE 1532 standard. By using IEEE 1532 as the communication interface through which ISP is achieved, customers get the benefit of a standard, welldefined interface. The ispMACH 5000VG devices can be programmed across the commercial temperature and voltage range. The PC-based Lattice software facilitates in-system programming of ispMACH 5000VG devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispMACH 5000VG devices during the testing of a circuit board. Security Bit A programmable security bit is provided on the ispMACH 5000VG devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit prevents readback of the programmed pattern by a device programmer, securing proprietary design from competitors. The security bit also prevents programming and verification. The entire device must be erased in order to erase the security bit. Hot Socketing The ispMACH 5000VG devices are well suited for those applications that require hot socketing capability. Hot socketing a device requires that the device, when powered down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of the powered-down device be minimal on active signals. Density Migration The ispMACH 5000 family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. 11 Lattice Semiconductor ispMACH 5000VG Family Data Sheet Absolute Maximum Ratings1, 2, 3 Supply Voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 5.4V PLL Supply Voltage (VCCP) . . . . . . . . . . . . . . . . . . . . -0.5 to 5.4V Output Supply Voltage (VCCO) . . . . . . . . . . . . . . . . . . -0.5 to 5.4V Input Voltage Applied4 . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 5.6V Tri-state Output Voltage Applied. . . . . . . . . . . . . . . . . -0.5 to 5.6V Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . -65 to 150°C Junction Temperature (Tj) with Power Applied . . . . . -55 to 130°C 1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 2. Compliance with Lattice Thermal Management document is required. 3. All voltages referenced to GND. 4. Overshoot and Undershoot of -2V to (VIH (MAX)+2) volts is permitted for a duration of < 20ns. Recommended Operating Conditions Symbol Parameter Min Max Units VCC Supply Voltage 3.0 3.6 V VCCP Supply Voltage for PLL block 3.0 3.6 V 1.65 3.6 V 0 90 C -40 105 C Min Max Units 1000 — Cycles VCCJ Supply Voltage for IEEE1149.1 Test Access Port Tj (Commercial) Junction Commercial Operation Tj (Industrial) Junction Industrial Operation Note: VCCJ must be set in appropriate range to be compatible with desired LVCMOS standard. Erase Reprogram Specifications Parameter Erase/Reprogram Cycle Hot Socketing Characteristics1,2,3 Symbol IDK Parameter Input or I/O Leakage Current Min Typ Max Units 0 ≤ VIN ≤ VIH (MAX) Condition — — +/-100 µA VIH (MAX) ≤ VIN ≤ 5.5V — — +/-100 µA 1. Insensitive to sequence of VCC and VCCO. However, assumes monotonic rise / fall rates for VCC and VCCO. 2. LVTTL, LVCMOS only 3. 0 < VCC ≤ VCC (MAX), 0 < VCCO ≤ VCCO (MAX) 12 Lattice Semiconductor ispMACH 5000VG Family Data Sheet DC Electrical Characteristics Over Recommended Operating Conditions Symbol 1 IIL, IIH IPU2 Parameter Input or I/O Leakage Current I/O Weak Pull-up Resistor Current 2 Condition Min 0V ≤ VIN ≤ VIH (MAX) 0 ≤ VIN ≤ 0.7 VCCO Typ Max Units — — +/-10 µA VCCO = 3.3 -30 — -150 µA VCCO = 2.5 -20 — -150 µA VCCO = 1.8 -10 — -150 µA IPD I/O Weak Pull-down Resistor Current VIL (MAX) ≤ VIN ≤ VIH (MAX) 30 — 150 µA IBHLS2 Bus Hold Low Sustaining Current VIN = VIL (MAX) 30 — — µA IBHHS2 Bus Hold High Sustaining Current VIN = 0.7 VCCO IBHLO2 Bus Hold Low Overdrive Current 0V ≤ VIN ≤ VIH (MAX) IBHHO Bus Hold High Overdrive Current 0V ≤ VIN ≤ VIH (MAX) ICC3, 4, 5 Operating Power Supply Current VCC = 3.3V VBHT Bus Hold Trip Points C1 I/O Capacitance3 C2 Clock Capacitance3 C3 Global Input Capacitance3 2 VCCO = 3.3 -30 — — µA VCCO = 2.5 -20 — — µA VCCO = 1.8 -10 — — µA — — 150 µA — — -150 µA — 380 — mA VIL (MAX) — VIH (MIN) V — 10 — pf — 10 — pf — 10 — pf VCC = 3.3V, VIO = 0 to VIH (MAX) VCCO = 3.3V, 2.5, 1.8, 1.5 VCC = 3.3V, VIO = 0 to VIH (MAX) VCCO = 3.3V, 2.5, 1.8, 1.5 VCC = 3.3V, VIO = 0 to VIH (MAX) VCCO = 3.3V, 2.5, 1.8, 1.5 1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled. 2. Only available for LVCMOS and LVTTL standards. 3. TA = 25°C, f = 1.0MHz. 4. Device configured with 16-bit counters. 5. ICC varies with specific device configuration and operating frequency. 13 Lattice Semiconductor ispMACH 5000VG Family Data Sheet sysIO Recommended Operating Conditions2 VCCO (V) Standard 1 VREF (V) Min Max Min Max LVCMOS 3.3 3.0 3.6 — — LVCMOS 2.5 2.3 2.7 — — LVCMOS 1.8 1.65 1.95 — — LVTTL 3.0 3.6 — — PCI 3.3 3.0 3.6 — — PCI-X 3.0 3.6 — — AGP-1X 3.15 3.45 — — SSTL 2 2.3 2.7 1.15 1.35 SSTL 3 3.0 3.6 1.3 1.7 CTT 3.3 3.0 3.6 1.35 1.65 CTT 2.5 2.3 2.7 1.35 1.65 HSTL 1.4 1.6 0.68 0.9 GTL+ 1.4 3.6 0.882 1.122 1. Software default setting. 2. Typical values for VCCO and VREF are the average of the Min and Max values. 14 Lattice Semiconductor ispMACH 5000VG Family Data Sheet sysIO DC Electrical Characteristics Over Recommended Operating Conditions VIL Standard LVCMOS 3.31 LVCMOS 3.3 LVTTL LVCMOS 2.5 LVCMOS 1.8 VIH Min (V) Max (V) Min (V) Max (V) VOL Max (V) -0.3 0.8 2.0 5.5 0.4 -0.3 -0.3 -0.3 -0.3 0.8 0.8 0.7 0.35VCCO 2.0 5.5 2.0 5.5 1.7 3.6 0.65VCCO 3.6 IOL2 (mA) IOH2 (mA) VOH Min (V) 2.4 20 -20 0.4 2.4 16, 12 8, 5.33, 4 -16, -12, -8, -5.33, -4 0.2 VCCO - 0.2 0.1 -0.1 0.4 2.4 20 -20 0.2 VCCO - 0.2 0.1 -0.1 0.4 VCCO - 0.4 16, 12, 8, 5.33, 4 -16, -12, -8, -5.33, -4 0.2 VCCO - 0.2 0.1 -0.1 0.4 VCCO-0.4 12, 8, 5.33, 4 -12, -8, -5.33, -4 0.2 VCCO - 0.2 0.1 -0.1 PCI 3.3 -0.3 0.3VCCO 0.5VCCO 3.6 0.1VCCO 0.9VCCO 1.5 -0.5 PCI-X -0.3 0.35VCCO 0.5VCCO 3.6 0.1VCCO 0.9VCCO 1.5 -0.5 AGP-1X -0.3 0.3VCCO 0.5VCCO 3.6 0.1VCCO 0.9VCCO 1.5 -0.5 SSTL3 class I -0.3 VREF-0.2 VREF+0.2 3.6 0.7 VCCO-1.1 8 -8 SSTL3 class II -0.3 VREF-0.2 VREF+0.2 3.6 0.5 VCCO-0.9 16 -16 SSTL2 class I -0.3 VREF-0.18 VREF+0.18 3.6 0.54 VCCO-0.62 7.6 -7.6 SSTL2 class II -0.3 VREF-0.18 VREF+0.18 3.6 0.35 VCCO-0.43 15.2 -15.2 CTT 3.3 -0.3 VREF-0.2 VREF+0.2 3.6 VREF-0.4 VREF+0.4 8 -8 CTT 2.5 -0.3 VREF-0.2 VREF+0.2 3.6 VREF-0.4 VREF+0.4 8 -8 HSTL class I -0.3 VREF-0.1 VREF+0.1 3.6 0.4 VCCO-0.4 8 -8 HSTL class III -0.3 VREF-0.1 VREF+0.1 3.6 0.4 VCCO-0.4 24 -8 GTL+ -0.3 VREF-0.2 VREF+0.2 3.6 0.6 n/a 36 n/a 1. Software default setting 2. The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of the I/O bank, as shown in the logic signals connection table, shall not exceed 96mA. sysIO Differential Input DC Electrical Characteristics and Operating Conditions Symbol Parameter Test Conditions Min Max VINP . VINM LVDS Input voltage — 0 2.4 VTHD LVDS Differential input threshold — ±100mV — VIL LVPECL Input Voltage Low VCC-1.81 VCC-1.48 VIH LVPECL Input Voltage High VCC = 3.0 to 3.6V VCC = 3.3V VCC = 3.0 to 3.6V VCC = 3.3V 15 1.49V 1.83V VCC-1.17 VCC-0.88 2.14V 2.42V Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 5768VG External Switching Characteristics Over Recommended Operating Conditions -5 Parameter 1,2,3 Description -75 -10 -12 Min Max Min Max Min Max Min Max Units tPD Data propagation delay, 5-PT bypass — 5.0 — 7.5 — 10.0 — 12.0 ns tPD_PTSA Data propagation delay, intrasegment path — 6.0 — 9.0 — 11.5 — 13.5 ns tPD_GLOBAL Data propagation delay, intersegment path — 6.5 — 9.75 — 13.0 — 16.0 ns tS GLB register setup time before clock, 5-PT bypass 3.0 — 5.0 — 7.5 — 9.3 — ns tS_PTSA GLB register setup time before clock 3.0 — 6.0 — 8.5 — 10.0 — ns tSIR GLB register setup time before clock, input register path 2.8 — 3.0 — 4.0 — 5.0 — ns tH GLB register hold time before clock, 5-PT bypass 0.0 — 0.0 — 0.0 — 0.0 — ns tH_PTSA GLB register hold time before clock 0.0 — 0.0 — 0.0 — 0.0 — ns tHIR GLB register hold time before clock, input reg. path 0.0 — 0.0 — 0.0 — 0.0 — ns tCO GLB register clock-to-output delay — 4.4 — 5.0 — 6.0 — 7.0 ns tR External reset pin to output delay — 6.5 — 9.0 — 10.0 — 10.9 ns tRW External reset pulse duration 4.0 — 6.0 — 8.0 — 9.5 — ns tLPTOE/DIS Input to output local product term output enable/disable — 7.0 — 9.75 — 11.5 — 13.4 ns tSPTOE/DIS Input to output segment product term output enable/disable — 8.0 — 11.25 — 17.5 — 20.4 ns tGOE/DIS Global OE input to output enable/disable — 6.2 — 7.5 — 8.85 — 10.0 ns tCW Global clock width, high or low 1.6 — 2.75 — 3.6 — 4.3 — ns tGW Global gate width low (for low transparent) or high (for high transparent) 1.8 — 2.75 — 3.6 — 4.3 — ns tWIR Input register clock width, high or low 1.8 — 2.75 — 3.6 — 4.3 — ns Clock-to-out skew, block level — 0.25 — 0.35 — 0.45 — 0.55 ns Clock-to-out skew, segment level — 0.4 — 0.5 — 0.6 — 0.7 ns tSKEW 4 fMAX Clock frequency with internal feedback 178.6 — 117.0 — 87.0 — 73.0 — MHz fMAX (Ext.) Clock frequency with external feedback, 1/ (tS_PTSA + tCO) 135.1 — 90.9 — 69.0 — 58.8 — MHz fMAX (Tog.) Clock frequency max Toggle 312.5 — 181.0 — 138.0 — 116.0 — MHz 1. 2. 3. 4. Timing v.1.20 Timing numbers are based on default LVCMOS 3.3 I/O Buffers. Use timing adjusters provided to calculate timing for other standards. Measured using standard switching circuit, assuming segment and global routing loading of 1, worst case PTSA loading and 1 output switching. Pulse widths and clock widths less than minimum will cause unknown behavior. Standard 16-bit counter using SRP feedback. 16 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 51024VG External Switching Characteristics Over Recommended Operating Conditions -5 Parameter 1,2,3 Description -75 -10 -12 Min Max Min Max Min Max Min Max Units tPD Data propagation delay, 5-PT bypass — 5.0 — 7.5 — 10.0 — 12.0 ns tPD_PTSA Data propagation delay, intrasegment path — 6.0 — 9.0 — 11.5 — 13.5 ns tPD_GLOBAL Data propagation delay, intersegment path — 6.5 — 9.75 — 13.0 — 16.0 ns tS GLB register setup time before clock, 5-PT bypass 3.0 — 5.0 — 7.5 — 9.3 — ns tS_PTSA GLB register setup time before clock 3.0 — 6.0 — 8.5 — 10.0 — ns tSIR GLB register setup time before clock, input register path 2.8 — 3.0 — 4.0 — 5.0 — ns tH GLB register hold time before clock, 5-PT bypass 0.0 — 0.0 — 0.0 — 0.0 — ns tH_PTSA GLB register hold time before clock 0.0 — 0.0 — 0.0 — 0.0 — ns tHIR GLB register hold time before clock, input reg. path 0.0 — 0.0 — 0.0 — 0.0 — ns tCO GLB register clock-to-output delay — 4.4 — 5.0 — 6.0 — 7.0 ns tR External reset pin to output delay — 6.5 — 9.0 — 10.0 — 10.9 ns tRW External reset pulse duration 4.0 — 6.0 — 8.0 — 9.5 — ns tLPTOE/DIS Input to output local product term output enable/disable — 7.0 — 9.75 — 11.5 — 13.4 ns tSPTOE/DIS Input to output segment product term output enable/disable — 8.0 — 11.25 — 17.5 — 20.4 ns tGOE/DIS Global OE input to output enable/disable — 6.2 — 7.5 — 8.85 — 10.0 ns tCW Global clock width, high or low 1.6 — 2.75 — 3.6 — 4.3 — ns tGW Global gate width low (for low transparent) or high (for high transparent) 1.8 — 2.75 — 3.6 — 4.3 — ns tWIR Input register clock width, high or low 1.8 — 2.75 — 3.6 — 4.3 — ns Clock-to-out skew, block level — 0.25 — 0.35 — 0.45 — 0.55 ns Clock-to-out skew, segment level — 0.4 — 0.5 — 0.6 — 0.7 ns tSKEW 4 fMAX Clock frequency with internal feedback 178.6 — 117.0 — 87.0 — 73.0 — MHz fMAX (Ext.) Clock frequency with external feedback, 1/ (tS_PTSA + tCO) 135.1 — 90.9 — 69.0 — 58.8 — MHz fMAX (Tog.) Clock frequency max Toggle 312.5 — 181.0 — 138.0 — 116.0 — MHz 1. 2. 3. 4. Timing v.1.10 Timing numbers are based on default LVCMOS 3.3 I/O Buffers. Use timing adjusters provided to calculate timing for other standards. Measured using standard switching circuit, assuming segment and global routing loading of 1, worst case PTSA loading and 1 output switching. Pulse widths and clock widths less than minimum will cause unknown behavior. Standard 16-bit counter using SRP feedback. 17 Lattice Semiconductor ispMACH 5000VG Family Data Sheet Timing Model The task of determining the timing through the ispMACH 5000VG family, like any CPLD, is relatively simple. The timing model provided in Figure 11 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and usage, please refer to Technical Note TN1001: ispMACH 5000VG Timing Model Design and Usage Guidelines. Figure 11. ispMACH 5000VG Timing Model tPDb From Feedback IN tROUTE tGRP tBLK tLP tIN tIOI Feedback tFBK tPDi tPTSA tEXP Data Q tINREG SCLK tGCLK_IN tIOI tGCLK tPTCLK tBCLK C.E. tPLL_DELAY tPLL_SEC_DELAY tPTSR tBSR S/R MC Reg RST tRST tIOI tSPTOE OE tGOE tIOI tPTOE Italicized items are optional delay adders 18 tBUF tIOO tEN tDIS OUT Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 5768VG Internal Timing Parameters Over Recommended Operating Conditions -5 Parameter Description -75 -10 -12 Min Max Min Max Min Max Min Max Units In/Out Delays tIN Input Buffer Delay — 0.65 — 0.95 — 1.25 — 1.40 ns tGCLK_IN Global Clock Input Buffer Delay — 0.65 — 0.95 — 1.25 — 1.40 ns tGOE Global OE Pin Delay — 4.05 — 5.00 — 6.00 — 7.00 ns tBUF Delay through Output Buffer — 1.15 — 1.50 — 1.75 — 1.90 ns tEN Output Enable Time — 2.15 — 2.50 — 2.85 — 3.00 ns tDIS Output Disable Time — 2.15 — 2.50 — 2.85 — 3.00 ns tRSTb Global RESETbar Pin Delay — 4.60 — 6.50 — 7.00 — 7.50 ns tROUTE Delay through SRP — 2.80 — 4.20 — 5.65 — 6.90 ns tPTSA Product Term Sharing Array Delay — 0.40 — 1.85 — 2.35 — 2.50 ns tPDB 5-PT Bypass Propagation Delay — 0.40 — 0.85 — 1.35 — 1.80 ns tPDi Macrocell Propagation Delay — 1.00 — 0.50 — 0.50 — 0.80 ns tINREG Input Buffer to Macrocell Register Delay — 3.00 — 3.05 — 3.50 — 4.40 ns tFBK Internal Feedback Delay — 0.00 — 0.00 — 0.00 — 0.00 ns tGCLK Global Clock Tree Delay — 0.85 — 0.70 — 0.55 — 0.65 ns tPLL_DELAY Programmable PLL Delay Increment Routing Delays — 0.50 — 0.50 — 0.50 — 0.50 ns Additional Delay When Using Secondary PLL tPLL_SEC_DELAY Output — 0.60 — 0.60 — 0.60 — 0.60 ns tGRP — 1.50 — 2.25 — 3.00 — 4.00 ns 0.65 — 0.65 — 1.05 — 1.25 — ns Global Routing Pool Delay Register/Latch Delays tS D-Register Setup Time tS_PT D-Register Setup Time with PT Clock 0.65 — 0.65 — 1.05 — 1.25 — ns tH D-Register Hold Time 0.00 — 0.00 — 0.00 — 0.00 — ns tST T-Register Setup Time 1.15 — 1.15 — 1.55 — 1.75 — ns tST_PT T-Register Setup Time with PT Clock 1.15 — 1.15 — 1.55 — 1.75 — ns tHT T-Register Hold Time 0.00 — 0.00 — 0.00 — 0.00 — ns tCOi Register Clock to Output/Feedback MUX Time — 1.75 — 1.85 — 2.45 — 3.05 ns tCES Clock Enable Setup Time 2.60 — 3.90 — 5.05 — 5.95 — ns tCEH Clock Enable Hold Time 0.60 — 0.90 — 1.20 — 1.45 — ns tSL Latch Setup Time 2.80 — 4.20 — 5.50 — 6.60 — ns tSL_PT Latch Setup Time with PT Clock 2.80 — 4.20 — 5.50 — 6.60 — ns tHL Latch Hold Time 0.00 — 0.00 — 0.00 — 0.00 — ns tGOi Latch Gate to Output/Feedback MUX Time — 1.75 — 2.50 — 3.50 — 4.50 ns tPDLi Propagation Delay through Transparent Latch to Output/Feedback MUX — 2.40 — 3.50 — 4.00 — 4.50 ns tSRi Asynchronous Reset or Set to Output/Feedback MUX Delay — 0.75 — 1.00 — 1.25 — 1.50 ns tSRR Asynchronous Reset or Set Recovery Delay — 1.00 — 1.50 — 2.00 — 2.50 ns Control Delays tBCLK GLB PT Clock Delay — 3.10 — 4.65 — 6.00 — 7.00 ns tPTCLK Macrocell PT Clock Delay — 3.00 — 4.50 — 6.00 — 7.00 ns 19 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 5768VG Internal Timing Parameters (Continued) Over Recommended Operating Conditions -5 Parameter Description -75 -10 -12 Min Max Min Max Min Max Min Max Units tBSR Block PT Set/Reset Delay — 2.00 — 3.00 — 4.00 — 4.80 ns tPTSR Macrocell PT Set/Reset Delay — 2.00 — 3.00 — 4.00 — 4.80 ns tSPTOE Segment PT OE Delay — 2.40 — 3.60 — 7.75 — 9.10 ns tPTOE Macrocell PT OE Delay — 1.40 — 2.10 — 1.75 — 2.10 ns Notes: Timing v.1.20 1. Internal Timing Parameters are not tested and are for reference only. Refer to Timing Model in this data sheet for further details. 2. tPLL_DELAY is the unit increment by which the clock signal can be incremented. The PLL can adjust the clock signal by up to 3.5ns in either direction in units of 0.5ns for each step. ispMACH 51024VG Internal Timing Parameters Over Recommended Operating Conditions -5 Parameter Description -75 -10 -12 Min Max Min Max Min Max Min Max Units In/Out Delays tIN Input Buffer Delay — 0.65 — 0.95 — 1.25 — 1.40 ns tGCLK_IN Global Clock Input Buffer Delay — 0.65 — 0.95 — 1.25 — 1.40 ns tGOE Global OE Pin Delay — 4.05 — 5.00 — 6.00 — 7.00 ns tBUF Delay through Output Buffer — 1.15 — 1.50 — 1.75 — 1.90 ns tEN Output Enable Time — 2.15 — 2.50 — 2.85 — 3.00 ns tDIS Output Disable Time — 2.15 — 2.50 — 2.85 — 3.00 ns tRSTb Global RESETbar Pin Delay — 4.60 — 6.50 — 7.00 — 7.50 ns tROUTE Delay through SRP — 2.80 — 4.20 — 5.65 — 6.90 ns tPTSA Product Term Sharing Array Delay — 0.40 — 1.85 — 2.35 — 2.50 ns tPDB 5-PT Bypass Propagation Delay — 0.40 — 0.85 — 1.35 — 1.80 ns tPDi Macrocell Propagation Delay — 1.00 — 0.50 — 0.50 — 0.80 ns tINREG Input Buffer to Macrocell Register Delay — 3.00 — 3.05 — 3.50 — 4.40 ns tFBK Internal Feedback Delay — 0.00 — 0.00 — 0.00 — 0.00 ns tGCLK Global Clock Tree Delay — 0.85 — 0.70 — 0.55 — 0.65 ns tPLL_DELAY Programmable PLL Delay Increment Routing Delays — 0.50 — 0.50 — 0.50 — 0.50 ns Additional Delay When Using Secondary PLL tPLL_SEC_DELAY Output — 0.60 — 0.60 — 0.60 — 0.60 ns tGRP — 1.50 — 2.25 — 3.00 — 4.00 ns 0.65 — 0.65 — 1.05 — 1.25 — ns Global Routing Pool Delay Register/Latch Delays tS D-Register Setup Time tS_PT D-Register Setup Time with PT Clock 0.65 — 0.65 — 1.05 — 1.25 — ns tH D-Register Hold Time 0.00 — 0.00 — 0.00 — 0.00 — ns tST T-Register Setup Time 1.15 — 1.15 — 1.55 — 1.75 — ns tST_PT T-Register Setup Time with PT Clock 1.15 — 1.15 — 1.55 — 1.75 — ns tHT T-Register Hold Time 0.00 — 0.00 — 0.00 — 0.00 — ns tCOi Register Clock to Output/Feedback MUX Time — 1.75 — 1.85 — 2.45 — 3.05 ns 20 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 51024VG Internal Timing Parameters (Continued) Over Recommended Operating Conditions -5 Parameter Description -75 -10 -12 Min Max Min Max Min Max Min Max Units tCES Clock Enable Setup Time 2.60 — 3.90 — 5.05 — 5.95 — ns tCEH Clock Enable Hold Time 0.60 — 0.90 — 1.20 — 1.45 — ns tSL Latch Setup Time 2.80 — 4.20 — 5.50 — 6.60 — ns tSL_PT Latch Setup Time with PT Clock 2.80 — 4.20 — 5.50 — 6.60 — ns tHL Latch Hold Time 0.00 — 0.00 — 0.00 — 0.00 — ns tGOi Latch Gate to Output/Feedback MUX Time — 1.75 — 2.50 — 3.50 — 4.50 ns tPDLi Propagation Delay through Transparent Latch to Output/Feedback MUX — 2.40 — 3.50 — 4.00 — 4.50 ns tSRi Asynchronous Reset or Set to Output/Feedback MUX Delay — 0.75 — 1.00 — 1.25 — 1.50 ns tSRR Asynchronous Reset or Set Recovery Delay — 1.00 — 1.50 — 2.00 — 2.50 ns Control Delays tBCLK GLB PT Clock Delay — 3.10 — 4.65 — 6.00 — 7.00 ns tPTCLK Macrocell PT Clock Delay — 3.00 — 4.50 — 6.00 — 7.00 ns tBSR Block PT Set/Reset Delay — 2.00 — 3.00 — 4.00 — 4.80 ns tPTSR Macrocell PT Set/Reset Delay — 2.00 — 3.00 — 4.00 — 4.80 ns tSPTOE Segment PT OE Delay — 2.40 — 3.60 — 7.75 — 9.10 ns tPTOE Macrocell PT OE Delay — 1.40 — 2.10 — 1.75 — 2.10 ns Notes: Timing v.1.10 1. Internal Timing Parameters are not tested and are for reference only. Refer to Timing Model in this data sheet for further details. 2. tPLL_DELAY is the unit increment by which the clock signal can be incremented. The PLL can adjust the clock signal by up to 3.5ns in either direction in units of 0.5ns for each step. 21 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 5768VG Timing Adders Adder Type Base Parameter tBLA tROUTE tEXP tPTSA tLP tROUTE -5 Description -75 -10 -12 Min Max Min Max Min Max Min Max Units GLB Loading Adder — 0.0 — 0.0 — 0.0 — 0.0 ns PT Expander Adder — 1.5 — 2.0 — 2.5 — 2.5 ns Low Power Adder — 1.5 — 1.5 — 1.5 — 1.5 ns tIOI Input Adders LVCMOS18_in tIN, tGCLK_IN, Using LVCMOS1.8 tRSTb, tGOE standard — 0.90 — 0.90 — 0.90 — 0.90 ns LVCMOS25_in tIN, tGCLK_IN, Using LVCMOS2.5 tRSTb, tGOE standard — 0.15 — 0.15 — 0.15 — 0.15 ns LVCMOS33_in tIN, tGCLK_IN, Using LVCMOS3.3 tRSTb, tGOE standard — 0.0 — 0.0 — 0.0 — 0.0 ns LVTTL tIN, tGCLK_IN, Using LVTTL standard tRSTb, tGOE — 0.0 — 0.0 — 0.0 — 0.0 ns PCI_in tIN, tGCLK_IN, Using PCI standard tRSTb, tGOE — 0.0 — 0.0 — 0.0 — 0.0 ns PCI_X_in tIN, tGCLK_IN, Using PCI_X tRSTb, tGOE standard — 0.0 — 0.0 — 0.0 — 0.0 ns AGP_1X_in tIN, tGCLK_IN, Using AGP-1X tRSTb, tGOE standard — 0.0 — 0.0 — 0.0 — 0.0 ns SSTL3_I_in tIN, tGCLK_IN, Using SSTL3_I tRSTb, tGOE standard — 1.00 — 1.00 — 1.00 — 1.00 ns SSTL3_II_in tIN, tGCLK_IN, Using SSTL3_II tRSTb, tGOE standard — 1.00 — 1.00 — 1.00 — 1.00 ns SSTL2_I_in tIN, tGCLK_IN, Using SSTL2_I tRSTb, tGOE standard — 1.00 — 1.00 — 1.00 — 1.00 ns SSTL2_II_in tIN, tGCLK_IN, Using SSTL2_II tRSTb, tGOE standard — 1.00 — 1.00 — 1.00 — 1.00 ns CTT33_in tIN, tGCLK_IN, Using CTT3.3 tRSTb, tGOE standard — 0.0 — 0.0 — 0.0 — 0.0 ns CTT25_in tIN, tGCLK_IN, Using CTT2.5 tRSTb, tGOE standard — 0.15 — 0.15 — 0.15 — 0.15 ns HSTL_I_in tIN, tGCLK_IN, Using HSTL_I tRSTb, tGOE standard — 1.25 — 1.25 — 1.25 — 1.25 ns HSTL_III_in tIN, tGCLK_IN, Using HSTL_III tRSTb, tGOE standard — 1.25 — 1.25 — 1.25 — 1.25 ns GTL+_in tIN, tGCLK_IN, Using GTL+ tRSTb, tGOE standard — 1.50 — 1.50 — 1.50 — 1.50 ns LVDS_in tGCLK_IN Using LVDS standard — 1.70 — 1.70 — 1.70 — 1.70 ns LVPECL_in tGCLK_IN Using LVPECL standard — 2.10 — 2.10 — 2.10 — 2.10 ns LVCMOS18_4mA_out tBUF, tEN, tDIS Output configured as 1.8V & 4mA Buffer — 3.00 — 3.00 — 3.00 — 3.00 ns LVCMOS18_5mA_out tBUF, tEN, tDIS Output configured as 1.8V & 5.33mA Buffer — 2.50 — 2.50 — 2.50 — 2.50 ns LVCMOS18_8mA_out tBUF, tEN, tDIS Output configured as 1.8V & 8mA Buffer — 1.85 — 1.85 — 1.85 — 1.85 ns tIOO Output Adders Note: Open drain timing is the same as corresponding LVCMOS timing. 22 Timing v.1.20 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 5768VG Timing Adders (Continued) Adder Type Base Parameter -5 Description -75 -10 -12 Min Max Min Max Min Max Min Max Units LVCMOS18_12mA_out tBUF, tEN, tDIS Output configured as 1.8V & 12mA Buffer — 1.35 — 1.35 — 1.35 — 1.35 ns LVCMOS25_4mA_out tBUF, tEN, tDIS Output configured as 2.5V & 4mA Buffer — 1.50 — 1.50 — 1.50 — 1.50 ns LVCMOS25_5mA_out tBUF, tEN, tDIS Output configured as 2.5V & 5.33mA Buffer — 1.25 — 1.25 — 1.25 — 1.25 ns LVCMOS25_8mA_out tBUF, tEN, tDIS Output configured as 2.5V & 8mA Buffer — 0.70 — 0.70 — 0.70 — 0.70 ns LVCMOS25_12mA_out tBUF, tEN, tDIS Output configured as 2.5V & 12mA Buffer — 0.50 — 0.50 — 0.50 — 0.50 ns LVCMOS25_16mA_out tBUF, tEN, tDIS Output configured as 2.5V & 16mA Buffer — 0.25 — 0.25 — 0.25 — 0.25 ns LVCMOS33_4mA_out tBUF, tEN, tDIS Output configured as 3.3V & 4mA Buffer — 1.50 — 1.50 — 1.50 — 1.50 ns LVCMOS33_5mA_out tBUF, tEN, tDIS Output configured as 3.3V & 5.33mA Buffer — 1.25 — 1.25 — 1.25 — 1.25 ns LVCMOS33_8mA_out tBUF, tEN, tDIS Output configured as 3.3V & 8mA Buffer — 0.40 — 0.40 — 0.40 — 0.40 ns LVCMOS33_12mA_out tBUF, tEN, tDIS Output configured as 3.3V & 12mA Buffer — 0.10 — 0.10 — 0.10 — 0.10 ns LVCMOS33_16mA_out tBUF, tEN, tDIS Output configured as 3.3V & 16mA Buffer — 0.0 — 0.0 — 0.0 — 0.0 ns LVCMOS33_20mA_out tBUF, tEN, tDIS Output configured as 3.3V & 20mA Buffer — 0.0 — 0.0 — 0.0 — 0.0 ns LVTTL tBUF, tEN, tDIS Output configured as LVTTL Buffer — 0.0 — 0.0 — 0.0 — 0.0 ns Slow Slew tBUF, tEN Output configured for slow slew rate — 1.50 — 1.50 — 1.50 — 1.50 ns PCI_out tBUF, tEN, tDIS Using PCI standard — 0.0 — 0.0 — 0.0 — 0.0 ns PCI_X_out Using PCI-X tBUF, tEN, tDIS standard — 0.0 — 0.0 — 0.0 — 0.0 ns AGP_1X_out tBUF, tEN, tDIS Using AGP-1X standard — 0.0 — 0.0 — 0.0 — 0.0 ns SSTL3_I_out tBUF, tEN, tDIS Using SSTL3_I standard — -0.25 — -0.25 — -0.25 — -0.25 ns SSTL3_II_out tBUF, tEN, tDIS Using SSTL3_II standard — -0.35 — -0.35 — -0.35 — -0.35 ns SSTL2_I_out tBUF, tEN, tDIS Using SSTL2_I standard — 0.0 — 0.0 — 0.0 — 0.0 ns SSTL2_II_out tBUF, tEN, tDIS Using SSTL2_II standard — -0.25 — -0.25 — -0.25 — -0.25 ns CTT33_out tBUF, tEN, tDIS Using CCT3.3 standard — 0.0 — 0.0 — 0.0 — 0.0 ns CTT25_out tBUF, tEN, tDIS Using CCT2.5 standard — 0.25 — 0.25 — 0.25 — 0.25 ns HSTL_I_out tBUF, tEN, tDIS Using HSTL_I standard — -0.30 — -0.30 — -0.30 — -0.30 ns Note: Open drain timing is the same as corresponding LVCMOS timing. 23 Timing v.1.20 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 5768VG Timing Adders (Continued) Adder Type Base Parameter -5 Description -75 -10 -12 Min Max Min Max Min Max Min Max Units HSTL_III_out tBUF, tEN, tDIS Using HSTL_III standard — 0.00 — 0.00 — 0.00 — 0.00 ns GTL+_out tBUF, tEN, tDIS Using GTL+ standard — 0.30 — 0.30 — 0.30 — 0.30 ns Note: Open drain timing is the same as corresponding LVCMOS timing. Timing v.1.20 ispMACH 51024VG Timing Adders Adder Type Base Parameter -5 Description -75 -10 -12 Min Max Min Max Min Max Min Max Units tBLA tROUTE GLB Loading Adder — 0.0 — 0.0 — 0.0 — 0.0 ns tEXP tPTSA PT Expander Adder — 1.5 — 2.0 — 2.5 — 2.5 ns tLP tROUTE Low Power Adder — 1.5 — 1.5 — 1.5 — 1.5 ns tIOI Input Adders LVCMOS18_in tIN, tGCLK_IN, Using LVCMOS1.8 tRSTb, tGOE standard — 0.90 — 0.90 — 0.90 — 0.90 ns LVCMOS25_in tIN, tGCLK_IN, Using LVCMOS2.5 tRSTb, tGOE standard — 0.15 — 0.15 — 0.15 — 0.15 ns LVCMOS33_in tIN, tGCLK_IN, Using LVCMOS3.3 tRSTb, tGOE standard — 0.0 — 0.0 — 0.0 — 0.0 ns LVTTL tIN, tGCLK_IN, Using LVTTL standard tRSTb, tGOE — 0.0 — 0.0 — 0.0 — 0.0 ns PCI_in tIN, tGCLK_IN, Using PCI standard tRSTb, tGOE — 0.0 — 0.0 — 0.0 — 0.0 ns PCI_X_in tIN, tGCLK_IN, Using PCI_X tRSTb, tGOE standard — 0.0 — 0.0 — 0.0 — 0.0 ns AGP_1X_in tIN, tGCLK_IN, Using AGP-1X tRSTb, tGOE standard — 0.0 — 0.0 — 0.0 — 0.0 ns SSTL3_I_in tIN, tGCLK_IN, Using SSTL3_I tRSTb, tGOE standard — 1.00 — 1.00 — 1.00 — 1.00 ns SSTL3_II_in tIN, tGCLK_IN, Using SSTL3_II tRSTb, tGOE standard — 1.00 — 1.00 — 1.00 — 1.00 ns SSTL2_I_in tIN, tGCLK_IN, Using SSTL2_I tRSTb, tGOE standard — 1.00 — 1.00 — 1.00 — 1.00 ns SSTL2_II_in tIN, tGCLK_IN, Using SSTL2_II tRSTb, tGOE standard — 1.00 — 1.00 — 1.00 — 1.00 ns CTT33_in tIN, tGCLK_IN, Using CTT3.3 tRSTb, tGOE standard — 0.0 — 0.0 — 0.0 — 0.0 ns CTT25_in tIN, tGCLK_IN, Using CTT2.5 tRSTb, tGOE standard — 0.15 — 0.15 — 0.15 — 0.15 ns HSTL_I_in tIN, tGCLK_IN, Using HSTL_I tRSTb, tGOE standard — 1.25 — 1.25 — 1.25 — 1.25 ns HSTL_III_in tIN, tGCLK_IN, Using HSTL_III tRSTb, tGOE standard — 1.25 — 1.25 — 1.25 — 1.25 ns GTL+_in tIN, tGCLK_IN, Using GTL+ tRSTb, tGOE standard — 1.50 — 1.50 — 1.50 — 1.50 ns Note: Open drain timing is the same as corresponding LVCMOS timing. 24 Timing v.1.10 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 51024VG Timing Adders (Continued) Adder Type Base Parameter -5 Description -75 -10 -12 Min Max Min Max Min Max Min Max Units LVDS_in tGCLK_IN Using LVDS standard — 1.70 — 1.70 — 1.70 — 1.70 ns LVPECL_in tGCLK_IN Using LVPECL standard — 2.10 — 2.10 — 2.10 — 2.10 ns LVCMOS18_4mA_out tBUF, tEN, tDIS Output configured as 1.8V & 4mA Buffer — 3.00 — 3.00 — 3.00 — 3.00 ns LVCMOS18_5mA_out tBUF, tEN, tDIS Output configured as 1.8V & 5.33mA Buffer — 2.50 — 2.50 — 2.50 — 2.50 ns LVCMOS18_8mA_out tBUF, tEN, tDIS Output configured as 1.8V & 8mA Buffer — 1.85 — 1.85 — 1.85 — 1.85 ns LVCMOS18_12mA_out tBUF, tEN, tDIS Output configured as 1.8V & 12mA Buffer — 1.35 — 1.35 — 1.35 — 1.35 ns LVCMOS25_4mA_out tBUF, tEN, tDIS Output configured as 2.5V & 4mA Buffer — 1.50 — 1.50 — 1.50 — 1.50 ns LVCMOS25_5mA_out tBUF, tEN, tDIS Output configured as 2.5V & 5.33mA Buffer — 1.25 — 1.25 — 1.25 — 1.25 ns LVCMOS25_8mA_out tBUF, tEN, tDIS Output configured as 2.5V & 8mA Buffer — 0.70 — 0.70 — 0.70 — 0.70 ns LVCMOS25_12mA_out tBUF, tEN, tDIS Output configured as 2.5V & 12mA Buffer — 0.50 — 0.50 — 0.50 — 0.50 ns LVCMOS25_16mA_out tBUF, tEN, tDIS Output configured as 2.5V & 16mA Buffer — 0.25 — 0.25 — 0.25 — 0.25 ns LVCMOS33_4mA_out tBUF, tEN, tDIS Output configured as 3.3V & 4mA Buffer — 1.50 — 1.50 — 1.50 — 1.50 ns LVCMOS33_5mA_out tBUF, tEN, tDIS Output configured as 3.3V & 5.33mA Buffer — 1.25 — 1.25 — 1.25 — 1.25 ns LVCMOS33_8mA_out tBUF, tEN, tDIS Output configured as 3.3V & 8mA Buffer — 0.40 — 0.40 — 0.40 — 0.40 ns LVCMOS33_12mA_out tBUF, tEN, tDIS Output configured as 3.3V & 12mA Buffer — 0.10 — 0.10 — 0.10 — 0.10 ns LVCMOS33_16mA_out tBUF, tEN, tDIS Output configured as 3.3V & 16mA Buffer — 0.0 — 0.0 — 0.0 — 0.0 ns LVCMOS33_20mA_out tBUF, tEN, tDIS Output configured as 3.3V & 20mA Buffer — 0.0 — 0.0 — 0.0 — 0.0 ns LVTTL tBUF, tEN, tDIS Output configured as LVTTL Buffer — 0.0 — 0.0 — 0.0 — 0.0 ns Slow Slew tBUF, tEN Output configured for slow slew rate — 1.50 — 1.50 — 1.50 — 1.50 ns PCI_out tBUF, tEN, tDIS Using PCI standard — 0.0 — 0.0 — 0.0 — 0.0 ns PCI_X_out tBUF, tEN, tDIS Using PCI-X standard — 0.0 — 0.0 — 0.0 — 0.0 ns AGP_1X_out tBUF, tEN, tDIS Using AGP-1X standard — 0.0 — 0.0 — 0.0 — 0.0 ns SSTL3_I_out tBUF, tEN, tDIS Using SSTL3_I standard — -0.25 — -0.25 — -0.25 — -0.25 ns SSTL3_II_out tBUF, tEN, tDIS Using SSTL3_II standard — -0.35 — -0.35 — -0.35 — -0.35 ns tIOO Output Adders Note: Open drain timing is the same as corresponding LVCMOS timing. 25 Timing v.1.10 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 51024VG Timing Adders (Continued) Adder Type Base Parameter -5 Description -75 -10 -12 Min Max Min Max Min Max Min Max Units SSTL2_I_out tBUF, tEN, tDIS Using SSTL2_I standard — 0.0 — 0.0 — 0.0 — 0.0 ns SSTL2_II_out tBUF, tEN, tDIS Using SSTL2_II standard — -0.25 — -0.25 — -0.25 — -0.25 ns CTT33_out tBUF, tEN, tDIS Using CCT3.3 standard — 0.0 — 0.0 — 0.0 — 0.0 ns CTT25_out tBUF, tEN, tDIS Using CCT2.5 standard — 0.25 — 0.25 — 0.25 — 0.25 ns HSTL_I_out tBUF, tEN, tDIS Using HSTL_I standard — -0.30 — -0.30 — -0.30 — -0.30 ns HSTL_III_out tBUF, tEN, tDIS Using HSTL_III standard — 0.00 — 0.00 — 0.00 — 0.00 ns GTL+_out tBUF, tEN, tDIS Using GTL+ standard — 0.30 — 0.30 — 0.30 — 0.30 ns Note: Open drain timing is the same as corresponding LVCMOS timing. 26 Timing v.1.10 Lattice Semiconductor ispMACH 5000VG Family Data Sheet sysCLOCK PLL Timing Over Recommended Operating Conditions1 Symbol Parameter Conditions Min Max Units tR,tF Input clock, rise and fall time 20% to 80% — 3.0 ns tINSTB Input clock stability, period jitter (peak)1 — — +/- 200 ps tPWH Input clock, high time — 1.6 — ns tPWL Input clock, low time — 1.6 — ns fMDIVIN M Divider input, frequency range — 5 180 MHz fMDIVOUT M Divider output, frequency range — 5 180 MHz fVDIVIN V Divider input, frequency range — 60 200 MHz fVDIVOUT V Divider output, frequency range — 5 180 MHz tOUTDUTY Output clock, duty cycle tJIT(CC) tJIT(φ) Output clock, cycle to cycle jitter (peak) Output clock, accumulated phase jitter (peak) 2 — 40 60 % Clean Reference, 5MHz ≤ fMDIVOUT < 80MHz — +/- 200 ps Clean Reference, 80MHz ≤ fMDIVOUT ≤ 180MHz — +/- 100 ps Clean Reference, 5MHz ≤ fMDIVOUT < 80MHz — +/- 200 ps Clean Reference, 80MHz ≤ fMDIVOUT ≤ 180MHz — +/- 100 ps Internal feedback — 1 ns External feedback — 500 ps — — 30 µs tCLK_OUT_DLY Input clock to CLK_OUT delay tφ Input clock to external feedback delta tLOCK Time to acquire phase lock after input stable tPLL_DELAY Delay increment — +/- 0.35 +/- 0.65 ns tRANGE Total output delay range — +/- 2.45 +/- 4.55 ns tPLL_RSTR Reset recovery time of the M-divider — 11.0 — ns tPLL_RSTW Minimum reset pulse width — 6.0 — ns 1. This condition assures that the output phase jitter (tJIT(φ)) will remain within specification. 2. Accumulated jitter measured over 10,000 waveform samples. Boundary Scan Timing Specifications Min. Max. Units tBTCP Symbol TCK [BSCAN test] clock cycle Parameter 40 — ns tBTCH TCK [BSCAN test] pulse width high 20 — ns tBTCL TCK [BSCAN test] pulse width low 20 — ns tBTSU TCK [BSCAN test] setup time 8 — ns tBTH TCK [BSCAN test] hold time 10 — ns tBRF TCK [BSCAN test] rise and fall time 50 — mV/ns tBTCO TAP controller falling edge of clock to valid output — 10 ns tBTOZ TAP controller falling edge of clock to data output disable — 10 ns tBTVO TAP controller falling edge of clock to data output enable — 10 ns tBVTCPSU BSCAN test Capture register setup time 8 — ns tBTCPH BSCAN test Capture register hold time 10 — ns tBTUCO BSCAN test Update reg, falling edge of clock to valid output — 25 ns tBTUOZ BSCAN test Update reg, falling edge of clock to output disable — 25 ns tBTUOV BSCAN test Update reg, falling edge of clock to output enable — 25 ns 27 Lattice Semiconductor ispMACH 5000VG Family Data Sheet Power Consumption ispMACH 5000VG Typical Power vs. Frequency ispMACH 5000VG ICC Curves at High Power Mode ispMACH 5000VG ICC Curves at Low Power Mode 700 600 700 51024VG High Power Mode 600 500 400 ICC (mA) ICC (mA) 500 5768VG High Power Mode 300 400 300 200 200 100 100 0 0 60 120 150 0 0 180 51024VG Low Power Mode 5768VG Low Power Mode 60 fMAX (MHz) 120 150 180 fMAX (MHz) Note: The devices are configured with maximum number of 16-bit counters, no PLL, typical current at 3.3V, 25° C. Power Estimation Coefficients Device K0 K1 K2 K3 K4 K5 K6 IDC (mA) IDCO (mA) ispMACH 5768VG 0.0014 0.0014 0.054 1.5 0.152 0.105 5.0 65 20 ispMACH 51024VG 0.0014 0.0014 0.054 1.5 0.152 0.105 5.0 80 20 Note: For further information about the use of these coefficients, refer to Technical Note TN1002, Power Estimation in ispMACH 5000VG Devices. K0 = average current per product term in high power/MHz K1 = average current per product term in low power/MHz K2 = average current per GRP line/MHz K3 = average current per PLL/MHz K4 = DC current per product terms in high power K5 = DC current per product terms in low power K6 = Static DC current per PLL IDC = Static device current with all product terms powered off IDCO = Static I/O bank current Icc estimates are based on typical conditions (Vcc = 3.3V, room temperature) and an assumption of one GLB load on average exists. These values are for estimates only. Since the value of Icc is sensitive to operating conditions and the program in the device, the actual Icc should be verified. 28 Lattice Semiconductor ispMACH 5000VG Family Data Sheet Switching Test Conditions Figure 12 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3. Figure 12. Output Test Load, LVTTL and LVCMOS Standards VCCO R1 Test Point DUT R2 CL* *CL includes Test Fixture and Probe Capacitance. 0213A/ispm5kvg Table 3. Test Fixture Required Components R1 R2 CL Default LVCMOS 3.3 I/O (L -> H, H -> L) Test Condition 110 110 35pF Timing Ref. LVCMOS 3.3 = 1.5V LVCMOS 3.3 = 3.0V Other LVCMOS Settings, (L -> H, H -> L) ∞ ∞ 35pF LVCMOS 2.5 = VCCO/2 LVCMOS 2.5 = 2.3V LVCMOS 1.8 = VCCO/2 LVCMOS 1.8 = 1.65V Default LVCMOS 3.3 I/O (Z -> H) ∞ 110 35pF 1.5V 3.0V Default LVCMOS 3.3 I/O (Z -> L) 110 ∞ 35pF 1.5V 3.0V Default LVCMOS 3.3 I/O (H -> Z) ∞ 110 5pF VOH - 0.3 3.0V Default LVCMOS 3.3 I/O (L -> Z) 110 ∞ 5pF VOL + 0.3 3.0V 1.5 VCCO 3.0V Output test conditions for all other interfaces are determined by the respective standards. For further details, please refer to the following technical note: • ispMACH 5000VG sysIO Design and Usage Guidelines (TN1000) 29 Lattice Semiconductor ispMACH 5000VG Family Data Sheet Signal Descriptions Signal Names Description TMS Input - This pin is the Test Mode Select input, which is used to control the 1149.1 state machine. TCK Input - This pin is the Test Clock input pin, used to clock the 1149.1 state machine. TDI Input - This pin is the 1149.1 Test Data In pin, used to load data. TDO Output - This pin is the 1149.1 Test Data Out pin used to shift data out. TOE Input - Test Output Enable pin. TOE tristates all I/O pins when a logic low is driven. GOE0, GOE1 Input - These two pins are the Global Output Enable input pins. RESETB Dedicated Reset Input - This pin resets all registers in the devices. The global polarity (active high or low input) for this pin is selectable. xyzz (e.g. 0A16) Input/Output - These are the general purpose I/O used by the logic array. x is segment reference (numeric), y is GLB reference (alpha) and z is macrocell reference (numeric). x: 0-7 (1024) x: 0-5 (768) y: A-D z: 0-31 GND Ground NC No connect VCC Vcc - These are the power supply pins for the logic core. GCLK0, GCLK3 Input - These pins are configured to be either dedicated CLK input or PLL input. GCLK1, GCLK2 Input - These pins are dedicated CLK input. CLK_OUT0, CLK_OUT1 Output - These pins are the PLL output pins. PLL_RST0, PLL_RST1 Input - These pins are for resetting the PLL, input clock (M) divider. VREF0, VREF1, VREF2, VREF3 Input - These are the reference supplies for the I/O banks. PLL_FBK0, PLL_FBK1 Input - These PLL feedback inputs allow optional external PLL feedback. VCCP0, VCCP1 VCC - These are the VCC supplies for the PLLs. VCCO0, VCCO1, VCCO2, VCC - These are the VCC supplies for each I/O bank. VCCO3 GNDP0, GNDP1 GND - These are the separate ground connections for the PLLs. VCCJ VCC - This pin is for the 1149.1 test access port. Note: For above, signal CLK_OUT0 connects to PLL0, and signal CLK_OUT1 connects to PLL1. 30 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 5768VG Power Supply and NC Connections1 256-Ball fpBGA2 Signal 484-Ball fpBGA2 F8, F9, H6, H11, J6, J11, L8, L9 B17, B2, B21, B6, C14, C9, E18, E5, F2, F21, J20, J3, P20, P3, U2, U21, Y14, Y9, AA17, AA2, AA21, AA6 VCCO0 C3, C7, G3 B5, D7, E2, E6, E9, F5, G4, J5 VCCO1 K3, P3, P7 P5, U5, V6, V9, Y3 VCCO2 K14, P10, P14 P18, U18, V14, V17, Y20 VCCO3 C10, C14, G14 B18, D16, E14, E17, E21, F18, G19, J18 VCCP0 H1 L7 VCCP1 H16 N18 VCCJ J1 P4 VREF0 E7 A9 VREF1 M7 AA10 VREF2 R13 AA13 VREF3 A8 A15 GND PLL 0 H7 L6 GND PLL 1 J10 L16 GND A1, C5, C12, E3, E14, G7, G8, G9, G10, H8, H9, A1, A22, C3, C20, D4, D19, E7, E16, G5, G7, G8, H10, J7, J8, J9, K7, K8, K9, K10, M3, M14, P5, P12 G9, G10, G11, G12, G13, G14, G15, G16, G18, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, J7, J8, J9, J10, J11, J12, J13, J14, J15, J16, K7, K8, K9, K10, K11, K12, K13, K14, K15, K16, L8, L9, L10, L11, L12, L13, L14, L15, M7, M8, M9, M10, M11, M12, M13, M14, M15, M16, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, T4, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T19, W7, W16, AB1, AB22 NC3 — VCC AA1 1. All grounds must be electrically connected at the board level. 2. Not all grounds internally connected within the device. 3. NC pins are not to be connected to any active signals, VCC or GND. 31 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 51024 Power Supply and NC Connections1 484-Ball fpBGA2 Signal 676-Ball fpBGA2 VCC B17, B2, B21, B6, C14, C9, E18, E5, F2, F21, J20, J3, P20, P3, U2, U21, Y14, Y9, AA17, AA2, AA21, AA6 B29, D6, D10, D12, D19, D21, D25, F4, F27, K4, K27, M4, M27, W4, W27, AA4, AA27, AE4, AE27, AG6, AG10, AG12, AG19, AG21,AG25, AJ2 VCCO0 B5, D7, E2, E6, E9, F5, G4, J5 E5, E7, E9, E11, F10, G5, J5, K6, L5 VCCO1 P5, U5, V6, V9, Y3 Y5, AA6, AB5, AD5, AE10, AF5, AF7, AF9, AF11 P18, U18, V14, V17, Y20 Y26, AA25, AB26, AD26, AE21, AF20, AF22, AF24, AF26 VCCO3 B18, D16, E14, E17, E21, F18, G19, J18 E20, E22, E24, E26, F21, G26, J26, K25, L26 VCCP0 L7 P5 VCCP1 N18 N26 VCCJ P4 U6 VREF0 A9 C11 VREF1 AA10 AK10 VREF2 AA13 AJ21 VCCO2 VREF3 A15 E19 GND PLL 0 L6 R6 GND PLL 1 L16 P25 A1, A22, C3, C20, D4, D19, E7, E16, G5, G7, G8, G9, G10, G11, G12, G13, G14, G15, G16, G18, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, J7, J8, J9, J10, J11, J12, J13, J14, J15, J16, K7, K8, K9, K10, K11, K12, K13, K14, K15, K16, L8, L9, L10, L11, L12, L13, L14, L15, M7, M8, M9, M10, M11, M12, M13, M14, M15, M16, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, T4, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T19, W7, W16, AB1, AB22 A1, A30, B2,C3, C28, D8, D23, F7, F9, F11, F12, F19, F20, F22, F24, G6, G25, H4, H27, J6, J25, L6, L11, L12, L13, L14, L15, L16, L17, L18, L19, L20, L25, M6, M11, M12, M13, M14, M15, M16, M17, M18, M19, M20, M25, N11, N12, N13, N14, N15, N16, N17, N18, N19, N20, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, U11, U12, U13, U14,U15, U16, U17, U18, U19, U20, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, W6, W11, W12, W13, W14, W15, W16, W17, W18, W19, W20, W25, Y6, Y11, Y12, Y13, Y14, Y15, Y16, Y17, Y18, Y19, Y20, Y25, AB6, AB25, AC4, AC27, AD6, AD25, AE7, AE9, AE11, AE12, AE19, AE20, AE22, AE24, AG8, AG23, AH3, AH28, AK1, AK30 AA1 A14, A15, A16, A17, B14, B15, B16, B17, C13, C14, C15, C16, C17, C18, D13, D14, D15, D16, D17, D18, E13, E14, E15, E16, E17, E18, F13, F14, F15, F16, F17, F18, AE13, AE14, AE15, AE16, AE17, AE18, AF13, AF14, AF15, AF16, AF17, AF18, AG13, AG14, AG15, AG16, AG17, AG18, AH14, AH15, AH16, AH17, AH18, AJ14, AJ15, AJ16, AJ17, AJ18, AK14, AK15, AK16, AK17 GND NC3 1. All grounds must be electrically connected at the board level. 2. Not all grounds internally connected within the device. 3. NC pins are not to be connected to any active signals, VCC or GND. 32 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 5768VG Logic Signal Connections Bank No. Signal 256 fpBGA 484 fpBGA Bank No. Signal 256 fpBGA 484 fpBGA 0 0C-30 C8 D11 0 0A-14 NC NC 0 0C-28 B6 B11 0 0A-16 NC B4 0 0C-26 A5 E12 0 0A-18 NC D5 0 0C-24 D8 C11 0 0A-20 NC B1 0 0C-22 E8 F12 0 0A-22 NC D6 0 0C-20 B5 B10 0 0A-24 NC C4 0 GNDIO0 GND GND 0 0A-26 NC E4 0 0C-18 A4 A10 0 GNDIO0 GND GND 0 0C-16 D7 D10 0 0A-28 B2 C2 0 0C-14/VREF0 E7 A9 0 0A-30 B1 C1 0 0C-12 C6 E11 0 0B-30 C2 D1 0 0C-10 B4 B9 0 0B-28 C1 D2 0 0C-8 A3 F11 0 0B-26 NC D3 0 0C-6 NC A8 0 0B-24 NC E1 0 0C-4 NC C10 0 0B-22 NC E3 0 0C-2 NC A7 0 0B-20 NC F4 0 0C-0 NC E10 0 0B-18 NC F1 0 0D-30 NC B8 0 0B-16 NC F3 0 0D-28 NC C8 0 0B-14 NC G6 0 GNDIO0 GND GND 0 0B-12 NC G1 0 0D-26 NC F10 0 GNDIO0 GND GND 0 0D-24 NC A6 0 0B-10 NC G2 0 0D-22 NC F9 0 0B-8 NC H1 0 0D-20 NC C7 0 0B-6 NC G3 0 0D-18 NC D9 0 0B-4 NC H2 0 0D-16 NC B7 0 0B-2 NC H5 0 0D-14 D6 E8 0 0B-0 NC H6 0 0D-12 E6 A5 0 1A-0 F7 J1 0 0D-10 A2 F8 0 1A-2 F6 K1 0 0D-8 B3 C6 0 1A-4 E5 H3 0 0D-6 C4 D8 0 1A-6 D4 J2 0 0D-4 D5 A3 0 1A-8 D3 H4 0 GNDIO0 GND GND 0 1A-10 D2 K2 0 0D-2 NC A2 0 GNDIO0 GND GND 0 0D-0 NC A4 0 1A-12 D1 J6 0 0A-0 NC F7 0 1A-14 E4 L1 0 0A-2 NC C5 0 1A-16 NC K3 0 0A-4 NC F6 0 1A-18 NC J4 0 0A-6 NC B3 0 1A-20 NC L2 0 0A-8 NC NC 0 1A-22 NC M1 0 0A-10 NC NC 0 1A-24 NC K6 0 GNDIO0 GND GND 0 1A-26 NC K4 0 0A-12 NC NC 0 1A-28 NC L3 33 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 5768VG Logic Signal Connections (Continued) Bank No. Signal 256 fpBGA 484 fpBGA Bank No. Signal 256 fpBGA 484 fpBGA 0 1A-30 NC K5 1 2A-18 NC U6 0 GNDIO0 GND GND 1 2A-16 R1 AA4 0 1B-30/CLK_OUT0 G6 N1 1 2A-14 NC NC 0 1B-28 NC M2 1 2A-12 NC NC 0 1B-26 NC P1 1 GNDIO1 GND GND 0 1B-24 NC L4 1 2A-10 NC NC 0 1B-22 F5 N2 1 2A-8 NC NC 0 1B-20 E2 M3 1 2A-6 T1 W6 0 1B-18 E1 L5 1 2A-4 T2 V4 0 1B-16 F4 R1 1 2A-2 R2 U7 0 1B-14 F3 P2 1 2A-0 T3 AB2 0 1B-12 F2 N3 1 2D-0 R3 V7 0 GNDIO0 GND GND 1 2D-2 P4 AA5 0 1B-10 G5 M6 1 GNDIO1 GND GND 0 1B-8 G4 M5 1 2D-4 T4 AB3 0 1B-6/PLL_RST0 F1 M4 1 2D-6 N4 Y6 0 1B-4/PLL_FBK0 G2 N4 1 2D-8 M4 AB4 0 1B-2 G1 N6 1 2D-10 N5 Y7 0 1B-0 H5 N5 1 2D-12 R5 AB5 1 2B-0 K1 R5 1 2D-14 T5 V8 1 2B-2 K2 T2 1 2D-16 NC AA7 1 2B-4 L1 T5 1 2D-18 NC Y8 1 2B-6 J5 T3 1 2D-20 NC AB6 1 2B-8 L2 U1 1 2D-22 T6 W8 1 2B-10 K4 U4 1 2D-24 R6 AA8 1 GNDIO1 GND GND 1 2D-26 P6 Y10 1 2B-12 M1 V1 1 GNDIO1 GND GND 1 2B-14 L3 U3 1 2D-28 M5 U8 1 2B-16 L4 V5 1 2D-30 T7 AB7 1 2B-18 K5 V2 1 2C-0 T8 U9 1 2B-20 M2 W1 1 2C-2 R8 AA9 1 2B-22 N1 V3 1 2C-4 M6 W9 1 2B-24 NC W2 1 2C-6 N6 AB8 1 2B-26 K6 Y1 1 2C-8 R7 U10 1 2B-28 L5 Y2 1 2C-10 T9 AB9 1 2B-30 N2 W3 1 2C-12 T10 V11 1 2A-30 L6 AA3 1 2C-14/VREF1 M7 AA10 1 2A-28 L7 W4 1 2C-16 N7 V10 1 GNDIO1 GND GND 1 2C-18 P8 AB10 1 2A-26 P1 W5 1 GNDIO1 GND GND 1 2A-24 P2 Y4 1 2C-20 R9 W10 1 2A-22 N3 T6 1 2C-22 N8 W11 1 2A-20 R4 Y5 1 2C-24 M8 U11 34 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 5768VG Logic Signal Connections (Continued) Bank No. Signal 256 fpBGA 484 fpBGA Bank No. Signal 256 fpBGA 484 fpBGA 1 2C-26 T11 AA11 2 3A-10 NC NC 1 2C-28 T12 V12 2 GNDIO2 GND GND 1 2C-30 R10 AB11 2 3A-12 NC NC 2 3C-30 P9 W12 2 3A-14 NC NC 2 3C-28 R11 Y11 2 3A-16 NC Y18 2 3C-26 T13 Y12 2 3A-18 P15 W18 2 3C-24 N9 AB12 2 3A-20 R16 AA20 2 3C-22 M9 U12 2 3A-22 P16 W19 2 3C-20 R12 AA12 2 3A-24 N14 Y19 2 GNDIO2 GND GND 2 3A-26 N13 V19 2 3C-18 P11 Y13 2 GNDIO2 GND GND 2 3C-16 N10 AB13 2 3A-28 N15 Y21 2 3C-14 M10 W13 2 3A-30 N16 W20 2 3C-12/VREF2 R13 AA13 2 3B-30 M16 AA22 2 3C-10 T14 U13 2 3B-28 M12 W21 2 3C-8 R14 AB14 2 3B-26 NC Y22 2 3C-6 M11 V13 2 3B-24 NC V20 2 3C-4 N11 AA14 2 3B-22 M13 V21 2 3C-2 P13 U14 2 3B-20 M15 W22 2 3C-0 T15 AB15 2 3B-18 L16 V18 2 3D-30 T16 Y15 2 3B-16 L15 U20 2 3D-28 N12 AB16 2 3B-14 L13 V22 2 GNDIO2 GND GND 2 3B-12 L14 U19 2 3D-26 NC AA15 2 GNDIO2 GND GND 2 3D-24 NC W14 2 3B-10 L12 U17 2 3D-22 NC AB17 2 3B-8 K13 U22 2 3D-20 NC Y16 2 3B-6 K15 T20 2 3D-18 NC AA16 2 3B-4 K16 T21 2 3D-16 NC Y17 2 3B-2 J16 T17 2 3D-14 NC AB18 2 3B-0 K12 R20 2 3D-12 NC V15 3 4B-0 J12 R21 2 3D-10 NC AB19 3 4B-2 G16 T22 2 3D-8 NC W15 3 4B-4/PLL_FBK1 G15 P21 2 3D-6 NC AB20 3 4B-6/PLL_RST1 H12 N20 2 3D-4 NC AA18 3 4B-8 G12 R22 2 GNDIO2 GND GND 3 4B-10 G13 N21 2 3D-2 L10 U15 3 GNDIO3 GND GND 2 3D-0 L11 W17 3 4B-12 F16 M18 2 3A-0 K11 U16 3 4B-14 F15 N19 2 3A-2 R15 AA19 3 4B-16 F13 P22 2 3A-4 NC V16 3 4B-18 F14 M20 2 3A-6 NC AB21 3 4B-20 F12 N22 2 3A-8 NC NC 3 4B-22 E16 N17 35 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 5768VG Logic Signal Connections (Continued) Bank No. Signal 256 fpBGA 484 fpBGA Bank No. Signal 256 fpBGA 484 fpBGA 3 4B-24 G11 M19 3 5A-24 C15 C22 3 4B-26 F11 M21 3 5A-22 D14 C18 3 4B-28 F10 L19 3 5A-20 A14 C19 3 4B-30/CLK_OUT1 B11 L20 3 5A-18 C13 D17 3 GNDIO3 GND GND 3 5A-16 B13 C21 3 4A-30 NC M17 3 5A-14 NC NC 3 4A-28 NC M22 3 5A-12 NC NC 3 4A-26 NC K20 3 GNDIO3 GND GND 3 4A-24 NC L18 3 5A-10 NC NC 3 4A-22 NC L21 3 5A-8 NC NC 3 4A-20 NC K19 3 5A-6 NC B22 3 4A-18 NC L22 3 5A-4 NC D18 3 4A-16 NC K17 3 5A-2 NC B20 3 4A-14 E13 K22 3 5A-0 NC F17 3 4A-12 B12 L17 3 5D-0 NC B19 3 GNDIO3 GND GND 3 5D-2 NC C17 3 4A-10 E15 K21 3 GNDIO3 GND GND 3 4A-8 D15 K18 3 5D-4 NC A21 3 4A-6 NC J17 3 5D-6 NC D15 3 4A-4 NC J19 3 5D-8 NC A20 3 4A-2 D16 J22 3 5D-10 NC C16 3 4A-0 E12 J21 3 5D-12 NC A19 3 5B-0 NC H19 3 5D-14 NC F16 3 5B-2 NC H20 3 5D-16 NC B16 3 5B-4 NC H17 3 5D-18 NC D14 3 5B-6 NC H18 3 5D-20 NC A18 3 5B-8 NC H22 3 5D-22 A13 F15 3 5B-10 NC H21 3 5D-24 A12 A17 3 GNDIO3 GND GND 3 5D-26 A11 B15 3 5B-12 NC G20 3 GNDIO3 GND GND 3 5B-14 NC G22 3 5D-28 A10 A16 3 5B-16 NC G17 3 5D-30 C11 F14 3 5B-18 NC G21 3 5C-0 A9 C15 3 5B-20 NC F19 3 5C-2 D12 D13 3 5B-22 NC F20 3 5C-4 D11 E15 3 5B-24 A16 F22 3 5C-6 B10 F13 3 5B-26 B15 E22 3 5C-8 B9 B14 3 5B-28 A15 E19 3 5C-10 E11 E13 3 5B-30 D13 E20 3 5C-12/VREF3 A8 A15 3 5A-30 B14 D22 3 5C-14 D10 D12 3 5A-28 B16 D21 3 5C-16 E10 A14 3 GNDIO3 GND GND 3 5C-18 A7 B13 3 5A-26 C16 D20 3 GNDIO3 GND GND 36 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 5768VG Logic Signal Connections (Continued) Bank No. Signal 256 fpBGA 484 fpBGA 3 5C-20 C9 A13 3 5C-22 E9 B12 3 5C-24 D9 C13 3 5C-26 B8 A12 3 5C-28 A6 C12 3 5C-30 B7 A11 — GCLK0 H4 P6 — GCLK1 J4 R6 — GCLK2 H14 P17 — GCLK3 H13 P19 — GOE0 J15 R18 — GOE1 H15 R17 — RESETB J14 R19 — TCK J3 R3 — TDI H3 R2 — TDO J2 R4 — TMS H2 T1 — TOE J13 T18 37 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 51024VG Logic Signal Connections Bank No. Signal 484 fpBGA 676 fpBGA Bank No. Signal 484 fpBGA 676 fpBGA 0 0C-30 D11 A13 0 0A-14 NC D5 0 0C-28 B11 B13 0 0A-16 B4 E6 0 0C-26 E12 A12 0 0A-18 D5 D4 0 0C-24 C11 B12 0 0A-20 B1 B1 0 0C-22 F12 C12 0 0A-22 D6 C2 0 0C-20 B10 A11 0 0A-24 C4 F6 0 GNDIO0 GND GND 0 0A-26 E4 D3 0 0C-18 A10 B11 0 GNDIO0 GND GND 0 0C-16 D10 A10 0 0A-28 C2 E4 0 0C-14/VREF0 A9 C11 0 0A-30 C1 F5 0 0C-12 E11 E12 0 0B-30 D1 C1 0 0C-10 B9 B10 0 0B-28 D2 D2 0 0C-8 F11 D11 0 0B-26 D3 E3 0 0C-6 A8 A9 0 0B-24 E1 D1 0 0C-4 C10 C10 0 0B-22 E3 E2 0 0C-2 A7 B9 0 0B-20 F4 H6 0 0C-0 E10 A8 0 0B-18 F1 F3 0 0D-30 B8 C9 0 0B-16 F3 E1 0 0D-28 C8 B8 0 0B-14 G6 G4 0 GNDIO0 GND GND 0 0B-12 G1 F2 0 0D-26 F10 E10 0 GNDIO0 GND GND 0 0D-24 A6 A7 0 0B-10 G2 H5 0 0D-22 F9 D9 0 0B-8 H1 G3 0 0D-20 C7 C8 0 0B-6 G3 F1 0 0D-18 D9 B7 0 0B-4 H2 G2 0 0D-16 B7 A6 0 0B-2 H5 H3 0 0D-14 E8 C7 0 0B-0 H6 G1 0 0D-12 A5 B6 0 1A-0 J1 H2 0 0D-10 F8 A5 0 1A-2 K1 J4 0 0D-8 C6 C6 0 1A-4 H3 H1 0 0D-6 D8 D7 0 1A-6 J2 J3 0 0D-4 A3 E8 0 1A-8 H4 K5 0 GNDIO0 GND GND 0 1A-10 K2 J2 0 0D-2 A2 B5 0 GNDIO0 GND GND 0 0D-0 A4 A4 0 1A-12 J6 J1 0 0A-0 F7 A3 0 1A-14 L1 K3 0 0A-2 C5 B4 0 1A-16 K3 K2 0 0A-4 F6 C5 0 1A-18 J4 K1 0 0A-6 B3 F8 0 1A-20 L2 L4 0 0A-8 NC A2 0 1A-22 M1 L3 0 0A-10 NC B3 0 1A-24 K6 L2 0 GNDIO0 GND GND 0 1A-26 K4 M5 0 0A-12 NC C4 0 1A-28 L3 L1 38 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 51024VG Logic Signal Connections (Continued) Bank No. Signal 484 fpBGA 676 fpBGA Bank No. Signal 484 fpBGA 676 fpBGA 0 1A-30 K5 M3 1 2A-18 NC AA2 0 GNDIO0 GND GND 1 2A-16 NC AA3 0 1B-30/CLK_OUT0 N1 M2 1 2A-14 NC AB1 0 1B-28 M2 M1 1 2A-12 NC AB2 0 1B-26 P1 N6 1 GNDIO1 GND GND 0 1B-24 L4 N5 1 2A-10 NC AA5 0 1B-22 N2 N4 1 2A-8 NC AB3 0 1B-20 M3 N3 1 2A-6 NC AC1 0 1B-18 L5 N2 1 2A-4 NC AB4 0 1B-16 R1 N1 1 2A-2 NC AC2 0 1B-14 P2 P6 1 2A-0 NC AD1 0 1B-12 N3 P4 1 3B-0 R5 AC3 0 GNDIO0 GND GND 1 3B-2 T2 AD2 0 1B-10 M6 P3 1 3B-4 T5 AE1 0 1B-8 M5 P2 1 3B-6 T3 AD3 0 1B-6/PLL_RST0 M4 P1 1 3B-8 U1 AE2 0 1B-4/PLL_FBK0 N4 R4 1 3B-10 U4 AC5 0 1B-2 N6 R3 1 GNDIO1 GND GND 0 1B-0 N5 R2 1 3B-12 V1 AF1 1 2B-0 NC R1 1 3B-14 U3 AD4 1 2B-2 NC T1 1 3B-16 V5 AE3 1 2B-4 NC T3 1 3B-18 V2 AC6 1 2B-6 NC T2 1 3B-20 W1 AF2 1 2B-8 NC U1 1 3B-22 V3 AG1 1 2B-10 NC U2 1 3B-24 W2 AF3 1 GNDIO1 GND GND 1 3B-26 Y1 AG2 1 2B-12 NC U3 1 3B-28 Y2 AH1 1 2B-14 NC U4 1 3B-30 W3 AE5 1 2B-16 NC V1 1 3A-30 AA3 AF4 1 2B-18 NC V2 1 3A-28 W4 AG3 1 2B-20 NC V3 1 GNDIO1 GND GND 1 2B-22 NC V4 1 3A-26 W5 AE6 1 2B-24 NC W1 1 3A-24 Y4 AH2 1 2B-26 NC V6 1 3A-22 T6 AJ1 1 2B-28 NC W2 1 3A-20 Y5 AG4 1 2B-30 NC W3 1 3A-18 U6 AF6 1 GNDIO1 GND GND 1 3A-16 AA4 AG5 1 2A-30 NC Y1 1 3A-14 NC AH4 1 2A-28 NC W5 1 3A-12 NC AJ3 1 2A-26 NC Y2 1 GNDIO1 GND GND 1 2A-24 NC Y3 1 3A-10 NC AK2 1 2A-22 NC AA1 1 3A-8 NC AE8 1 2A-20 NC Y4 1 3A-6 W6 AH5 39 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 51024VG Logic Signal Connections (Continued) Bank No. Signal 1 3A-4 1 3A-2 1 3A-0 1 3D-0 484 fpBGA 676 fpBGA Bank No. Signal 484 fpBGA 676 fpBGA V4 AJ4 U7 AK3 2 4C-20 AA12 AJ20 2 GNDIO2 GND GND AB2 V7 AK4 2 4C-18 Y13 AK21 AJ5 2 4C-16 AB13 AH20 1 3D-2 AA5 AH6 2 4C-14 W13 AF19 1 GNDIO1 GND GND 2 4C-12/VREF2 AA13 AJ21 1 3D-4 AB3 AF8 2 4C-10 U13 AG20 1 3D-6 Y6 AG7 2 4C-8 AB14 AK22 1 3D-8 AB4 AK5 2 4C-6 V13 AH21 1 3D-10 Y7 AJ6 2 4C-4 AA14 AJ22 1 3D-12 AB5 AH7 2 4C-2 U14 AK23 1 3D-14 V8 AK6 2 4C-0 AB15 AH22 1 3D-16 AA7 AJ7 2 4D-30 Y15 AJ23 1 3D-18 Y8 AH8 2 4D-28 AB16 AK24 1 3D-20 AB6 AG9 2 GNDIO2 GND GND 1 3D-22 W8 AK7 2 4D-26 AA15 AF21 1 3D-24 AA8 AF10 2 4D-24 W14 AG22 1 3D-26 Y10 AJ8 2 4D-22 AB17 AH23 1 GNDIO1 GND GND 2 4D-20 Y16 AJ24 1 3D-28 U8 AH9 2 4D-18 AA16 AK25 1 3D-30 AB7 AK8 2 4D-16 Y17 AH24 1 3C-0 U9 AJ9 2 4D-14 AB18 AJ25 1 3C-2 AA9 AH10 2 4D-12 V15 AK26 1 3C-4 W9 AK9 2 4D-10 AB19 AJ26 1 3C-6 AB8 AG11 2 4D-8 W15 AH25 1 3C-8 U10 AJ10 2 4D-6 AB20 AG24 1 3C-10 AB9 AF12 2 4D-4 AA18 AF23 1 3C-12 V11 AH11 2 GNDIO2 GND GND 1 3C-14/VREF1 AA10 AK10 2 4D-2 U15 AK27 1 3C-16 V10 AJ11 2 4D-0 W17 AK28 1 3C-18 AB10 AK11 2 4A-0 U16 AJ27 1 GNDIO1 GND GND 2 4A-2 AA19 AH26 1 3C-20 W10 AH12 2 4A-4 V16 AE23 1 3C-22 W11 AJ12 2 4A-6 AB21 AK29 1 3C-24 U11 AK12 2 4A-8 NC AJ28 1 3C-26 AA11 AH13 2 4A-10 NC AH27 1 3C-28 V12 AJ13 2 GNDIO2 GND GND 1 3C-30 AB11 AK13 2 4A-12 NC AG26 2 4C-30 W12 AK18 2 4A-14 NC AF25 2 4C-28 Y11 AK19 2 4A-16 Y18 AJ29 2 4C-26 Y12 AJ19 2 4A-18 W18 AG27 2 4C-24 AB12 AH19 2 4A-20 AA20 AJ30 2 4C-22 U12 AK20 2 4A-22 W19 AH29 40 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 51024VG Logic Signal Connections (Continued) Bank No. Signal 484 fpBGA 676 fpBGA Bank No. Signal 484 fpBGA 676 fpBGA 2 4A-24 Y19 AE25 2 5B-24 NC V26 2 4A-26 V19 AG28 2 5B-22 NC V27 2 GNDIO2 GND GND 2 5B-20 NC V28 2 4A-28 Y21 AF27 2 5B-18 NC V29 2 4A-30 W20 AE26 2 5B-16 NC V30 2 4B-30 AA22 AH30 2 5B-14 NC U25 2 4B-28 W21 AG29 2 5B-12 NC U27 2 4B-26 Y22 AF28 2 GNDIO2 GND GND 2 4B-24 V20 AG30 2 5B-10 NC U28 2 4B-22 V21 AF29 2 5B-8 NC U29 2 4B-20 W22 AC25 2 5B-6 NC U30 2 4B-18 V18 AE28 2 5B-4 NC T27 2 4B-16 U20 AF30 2 5B-2 NC T28 2 4B-14 V22 AD27 2 5B-0 NC T29 2 4B-12 U19 AE29 3 6B-0 R21 T30 2 GNDIO2 GND GND 3 6B-2 T22 R29 2 4B-10 U17 AC26 3 6B4/PLL_FBK1 P21 R27 2 4B-8 U22 AD28 3 6B6/PLL_RST1 N20 R28 2 4B-6 T20 AE30 3 6B-8 R22 R30 2 4B-4 T21 AD29 3 6B-10 N21 P30 2 4B-2 T17 AC28 3 GNDIO3 GND GND 2 4B-0 R20 AD30 3 6B-12 M18 P29 2 5A-0 NC AC29 3 6B-14 N19 P28 2 5A-2 NC AB27 3 6B-16 P22 P27 2 5A-4 NC AC30 3 6B-18 M20 N30 2 5A-6 NC AB28 3 6B-20 N22 N29 2 5A-8 NC AA26 3 6B-22 N17 N28 2 5A-10 NC AB29 3 6B-24 M19 N27 2 GNDIO2 GND GND 3 6B-26 M21 N25 2 5A-12 NC AB30 3 6B-28 L19 M30 2 5A-14 NC AA28 3 6B-30/CLK_OUT1 L20 M29 2 5A-16 NC AA29 3 GNDIO3 GND GND 2 5A-18 NC AA30 3 6A-30 M17 M28 2 5A-20 NC Y27 3 6A-28 M22 L30 2 5A-22 NC Y28 3 6A-26 K20 M26 2 5A-24 NC Y29 3 6A-24 L18 L29 2 5A-26 NC W26 3 6A-22 L21 L28 2 5A-28 NC Y30 3 6A-20 K19 L27 2 5A-30 NC W28 3 6A-18 L22 K30 2 GNDIO2 GND GND 3 6A-16 K17 K29 2 5B-30 NC W29 3 6A-14 K22 K28 2 5B-28 NC W30 3 6A-12 L17 J30 2 5B-26 NC V25 3 GNDIO3 GND GND 41 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 51024VG Logic Signal Connections (Continued) Bank No. Signal 484 fpBGA 676 fpBGA Bank No. Signal 484 fpBGA 676 fpBGA 3 6A-10 K21 J29 3 GNDIO3 GND GND 3 6A-8 K18 K26 3 7D-4 A21 E23 3 6A-6 J17 J28 3 7D-6 D15 D24 3 6A-4 J19 H30 3 7D-8 A20 C25 3 6A-2 J22 J27 3 7D-10 C16 A26 3 6A-0 J21 H29 3 7D-12 A19 B25 3 7B-0 H19 G30 3 7D-14 F16 C24 3 7B-2 H20 H28 3 7D-16 B16 A25 3 7B-4 H17 G29 3 7D-18 D14 B24 3 7B-6 H18 F30 3 7D-20 A18 C23 3 7B-8 H22 G28 3 7D-22 F15 D22 3 7B-10 H21 H26 3 7D-24 A17 A24 3 GNDIO3 GND GND 3 7D-26 B15 E21 3 7B-12 G20 F29 3 GNDIO3 GND GND 3 7B-14 G22 G27 3 7D-28 A16 B23 3 7B-16 G17 E30 3 7D-30 F14 C22 3 7B-18 G21 F28 3 7C-0 C15 A23 3 7B-20 F19 H25 3 7C-2 D13 B22 3 7B-22 F20 E29 3 7C-4 E15 C21 3 7B-24 F22 D30 3 7C-6 F13 A22 3 7B-26 E22 E28 3 7C-8 B14 D20 3 7B-28 E19 D29 3 7C-10 E13 B21 3 7B-30 E20 C30 3 7C-12/VREF3 A15 E19 3 7A-30 D22 F26 3 7C-14 D12 C20 3 7A-28 D21 E27 3 7C-16 A14 A21 3 GNDIO3 GND GND 3 7C-18 B13 B20 3 7A-26 D20 D28 3 GNDIO3 GND GND 3 7A-24 C22 F25 3 7C-20 A13 A20 3 7A-22 C18 C29 3 7C-22 B12 C19 3 7A-20 C19 B30 3 7C-24 C13 B19 3 7A-18 D17 D27 3 7C-26 A12 A19 3 7A-16 C21 E25 3 7C-28 C12 B18 3 7A-14 NC D26 3 7C-30 A11 A18 3 7A-12 NC C27 — GCLK0 P6 R5 3 GNDIO3 GND GND — GCLK1 R6 T6 3 7A-10 NC B28 — GCLK2 P17 R25 3 7A-8 NC A29 — GCLK3 P19 P26 3 7A-6 B22 F23 — GOE0 R18 T26 3 7A-4 D18 C26 — GOE1 R17 R26 3 7A-2 B20 B27 — RESETB R19 T25 3 7A-0 F17 A28 — TCK R3 U5 3 7D-0 B19 A27 — TDI R2 T5 3 7D-2 C17 B26 — TDO R4 V5 42 Lattice Semiconductor ispMACH 5000VG Family Data Sheet ispMACH 51024VG Logic Signal Connections (Continued) Bank No. Signal 484 fpBGA 676 fpBGA — TMS T1 T4 — TOE T18 U26 43 Lattice Semiconductor ispMACH 5000VG Family Data Sheet Signal Configuration ispMACH 5768VG 256-ball fpBGA 16 15 14 13 12 11 10 A I/O I/O I/O I/O I/O I/O I/O B I/O I/O I/O I/O I/O C I/O I/O VCCO3 I/O GND D I/O I/O I/O I/O E I/O I/O GND F I/O I/O G I/O I/O/ PLL_FBK1 6 5 4 3 2 I/O/ I/O VREF3 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O B I/O VCCO3 I/O I/O VCCO0 I/O GND I/O VCCO0 I/O I/O C I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O D I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O E I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO3 I/O I/O I/O I/O I/O VCCO0 H VCCP1 GOE1 GCLK2 GCLK3 I/O/ PLL_RST1 I/O/ CLK_OUT1 9 8 VCC VCC I/O I/O/ CLK_OUT0 I/O/ PLL_FBK0 1 GND A I/O/ F PLL_RST0 I/O G VCC GND GND GND GNDP0 VCC I/O GCLK0 TDI VCC GNDP1 GND GND GND VCC I/O GCLK1 TCK TDO VCCJ J I/O GOE0 RESETB TOE I/O K I/O I/O VCCO2 I/O I/O I/O L I/O I/O I/O I/O I/O I/O I/O M I/O I/O GND I/O I/O I/O I/O I/O I/O N I/O I/O I/O I/O I/O I/O I/O I/O P I/O I/O VCCO2 I/O GND I/O VCCO2 R I/O I/O I/O I/O I/O T I/O I/O I/O I/O I/O 16 15 14 13 12 I/O/ I/O/ VREF0 GND GND GND GND J VREF2 7 GND GND GND GND TMS VCCP0 H I/O I/O I/O VCCO1 I/O I/O K I/O I/O I/O I/O I/O I/O L VREF1 I/O I/O I/O GND I/O I/O M I/O I/O I/O I/O I/O I/O I/O I/O N I/O I/O VCCO1 I/O GND I/O VCCO1 I/O I/O P I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O R I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O T 11 10 9 8 7 6 5 4 3 2 1 VCC VCC I/O I/O/ ispMACH 5768VG Bottom View Note: Ball A1 indicator dot on top side of package. 44 256fpBGA/5768VG Lattice Semiconductor ispMACH 5000VG Family Data Sheet Signal Configuration ispMACH 5768VG and 51024VG 484-ball fpBGA 22 21 20 19 18 17 16 15 I/O I/O / 14 13 12 11 10 9 8 7 6 5 4 3 2 1 I/O/ I/O I/O I/O I/O I/O I/O I/O GND A I/O I/O VCC I/O B A GND I/O I/O I/O B I/O VCC I/O I/O VCCO3 VCC I/O C I/O I/O GND I/O I/O I/O I/O D I/O I/O I/O GND I/O I/O VCCO3 I/O E I/O VCCO3 I/O I/O F I/O VCC I/O I/O VCCO3 I/O G I/O I/O I/O VCCO3 GND I/O GND GND GND GND GND GND GND GND GND GND I/O H I/O I/O I/O I/O GND GND GND GND GND GND GND GND GND GND I/O J I/O I/O VCC I/O VCCO3 I/O GND GND GND GND GND GND GND GND GND GND I/O VCCO0 I/O K I/O I/O I/O I/O I/O I/O GND GND GND GND GND GND GND GND GND GND I/O I/O L I/O I/O I/O/ I/O I/O I/O GNDP1 GND GND GND GND GND GND GND GND VCCP0 GNDP0 I/O M I/O I/O I/O I/O I/O GND GND GND GND GND GND GND GND GND GND N I/O I/O I/O GND GND GND GND GND GND GND GND GND GND P I/O R I/O I/O I/O T I/O I/O I/O U I/O VCC I/O I/O VCCO2 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O V I/O I/O I/O I/O I/O VCCO2 I/O I/O VCCO2 I/O I/O I/O I/O VCCO1 I/O W I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O I/O I/O Y I/O I/O VCCO2 I/O I/O I/O I/O I/O VCC I/O I/O I/O I/O VCC AA I/O I/O I/O I/O VCC I/O I/O I/O I/O/ VREF2 I/O I/O I/O/ VREF1 AB GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O 22 20 19 18 17 16 15 14 13 12 11 I/O I/O I/O VCC VCCO3 GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCC I/O I/O I/O I/O VCC I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO3 I/O I/O I/O I/O VCCO0 I/O I/O I/O I/O I/O I/O VREF3 I/O VREF0 I/O VCC VCCO0 I/O I/O I/O GND I/O I/O C I/O VCCO0 I/O I/O GND I/O I/O I/O D I/O VCCO0 I/O E I/O I/O GND VCCO0 VCC I/O I/O VCC I/O F I/O I/O G I/O I/O I/O H VCC I/O I/O J I/O I/O I/O I/O K I/O I/O I/O I/O L I/O I/O I/O M I/O I/O I/O/ N I/O VCCO0 I/O GND VCCO0 I/O I/O I/O CLK_OUT1 I/O I/O/ PLL_RST1 I/O/ VCC I/O VCCP1 GCLK3 VCCO2 GCLK2 I/O I/O I/O I/O I/O/ PLL_RST0 I/O/ PLL_FBK0 CLK_OUT0 I/O I/O P TDO TCK TDI I/O R GND GND GND GND GND GND GND GND GND GND GCLK0 VCCO1 VCCJ VCC PLL_FBK1 VCC 21 RESETB GOE0 GOE1 GND GND GND GND GND GND GND GND GND GND GCLK1 I/O GND TOE I/O I/O GND I/O I/O TMS T I/O VCCO1 I/O I/O VCC I/O U I/O VCCO1 I/O I/O I/O I/O I/O V GND I/O I/O I/O I/O I/O I/O W I/O I/O I/O I/O I/O VCCO1 I/O I/O Y I/O I/O I/O VCC I/O I/O I/O VCC NC1 AA I/O I/O I/O I/O I/O I/O I/O I/O I/O GND AB 10 9 8 7 6 5 4 3 2 GND GND GND GND GND GND GND GND GND GND I/O I/O ispMACH 5768VG and 51024VG Bottom View 1. NCs are not to be connected to any active signals, VCC or GND. Note: Ball A1 indicator dot on top side of package. 45 1 484BGA/51024VG Lattice Semiconductor ispMACH 5000VG Family Data Sheet Signal Configuration ispMACH 51024VG 676-ball fpBGA 30 A B C D 29 28 27 26 25 24 23 22 21 20 19 18 GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCC I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O 13 12 11 10 9 8 7 6 5 4 3 I/O NC1 NC1 NC1 NC1 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O NC1 NC1 NC1 NC1 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O NC1 NC1 NC1 NC1 NC1 NC1 I/O I/O/ VREF0 I/O I/O I/O I/O I/O I/O I/O GND I/O I/O C VCC NC1 NC1 NC1 NC1 NC1 NC1 I/O I/O I/O I/O D I/O/ VCCO3 VREF3 NC1 NC1 NC1 NC1 NC1 NC1 I/O I/O I/O I/O E I/O VCC I/O I/O I/O F I/O I/O I/O I/O G I/O GND I/O I/O I/O H I/O I/O I/O I/O J I/O VCC I/O I/O I/O K I/O I/O I/O I/O L GND I/O VCC I/O I/O/ CLK_OUT0 I/O M I/O N I/O/ PLL_RST0 P I/O I/O VCC I/O GND I/O VCC I/O E I/O I/O I/O F I/O I/O I/O VCC I/O G I/O I/O I/O H I/O I/O I/O GND I/O J I/O I/O I/O K I/O I/O L I/O I/O M I/O I/O/ CLK_OUT1 N I/O P I/O I/O VCCO3 I/O VCCO3 I/O VCCO3 I/O GND I/O GND I/O VCCO3 17 16 15 14 VCC I/O I/O VCCO0 GND GND NC1 NC1 NC1 NC1 NC1 NC1 GND GND VCC I/O GND I/O VCC I/O I/O VCCO0 VCCO0 I/O VCCO0 I/O GND I/O GND I/O GND GND I/O I/O GND GND I/O VCC I/O VCCO3 VCCO0 I/O GND I/O I/O VCCO3 VCCO3 VCCO3 GND GND GND GND GND GND GND GND GND GND GND VCCO0 VCCO0 VCCO0 VCCO0 2 1 I/O GND A B I/O VCC I/O GND GND GND GND GND GND GND GND GND GND GND I/O I/O I/O VCCP1 GND GND GND GND GND GND GND GND GND GND I/O I/O I/O I/O I/O I/O I/O I/O I/O GCLK3 GNDP1 GND GND GND GND GND GND GND GND GND GND I/O VCCP0 I/O I/O I/O R I/O I/O I/O/ I/O/ GOE1 GCLK2 GND GND GND GND GND GND GND GND GND GND GNDP0 GCLK0 I/O/ I/O I/O I/O R T I/O I/O I/O I/O GOE0 RESETB GND GND GND GND GND GND GND GND GND GND GCLK1 I/O I/O I/O T U I/O I/O I/O I/O GND GND GND GND GND GND GND GND GND GND VCCJ TCK I/O I/O I/O I/O U V I/O I/O I/O I/O I/O TDO I/O I/O I/O I/O V W I/O I/O I/O VCC I/O GND GND GND GND GND GND GND GND GND GND GND GND I/O VCC I/O I/O I/O W Y I/O I/O I/O GND GND GND GND GND GND GND GND GND GND GND I/O I/O I/O Y AA I/O I/O I/O VCC I/O VCCO2 I/O VCC I/O I/O I/O AA AB I/O I/O I/O GND ispMACH 51024VG GND I/O I/O I/O AB AC I/O I/O I/O GND I/O I/O Bottom View I/O I/O GND I/O I/O I/O AC AD I/O I/O I/O I/O I/O I/O I/O AD AE I/O I/O I/O VCC I/O I/O GND I/O GND I/O VCC I/O I/O I/O AE AF I/O I/O I/O I/O VCCO2 I/O I/O I/O I/O I/O AF AG I/O I/O I/O I/O I/O I/O I/O I/O I/O AG I/O AH AJ AH AJ I/O I/O PLL_RST1 PLL_FBK1 I/O I/O I/O I/O GND I/O I/O I/O I/O I/O TOE I/O I/O VCCO2 VCCO2 VCCO2 I/O I/O GND GND GND GND GND GND GND GND GND GND I/O GND VCCO1 GND GND VCCO2 VCC I/O I/O I/O I/O I/O I/O VCCO2 GND I/O I/O I/O VCCO2 I/O GND GND NC1 NC1 NC1 NC1 NC1 NC1 GND GND VCCO1 NC1 NC1 NC1 NC1 NC1 NC1 I/O VCCO2 I/O VCCO1 VCC I/O VCC NC1 NC1 NC1 NC1 NC1 NC1 VCC I/O VCC I/O I/O I/O I/O/ VREF2 I/O I/O I/O I/O I/O VCCO1 VCCO1 TDI TMS VCCO1 VCCO1 VCCO1 VCCO1 I/O GND I/O VCC I/O I/O I/O I/O NC1 NC1 NC1 NC1 NC1 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O NC1 NC1 NC1 NC1 NC1 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCC I/O I/O I/O I/O/ VREF1 I/O I/O I/O I/O I/O I/O I/O 12 11 10 9 8 7 6 5 4 AK GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O 30 28 27 26 25 24 23 22 21 20 19 18 29 I/O GND I/O GND PLL_FBK0 NC1 NC1 NC1 NC1 I/O 17 16 15 14 13 3 I/O GND AK 2 1 676BGA/51024VG 1. NCs are not to be connected to any active signals, VCC or GND. Note: Ball A1 indicator dot on top side of package. 46 Lattice Semiconductor ispMACH 5000VG Family Data Sheet Part Number Description LC XXXXXVG – XX FXXX X XX Device Family Device Status Blank = Final production ES = Engineering Samples Device Number 5768 = 768 Macrocells 51024 = 1,024 Macrocells Grade C = Commercial I = Industrial Speed 5 = 5.0ns 75 = 7.5ns 10 = 10ns 12 = 12ns* Package F256 = 256-Ball fpBGA F484 = 484-Ball fpBGA F676 = 676-Ball fpBGA *Industrial grade only. 0212/ispm5vg Ordering Information Commercial Part Number Package Pin Count Macrocells Tpd Voltage LC51024VG-5F484C fpBGA 484 1024 5 3.3 LC51024VG-75F484C fpBGA 484 1024 7.5 3.3 LC51024VG-10F484C fpBGA 484 1024 10 3.3 LC51024VG-5F676C fpBGA 676 1024 5 3.3 LC51024VG-75F676C fpBGA 676 1024 7.5 3.3 LC51024VG-10F676C fpBGA 676 1024 10 3.3 LC5768VG-5F256C fpBGA 256 768 5 3.3 LC5768VG-75F256C fpBGA 256 768 7.5 3.3 LC5768VG-10F256C fpBGA 256 768 10 3.3 LC5768VG-5F484C fpBGA 484 768 5 3.3 LC5768VG-75F484C fpBGA 484 768 7.5 3.3 LC5768VG-10F484C fpBGA 484 768 10 3.3 Note: the ispMACH 5000VG family is dual-marked with both Commercial and Industrial grades. The Commercial speed grade is one speed grade faster (i.e. LC51024VG-75F484C) than the Industrial speed grade (i.e. LC51024VG-10F484I). 47 Lattice Semiconductor ispMACH 5000VG Family Data Sheet Industrial Package Pin Count Macrocells Tpd Voltage LC51024VG-75F484I Part Number fpBGA 484 1024 7.5 3.3 LC51024VG-10F484I fpBGA 484 1024 10 3.3 LC51024VG-12F484I fpBGA 484 1024 12 3.3 LC51024VG-75F676I fpBGA 676 1024 7.5 3.3 LC51024VG-10F676I fpBGA 676 1024 10 3.3 LC51024VG-12F676I fpBGA 676 1024 12 3.3 LC5768VG-75F256I fpBGA 256 768 7.5 3.3 LC5768VG-10F256I fpBGA 256 768 10 3.3 LC5768VG-12F256I fpBGA 256 768 12 3.3 LC5768VG-75F484I fpBGA 484 768 7.5 3.3 LC5768VG-10F484I fpBGA 484 768 10 3.3 LC5768VG-12F484I fpBGA 484 768 12 3.3 Note: the ispMACH 5000VG family is dual-marked with both Commercial and Industrial grades. The Commercial speed grade is one speed grade faster (i.e. LC51024VG-75F484C) than the Industrial speed grade (i.e. LC51024VG-10F484I). For Further Information In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH 5000VG family: • • • • ispMACH 5000VG sysIO Design and Usage Guidelines (TN1000) ispMACH 5000VG Timing Model Design and Usage Guidelines (TN1001) Power Estimation in ispMACH 5000VG Devices (TN1002) ispMACH 5000VG PLL Usage Guidelines (TN1003) 48