Fast IGBT based on TRENCHSTOPTM5 technology for industrial applications IFAT IPC APS AE Forrest Zheng Giulia Seri Davide Chiola Authors: [email protected] 1 Introduction .................................................................................................................................................. 4 2 Description of Technology and Product Family....................................................................................... 4 2.1 TM TRENCHSTOP 5 Static and Dynamic Characterization ................................................................. 5 3 Industrial Application – Solar Inverter DC/AC stage .............................................................................10 3.1 Power Loss Calculation ...................................................................................................................10 3.2 Benchmarking on Bipolar H4 Platform .............................................................................................13 4 Summary ....................................................................................................................................................16 5 References .................................................................................................................................................16 1 Introduction 2 Description of Technology and Product Family Figure 1: Infineon IGBT generations 2.1 TM TRENCHSTOP 5 Static and Dynamic Characterization 2.1.1 Comparison with Previous Generation TM Table 1: Electrical parameter comparison between TRENCHSTOP 5 and HighSpeed 3 IKx40N60H3 IKx40N65F5 IKx40N65H5 Unit VCE(sat) Typ@40A, Ug=15V, Tc=25°C 1,95 1,7 1,75 V VCE(sat) Typ@40A, Ug=15V, Tc=175°C 2,4 2,1 2,15 V DC collector current, Tc=25°C 80 80 80 A DC collector current, Tc=100°C 40 40 40 A Gfs@Vce=20V, Ic=40A 24 50 50 S Vgeth@0,4mA, Vce=Vge 5,1 4,0 4,0 V V(br)ces, Vge=0V, Ic=2mA 600 650 650 V Cies@VCE=25V, f=1MHz 2190 2100 2100 pF Coes@VCE=25V, f=1MHz 112 43 47 pF Cres@VCE=25V, f=1MHz 64 9 9 pF Qg@Vcc=480V, Ic=40A, Vge=15V 223 84 90 nC td(on)@Vcc=400V, Ic=20A 19 21 21 Ns tr@Vcc=400V, Ic=20A 33 10 11 Ns Switching @ 25°C td(off)@Vcc0400V, Ic=20A 197 140 140 Ns Ls=45nH/Cs=40pF tf@Vcc=400V, Ic=20A 21 8 8 Ns Eon@Vcc=400V, Ic=20A 0,61 0,3 0,27 mJ Eoff@Vcc=400V, Ic=20A 0,29 0,13 0,16 mJ Static Char. Cap. & Charges Figure 2: Trade-off VCEsat-Eoff comparing with previous generation 2.1.2 Dynamic Characterization Figure 3: Turn-off dependence of gate resistor: turn-off Energy (left) and voltage overshoot (right) Figure 4: Typical turn-off waveform H5 vs F5 Figure 5: Effect of Rg,on on turn-on energy What can be concluded from figures 3, 4 and 5 is as follows: a. Two families are required to provide designers with either an IGBT that is easy to handle and thus can be easily implemented (H5) or an IGBT that is snappy, needs care during implementation to reduce commutation loop inductance, but offers even higher efficiency (F5). Turn-off controllability of the voltage overshoot and the switching losses is possible Ω due to the softer turn off behavior compared to F5 3 Industrial Application Measurements – Solar Inverter DC/AC stage 3.1 Power loss calculation Figure 6: Ptot vs switching frequency Fig 7: Efficiency at different switching frequencies 3.2 Benchmarking on a bipolar H4 platform Figure 8: Topology and modulation method of bipolar H4 Figure 9: Efficiency vs load Figure 10: Case temperature vs load Figure 11: Switching waveform H5 vs HighSpeed 3 Figure 12: Voltage spike H5 vs HighSpeed 3 . 4 Summary 5 References [1] [2] [3] TM “Trenchstop 5: A new application specific IGBT series”; Thomas Kimmer, Erich Griebl, PCIM Europe 2012, Nuremberg, Germany “High Speed IGBT with MOSFET-like switching behavior”; Davide Chiola, Holger Hüsken, Thomas Kimmer, PCIM China 2010 “The Field Stop IGBT (FS IGBT) - A New Power Device Concept with a Great Improvement Potential”; T Laska, M. Münzer, F. Pfirsch, C. Schaeffer, T. Schmidt; ISPSD 2000, May 22-25, Toulouse, France