Fast IGBT based in TRENCHSTOP™ 5 technology for industrial applications

Fast IGBT based on TRENCHSTOPTM5
technology for industrial applications
IFAT IPC APS AE
Forrest Zheng
Giulia Seri
Davide Chiola
Authors:
[email protected]
1 Introduction .................................................................................................................................................. 4
2 Description of Technology and Product Family....................................................................................... 4
2.1
TM
TRENCHSTOP 5 Static and Dynamic Characterization ................................................................. 5
3 Industrial Application – Solar Inverter DC/AC stage .............................................................................10
3.1
Power Loss Calculation ...................................................................................................................10
3.2
Benchmarking on Bipolar H4 Platform .............................................................................................13
4 Summary ....................................................................................................................................................16
5 References .................................................................................................................................................16
1
Introduction
2
Description of Technology and Product Family
Figure 1: Infineon IGBT generations
2.1
TM
TRENCHSTOP 5 Static and Dynamic Characterization
2.1.1 Comparison with Previous Generation
TM
Table 1: Electrical parameter comparison between TRENCHSTOP 5 and HighSpeed 3
IKx40N60H3
IKx40N65F5
IKx40N65H5
Unit
VCE(sat) Typ@40A,
Ug=15V, Tc=25°C
1,95
1,7
1,75
V
VCE(sat) Typ@40A,
Ug=15V, Tc=175°C
2,4
2,1
2,15
V
DC collector
current, Tc=25°C
80
80
80
A
DC collector
current, Tc=100°C
40
40
40
A
Gfs@Vce=20V,
Ic=40A
24
50
50
S
Vgeth@0,4mA,
Vce=Vge
5,1
4,0
4,0
V
V(br)ces, Vge=0V,
Ic=2mA
600
650
650
V
Cies@VCE=25V,
f=1MHz
2190
2100
2100
pF
Coes@VCE=25V,
f=1MHz
112
43
47
pF
Cres@VCE=25V,
f=1MHz
64
9
9
pF
Qg@Vcc=480V,
Ic=40A, Vge=15V
223
84
90
nC
td(on)@Vcc=400V,
Ic=20A
19
21
21
Ns
tr@Vcc=400V,
Ic=20A
33
10
11
Ns
Switching @ 25°C
td(off)@Vcc0400V,
Ic=20A
197
140
140
Ns
Ls=45nH/Cs=40pF
tf@Vcc=400V,
Ic=20A
21
8
8
Ns
Eon@Vcc=400V,
Ic=20A
0,61
0,3
0,27
mJ
Eoff@Vcc=400V,
Ic=20A
0,29
0,13
0,16
mJ
Static Char.
Cap. & Charges
Figure 2: Trade-off VCEsat-Eoff comparing with previous generation
2.1.2 Dynamic Characterization
Figure 3: Turn-off dependence of gate resistor: turn-off Energy (left) and voltage overshoot (right)
Figure 4: Typical turn-off waveform H5 vs F5
Figure 5: Effect of Rg,on on turn-on energy
What can be concluded from figures 3, 4 and 5 is as follows:
a. Two families are required to provide designers with either an IGBT that is easy to handle and thus
can be easily implemented (H5) or an IGBT that is snappy, needs care during implementation to
reduce commutation loop inductance, but offers even higher efficiency (F5).
Turn-off controllability of the voltage overshoot and the switching losses is possible
Ω due to the softer turn off behavior compared to F5
3
Industrial Application Measurements – Solar Inverter DC/AC stage
3.1
Power loss calculation
Figure 6: Ptot vs switching frequency
Fig 7: Efficiency at different switching frequencies
3.2
Benchmarking on a bipolar H4 platform
Figure 8: Topology and modulation method of bipolar H4
Figure 9: Efficiency vs load
Figure 10: Case temperature vs load
Figure 11: Switching waveform H5 vs HighSpeed 3
Figure 12: Voltage spike H5 vs HighSpeed 3
.
4
Summary
5
References
[1]
[2]
[3]
TM
“Trenchstop 5: A new application specific IGBT series”; Thomas Kimmer, Erich Griebl, PCIM Europe
2012, Nuremberg, Germany
“High Speed IGBT with MOSFET-like switching behavior”; Davide Chiola, Holger Hüsken, Thomas
Kimmer, PCIM China 2010
“The Field Stop IGBT (FS IGBT) - A New Power Device Concept with a Great Improvement Potential”;
T Laska, M. Münzer, F. Pfirsch, C. Schaeffer, T. Schmidt; ISPSD 2000, May 22-25, Toulouse,
France