CrossLink Family Preliminary Data Sheet DS1055 Version 1.0 May 2016 CrossLink Family Preliminary Data Sheet Contents Acronyms in This Document ................................................................................................................................................. 5 1. General Description ...................................................................................................................................................... 6 1.1. Features ............................................................................................................................................................... 6 2. Application Examples .................................................................................................................................................... 7 2.1. 2:1 MIPI CSI-2 Image Sensor Aggregator Bridge ................................................................................................. 7 2.2. 1:2 MIPI DSI Display Interface Bridge .................................................................................................................. 8 2.3. FPD-Link/OpenLDI LVDS to MIPI DSI Display Interface Bridge ............................................................................ 9 2.4. MIPI DSI to FPD-Link/OpenLDI LVDS Display Interface Bridge .......................................................................... 10 2.5. CMOS to MIPI DSI Display Interface Bridge ....................................................................................................... 11 2.6. CMOS to MIPI CSI-2 Image Sensor Interface Bridge .......................................................................................... 12 2.7. MIPI DSI to CMOS Display Interface Bridge ....................................................................................................... 13 2.8. MIPI CSI-2 to CMOS Image Sensor Interface Bridge .......................................................................................... 14 2.9. SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge ..................................................................................... 15 3. Product Feature Summary .......................................................................................................................................... 16 4. Architecture Overview ................................................................................................................................................ 17 4.1. MIPI D-PHY Blocks ............................................................................................................................................. 18 4.2. Programmable I/O Banks .................................................................................................................................. 18 4.3. Programmable FPGA Fabric .............................................................................................................................. 18 4.3.1. FPGA Fabric Overview ...................................................................................................................................18 4.3.2. Clocking Overview .........................................................................................................................................19 4.3.3. Embedded Block RAM Overview ..................................................................................................................20 4.4. System Resources .............................................................................................................................................. 20 4.4.1. CMOS GPIO (Bank 0) .....................................................................................................................................20 4.4.2. Power Management Unit..............................................................................................................................20 4.4.3. Device Configuration.....................................................................................................................................22 2 4.4.4. User I C IP......................................................................................................................................................22 5. DC and Switching Characteristics................................................................................................................................ 23 5.1. Absolute Maximum Ratings .............................................................................................................................. 23 5.2. Recommended Operating Conditions ............................................................................................................... 23 5.3. Preliminary Power Supply Ramp Rates ............................................................................................................. 24 5.4. Preliminary Power-On-Reset Voltage Levels ..................................................................................................... 24 5.5. ESD Performance ............................................................................................................................................... 24 5.6. Preliminary DC Electrical Characteristics ........................................................................................................... 24 5.7. Preliminary CrossLink Supply Current (Standby) ............................................................................................... 25 5.8. Preliminary MIPI D-PHY Supply Current ............................................................................................................ 25 5.9. Preliminary Power Management Unit (PMU) Timing ....................................................................................... 25 5.10. sysI/O Recommended Operating Conditions .................................................................................................... 26 5.11. Preliminary sysI/O Single-Ended DC Electrical Characteristics .......................................................................... 26 5.12. Preliminary sysI/O Differential Electrical Characteristics .................................................................................. 27 5.12.1. Preliminary LVDS/subLVDS/SLVS ..............................................................................................................27 5.12.2. Preliminary MIPI D-PHY ............................................................................................................................28 5.13. Preliminary CrossLink Maximum I/O Buffer Speed ........................................................................................... 29 5.14. Preliminary CrossLink External Switching Characteristics ................................................................................. 30 5.15. Preliminary sysCLOCK PLL Timing ...................................................................................................................... 34 5.16. MIPI D-PHY Performance .................................................................................................................................. 35 5.17. Preliminary Internal Oscillators (HFOSC, LFOSC) ............................................................................................... 35 2 1 5.18. Preliminary User I C ......................................................................................................................................... 35 5.19. CrossLink sysCONFIG Port Timing Specifications .............................................................................................. 36 5.20. Preliminary SRAM Configuration Time from NVCM .......................................................................................... 36 5.21. Switching Test Conditions ................................................................................................................................. 37 © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 2 DS1055-1.0 CrossLink Family Preliminary Data Sheet 6. Pinout Information ..................................................................................................................................................... 38 6.1. WLCSP36 Pinout ................................................................................................................................................ 38 6.2. ucfBGA64 Pinout ............................................................................................................................................... 39 6.3. ctfBGA80 Pinout ................................................................................................................................................ 41 6.4. csfBGA81 Pinout ................................................................................................................................................ 43 6.5. Dual Function Pin Descriptions ......................................................................................................................... 45 6.6. Dedicated Function Pin Descriptions ................................................................................................................ 45 6.7. Pin Information Summary ................................................................................................................................. 46 7. Package Information ................................................................................................................................................... 47 7.1. 36-Ball WLCS Package ....................................................................................................................................... 47 7.2. 64-Ball ucfBGA Package .................................................................................................................................... 48 7.3. 80-Ball ctfBGA Package ..................................................................................................................................... 49 7.4. 81-Ball csfBGA Package ..................................................................................................................................... 50 8. CrossLink Part Number Description ............................................................................................................................ 51 8.1. Ordering Part Numbers ..................................................................................................................................... 51 8.1.1. Industrial ....................................................................................................................................................... 51 References .......................................................................................................................................................................... 52 Technical Support ............................................................................................................................................................... 52 Revision History .................................................................................................................................................................. 52 Figures Figure 2.1. 2:1 MIPI CSI-2 Image Sensor Aggregator Bridge ................................................................................................. 7 Figure 2.2. 1:2 MIPI DSI Display Interface Bridge ................................................................................................................. 8 Figure 2.3. FPD-Link/OpenLDI LVDS to MIPI DSI Display Interface Bridge............................................................................ 9 Figure 2.4. MIPI DSI to FPD-Link/OpenLDI LVDS Display Interface Bridge.......................................................................... 10 Figure 2.5. CMOS to MIPI DSI Display Interface Bridge ...................................................................................................... 11 Figure 2.6. CMOS to MIPI CSI-2 Image Sensor Interface Bridge ......................................................................................... 12 Figure 2.7. MIPI DSI to CMOS Display Interface Bridge ...................................................................................................... 13 Figure 2.8. MIPI CSI-2 to CMOS Image Sensor Interface Bridge ......................................................................................... 14 Figure 2.9. SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge ..................................................................................... 15 Figure 4.1. CrossLink Device Block Diagram ....................................................................................................................... 17 Figure 4.2. CrossLink Device Simplified Block Diagram (Top Level) .................................................................................... 19 Figure 4.3. CrossLink MIPI D-PHY Block .............................................................................................................................. 21 Figure 4.4. CrossLink PMU State Machine .......................................................................................................................... 21 Figure 5.1. Receiver RX.CLK.Centered Waveforms ............................................................................................................. 31 Figure 5.2. Receiver RX.CLK.Aligned Input Waveforms ...................................................................................................... 32 Figure 5.3. Transmit TX.CLK.Centered Output Waveforms ................................................................................................ 32 Figure 5.4. Transmit TX.CLK.Aligned Waveforms ............................................................................................................... 32 Figure 5.5. DDRX71, DDRX141 Video Timing Waveforms .................................................................................................. 33 Figure 5.6. Output Test Load, LVTTL and LVCMOS Standards ............................................................................................ 37 Figure 7.1. 36-Ball WLCS Package Diagram ........................................................................................................................ 47 Figure 7.2. 64-Ball ucfBGA Package Diagram ...................................................................................................................... 48 Figure 7.3. 80-Ball ctfBGA Package Diagram ...................................................................................................................... 49 Figure 7.4. 81-Ball csfBGA Package Diagram ...................................................................................................................... 50 © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 3 CrossLink Family Preliminary Data Sheet Tables Table 2.1. 2:1 MIPI CSI-2 Image Sensor Aggregator Bridge Overview ..................................................................................7 Table 2.2. 1:2 MIPI DSI Display Interface Bridge Overview ..................................................................................................8 Table 2.3. FPD-Link/OpenLDI LVDS to MIPI Display Interface Bridge Overview ...................................................................9 Table 2.4. MIPI DSI to FPD-Link/OpenLDI LVDS Display Interface Bridge Overview ...........................................................10 Table 2.5. CMOS to MIPI DSI Display Interface Bridge Overview .......................................................................................11 Table 2.6. CMOS to MIPI CSI-2 Image Sensor Interface Bridge Overview ..........................................................................12 Table 2.7. MIPI DSI to CMOS Display Interface Bridge Overview .......................................................................................13 Table 2.8. MIPI CSI-2 to CMOS Image Sensor Interface Bridge Overview ..........................................................................14 Table 2.9. SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge Overview ......................................................................15 Table 3.1. CrossLink Feature Summary ...............................................................................................................................16 Table 5.1. Absolute Maximum Ratings ...............................................................................................................................23 Table 5.2. Recommended Operating Conditions ................................................................................................................23 Table 5.3. Preliminary Power Supply Ramp Rates ..............................................................................................................24 Table 5.4. Preliminary Power-On-Reset Voltage Levels ......................................................................................................24 Table 5.5. Preliminary DC Electrical Characteristics ...........................................................................................................24 Table 5.6. Preliminary CrossLink Supply Current (Standby)................................................................................................25 1 Table 5.7. Preliminary MIPI D-PHY Supply Current ...........................................................................................................25 Table 5.8. Preliminary PMU Timing ....................................................................................................................................25 Table 5.9. sysI/O Recommended Operating Conditions .....................................................................................................26 Table 5.10. Preliminary sysI/O Single-Ended DC Electrical Characteristics .........................................................................26 1 1 Table 5.11. LVDS/subLVDS /SLVS ......................................................................................................................................27 Table 5.12. Preliminary MIPI D-PHY ....................................................................................................................................28 Table 5.13. Preliminary CrossLink Maximum I/O Buffer Speed ..........................................................................................29 Table 5.14. Preliminary CrossLink External Switching Characteristics ................................................................................30 Table 5.15. Preliminary sysCLOCK PLL Timing.....................................................................................................................34 Table 5.16. 1500 Mb/s MIPI_DPHY_X8_RX/TX Timing Table (1500 Mb/s > MIPI D-PHY Data Rate > 1200 Mb/s) ............35 Table 5.17. 1200 Mb/s MIPI_DPHY_X4_RX/TX Timing Table (1200 Mb/s > MIPI D-PHY Data Rate > 1000 Mb/s) ............35 Table 5.18. 1000 Mb/s MIPI_DPHY_X4_RX/TX Timing Table (1000 Mb/s > MIPI D-PHY Data Rate > 10 Mb/s) ................35 Table 5.19. Preliminary Internal Oscillators ........................................................................................................................35 2 1 Table 5.20. Preliminary User I C ........................................................................................................................................35 Table 5.21. CrossLink sysCONFIG Port Timing Specifications .............................................................................................36 Table 5.22. Preliminary SRAM Configuration Time from NVCM .........................................................................................36 Table 5.23. Test Fixture Required Components, Non-Terminated Interfaces ....................................................................37 © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 4 DS1055-1.0 CrossLink Family Preliminary Data Sheet Acronyms in This Document A list of acronyms used in this document. Acronym BGA CMOS CSI DSI EBR ECLK FPD 2 IC LUT LVCMOS LVDS MIPI NVCM OTP PCLK PFU PLL PMU SLVS SPI WLCSP Definition Ball Grid Array Complementary Metal Oxide Semiconductor Camera Serial Interface Display Serial Interface Embedded Block RAM Edge Clock Flat Panel Display Inter-Integrated Circuit Look Up Table Low-Voltage Complementary Metal Oxide Semiconductor Low-Voltage Differential Signaling Mobile Industry Processor Interface Non-Volatile Configuration Memory One Time Programmable Primary Clock Programmable Functional Unit Phase Locked Loops Power Management Unit Scalable Low-Voltage Signaling Serial Peripheral Interface Wafer Level Chip Scale Packaging © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 5 CrossLink Family Preliminary Data Sheet 1. General Description TM CrossLink from Lattice Semiconductor is a programmable video bridging device that supports a variety of protocols and interfaces for mobile image sensors and displays. The device is based on Lattice mobile FPGA technology. It combines the extreme flexibility of an FPGA with the low power, low cost and small footprint of an ASIC. CrossLink supports video interfaces including MIPI® DPI, MIPI DBI, CMOS camera and display interfaces, OpenLDI, FPD-Link, FLATLINK, MIPI D-PHY, MIPI CSI-2, MIPI DSI, SLVS200, SubLVDS, HiSPi and more. Lattice Semiconductor provides many pre-engineered IP (Intellectual Property) modules for CrossLink. By using these configurable soft core IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity. The Lattice Diamond® design software allows large complex designs to be efficiently implemented using CrossLink. Synthesis library support for CrossLink devices is available for popular logic synthesis tools. The Diamond tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the CrossLink device. The tools extract the timing from the routing and back-annotate it into the design for timing verification. Interfaces on CrossLink provide a variety of bridging solutions for smart phone, tablets, wearables, VR, AR, Drone, Smart Home, HMI as well as adjacent ISM markets. The device is capable of supporting high-resolution, high-bandwidth content for mobile cameras and displays at 4k UHD and beyond. 1.1. Features Ultra-low power Sleep Mode Support Normal Operation – From 5 mW to 150 mW Ultra small footprint packages 2 36-ball WLCSP (6 mm ) 2 64-ball ucfBGA (12 mm ) 2 80-ball ctfBGA (40 mm ) 2 81-ball csfBGA (20 mm ) Programmable architecture 5936 LUTs 180 kb block RAM 47 kb distributed RAM Two hardened 4-lane MIPI D-PHY interfaces Transmit and receive 6 Gb/s per D-PHY Programmable source synchronous I/O MIPI D-PHY Rx, LVDS Rx, LVDS Tx, SubLVDS Rx, SLVS200 Rx, HiSPi Rx 1200 Mb/s per I/O Four high-speed clock inputs Programmable CMOS I/O LVTTL and LVCMOS 3.3 V, 2.5 V, 1.8 V and 1.2 V LVDS, LVCMOS differential I/Os Flexible device configuration One Time Programmable (OTP) non-volatile configuration memory Master SPI boot from external flash Dual image booting supported 2 I C programming SPI programming TransFR™ I/O for simple field updates Enhanced system level support Reveal logic analyzer TraceID for system tracking 2 On-chip hardened I C block Applications examples 2:1 MIPI CSI-2 Image Sensor Aggregator Bridge 1:2 MIPI DSI Display Interface Bridge MIPI DSI to/from FPD-Link/OpenLDI LVDS Display Interface Bridge MIPI DSI to/from CMOS Display Interface Bridge MIPI CSI-2 to/from CMOS Image Sensor Interface Bridge SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 6 DS1055-1.0 CrossLink Family Preliminary Data Sheet 2. Application Examples 2.1. 2:1 MIPI CSI-2 Image Sensor Aggregator Bridge Figure 2.1 shows the block diagram for the 2:1 MIPI CSI-2 image sensor aggregator bridge. This solution merges image outputs from multiple sensors into a single CSI-2 output to an application processor. Table 2.1 provides additional details on the application example, including input and output descriptions and device resource usage. The interface bridge is fully programmable, supporting any input encoding, variable number of lanes, and data rates up to 1.2 Gb/s per lane input or 1.5 Gb/s per lane output. Up to 8 image sensor inputs can be aggregated, depending on data rate and number of lanes. For details, refer to IPUG121, 2:1 MIPI CSI-2 Bridge Soft IP User Guide. Image Sensor Application Processor CrossLink MIPI CSI-2 MIPI CSI-2 Mux / Merge Image Sensor MIPI CSI-2 Figure 2.1. 2:1 MIPI CSI-2 Image Sensor Aggregator Bridge Table 2.1. 2:1 MIPI CSI-2 Image Sensor Aggregator Bridge Overview Application Example Details Input Type Programmable Fabric Operation(s) Output Type 2 x 1080p60, 12-bit RAW 2 x 4-Lane MIPI D-PHY @ ~445 Mb/s per lane Merge Image Sensor Outputs with no Frame drop Mux/Merge in flexible combinations 1 x 1080p60, 12-bit RAW 1 x 4-Lane MIPI D-PHY @ ~445 Mb/s per lane 2 Additional System Functions Support for I C Bridge/Mux for Camera Configuration GPIO for image sensor sync and reset/power control Preliminary Example Device Resource Usage* Typical Power Consumption Device I/O Used ~55 mW 20 Programmable I/O; 1 x Hard D-PHY Quads Fabric Resources Used ~85% of LUT4; ~100% of EBR *Note: For reference only – exact usage and power consumption depends on specific application parameters. Additional system functions are not included in resource usage. The typical power consumption estimate is based on nominal supply voltages at TJ = 25 °C. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 7 CrossLink Family Preliminary Data Sheet 2.2. 1:2 MIPI DSI Display Interface Bridge Figure 2.2 shows the block diagram for the 1:2 MIPI DSI display interface bridge. This solution duplicates the display output from single application processor DSI output to two different DSI displays. Table 2.2 provides additional details on the application example, including input and output descriptions and device resource usage. The interface bridge is fully programmable, supporting any input encoding, variable number of lanes, and data rates up to 1.2 Gb/s per lane input or 1.5 Gb/s per lane output. The solution can be customized to split the input image, or perform additional bridging operations. For details, refer to IPUG120, MIPI DSI to DSI Display Interface Bridge Soft IP User Guide. Application Processor CrossLink Display MIPI D-PHY (4-Lane) DSI MIPI D-PHY (4-Lane) DSI Split / Duplicate Display MIPI D-PHY (4-Lane) DSI Figure 2.2. 1:2 MIPI DSI Display Interface Bridge Table 2.2. 1:2 MIPI DSI Display Interface Bridge Overview Application Example Details Input Type Programmable Fabric Operation(s) Output Type Additional System Functions 1080p60, 24-bit RGB 4-Lane MIPI D-PHY @ ~900 Mb/s per lane Split/Duplicate Image 2 x 1080p60, 24-bit RGB 2 x 4-Lane MIPI D-PHY @ ~900 Mb/s per lane Display Configuration (DCS) Power and Reset Sequencing of Display Backlight PWM Control Preliminary Example Device Resource Usage* Typical Power Consumption Device I/O Used ~140 mW 10 Programmable I/O; 2 x Hard D-PHY Quads Fabric Resources Used 80% of LUT4; ~80% of EBR *Note: For reference only – exact usage and power consumption depends on specific application parameters. Additional system functions are not included in resource usage. The typical power consumption estimate is based on nominal supply voltages at TJ = 25 °C. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 8 DS1055-1.0 CrossLink Family Preliminary Data Sheet 2.3. FPD-Link/OpenLDI LVDS to MIPI DSI Display Interface Bridge Figure 2.3 shows the block diagram for the FPD-Link/OpenLDI LVDS to MIPI DSI display interface bridge. This solution bridges the single or dual-channel FPD-Link/OpenLDI LVDS display output from the application processor to a MIPI DSI input display. Table 2.3 provides additional details on the application example, including input and output descriptions and device resource usage. The interface bridge is fully programmable, supporting both RGB666 and RGB888, variable number of LVDS data lanes, and data rates up to 1.2 Gb/s per lane input or 1.5 Gb/s per lane output. For details, refer to IPUG124, OpenLDI/FPD-Link/LVDS to MIPI DSI Interface Bridge Soft IP User Guide. Application Processor CrossLink FPD-Link MIPI DSI Display Bridge Figure 2.3. FPD-Link/OpenLDI LVDS to MIPI DSI Display Interface Bridge Table 2.3. FPD-Link/OpenLDI LVDS to MIPI Display Interface Bridge Overview Application Example Details Input Type Programmable Fabric Operation(s) Output Type Additional System Functions 1080p60, 24-bit RGB 2 Channels (2 x 4 Data Lanes and 2 x 1 Clock Lane) @ 74.25 MHz FPD-Link Clock Bridge 1 x 1080p60, 24-bit RGB 1 x 4-Lane MIPI D-PHY @ ~900 Mb/s per lane Display Configuration (DCS) Power and Reset Sequencing of Display Backlight PWM Control Preliminary Example Device Resource Usage* Typical Power Consumption Device I/O Used TBD mW 20 Programmable I/O; 1 x Hard D-PHY Quads Fabric Resources Used ~50% of LUT4; ~60% of EBR *Note: For reference only – exact usage and power consumption depends on specific application parameters. Additional system functions are not included in resource usage. The typical power consumption estimate is based on nominal supply voltages at TJ = 25 °C. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 9 CrossLink Family Preliminary Data Sheet 2.4. MIPI DSI to FPD-Link/OpenLDI LVDS Display Interface Bridge Figure 2.4 shows the block diagram for the MIPI DSI to FPD-Link/OpenLDI LVDS Display Interface Bridge. This solution bridges the MIPI DSI output from the application processor to a single or dual channel FPD-Link/OpenLDI LVDS display input. Table 2.4 provides additional details on the application example, including input and output descriptions and device resource usage. The interface bridge is fully programmable, supporting both RGB666 and RGB888, variable number of LVDS data lanes, and data rates up to 1.2 Gb/s per lane input or 1.5 Gb/s per lane output. For details, refer to IPUG122, MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge Soft IP User Guide. Application Processor CrossLink MIPI DSI Bridge FPD-Link / OpenLDI Display Figure 2.4. MIPI DSI to FPD-Link/OpenLDI LVDS Display Interface Bridge Table 2.4. MIPI DSI to FPD-Link/OpenLDI LVDS Display Interface Bridge Overview Application Example Details Input Type Programmable Fabric Operation(s) Output Type Additional System Functions 1080p60, 24-bit RGB 4-Lane MIPI D-PHY @ ~900 Mb/s per lane Bridge 1080p60, 24-bit RGB 2 Channels (2 x 4 Data Lanes and 2 x 1 Clock Lane) @ 74.25MHz FPD-Link Clock Display Configuration Power and Reset Sequencing of Display Backlight PWM Control Preliminary Example Device Resource Usage* Typical Power Consumption Device I/O Used TBD mW 20 Programmable I/O; 1 x Hard D-PHY Quads Fabric Resources Used ~30% of LUT4; ~30% of EBR *Note: For reference only – exact usage and power consumption depends on specific application parameters. Additional system functions are not included in resource usage. The typical power consumption estimate is based on nominal supply voltages at TJ = 25 °C. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 10 DS1055-1.0 CrossLink Family Preliminary Data Sheet 2.5. CMOS to MIPI DSI Display Interface Bridge Figure 2.5 shows the block diagram for the CMOS to MIPI DSI display interface bridge. This solution bridges the CMOS parallel output from the application processor to a DSI display input. Table 2.5 provides additional details on the application example, including input and output descriptions and device resource usage. The interface bridge is fully programmable, supporting a wide range of video formats, and data rates up to 150 MHz at the CMOS input side or 1.5 Gb/s per lane output. For details, refer to IPUG126, CMOS to MIPI D-PHY Interface Bridge Soft IP User Guide. Application Processor CrossLink CMOS Parallel MIPI DSI Display Bridge Figure 2.5. CMOS to MIPI DSI Display Interface Bridge Table 2.5. CMOS to MIPI DSI Display Interface Bridge Overview Application Example Details Input Type Programmable Fabric Operation(s) Output Type Additional System Functions 1080p60, 24-bit RGB CMOS Parallel @ 148.5 MHz Interface Bridge 1080p60, 24-bit RGB 4-Lane MIPI D-PHY @ ~900 Mb/s per lane Display Configuration (DCS) Power and Reset Sequencing of Display Backlight PWM Control Preliminary Example Device Resource Usage* Typical Power Consumption Device I/O Used ~80 mW 28 Programmable I/O; 1 x Hard D-PHY Quads Fabric Resources Used ~40% of LUT4; ~20% of EBR *Note: For reference only – exact usage and power consumption depends on specific application parameters. Additional system functions are not included in resource usage. The typical power consumption estimate is based on nominal supply voltages at TJ = 25 °C. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 11 CrossLink Family Preliminary Data Sheet 2.6. CMOS to MIPI CSI-2 Image Sensor Interface Bridge Figure 2.6 shows the block diagram for the CMOS to MIPI CSI-2 Image Sensor Interface Bridge. This solution bridges the CMOS parallel output from an image sensor to a CSI-2 input of an application processor. Table 2.6 provides additional details on the application example, including input and output descriptions and device resource usage. The interface bridge is fully programmable, supporting a wide range of video formats, and data rates up to 150 MHz at the CMOS input side or 1.5 Gb/s per lane output. For details, refer to IPUG126, CMOS to MIPI D-PHY Interface Bridge Soft IP User Guide. CrossLink Image Sensor CMOS Parallel MIPI CSI-2 Application Processor Bridge Figure 2.6. CMOS to MIPI CSI-2 Image Sensor Interface Bridge Table 2.6. CMOS to MIPI CSI-2 Image Sensor Interface Bridge Overview Application Example Details Input Type 1080p60, 12-bit RAW CMOS Parallel @ 74.25 MHz Programmable Fabric Operation(s) Interface Bridge Output Type 1080p60, 12-bit RAW 4-Lane MIPI D-PHY @ ~450 Mb/s per lane Additional System Functions I C for Camera Configuration GPIO for image sensor reset/power control 2 Preliminary Example Device Resource Usage* Typical Power Consumption Device I/O Used Fabric Resources Used ~75 mW 16 Programmable I/O; 1 x Hard D-PHY Quads ~40% of LUT4; ~20% of EBR *Note: For reference only – exact usage and power consumption depends on specific application parameters. Additional system functions are not included in resource usage. The typical power consumption estimate is based on nominal supply voltages at TJ = 25 °C. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 12 DS1055-1.0 CrossLink Family Preliminary Data Sheet 2.7. MIPI DSI to CMOS Display Interface Bridge Figure 2.7 shows the block diagram for the MIPI DSI to CMOS display interface bridge. This solution bridges the MIPI DSI output from the application processor to CMOS parallel display input. Table 2.7 provides additional details on the application example, including input and output descriptions and device resource usage. The interface bridge is fully programmable, supporting multiple pixel formats and data rates up to 1.5 Gb/s per lane input and up to 150 MHz CMOS parallel output. For details, refer to IPUG123, MIPI D-PHY to CMOS Interface Bridge Soft IP User Guide. Application Processor CrossLink Display MIPI DSI CMOS Parallel Bridge Figure 2.7. MIPI DSI to CMOS Display Interface Bridge Table 2.7. MIPI DSI to CMOS Display Interface Bridge Overview Application Example Details Input Type Programmable Fabric Operation(s) Output Type Additional System Functions 1080p60, 24-bit RGB 4-Lane MIPI D-PHY @ ~900 Mb/s per lane Interface Bridge 1080p60, 24-bit RGB CMOS Parallel @ 148.5 MHz Power and Reset Sequencing of Display Backlight PWM Control Preliminary Example Device Resource Usage* Typical Power Consumption Device I/O Used ~80 mW 28 Programmable I/O; 1 x Hard D-PHY Quads Fabric Resources Used 15% of LUT4; ~15% of EBR *Note: For reference only – exact usage and power consumption depends on specific application parameters. Additional system functions are not included in resource usage. The typical power consumption estimate is based on nominal supply voltages at TJ = 25 °C. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 13 CrossLink Family Preliminary Data Sheet 2.8. MIPI CSI-2 to CMOS Image Sensor Interface Bridge Figure 2.8 shows the block diagram for the MIPI DSI to CMOS display interface bridge. This solution bridges the MIPI DSI output from the application processor to CMOS parallel display input. Table 2.8 provides additional details on the application example, including input and output descriptions and device resource usage. The interface bridge is fully programmable, supporting multiple pixel formats and data rates up to 1.5 Gb/s per lane input and up to 150 MHz CMOS parallel output. For details, refer to IPUG123, MIPI D-PHY to CMOS Interface Bridge Soft IP User Guide. CrossLink Image Sensor MIPI CSI-2 CMOS Parallel Application Processor Bridge Figure 2.8. MIPI CSI-2 to CMOS Image Sensor Interface Bridge Table 2.8. MIPI CSI-2 to CMOS Image Sensor Interface Bridge Overview Application Example Details Input Type 1080p60, RAW12 4-Lane MIPI D-PHY @ ~445 Mb/s per lane Programmable Fabric Operation(s) Output Type Interface Bridge 1080p60, RAW12 CMOS Parallel @ 74.25 MHz 2 Additional System Functions I C for Camera Configuration GPIO for image sensor reset/power control Preliminary Example Device Resource Usage* Typical Power Consumption Device I/O Used 60 mW 16 Programmable I/O; 1 x Hard D-PHY Quads Fabric Resources Used 15% of LUT4; ~15% of EBR *Note: For reference only – exact usage and power consumption depends on specific application parameters. Additional system functions are not included in resource usage. The typical power consumption estimate is based on nominal supply voltages at TJ = 25 °C. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 14 DS1055-1.0 CrossLink Family Preliminary Data Sheet 2.9. SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge Figure 2.9 shows the block diagram for a SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge. This solution bridges from an image sensor SubLVDS output to CSI-2 output to an application processor. Table 2.9 provides additional details for a specific application example, including input and output descriptions and device resource usage. The interface bridge is fully programmable, supporting RAW10 or RAW12 pixel width, variable number of lanes, and data rates up to 1.2 Gb/s per lane input or 1.5 Gb/s per lane output. For details, refer to IPUG125, SubLVDS to MIPI CSI-2 IP Image Sensor Interface Bridge Soft IP User Guide. CrossLink Image Sensor SubLVDS MIPI CSI-2 Application Processor Bridge Figure 2.9. SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge Table 2.9. SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge Overview Application Example Details Input Type Programmable Fabric Operation(s) Output Type Additional System Functions [email protected], RAW10 SubLVDS 10 data lane @ 600 Mb/s per lane Interface Bridge [email protected], RAW10 CSI-2 over 4-Lane MIPI D-PHY @ 1.5 Gb/s per lane Image Frame Control GPIO for reset and power control Preliminary Example Device Resource Usage* Typical Power Consumption Device I/O Used Fabric Resources Used ~130 mW 22 Programmable I/O; 1 x Hard D-PHY Quads 80% of LUT4; ~60% of EBR *Note: For reference only – exact usage and power consumption depends on specific application parameters. Additional system functions are not included in resource usage. The typical power consumption estimate is based on nominal supply voltages at TJ = 25 °C. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 15 CrossLink Family Preliminary Data Sheet 3. Product Feature Summary Table 3.1 lists CrossLink device information and packages. Table 3.1. CrossLink Feature Summary Device CrossLink LUTs 5936 sysMEM Blocks (9 kb) 20 Embedded Memory (kb) 180 Distributed RAM Bits (kb) 47 General Purpose PLL 1 NVCM Yes Embedded I2C 2 Oscillator (10 KHz) 1 Oscillator (48 MHz) 1 Hardened MIPI D-PHY 2 Packages I/O 1 2 36 WLCSP (2.535 × 2.583 mm2, 0.6 mm) 2 17 64 ucfBGA (3.5 × 3.5 mm , 1 mm) 29 80 ctfBGA (6.5 x 6.5 mm2, 1 mm) 36 2 81 csfBGA (4.5 × 4.5 mm , 1 mm) 37 Notes: 1. Additional D-PHY Rx interfaces are available using programmable I/O. 2. Only one Hardened D-PHY is available in 36 WLCSP package. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 16 DS1055-1.0 CrossLink Family Preliminary Data Sheet 4. Architecture Overview CrossLink is designed as a flexible, chip-to-chip bridging solution which supports a wide variety of applications, including those described in Application Examples section on page 7. CrossLink provides three key building blocks for these bridging applications: Up to two embedded Hard D-PHY blocks Two banks of flexible programmable I/O supporting a variety of standards including D-PHY Rx, subLVDS, SLVS, LVDS, and CMOS A programmable logic core providing the LUTs, memory, and system resources to implement a wide range of bridging operations In addition to these blocks, CrossLink also provides key system resources including a Power Management Unit, flexible 2 configuration interface, additional CMOS GPIO, and user I C blocks. The block diagram for the device is shown in Figure 4.1. Programmable IO MIPI D-PHY Rx: D-PHY / SubLVDS / LVDS / SLVS200 / CMOS Tx: LVDS / CMOS 1.2 Gb/s per Lane 14 IO / 7 Pairs Programmable IO Rx: D-PHY / SubLVDS / LVDS / SLVS200 / CMOS 6 Gb/s Rx & Tx Programmable FPGA Fabric 5,936 LUTs 180 kbits block RAM 47 kbits distributed RAM 4 Data Lanes 1 Clock Lane Enough FPGA resources to handle video: Muxing Merging Demuxing Arbitration Splitting Data Conversion Custom Protocol Design MIPI D-PHY 6 Gb/s Rx & Tx Tx: LVDS / CMOS 4 Data Lanes 1 Clock Lane 1.2 Gb/s per Lane 16 IO / 8 Pairs Power Management Unit I2C / SPI1 GPIOs Figure 4.1. CrossLink Device Block Diagram 2 2 Note: I C and SPI configuration modes are supported. User mode hardened I C is also supported. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 17 CrossLink Family Preliminary Data Sheet 4.1. MIPI D-PHY Blocks The top side of the device includes two hard MIPI D-PHY quads. The D-PHY can be configured to support both camera interface (CSI-2) and display interface (DSI) applications. Below is a summary of the features supported by the hard D-PHY quads. Refer to TN1301, CrossLink High-Speed I/O Interface for more information on the Hard D-PHY quads. Transmit and Receive compliant to D-PHY Revision 1.1 High-Speed (HS) and Low-Power (LP) mode support (including built-in contention detect) Up to 6 Gb/s per quad (1500 Mb/s data rate per lane) Dedicated PLL for Transmit Frequency Synthesis Dedicated Serializer and De-Serializer blocks for fabric interfacing Supports continuous clock mode or low power clock mode Lattice Semiconductor provides a set of pre-engineered IP modules which include the full implementation and control of the hard D-PHY blocks for the examples in Application Examples section on page 7, enabling designers to focus on unique aspects of their design. 4.2. Programmable I/O Banks CrossLink devices provide programmable I/O which can be used to interface to a variety of external standards. The I/O features are summarized below, and described in detail in TN1301, CrossLink High-Speed I/O Interface and TN1305, CrossLink sysI/O Usage Guide. The programmable LVDS/CMOS I/O (Banks 1 and 2) are described below, while the CMOS GPIO (bank 0) and hard D-PHY quads are described separately. Programmable LVDS/CMOS I/O (Bank 1 and 2) features: Built-in support for the following differential standards LVDS – Tx and Rx SLVS – Rx SubLVDS – Rx MIPI – Rx (both LP and HS receive on a single differential pair) Support for the following single ended standards (ratioed to VCCIO) LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS12 LVTTL33 Independent voltage levels per bank based on VCCIO supply Input/output gearboxes per LVDS pair supporting several ratios for video interface applications DDRX1, DDRX2, DDRX4, DDRX8 and DDRX71, DDRX141 Programmable delay cells to support edge-aligned and center-aligned interfaces Programmable differential termination (~ 100 Ω) with dynamic enable control Tri-state control for output Input/output register blocks Single-ended standards support open-drain and programmable input hysteresis Optional weak pull-up resistors 4.3. Programmable FPGA Fabric 4.3.1. FPGA Fabric Overview CrossLink is built around a programmable logic fabric consisting of 5936 four input lookup tables (LUT4) arranged alongside dedicated registers in Programmable Functional Units (PFU). These PFU blocks are the building blocks for logic, arithmetic, RAM and ROM functions. The PFU blocks are connected via a programmable routing network. The Lattice Diamond design software configures the PFU blocks and the programmable routing for each unique design. Interspersed between rows of PFU are rows of sysMEM™ Embedded Block RAM (EBR), with programmable I/O banks, 2 embedded I C and embedded MIPI D-PHY arranged on the top and bottom of the device as shown in Figure 4.2. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 18 DS1055-1.0 MIPI D-PHY 0 PFU PFU I2C1 NVCM I2C0 CrossLink Family Preliminary Data Sheet MIPI D-PHY 1 PFU PFU PFU 4 EBR Blocks (9 kb each) 4 EBR Blocks (9 Kb each) 4 EBR Blocks (9 kb each) PFU PFU PFU PFU PFU Bank 2 Clocking PLL OSC Bank 1 DDRDLL1 4 EBR Blocks (9 kb each) DDRDLL2 4 EBR Blocks (9 kb each) PMU CONFIG Bank 0 Figure 4.2. CrossLink Device Simplified Block Diagram (Top Level) 4.3.2. Clocking Overview The CrossLink device family provides resources to support a wide range of clocking requirements for programmable video bridging. These resources are listed below. For details, refer to TN1304, CrossLink sysCLOCK PLL/DLL Design and Usage Guide. sysCLOCK PLL Flexible Frequency Synthesis (See Table 5.15 for input frequency range and output frequency range.) Dynamically selectable Clock Input Four Clock Outputs Independent, dynamic enable control Programmable phase adjustment Standby Input Lock Output Clock Distribution Network Eight Primary Clocks Dedicated Clock input pins (PCLK) Source from PLL, Clock Divider, Hard D-PHY blocks or On-chip Oscillator Four Edge Clocks for high-speed DDR interfaces 2 per Programmable I/O bank Source from PCLK pins, PLL or DLL blocks Programmable Clock divider per Edge Clock Delay primitives for 90 degree phase shifting of clock/data (DDRDLL, DLLDEL) Dynamic Clock Control Fabric control to disable clock nets for power savings Dynamic Clock Select Smart clock multiplexer with two independent inputs and glitchless output support Two On-Chip Oscillators Always-on Low Frequency (LFCLKOUT) with nominal frequency of 10 kHz High-Frequency (HFCLKOUT) with nominal frequency of 48 MHz, programmable output dividers, and dynamic enable control © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 19 CrossLink Family Preliminary Data Sheet 4.3.3. Embedded Block RAM Overview CrossLink devices also contain sysMEM Embedded Block RAM (EBR). The EBR consists of a 9 kB RAM with memory core, dedicated input registers and output registers with separate clock and clock enable. Supported modes and other general information on the EBR are listed below. For details, refer to 1306, LIFMD Memory Usage Guide. Support for different memory configurations Single Port True Dual Port Pseudo Dual Port ROM FIFO (logic wrapper added automatically by design tools) Flexible customization features Initialization of RAM/ROM Memory cascading (handled automatically by design tools) Optional parity bit support Byte-enable Multiple block size options RAM modes support optional Write Through or Read-Before-Write modes 4.4. System Resources 4.4.1. CMOS GPIO (Bank 0) CrossLink provides dedicated CMOS GPIO on Bank 0 of the device. These GPIO do not include differential signaling support. A summary of the features associated with these GPIOs is listed below: Support for the following single ended standards (ratioed to VCCIO) LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS12 LVTTL33 Tri-state control for output Input/output register blocks Open-drain option and programmable input hysteresis Internal pull-up resistors with configurable values of 3.3 kΩ, 6.8 kΩ, 10 kΩ 4.4.2. Power Management Unit The embedded Power Management Unit (PMU) allows low-power Sleep State of the device. Figure 4.3 on the next page shows the block diagram of the PMU IP. When instantiated in the design, PMU is always on, and uses the low-speed clock from oscillator of the device to perform its operations. The typical use case for the PMU is through a user implemented state machine that controls the sleep and wake up of the device. The state machine implemented in the FPGA fabric identifies when the device needs to go into sleep mode, issues the command through PMU’s FPGA fabric interface, assigns the parameters for sleep (time to wake up and so on) and issues Sleep command. The device can be woken up externally using the PMU Wake-Up (USRWKUP) pin, or from the PMU Watch Dog Timer 2 expiry or from I2C0 (address decoding detection or FIFO full in one of hardened I C). © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 20 DS1055-1.0 CrossLink Family Preliminary Data Sheet Power Management Unit (PMU) PMU Clock (From Oscillator) (PMUCLK) External User Wake-up (USRWKUPN) PMU Wake-up from I2C0 (PMUWKUP) Watch Dog Timer PMU Control Register 8-bit Addressable Fabric Interface PMU Sleep Signal, SLEEP Power Control Unit Watch Dog Timer User Mode Signals From FPGA Fabric Figure 4.3. CrossLink MIPI D-PHY Block 4.4.2.1. PMU State Machine PMU can place the device in two mutually exclusive states – Normal State and Sleep State. Figure 4.4 shows the PMU State Machine triggers for transition from one state to the other. Normal state – All elements of the device are active to the extent required by the design. In this state, the device is at fully active and performing as required by the application. Note that the power consumption of the device is highest in this state. Sleep state – The device is power gated such that the device is not operational. The configuration of the device and the EBR contents are retained; thus in Sleep mode, the device does not lose configuration SRAM and EBR contents. When it transitions to Normal state, device operates with these contents preserved. The PMU is active along with the associated GPIOs. The power consumption of the device is lowest in this state. This helps reduce the overall power consumption for the device. User Logic Initiated Sleep Mode Normal Mode User I2C/ External Wake-up/ WDT Expiry Wake-up Figure 4.4. CrossLink PMU State Machine For more details, refer to TN1307, Power Management and Calculation for CrossLink Devices. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 21 CrossLink Family Preliminary Data Sheet 4.4.3. Device Configuration The CrossLink SRAM can be configured as follows: Internal Non Volatile Configuration Memory (NVCM) 2 NVCM can be programmed using either the SPI or I C port Standard Serial Peripheral Interface (Master SPI Mode) Interface to external SPI Flash System microprocessor to drive a serial Slave SPI port (SSPI mode) 2 System microprocessor to drive a serial Slave I C port For more information, refer to TN1303, CrossLink Programming and Configuration Usage Guide. In addition to the flexible configuration modes, the CrossLink configuration engine supports the following special features: TransFR (Transparent Field Reconfiguration) allowing users to update logic in field without interrupting system operation by freezing I/O states during configuration Dual-Boot Support for primary and golden bitstreams provides automatic recovery from configuration failures Security and One-Time Programmable (OTP) modes protect bitstream integrity and prevent readback 64-bit unique TraceID per device 4.4.4. User I2C IP CrossLink devices have two I2C IP cores that can be configured either as an I2C master or as an I2C slave. The I2C0 core 2 has pre-assigned pins, and supports PMU wakeup over I C. The pins for the I2C1 interface are not pre-assigned – user can use any General Purpose I/O pins. The I2C cores support the following functionality: Master and Slave operation 7-bit and 10-bit addressing Multi-master arbitration support Clock stretching Up to 1 MHz data transfer speed General call support Optionally delaying input or output data, or both Optional FIFO mode Transmit FIFO size is 10 bits x 16 bytes, receive FIFO size is 10 bits x 32 bytes For further information on the User I2C, refer to TN308, LIFMD I2C Hardened IP Usage Guide. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 22 DS1055-1.0 CrossLink Family Preliminary Data Sheet 5. DC and Switching Characteristics 5.1. Absolute Maximum Ratings Table 5.1. Absolute Maximum Ratings Symbol VCC Parameter Core Supply Voltage Min –0.5 Max 1.32 Unit V VCCPLL PLL Supply Voltage –0.5 1.32 V VCCAUX25VPP Auxiliary Supply Voltage for Bank 1, 2 and NVCM –0.5 2.75 V VCCIO I/O Driver Supply Voltage for Banks 0, 1, 2 –0.5 3.63 V — VCC_DPHY VCCA_DPHY VCCPLL_DPHY VCCMU_DPHY — Input or I/O Transient Voltage Applied –0.5 3.63 V MIPI D-PHY Supply Voltages –0.5 1.32 V Voltage Applied on MIPI D-PHY Pins –0.5 1.32 V TA Storage Temperature (Ambient) –65 150 °C TJ Junction Temperature (TJ) — +125 °C Notes: 1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 2. Compliance with the Lattice Thermal Management document is required. 3. All voltages referenced to GND. 5.2. Recommended Operating Conditions Table 5.2. Recommended Operating Conditions Symbol VCC Parameter Min Max Unit Core Supply Voltage 1.14 1.26 V VCCPLL PLL Supply Voltage 1.14 1.26 V VCCAUX25VPP Auxiliary Supply Voltage for Bank 1, 2 and NVCM 2.375 2.625 V VCCIO I/O Driver Supply Voltage for Bank 0, 1, 2 1.14 3.465 V TJIND Junction Temperature, Industrial Operation –40 100 °C D-PHY External Power Supply VCC_DPHYx Supply Voltage for D-PHY VCCA_DPHYx Analog Supply Voltage for D-PHY 1.14 1.14 1.26 1.26 V V VCCPLL_DPHYx 1.14 1.26 V 1.14 1.26 V VCCMU_DPHY PLL Supply voltage for D-PHY Supply for VCC_DPHY1, VCCA_DPHY1 and VCCPLL_DPHY1 on the WLCSP36 Notes: 1. For Correct Operation, all supplies must be held in their valid operation range. 2. Like power supplies, must be tied together if they are at the same supply voltage. Follow the noise filtering recommendations in TN1302, CrossLink Hardware Checklist. 3. See recommended voltages by I/O standard in Table 5.9 on page 26. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 23 CrossLink Family Preliminary Data Sheet 5.3. Preliminary Power Supply Ramp Rates Table 5.3. Preliminary Power Supply Ramp Rates Symbol Parameter Min Max Unit tRAMP Power supply ramp rates for all power supplies except VCCAUX25VPP 0.6 10 V/ms Note: Assumes monotonic ramp rates. 5.4. Preliminary Power-On-Reset Voltage Levels Table 5.4. Preliminary Power-On-Reset Voltage Levels Parameter Symbol VPORUP Power-On-Reset ramp up trip point (Monitoring VCC, VCCIO0, and VCCAUX25VPP) Typ Unit VCC 0.685 V VCCIO0 1.078 V TBD V VCCAUX25VPP Notes: 1. These POR ramp up trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions. 2. Only VCCIO0 has a Power-On-Reset ramp up trip point. All other VCCIOs do not have Power-On-Reset ramp up detection. 3. VCCIO supplies should be powered-up before or together with the VCC and VCCAUX25VPP supplies. 4. Configuration starts after VCC, VCCIO0 and VCCAUX25VPP reach VPORUP. For details, see tREFRESH time in Table 5.22 on page 36. 5. Ensure all other VCCIO banks are active with valid input logic levels to properly control any critical output logic states. 5.5. ESD Performance Refer to the LIFMD Product Family Qualification Summary for complete qualification data, including ESD performance. 5.6. Preliminary DC Electrical Characteristics Over recommended operating conditions. Table 5.5. Preliminary DC Electrical Characteristics Symbol Parameter 1, 4 IIL, IIH Input or I/O Leakage IPU 4 C1 2 C2 2 Condition Max Unit — — ±10 µA −2.7 — −31 µA VCCIO = 1.8 V between 0 ≤ VIN ≤ 0.65 * VCCIO −3 — −31 µA VCCIO = 2.5 V between 0 ≤ VIN ≤ 0.65 * VCCIO −8 — −72 µA VCCIO = 3.3 V between 0 ≤ VIN ≤ 0.65 * VCCIO −11 — −128 µA VCCIO = 3.3 V, 2.5 V, 1.8 V, 1.2 V, VCC = 1.2 V, VIO = 0 to VIH (MAX) — TBD — pf VCCIO = 3.3 V, 2.5 V, 1.8 V, 1.2 V, VCC = 1.2 V, VIO = 0 to VIH (MAX) — TBD — pf Hysteresis for Single-Ended VCCIO = 3.3 V, 2.5 V, 1.8 V Inputs VCC = 1.2 V, VIO = 0 to VIH (MAX) — 200 — mV I/O Capacitance 2 Dedicated Input 2 Capacitance 3 Typ VCCIO = 1.2 V between 0 ≤ VIN ≤ 0.65 * VCCIO Internal Pull-Up Current VHYST 0 ≤ VIN ≤ VCCIO Min Notes: 1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled. 2. TA = 25 oC, f = 1.0 MHz. 3. Hysteresis is not available for VCCIO = 1.2 V. 4. Weak pull-up setting. Programmable pull-up resistors on Bank 0 will see higher current. Refer to TN1305, CrossLink sysI/O Usage Guide for details on programmable pull-up resistors. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 24 DS1055-1.0 CrossLink Family Preliminary Data Sheet 5.7. Preliminary CrossLink Supply Current (Standby) Over recommended operating conditions. Table 5.6. Preliminary CrossLink Supply Current (Standby) Symbol Parameter Typ Unit ICC Core Power Supply Current 4.5 mA ICCPLL PLL Power Supply Current 0.05 mA 0.5 mA 0.5 mA 0.6 mA Normal Operation Auxiliary Power Supply Current for Bank 1, 2 and NVCM Programming Supply Current Bank Power Supply Current (per Bank) ICCAUX25VPP ICCIO Sleep Operation Core Power Supply Current ICC Notes: 1. For further information on supply current, see the References section on page 52. 2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V CCIO or GND. 3. Frequency 0 Hz. 4. Normal operation pattern represents a “blank” configuration data file. Sleep operation includes 5. TJ = 25 °C, power supplies at nominal voltage. 6. To determine the CrossLink peak start-up current, use the Power Calculator tool in the Lattice Diamond Design Software. 5.8. Preliminary MIPI D-PHY Supply Current Over recommended operating conditions. Table 5.7. Preliminary MIPI D-PHY Supply Current Symbol 1 Description Typ Unit 10 µA Standby (Power Down) ICCA_DPHYx VCCA_DPHY Power Supply Current (per Channel) PHY ICCPLL_DPHYx PLL Supply voltage for D-PHY 5 µA ICCMU_DPHYx VCCA_DPHY1 and VCCPLL_DPHY1 on the WLCSP36 15 µA Device Max Unit All Devices 1 ms Notes: 1. For further information on supply current, see the References section on page 52. 2. TJ = 25 °C, power supplies at nominal voltage. 5.9. Preliminary Power Management Unit (PMU) Timing Table 5.8. Preliminary PMU Timing Symbol Parameter tPMUWAKE Time for PMU to wake from Sleep mode Note: For details on PMU usage, refer to TN1307, Power Management and Calculation for CrossLink Devices. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 25 CrossLink Family Preliminary Data Sheet 5.10. sysI/O Recommended Operating Conditions Table 5.9. sysI/O Recommended Operating Conditions VCCIO Standard Min Typ Max LVCMOS33/LVTTL33 3.135 3.30 3.465 LVCMOS25 2.375 2.50 2.625 LVCMOS18 1.710 1.80 1.890 LVCMOS12 1.140 1.20 1.260 subLDVS (Input only) 2.375 2.50 2.625 SLVS (Input only) 2.375 2.50 2.625 LVDS 2.375 2.50 2.625 MIPI (Inputs) 1.140 1.20 1.260 Note: For input voltage compatibility, refer to TN1305, CrossLink sysI/O Usage Guide. 5.11. Preliminary sysI/O Single-Ended DC Electrical Characteristics Table 5.10. Preliminary sysI/O Single-Ended DC Electrical Characteristics Input/Output Standard VIL VIH Min (V) Max (V) Min (V) Max (V) LVCMOS33/ LVTTL33 –0.3 0.8 2.0 VCCIO+0.2 LVCMOS25 –0.3 0.7 1.7 VCCIO+0.2 LVCMOS18 –0.3 0.35 VCCIO 0.65 VCCIO VCCIO+0.2 LVCMOS12 –0.3 0.35 VCCIO 0.8 VCCIO VCCIO+0.2 VOL Max (V) VOH Min (V) 0.40 VCCIO − 0.4 8 –8 0.20 VCCIO − 0.2 0.1 –0.1 0.40 VCCIO − 0.4 6 –6 0.20 VCCIO − 0.2 0.1 –0.1 0.40 VCCIO − 0.4 4 –4 0.20 VCCIO − 0.2 0.1 –0.1 0.40 VCCIO − 0.4 2 –2 0.20 VCCIO − 0.2 0.1 –0.1 IOL (mA) IOH (mA) © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 26 DS1055-1.0 CrossLink Family Preliminary Data Sheet 5.12. Preliminary sysI/O Differential Electrical Characteristics 5.12.1. Preliminary LVDS/subLVDS/SLVS Over recommended operating conditions. 1 1 Table 5.11. LVDS/subLVDS /SLVS Parameter Description Test Conditions Min Typ Max Unit VINP, VINPM Input Voltage — 0.00 — 2.40 V VCM Input Common Mode Voltage Half the sum of the two inputs 0.05 — 2.35 V VTHD Differential Input Threshold Difference between the two inputs ±100 — — mV VTHD(subLVDS) Differential Input Threshold Difference between the two inputs ±90 — — mV Power On — — ±10 µA IIN Input Current Power Off (standby) — — ±10 µA VOH Output High Voltage for VOP or VOM RT = 100 Ω — 1.43 1.60 V VOL Output Low Voltage for VOP or VOM RT = 100 Ω 0.90 1.08 — V VOD Output Voltage Differential (VOP - VOM), RT = 100 Ω 250 350 450 mV — — — 50 mV VOS Change in VOD Between High and Low Output Voltage Offset 1.13 1.20 1.375 V ∆VOS Change in VOS Between H and L — — — 50 mV ISAB Output Short Circuit Current VOD = 0 V driver outputs shorted to each other — — 12 mA ∆VOD (VOP + VOM)/2, RT = 100 Ω Notes: 1. Inputs only. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 27 CrossLink Family Preliminary Data Sheet 5.12.2. Preliminary MIPI D-PHY Table 5.12. Preliminary MIPI D-PHY Description Min Typ Max Unit 70 — 330 mV Receiver High Speed VCMRX Common-Mode Voltage HS Receive Mode VIDTH Differential Input High Threshold — — 70 mV VIDTL Differential Input Low Threshold −70 — — mV VIHHS Single-ended Input High Voltage — — 460 mV VILHS Single-ended Input Low Voltage −40 — — mV VTERM-EN Single-ended Threshold for HS Termination Enable — — 450 mV ZID Differential Input Impedance 80 100 125 Ω VIH Logic 1 Input Voltage 880 — — mV VIL Logic 0 Input Voltage, not in ULP State — — 550 mV VIL-ULPS Logic 0 Input Voltage, in ULP State — — 300 mV VHYST Input Hysteresis 25 — — mV Low Power Transmitter High Speed VCMTX HS Transmit Static Common Mode Voltage 150 200 250 mV VOD HS Transmit Differential Voltage 140 200 270 mV VOHHS HS Output High Voltage — — 360 mV ZOS Single-ended Output Impedance 40 50 62.5 Ω ΔZOS Single-ended Output Impedance Mismatch — — 10 % VOH Output High Level 1.1 1.2 1.3 V VOL Output Low Level −50 — 50 mV ZOLP Output Impedance of LP Transmitter 110 — — Ω Low Power © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 28 DS1055-1.0 CrossLink Family Preliminary Data Sheet 5.13. Preliminary CrossLink Maximum I/O Buffer Speed Over recommended operating conditions. Table 5.13. Preliminary CrossLink Maximum I/O Buffer Speed Buffer Description Max Unit 600 MHz 500 MHz 600 MHz 500 MHz 600 MHz 500 MHz 600 MHz 500 MHz Maximum Input Frequency LVDS, VCCIO = 2.5 V, csfBGA81, ctfBGA80, ucfBGA64 packages LVDS, VCCIO = 2.5 V, WLCSP36 package LVDS25 SUBLVDS, VCCIO = 2.5 V, csfBGA81, ctfBGA80, ucfBGA64 packages SUBLVDS, VCCIO = 2.5 V, WLCSP36 package SUBLVDS LVTTL33 MIPI D-PHY, csfBGA81, ctfBGA80, ucfBGA64 packages MIPI D-PHY, WLCSP36 package SLVS, VCCIO=2.5V, csfBGA81, ctfBGA80, ucfBGA64 packages SLVS, VCCIO=2.5V, WLCSP36 package LVTTL, VCCIO = 3.3 V 250 MHz LVCMOS33 LVCMOS, VCCIO = 3.3 V 250 MHz LVCMOS25D Differential LVCMOS, VCCIO = 2.5 V 250 MHz LVCMOS25 LVCMOS, VCCIO = 2.5 V 250 MHz LVCMOS18 LVCMOS, VCCIO = 1.8 V 155 MHz LVCMOS12 LVCMOS 1.2, VCCIO = 1.2 V 70 MHz LVDS, VCCIO = 2.5 V, csfBGA81, ctfBGA80, ucfBGA64 packages 600 MHz LVDS, VCCIO = 2.5 V, WLCSP36 package 500 MHz LVTTL33 LVTTL, VCCIO = 3.3 V 250 MHz LVCMOS33 LVCMOS, 3.3 V 250 MHz LVCMOS33D Differential LVCMOS, 3.3 V 250 MHz LVCMOS25 LVCMOS, 2.5 V 250 MHz LVCMOS25D Differential LVCMOS, 2.5 V 250 MHz LVCMOS18 LVCMOS, 1.8 V 155 MHz LVCMOS12 LVCMOS, VCCIO = 1.2 V 70 MHz MIPI D-PHY (HS Mode) 6 SLVS Maximum Output Frequency LVDS25 Notes: 1. These maximum speeds are characterized but not tested on every device. 2. Maximum I/O speed for differential output standards emulated with resistors depends on the layout. 3. LVCMOS timing is measured with the load specified in Table 5.23 on page 37. 4. Actual system operation may vary depending on user logic implementation. 5. Maximum data rate equals two times the clock rate when utilizing DDR. 6. This is the maximum MIPI D-PHY input rate on the programmable I/O banks 1 and 2. The hardened MIPI D-PHY input and output rates are described in MIPI D-PHY Performance section on page 35. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 29 CrossLink Family Preliminary Data Sheet 5.14. Preliminary CrossLink External Switching Characteristics Over recommended commercial operating conditions. Table 5.14. Preliminary CrossLink External Switching Characteristics Parameter Description Device Min Clocks Primary Clock fMAX_PRI Frequency for Primary Clock Tree All Devices — tW_PRI Clock Pulse Width for Primary Clock All Devices 0.8 tISKEW_PRI Primary Clock Skew Within a Clock All Devices — Edge Clock fMAX_EDGE Frequency for Edge Clock Tree All Devices — tW_EDGE Clock Pulse Width for Edge Clock All Devices 0.783 tISKEW_EDGE Edge Clock Skew Within a Bank All Devices — Generic DDR Input Generic DDRX8 or DDRX4 I/O with Clock and Data Centered at Pin (GDDRX8_RX/TX.ECLK.Centered or GDDRX4_RX/TX.ECLK.Centered) tSU_GDDRX4_8 Input Data Set-Up Before CLK tHO_GDDRX4_8 Input Data Hold After CLK tDVB_GDDRX4_8 Output Data Valid Before CLK Output tDVA_GDDRX4_8 Output Data Valid After CLK Output fMAX_GDDRX4_8 Frequency for ECLK Max Unit 150 — 450 MHz ns ps 600 — 120 MHz ns ps All Devices All Devices All Devices All Devices All Devices All Devices All Devices csfBGA81, ctfBGA80, ucfBGA64 0.167 0.2 0.167 0.297 −0.120 0.297 −0.120 — — — — — — — ns UI ns ns ns+1/2UI ns ns+1/2UI — 600 MHz WLCSP36 — 500 MHz Generic DDRX8 or DDRX4 I/O with Clock and Data Aligned at Pin (GDDRX8_RX/TX.ECLK.Aligned or GDDRX4_RX/TX.ECLK.Aligned) tDVA_GDDRX4_8 Input Data Valid After CLK tDVE_GDDRX4_8 Input Data Hold After CLK tDIA_GDDRX4_8 Output Data Invalid After CLK Output Output Data Invalid Before CLK Output tDIB_GDDRX4_8 fMAX_GDDRX4_8 Frequency for ECLK Programmable I/O MIPI D-PHY Rx with 1:8 or 1:16 Gearing tSU_GDDRX_MP Input Data Set-Up Before CLK tHO_GDDRX_MP Input Data Hold After CLK fMAX_GDDRX_MP Frequency for ECLK All Devices All Devices All Devices All Devices All Devices All Devices All Devices — — — 0.229 0.646 0.775 — −0.229 0.188 0.22 — — — 0.120 ns+1/2UI ns UI ns+1/2UI ns UI ns All Devices — 0.120 ns csfBGA81, ctfBGA80, WLCSP36 ucfBGA64 — — 600 500 MHz MHz All Devices All Devices All Devices csfBGA81, ctfBGA80, ucfBGA64 WLCSP36 0.167 −0.2 01.67 — — — ns UI ns — 600 MHz — 500 MHz © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 30 DS1055-1.0 CrossLink Family Preliminary Data Sheet Table 5.14. Preliminary CrossLink External Switching Characteristics (Continued) Parameter Description Device –6 Min Generic DDRX71 or DDRX141 Inputs (GDDRX71_RX.ECLK or GDDRX141_RX.ECLK) All Devices Input Valid Bit "i" switching from CLK tRPBi_DVA Rising Edge ("i" = 0 to 6, 0 aligns with CLK) All Devices Max Unit — 0.3 UI — −0.222 ns+(i+ 1/2)*UI tRPBi_DVE Input Hold Bit "i" switching from CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK) All Devices 0.7 — UI All Devices 0.222 — ns+(i+ 1/2)*UI fMAX_RX71 DDR71 ECLK Frequency All Devices — 450 MHz — 0.143 ns+i*UI −0.143 — ns+(i+ 1)*UI — — — 0.15 525 500 UI MHz MHz — 0.125 ns+i*UI All Devices −0.125 — ns+(i+ 1)*UI All Devices csfBGA81 WLCSP36 — — — 0.15 600 500 UI MHz MHz Generic DDRX71 Outputs with Clock and Data Aligned at Pin (GDDRX71_TX.ECLK) Data Output Valid Bit "i" switching from CLK Rising Edge ("i" = 0 to 6, 0 aligns with TTPBi_DOV All Devices CLK) TTPBi_DOI Data Output Invalid Bit "i" switching from CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK) TTPBi_skew_UI TX skew in UI All Devices All Devices csfBGA81 fMAX_TX71 DDR71 ECLK Frequency WLCSP36 Generic DDRX141 Outputs with Clock and Data Aligned at Pin (GDDRX141_TX.ECLK) Data Output Valid Bit "i" switching from CLK Rising Edge ("i" = 0 to 6, 0 aligns with TTPBi_DOV All Devices CLK) TTPBi_DOI Data Output Invalid Bit "i" switching from CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK) TTPBi_skew_UI TX skew in UI fMAX_TX141 DDR71 ECLK Frequency Notes: 1. General I/O timing numbers based on LVCMOS 2.5, 0 pf load. 2. Generic DDRX8, DDRX71 and DDRX141 timing numbers based on LVDS I/O. 3. Uses LVDS I/O standard. 4. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment. 5. These numbers are generated using best case PLL located in the center of the device. 6. All numbers are generated with the Lattice Diamond software. Rx CLK (in) Rx DATA (in) tSU/tDVBDQ tSU/tDVBDQ tHD/tDVADQ tHD/tDVADQ Figure 5.1. Receiver RX.CLK.Centered Waveforms © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 31 CrossLink Family Preliminary Data Sheet 1/2 UI 1/2 UI 1 UI Rx CLK (in) Rx DATA (in) tSU tSU tHD tHD Figure 5.2. Receiver RX.CLK.Aligned Input Waveforms 1/2 UI 1/2 UI 1/2 UI 1/2 UI Tx CLK (out) Tx DATA (out) tDVB tDVB tDVA tDVA Figure 5.3. Transmit TX.CLK.Centered Output Waveforms 1 UI Tx CLK (out) Tx DATA (out) tDIB tDIB tDIA tDIA Figure 5.4. Transmit TX.CLK.Aligned Waveforms © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 32 DS1055-1.0 CrossLink Family Preliminary Data Sheet Figure 5.5. DDRX71, DDRX141 Video Timing Waveforms © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 33 CrossLink Family Preliminary Data Sheet 5.15. Preliminary sysCLOCK PLL Timing Over recommended operating conditions. Table 5.15. Preliminary sysCLOCK PLL Timing Parameter Descriptions Conditions fIN Input Clock Frequency (CLKI, CLKFB) Output Clock Frequency (CLKOP, CLKOS) fOUT AC Characteristics tDT Output Clock Duty Cycle tPH4 Output Phase Accuracy Output Clock Period Jitter 1 tOPJIT Output Clock Cycle-to-Cycle Jitter Output Clock Phase Jitter Min Max Unit — 10 400 MHz — 4.6875 600 MHz — 45 55 — fOUT ≥ 100 MHz −5 — — 5 100 % % fOUT < 100 MHz fOUT ≥ 100 MHz fOUT < 100 MHz fPFD > 100 MHz — — fPFD < 100 MHz — — 0.025 200 0.05 200 0.05 ps p-p UIPP ps p-p UIPP ps p-p UIPP tSPO 2 tLOCK Static Phase Offset PLL Lock-in Time Divider ratio = integer — — — 400 1 ps p-p tUNLOCK PLL Unlock Time tIPJIT Input Clock Period Jitter — fPFD ≥ 20 MHz — — 50 500 ns ps p-p tHI Input Clock High Time fPFD < 20 MHz 90% to 90% — 0.5 0.02 — UIPP ns ms tLO Input Clock Low Time 10% to 10% 0.5 — ns Notes: 1. Jitter sample is taken over 10,000 samples for Periodic jitter, and 2,000 samples for Cycle-to-Cycle jitter of the primary PLL output with clean reference clock with no additional I/O toggling. 2. Output clock is valid after tLOCK for PLL reset and dynamic delay adjustment. 3. Period jitter and cycle-to-cycle jitter numbers are guaranteed for fPFD > 10 MHz. For fPFD < 10 MHz, the jitter numbers may not be met in certain conditions. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 34 DS1055-1.0 CrossLink Family Preliminary Data Sheet 5.16. MIPI D-PHY Performance Table 5.16. 1500 Mb/s MIPI_DPHY_X8_RX/TX Timing Table (1500 Mb/s > MIPI D-PHY Data Rate > 1200 Mb/s) Parameter Description Min Max Unit tSU_MIPIX8 Input Data Setup before CLK 0.133 — ns tHO_MIPIX8 Input Data Hold after CLK 0.133 — ns tDVB_MIPIX8 Output Data Valid before CLK Output 0.200 — ns tDVA_MIPIX8 Output Data Valid after CLK Output 0.200 — ns Note: For WLCSP36 package, the MIPI D-PHY fmax is 1200 Mb/s, instead of 1500 Mb/s for other packages. Table 5.17. 1200 Mb/s MIPI_DPHY_X4_RX/TX Timing Table (1200 Mb/s > MIPI D-PHY Data Rate > 1000 Mb/s) Parameter Description Min Max Unit tSU_MIPIX4 Input Data Setup before CLK 0.167 — ns tHO_MIPIX4 Input Data Hold after CLK 0.167 — ns tDVB_MIPIX4 Output Data Valid before CLK Output 0.250 — ns Output Data Valid after CLK Output 0.250 — ns tDVA_MIPIX4 Table 5.18. 1000 Mb/s MIPI_DPHY_X4_RX/TX Timing Table (1000 Mb/s > MIPI D-PHY Data Rate > 10 Mb/s) Parameter Description Min Max Unit tSU_MIPIX4 Input Data Setup before CLK 0.150 — ns tHO_MIPIX4 Input Data Hold after CLK 0.150 — ns tDVB_MIPIX4 Output Data Valid before CLK Output 0.350 — ns tDVA_MIPIX4 Output Data Valid after CLK Output 0.250 — ns 5.17. Preliminary Internal Oscillators (HFOSC, LFOSC) Table 5.19. Preliminary Internal Oscillators Parameter Parameter Description Min Typ Max Unit fCLKHF HFOSC CLKK Clock Frequency 43.2 48 52.8 MHz fCLKLF LFOSC CLKK Clock Frequency 9 10 11 kHz DCHCLKHF HFOSC Duty Cycle (Clock High Period) 45 — 55 % DCHCLKLF LFOSC Duty Cycle (Clock High Period) 45 — 55 % 5.18. Preliminary User I2C1 2 1 Table 5.20. Preliminary User I C Symbol fscl Parameter SCL Clock Freqeuency STD Mode FAST Mode FAST Mode Plus Min Max Min Max Min Max — 100 — 400 — 1000 2 Units kHz Notes: 2 1. Refer to the I C Specification for timing requirements. 2. Fast Mode Plus maximum speed may be achieved by using external pull up resistor on I.C bus. Internal pull up may not be sufficient to support the maximum speed. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 35 CrossLink Family Preliminary Data Sheet 5.19. CrossLink sysCONFIG Port Timing Specifications Over recommended operating conditions. Table 5.21. CrossLink sysCONFIG Port Timing Specifications Symbol Parameter Min Max Unit CRESETB LOW Pulse Accepted 110 — ns fCCLK SPI_SCK Input Clock Frequency — 110 MHz tSTSU MOSI Setup Time 0.5 — ns tSTH MOSI Hold Time 0.5 — ns tSTCO SPI_SCK Falling Edge to Valid MISO Output — 13.3 ns tSCS Chip Select HIGH Time 25 — ns tSCSS Chip Select Setup Time 0.5 — ns tSCSH Chip Select Hold Time 0.5 — ns MCK Output Clock Frequency — 55 MHz Maximum SCL Clock Frequency (Fast-Mode Plus — 1 MHz All Configuration Mode tPRGM Slave SPI Master SPI fCCLK 2 I C* fMAX 2 *Note: Refer to the I C specification for timing requirements. 5.20. Preliminary SRAM Configuration Time from NVCM Over recommended operating conditions. Table 5.22. Preliminary SRAM Configuration Time from NVCM Symbol Parameter Typ Unit tREFRESH POR to Device I/O Active 60 ms Note: Before and during configuration, the I/Os are held in tristate with weak internal pull ups enabled. I/Os are released to user functionality once the device has finished configuration. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 36 DS1055-1.0 CrossLink Family Preliminary Data Sheet 5.21. Switching Test Conditions Figure 5.6 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are listed in Table 5.23. VT R1 Test Point DUT R2 CL* *CL Includes Test Fixture and Probe Capacitance Figure 5.6. Output Test Load, LVTTL and LVCMOS Standards Table 5.23. Test Fixture Required Components, Non-Terminated Interfaces Test Condition R1 R2 CL Timing Ref. VT LVCMOS 3.3 = 1.5 V — LVCMOS 2.5 = VCCIO/2 — LVCMOS 1.8 = VCCIO/2 — LVTTL and other LVCMOS settings (L ≥ H, H ≥ L) ∞ ∞ 0 pF LVCMOS 1.2 = VCCIO/2 — LVCMOS 2.5 I/O (Z ≥ H) ∞ 1 MΩ 0 pF VCCIO/2 — LVCMOS 2.5 I/O (Z ≥ L) 1 MΩ ∞ 0 pF VCCIO/2 VCCIO LVCMOS 2.5 I/O (H ≥ Z) ∞ 100 0 pF LVCMOS 2.5 I/O (L ≥ Z) 100 ∞ 0 pF VOH – 0.10 VOL + 0.10 — VCCIO Note: Output test conditions for all other interfaces are determined by the respective standards. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 37 CrossLink Family Preliminary Data Sheet 6. Pinout Information 6.1. WLCSP36 Pinout Pin Number Pin Function Bank Dual Function Differential A1 GNDMU_DPHY1 GND — — A2 VCCMU_DPHY1 DPHY1 — — A3 DPHY1_DP2 DPHY1 — True_OF_DPHY1_DN2 A4 DPHY1_DN2 DPHY1 — Comp_OF_DPHY1_DP2 A5 VCCAUX25VPP VCCAUX — — A6 PB2C 2 MIPI_CLKT2_0 True_OF_PB2D B1 DPHY1_DP0 DPHY1 — True_OF_DPHY1_DN0 B2 DPHY1_DP1 DPHY1 — True_OF_DPHY1_DN1 B3 DPHY1_DP3 DPHY1 — True_OF_DPHY1_DN3 B4 DPHY1_DN3 DPHY1 — Comp_OF_DPHY1_DP3 B5 PB16D 2 PCLKC2_1 Comp_OF_PB16C B6 PB2D 2 MIPI_CLKC2_0 Comp_OF_PB2C C1 DPHY1_DN0 DPHY1 — Comp_OF_DPHY1_DP0 C2 DPHY1_DN1 DPHY1 — Comp_OF_DPHY1_DP1 C3 PB52 0 SPI_SS/CSN/SCL — C4 VCC VCCAUX — — C5 PB16C 2 PCLKT2_1 True_OF_PB16D C6 GND GND — — D1 DPHY1_CKP DPHY1 — True_OF_DPHY1_CKN D2 PB48 0 PCLKT0_1/USER_SCL — D3 PB47 0 PCLKT0_0/USER_SDA — D4 CRESET_B 0 CRESET_B — D5 PB16B 2 PCLKC2_0 Comp_OF_PB16A D6 PB6B 2 — Comp_OF_PB6A E1 DPHY1_CKN DPHY1 — Comp_OF_DPHY1_CKP E2 VCCIO0 0 — — E3 GND GND — — E4 PB50 0 MOSI — E5 PB16A 2 PCLKT2_0 True_OF_PB16B E6 PB6A 2 GR_PCLK2_0 True_OF_PB6B F1 PB51 0 MISO — F2 PB49 0 PMU_WKUPN/CDONE — F3 PB53 0 SPI_SCK/MCK/SDA — F4 PB12A 2 GPLLT2_0 True_OF_PB12B F5 PB12B 2 GPLLC2_0 Comp_OF_PB12A F6 VCCIO2 2 — — © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 38 DS1055-1.0 CrossLink Family Preliminary Data Sheet 6.2. ucfBGA64 Pinout Pin Number Pin Function Bank Dual Function Differential A1 DPHY1_CKP DPHY1 — True_OF_DPHY1_CKN A2 DPHY1_CKN DPHY1 — Comp_OF_DPHY1_CKP A3 DPHY1_DP3 DPHY1 — True_OF_DPHY1_DN3 A4 DPHY1_DN3 DPHY1 — Comp_OF_DPHY1_DP3 A5 DPHY0_DN2 DPHY0 — Comp_OF_DPHY0_DP2 A6 DPHY0_DN0 DPHY0 — Comp_OF_DPHY0_DP0 A7 DPHY0_CKP DPHY0 — True_OF_DPHY0_CKN A8 DPHY0_CKN DPHY0 — Comp_OF_DPHY0_CKP B1 DPHY1_DP2 DPHY1 — True_OF_DPHY1_DN2 B2 DPHY1_DN2 DPHY1 — Comp_OF_DPHY1_DP2 B3 DPHY1_DP1 DPHY1 — True_OF_DPHY1_DN1 B4 DPHY1_DN1 DPHY1 — Comp_OF_DPHY1_DP1 B5 DPHY0_DP2 DPHY0 — True_OF_DPHY0_DN2 B6 DPHY0_DP0 DPHY0 — True_OF_DPHY0_DN0 B7 DPHY0_DP3 DPHY0 — True_OF_DPHY0_DN3 B8 DPHY0_DN3 DPHY0 — Comp_OF_DPHY0_DP3 C1 DPHY1_DP0 DPHY1 — True_OF_DPHY1_DN0 C2 DPHY1_DN0 DPHY1 — Comp_OF_DPHY1_DP0 C3 PB47 0 PCLKT0_0/USER_SDA — C4 VCC VCC — — C5 VCCA_DPHYX DPHY — — C6 GNDA_DPHYX GND — — C7 DPHY0_DP1 DPHY0 — True_OF_DPHY0_DN1 C8 DPHY0_DN1 DPHY0 — Comp_OF_DPHY0_DP1 D1 PB34B 1 — Comp_OF_PB34A D2 PB34A 1 GR_PCLK1_0 True_OF_PB34B D3 PB52 0 SPI_SS/CSN/SCL — D4 GND GND — — D5 VCCPLL_DPHY1 DPHY1 — — D6 VCCAUX25VPP VCCAUX — — D7 PB16A 2 PCLKT2_0 True_OF_PB16B D8 PB12A 2 GPLLT2_0 True_OF_PB12B E1 PB51 0 MISO — E2 CRESET_B 0 CRESET_B — E3 PB48 0 PCLKT0_1/USER_SCL — E4 VCC VCC — — E5 GND GND — — E6 VCCIO2 2 — — E7 PB16B 2 PCLKC2_0 Comp_OF_PB16A E8 PB12B 2 GPLLC2_0 Comp_OF_PB12A © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 39 CrossLink Family Preliminary Data Sheet ucfBGA64 Pinout (Continued) Pin Number Pin Function Bank Dual Function Differential F1 PB53 0 SPI_SCK/MCK/SDA — F2 PB50 0 MOSI — F3 VCCIO0 0 — — F4 VCCIO1 1 — — F5 GND GND — — F6 VCCIO2 2 — — F7 PB6A 2 GR_PCLK2_0 True_OF_PB6B F8 PB6B 2 — Comp_OF_PB6A G1 PB38D 1 — Comp_OF_PB38C G2 PB38C 1 — True_OF_PB38D G3 PB49 0 PMU_WKUPN/CDONE — G4 VCCGPLL VCCGPLL — — G5 PB29B 1 PCLKC1_0 Comp_OF_PB29A G6 PB29A 1 PCLKT1_0 True_OF_PB29B G7 PB2C 2 MIPI_CLKT2_0 True_OF_PB2D G8 PB2D 2 MIPI_CLKC2_0 Comp_OF_PB2C H1 PB34D 1 MIPI_CLKC1_0 Comp_OF_PB34C H2 PB34C 1 MIPI_CLKT1_0 True_OF_PB34D H3 PB29D 1 PCLKC1_1 Comp_OF_PB29C H4 PB29C 1 PCLKT1_1 True_OF_PB29D H5 PB16D 2 PCLKC2_1 Comp_OF_PB16C H6 PB16C 2 PCLKT2_1 True_OF_PB16D H7 PB12D 2 — Comp_OF_PB12C H8 PB12C 2 — True_OF_PB12D © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 40 DS1055-1.0 CrossLink Family Preliminary Data Sheet 6.3. ctfBGA80 Pinout Pin Number Pin Function Bank Dual Function Differential A1 DPHY1_DN2 DPHY1 — Comp_OF_DPHY1_DP2 A2 DPHY1_DN0 DPHY1_DN0 — Comp_OF_DPHY1_DP0 A3 DPHY1_CKN DPHY1 — Comp_OF_DPHY1_CKP A4 DPHY1_DN1 DPHY1 — Comp_OF_DPHY1_DP1 A5 DPHY1_DN3 DPHY1 — Comp_OF_DPHY1_DP3 A6 DPHY0_DN2 DPHY0 — Comp_OF_DPHY0_DP2 A7 DPHY0_DN0 DPHY0 — Comp_OF_DPHY0_DP0 A8 DPHY0_CKN DPHY0 — Comp_OF_DPHY0_CKP A9 DPHY0_DN1 DPHY0 — Comp_OF_DPHY0_DP1 A10 DPHY0_DN3 DPHY0 — Comp_OF_DPHY0_DP3 B1 DPHY1_DP2 DPHY1 — True_OF_DPHY1_DN2 B2 DPHY1_DP0 DPHY1 — True_OF_DPHY1_DN0 B3 DPHY1_CKP DPHY1 — True_OF_DPHY1_CKN B4 DPHY1_DP1 DPHY1 — True_OF_DPHY1_DN1 B5 DPHY1_DP3 DPHY1 — True_OF_DPHY1_DN3 B6 DPHY0_DP2 DPHY0 — True_OF_DPHY0_DN2 B7 DPHY0_DP0 DPHY0 — True_OF_DPHY0_DN0 B8 DPHY0_CKP DPHY0 — True_OF_DPHY0_CKN B9 DPHY0_DP1 DPHY0 — True_OF_DPHY0_DN1 B10 DPHY0_DP3 DPHY0 — True_OF_DPHY0_DN3 C1 GND GND — — C2 GNDA_DPHY1 DPHY1 — — C9 GNDA_DPHY0 DPHY0 — — C10 GND GND — — D1 PB48 0 PCLKT0_1/USER_SCL — D2 VCCPLL_DPHY1 DPHY1 — — D4 VCCA_DPHY1 DPHY1 — — D5 VCCAUX25VPP VCCAUX — — D6 GNDPLL_DPHYX GND — — D7 VCCPLL_DPHY0 DPHY0 — — D9 PB16A 2 PCLKT2_0 True_OF_PB16B D10 PB16B 2 PCLKC2_0 Comp_OF_PB16A E1 PB34A 1 GR_PCLK1_0 True_OF_PB34B E2 PB34B 1 — Comp_OF_PB34A E4 VCC VCC — — E5 GND GND — — E6 VCC VCC — — E7 VCCA_DPHY0 DPHY0 — — E9 PB12A 2 GPLLT2_0 True_OF_PB12B E10 PB12B 2 GPLLC2_0 Comp_OF_PB12A © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 41 CrossLink Family Preliminary Data Sheet ctfBGA80 Pinout (Continued) Pin Number Pin Function Bank Dual Function Differential F1 PB38A 1 — True_OF_PB38B F2 PB38B 1 — Comp_OF_PB38A F4 VCCIO0 0 — — F5 VCCIO1 1 — — F6 VCCIO2 2 — — F7 VCCIO2 2 — — F9 PB6A 2 GR_PCLK2_0 True_OF_PB6B F10 PB6B 2 — Comp_OF_PB6A G1 PB50 0 MOSI — G2 GND GND — — G4 VCCIO1 1 — — G5 GND GND — — G6 VCCGPLL VCCGPLL — — G7 GNDGPLL GND — — G9 PB2A 2 — True_OF_PB2B G10 PB2B 2 — Comp_OF_PB2A H1 PB52 0 SPI_SS/CSN/SCL — H2 CRESET_B 0 CRESET_B — H9 PB2D 2 MIPI_CLKC2_0 Comp_OF_PB2C H10 PB2C 2 MIPI_CLKT2_0 True_OF_PB2D J1 PB53 0 SPI_SCK/MCK/SDA — J2 PB49 0 PMU_WKUPN/CDONE — J3 PB43D 1 — Comp_OF_PB43C J4 PB38D 1 — Comp_OF_PB38C J5 PB34D 1 MIPI_CLKC1_0 Comp_OF_PB34C J6 PB29D 1 PCLKC1_1 Comp_OF_PB29C J7 PB29A 1 PCLKT1_0 True_OF_PB29B J8 PB16D 2 PCLKC2_1 Comp_OF_PB16C J9 PB6D 2 — Comp_OF_PB6C J10 PB6C 2 — True_OF_PB6D K1 PB51 0 MISO — K2 PB47 0 PCLKT0_0/USER_SDA — K3 PB43C 1 — True_OF_PB43D K4 PB38C 1 — True_OF_PB38D K5 PB34C 1 MIPI_CLKT1_0 True_OF_PB34D K6 PB29C 1 PCLKT1_1 True_OF_PB29D K7 PB29B 1 PCLKC1_0 Comp_OF_PB29A K8 PB16C 2 PCLKT2_1 True_OF_PB16D K9 PB12D 2 — Comp_OF_PB12C K10 PB12C 2 — True_OF_PB12D © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 42 DS1055-1.0 CrossLink Family Preliminary Data Sheet 6.4. csfBGA81 Pinout Pin Number Pin Function Bank Dual Function Differential A1 DPHY1_CKP DPHY1 — True_OF_DPHY1_CKN A2 DPHY1_CKN DPHY1 — Comp_OF_DPHY1_CKP A3 DPHY1_DP1 DPHY1 — True_OF_DPHY1_DN1 A4 DPHY1_DP3 DPHY1 — True_OF_DPHY1_DN3 A5 VCCA_DPHY1 DPHY1 — — A6 DPHY0_DN2 DPHY0 — Comp_OF_DPHY0_DP2 A7 DPHY0_DN0 DPHY0 — Comp_OF_DPHY0_DP0 A8 DPHY0_CKP DPHY0 — True_OF_DPHY0_CKN A9 DPHY0_CKN DPHY0 — Comp_OF_DPHY0_CKP B1 DPHY1_DP0 DPHY1 — True_OF_DPHY1_DN0 B2 DPHY1_DN0 DPHY1 — Comp_OF_DPHY1_DP0 B3 DPHY1_DN1 DPHY1 — Comp_OF_DPHY1_DP1 B4 DPHY1_DN3 DPHY1 — Comp_OF_DPHY1_DP3 B5 GNDPLL_DPHYX GND — — B6 DPHY0_DP2 DPHY0 — True_OF_DPHY0_DN2 B7 DPHY0_DP0 DPHY0 — True_OF_DPHY0_DN0 B8 DPHY0_DP1 DPHY0 — True_OF_DPHY0_DN1 B9 DPHY0_DN1 DPHY0 — Comp_OF_DPHY0_DP1 C1 DPHY1_DP2 DPHY1 — True_OF_DPHY1_DN2 C2 DPHY1_DN2 DPHY1 — Comp_OF_DPHY1_DP2 C3 GNDA_DPHY1 DPHY1 — — C4 VCCPLL_DPHY1 DPHY1 — — C5 GND GND — — C6 VCCPLL_DPHY0 DPHY0 — — C7 GNDA_DPHY0 DPHY0 — — C8 DPHY0_DP3 DPHY0 — True_OF_DPHY0_DN3 C9 DPHY0_DN3 DPHY0 — Comp_OF_DPHY0_DP3 D1 PB34A 1 GR_PCLK1_0 True_OF_PB34B D2 PB34B 1 — Comp_OF_PB34A D3 VCCA_DPHY1 DPHY1 — — D4 GND GND — — D5 VCCAUX25VPP VCCAUX — — D6 GND GND — — D7 VCCA_DPHY0 DPHY0 — — D8 PB16B 2 PCLKC2_0 Comp_OF_PB16A D9 PB16A 2 PCLKT2_0 True_OF_PB16B E1 PB38A 1 — True_OF_PB38B E2 PB38B 1 — Comp_OF_PB38A E3 VCC VCC — — E4 VCC VCC — — E5 GND GND — — © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 43 CrossLink Family Preliminary Data Sheet csfBGA81 Pinout (Continued) Pin Number Pin Function Bank Dual Function Differential E6 VCCIO2 2 — — E7 PB12B 2 GPLLC2_0 Comp_OF_PB12A E8 PB6B 2 — Comp_OF_PB6A E9 PB6A 2 GR_PCLK2_0 True_OF_PB6B F1 PB50 0 MOSI — F2 PB48 0 PCLKT0_1/USER_SCL — F3 VCCIO1 1 — — F4 GND GND — — F5 GNDGPLL GND — — F6 VCCIO2 2 — — F7 PB12A 2 GPLLT2_0 True_OF_PB12B F8 PB2B 2 — Comp_OF_PB2A F9 PB2A 2 — True_OF_PB2B G1 PB52 0 SPI_SS/CSN/SCL — G2 CRESET_B 0 CRESET_B — G3 VCCIO0 0 — — G4 VCCIO1 1 — — G5 VCCGPLL VCCGPLL — — G6 PB29B 1 PCLKC1_0 Comp_OF_PB29A G7 PB29A 1 PCLKT1_0 True_OF_PB29B G8 PB2D 2 MIPI_CLKC2_0 Comp_OF_PB2C G9 PB2C 2 MIPI_CLKT2_0 True_OF_PB2D H1 PB53 0 SPI_SCK/MCK/SDA — H2 CDONE 0 CDONE — H2 PB49 0 PMU_WKUPN — H3 PB43D 1 — Comp_OF_PB43C H4 PB38D 1 — Comp_OF_PB38C H5 PB34D 1 MIPI_CLKC1_0 Comp_OF_PB34C H6 PB29D 1 PCLKC1_1 Comp_OF_PB29C H7 PB16D 2 PCLKC2_1 Comp_OF_PB16C H8 PB6D 2 — Comp_OF_PB6C H9 PB6C 2 — True_OF_PB6D J1 PB51 0 MISO — J2 PB47 0 PCLKT0_0/USER_SDA — J3 PB43C 1 — True_OF_PB43D J4 PB38C 1 — True_OF_PB38D J5 PB34C 1 MIPI_CLKT1_0 True_OF_PB34D J6 PB29C 1 PCLKT1_1 True_OF_PB29D J7 PB16C 2 PCLKT2_1 True_OF_PB16D J8 PB12D 2 — Comp_OF_PB12C J9 PB12C 2 — True_OF_PB12D © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 44 DS1055-1.0 CrossLink Family Preliminary Data Sheet 6.5. Dual Function Pin Descriptions The following table describes the dual functions available to certain pins on the CrossLink device. These pins may alternatively be used as general purpose I/O when the described dual function is not enabled. Signal Name I/O Description USER_SCL I/O User Slave I2C0 clock input and Master I C0 clock output. Enables PMU wakeup via I2C0. USER_SDA I/O User Slave I2C0 data input and Master I C0 data output. Enables PMU wakeup via I2C0. PMU_WKUPN — This pin wakes the PMU from sleep mode when toggled low. General Purpose 2 2 Clock Functions GPLL2_0[T, C]_IN I General Purpose PLL (GPLL) input pads: T = true and C = complement. These pins can be used to input a reference clock directly to the General Purpose PLL. These pins do not provide direct access to the primary clock network GR_PCLK[Bank]0 I These pins provide a short General Routing path to the primary clock network. Refer to TN1304, CrossLink sysCLOCK PLL/DLL Design and Usage Guide for details. PCLK[T/C][Bank]_[num] I/O MIPI_CLK[T/C][Bank]_0 I/O General Purpose Primary CLK pads: [T/C] = True/Complement, [Bank] = (0, 1 and 2). These pins provide direct access to the primary and edge clock networks. MIPI D-PHY Reference CLK pads: [T/C] = True/Complement, [Bank] = (0, 1 and 2). These pins can be used to input a reference clock directly to the D-PHY PLLs. These pins do not provide direct access to the primary clock network Configuration CDONE I/O Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress. Holding CDONE delays configuration. SPI_SCK I MCK O Input Configuration Clock for configuring CrossLink in Slave SPI mode (SSPI). Output Configuration Clock for configuring CrossLink in Master SPI mode (MSPI). SPI_SS I Input Chip Select for configuring CrossLink in Slave SPI mode (SSPI). CSN O MOSI I/O Output Chip Select for configuring CrossLink in Master SPI mode (MSPI). Data Output when configuring CrossLink in Master SPI mode (MSPI), data input when configuring CrossLink in Slave SPI mode (SSPI). MISO I/O Data Input when configuring CrossLink in Master SPI mode (MSPI), data output when configuring CrossLink in Slave SPI mode (SSPI). SCL I/O Slave I C clock I/O when configuring CrossLink in I C mode SDA I/O Slave I C data I/O when configuring CrossLink in I C mode 2 2 2 2 6.6. Dedicated Function Pin Descriptions Signal Name I/O Description Configuration CRESET_B I Configuration Reset, active LOW. MIPI D-PHY DPHY[num]_CK[P/N] I/O MIPI D-PHY Clock [num] = D-PHY 0 or 1, P = Positive, N = Negative. DPHY[num]_D[P/N][lane] I/O MIPI D-PHY Data [num] = D-PHY 0 or 1, P = Positive, N = Negative, Lane = data lane in the D-PHY block 0, 1, 2 or 3. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 45 CrossLink Family Preliminary Data Sheet 6.7. Pin Information Summary Pin Type CrossLink WLCSP36 ucfBGA64 ctfBGA80 csfBGA81 General Purpose I/O per Bank Bank 0 7 6 7 7 Bank 1 0 10 14 14 Bank 2 10 12 16 16 Total General Purpose Single Ended IO 17 28 37 37 Bank 0 0 0 0 0 Bank 1 0 5 7 7 Bank 2 5 6 8 8 Total General Purpose Differential I/O pairs 5 11 15 15 D-PHY 1 2 2 2 D-PHY Clock/Data 10 20 20 20 D-PHY VCC 1 2 4 4 D-PHY GND 1 1 3 3 VCC/VCCIOx/VCCAUX2V5/VCCGPLL 4 8 9 10 GND 3 4 9 9 CRESETB 1 1 1 1 Total Balls 36 64 80 81 Differential I/O pairs per Bank © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 46 DS1055-1.0 CrossLink Family Preliminary Data Sheet 7. Package Information 7.1. 36-Ball WLCS Package (4X) aaa PIN #1 ID 36 X e b ddd M C A B eee M C D D1 e E A E1 B Top View Bottom View A ccc C A1 C Side View Item Min A A1 D — 0.113 E D1/E1 b 0.188 Typ Max Item — 0.600 — — 2.535 BSC e aaa ccc 0.40 BSC 0.030 0.050 2.585 BSC 2.00 BSC ddd eee 0.050 0.015 0.218 Min Typ Max 0.248 Figure 7.1. 36-Ball WLCS Package Diagram © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 47 CrossLink Family Preliminary Data Sheet 7.2. 64-Ball ucfBGA Package (4X) A aaa 8 7 6 5 4 3 2 1 D A1 CORNER INDEX AREA M B A B D E N C E F G e H e b ddd M C A B eee M C 4X S Top View Bottom View A bbb C ccc C A1 A2 C Side View Item A A1 Min — 0.11 Typ — — Max 1.00 — Item e aaa A2 D/E 0.62 — 3.50 BSC — bbb ccc 0.10 0.08 ddd eee 0.15 0.08 M/N S b 0.20 2.80 BSC 0.20 BSC 0.25 Min Typ Max 0.40 BSC 0.10 0.30 Figure 7.2. 64-Ball ucfBGA Package Diagram © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 48 DS1055-1.0 CrossLink Family Preliminary Data Sheet 7.3. 80-Ball ctfBGA Package (4X) A aaa 10 9 8 7 6 5 4 3 2 1 M D A1 CORNER INDEX AREA B e B C D E E N A F G H J K e b 4X S ddd M C A B eee M C Bottom View Top View A2 A bbb C ccc C A1 C Side View Item A A1 Min — 0.11 Typ — — Max 1.00 — Item e aaa Min Typ Max 0.65 BSC 0.10 A2 D/E 0.61 — 6.50 BSC — bbb ccc 0.10 0.08 M/N S b 5.85 BSC 0.325 BSC 0.20 0.25 0.30 ddd eee 0.15 0.05 Figure 7.3. 80-Ball ctfBGA Package Diagram © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 49 CrossLink Family Preliminary Data Sheet 7.4. 81-Ball csfBGA Package (4X) A aaa 9 8 7 6 5 4 M 3 1 2 D A1 CORNER INDEX AREA B A B D E E N C F G H J e e b 4X S ddd M C A B eee M C Bottom View Top View A bbb C ccc C A1 C A2 Side View Item A Min — Typ — Max 1.00 Item e A1 A2 0.11 0.64 — — — — aaa bbb 0.10 0.10 ccc ddd eee 0.08 0.15 0.08 D/E M/N S b 4.50 BSC 4.00 BSC 0.00 BSC 0.20 0.25 Min Typ Max 0.50 BSC 0.30 Figure 7.4. 81-Ball csfBGA Package Diagram © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 50 DS1055-1.0 CrossLink Family Preliminary Data Sheet 8. CrossLink Part Number Description LIF-MD XXXX-X XXXXX X Device Family CrossLink FPGA Grade I = Industrial Logic Capacity 6000 = 6000 LUTs Package UWG36 = 36-ball WLCSP UMG64 = 64-ball ucfBGA MG81 = 81-ball csfBGA JMG80 = 80-ball ctfBGA Speed 6 = Fastest 8.1. Ordering Part Numbers 8.1.1. Industrial Part Number Grade Package Pins Temp. LUTs (K) LIF-MD6000-6UWG36ITR –6 Lead free WLCSP 36 Industrial 5.9 LIF-MD6000-6UMG64I –6 Lead free ucfBGA 64 Industrial 5.9 LIF-MD6000-6MG81I –6 Lead free csfBGA 81 Industrial 5.9 LIF-MD6000-6JMG80I –6 Lead free ctfBGA 80 Industrial 5.9 Note: UWG36 package is available in shipments of 5000 pcs./reel (TR), 1000 pcs./reel (TR1K), and 50 pcs./reel (TR50 – for samples only). © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. DS1055-1.0 51 CrossLink Family Preliminary Data Sheet References For more information, refer to the following technical notes: TN1301, CrossLink High-Speed I/O Interface TN1302, CrossLink Hardware Checklist TN1303, CrossLink Programming and Configuration Usage Guide TN1304, CrossLink sysCLOCK PLL/DLL Design and Usage Guide TN1305, CrossLink sysI/O Usage Guide TN1306, CrossLink Memory Usage Guide TN1307, Power Management and Calculation for CrossLink Devices TN1308, CrossLink I2C Hardened IP Usage Guide TN1309, Advanced CrossLink I2C Hardened IP Reference Guide For further information on interface standards refer to the following websites: JEDEC Standards (LVTTL, LVCMOS): www.jedec.org MIPI Standards (D-PHY): www.mipi.org Technical Support For assistance, submit a technical support case at www.latticesemi.com/techsupport. Revision History Date Version May 2016 1.0 Change Summary First preliminary release. © 2015-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 52 DS1055-1.0 TH th 7 Floor, 111 SW 5 Avenue Portland, OR 97204, USA T 503.268.8000 www.latticesemi.com