Poly-log p a r a l l e l a l g o r i t h m s f o r LP w i t h an a p p l i c a t i o n t o exploding f l y i n g o b j e c t s * Nimrod Megiddo Carnegie-Mellon U n i v e r s i t y and T e l Aviv U n i v e r s i t y November 1982 Abstract The main r e s u l t s of t h i s paper a r e t h e following: (i) is LP s o l v a b l e i n poly-log t i m e when t h e number of v a r i a b l e s i s f i x e d ( d e s p i t e t h e g e n e r a l problem being log-space hard f o r P). (ii) Probabilistic p a r a l l e l a l g o r i t h m s a r e designed w i t h t h e a i d of a p r o b a b i l i s t i c c o n s t a n t - time a l g o r i t h m f o r maximum-finding (on t h e WRAM model) and random s e a r c h e s . We s o l v e d - v a r i a b l e LP i n 0 (logn(log1ogn) d'2) the deterministic algorithms run i n O(logd"n time, p r o b a b i l i s t i c a l l y ; loglogn) provide s e q u e n t i a l a l g o r i t h m s f o r t h e following problem: f l y i n g a t v a r i o u s speeds on s t r a i g h t l i n e t r a j e c t o r i e s i n time. Given (iii) n We objects, R ~ f i,n d the s m a l l e s t s i z e of a bomb r e q u i r e d t o d e s t r o y a l l of them a t once, thereby determining t h e optimal time and p l a c e f o r t h e explosion. Relying on p a r a l l e l a l g o r i t h m s f o r LP-type problems, w e s o l v e t h e optimal e x p l o s i o n problem with ( s e q u e n t i a l ) 4 complexity a s low a s O(n l o g n loglogn) d e t e r m i n i s t i c a l l y , and 2 2 O(n l o g n (loglogn) ) p r o b a b i l i s t i c a l l y . *Supported i n p a r t by t h e N a t i o n a l Science Foundation under g r a n t no. ECS-8121741. 1. Introduction The g e n e r a l expect t o s o l v e whether time. LP LP problem i s log-space hard f o r d [DLR]. So, we do n o t It i s i n t e r e s t i n g t o ask i n p a r a l l e l i n poly-log time, LP w i t h a f i x e d number P of v a r i a b l e s i s s o l v a b l e i n poly-log The answer i s not t r i v i a l s i n c e ( i ) both t h e simplex a l g o r i t h m [Da] and t h e Khachiyan-type a l g o r i t h m s [K, YL] a r e i n h e r e n t l y s e q u e n t i a l , and ( i i ) even t h e s p e c i a l c a s e of t h e max-flow problem i s log-space hard f o r P N e v e r t h e l e s s , we provide a n a f f i r m a t i v e answer i n t h e p r e s e n t paper. from o u r previous ( s e q u e n t i a l ) a l g o r i t h m s f o r LP . [M3] [GSS]. T h i s stems The obvious p a r a l l e l v e r s i o n s of t h o s e a l g o r i t h m s a r e improved, and we a l s o i n c o r p o r a t e randomization f o r even f u r t h e r improvements. For d=2 we o b t a i n a n i n t e r e s t i n g p r o b a b i l i s t i c a l g o r i t h m which runs almost s u r e l y (a. s .) i n to O(1ogn) time. ~ ( l o g n ( l o g l o g n ) ~ -a~l g) o r i t h m s f o r any f i x e d run i n o(logd-'n loglogn) d. This then g e n e r a l i z e s The d e t e r m i n i s t i c a l g o r i t h m s time, An i n t e r e s t i n g f e a t u r e of t h i s paper i s t h e e x p l o i t a t i o n of a p a r a l l e l c o n s t a n t - t i m e p r o b a b i l i s t i c a l g o r i t h m f o r t h e maximum [M4], i n a p r o b a b i l i s t i c s e q u e n t i a l a l g o r i t h m f o r a problem of optimal explosion. a s follows. Given n The l a t t e r i s d e f i n e d o b j e c t s , moving on s t r a i g h t l i n e t r a j e c t o r i e s i n 3-space, f i n d t h e s m a l l e s t r a d i u s of a b a l l which c o n t a i n s a l l t h e o b j e c t s a t any one time. This b a l l determines t h e s m a l l e s t s i z e of a bomb t h a t i s r e q u i r e d t o d e s t r o y a l l t h e o b j e c t s i n one s h o t , thereby i n d i c a t i n g t h e optimal time and p l a c e f o r t h e explosion. T h i s problem provides m o t i v a t i o n f o r studying t h e p a r a l l e l complexity of t h e s t a t i c problem of t h e s m a l l e s t b a l l e n c l o s i n g given p o i n t s i n 3-space. [M2, M31). The l a t t e r i s c l o s e l y r e l a t e d t o 4 - v a r i a b l e n LP (see A c t u a l l y , t h e a l g o r i t h m s f o r t h e two problems a r e very s i m i l a r . The r e l a t i o n s h i p between the dynamic and t h e s t a t i c problems i s along t h e l i n e s developed i n [MI]. We remark t h a t t h e dynamic problem i n 3-space i s h 4-space. not equiva- The s t a t i c problem i s s o l v a b l e i n any l e n t t o t h e s t a t i c problem i . a r e obviously much recognizing whether any two b f n t o be s o l v a b l e ( s e q u e n t i a l l y ) i n Even a seemingly simple problem, namely, given l i n e s i n R o ( n L ) time [Do]. 3 i n t e r s e c t , i s not known It i s t h e r e f o r e i n t e r e s t i n g t h a t o u r dynamic s m a l l e s t ba 1 problem can be solved ( s e q u e n t i a l l y ) i n 4 2 2 O(n l o g n l o g l o g n ) time p r o b a b i l i s t i c a l l y , i n O(n l o g n ( l o g l o g n ) ) These a l g o r i t h m s r e l y on ou b a l l problem. 2. R~ Problems of computational geometry i n f i x e d dimension i n 1 p a r a l l e l algorithms f o r E x i s t e n c e of poly-log a l d o r i t h m s f o r d - v a r i a b l e LP time. and s t a t i c s m a l l e s t LP The e x i s t e n c e of polyelog a l g o r i t h m s f o r d - v a r i a b l e LP f o l l o w s from o u r ( s e q u e n t i a l ) l i n e a r - t i m e algclrithms [M3]. A p a r a l l e l implementation runs i n d O(1og n) paper. f o r any d. However, we improve t h i s bound s u b s t a n t i a l l y i n t h e p r e s e n t .i,id < 3) . Our paper on t h e seq e n t i a l c a s e [M3] i s c u r r e n t l y not i n t h e form of a p u b l i c a t i o n ( s e e [M21 f o r - The r e s u l t i s c e r t a i n l y a no.- trivial e x t e n s i o n of [ ~ 2 ]and necessiltates a t l e a s t a b r i e f o u t l i n e h e r e . The a l g o r i t h m r e c u r s e s on t h e dimension. Q the constraints a r e c l a s s i f i e First, i n t o t h r e e types and w i t h i n each type we a r r a n g e t h e c o n s t r a i n t s i n d i s j o i n t pbirs. c r i t i c a l hyperplane. It works a s follows. F o r each p a i r we compute a n e q u a t i o n of a A l l t h i k work r e q u i r e s c o n s t a n t - time on n processors. The next s t e p r e q u i r e s p a r t i t i o n i n g t h e hyperplanes i n t o two s e t s according t o r t h e s l o p e of t h e i r i n t e r s e c t i n w i t h t h e f i n d i n g t h e median s l o p e . time [BH, V ] . (xl,x2)-subspace. W e can do i t d e t e r m i n i s t i c a l l y i n i This i n v o l v e s O(1ogn loglogn) P r o b a b i l i s t i c a l y , t h e s l o p e of a random hyperplane t u r n s o u t t o be a s y m p t o t i c a l l y a s good As t h e median. Given t h e p a r t i t i o n of t h e hyperplanes, we match those w i t h "high" s l o p e w i t h those w i t h "low" s l o p e - ( t h e matching i s n o t p e r f e c t i n t h e p r o b a b i l i s t i c c a s e ) . matched h y p e r p l a n e s , w e produce two o t h e r hyperplanes: x1 from t h e e q u a t i o n s and a n o t h e r one by e l i m i n a t i n g constant-time. Let x* x* x2. This a l s o t a k e s relative to > 0 ) , t h e r e b y d i s c a r d i n g Ben c o n s t r a i n t s . (B = B(d) one by e l i m i n a t i n g The b a s i c i d e a i s t h a t denote t h e s o l u t i o n p o i n t . w e o b t a i n i n f o r m a t i o n a b o u t t h e p o s i t i o n of F o r each p a i r of Ben hyperplanes Repeating t h i s procedure times reduces t h e number of c o n s t r a i n t s i n such a way t h a t w e c a n then O(1ogn) s o l v e t h e problem i n one s t e p . Ben hyperplanes i s acquired r e c u r s i v e l y ( r e l a t i v e The i n f o r m a t i o n about to d). which We f i r s t o b t a i n information about xl i.e., was e l i m i n a t e d and then about those w i t h x eliminated. 2 B ( d - l ) * n of t h e hyperplanes from 2 (B(d-1)) n of t h e i r c o u n t e r p a r t s , T h i s s t e p r e q u i r e s , by i n d u c t i o n , O(1og time, s o t h a t we c a n s o l v e t h e d-dimensional problem i n d O(1og n) d- 1 n) time. Improvements w i l l b e d i s c u s s e d below. Improvement of t h e two-variable a l g o r i t h m 3. We now d e s c r i b e a p a r a l l e l a l g o r i t h m f o r 2 - v a r i a b l e O(1ogn loglogn) dimension, y _> a.x+b - 1 i 2 O(1og n) time, and hence improves upon t h e from t h e g e n e r a l c a s e . LP bound which follows By i n d u c t i o n , t h i s a l s o improves t h e bound f o r g e n e r a l Assume, f o r s i m p l i c i t y , o u r problem i s t o minimize (i=l,...,n). y subject to This problem encompasses t h e t y p i c a l o p e r a t i o n s r e q u i r e d f o r s o l v i n g any 2 - v a r i a b l e LP. s o we a r e s e e k i n g a n which runs i n x* where f Let f ( x ) = ~ a x { a . x + b ~ :i = I , . 1 ..,n], i s minimized. Our a l g o r i t h m i s based on V a l i a n t ' s p a r a l l e l maximum-finding [ V ] , u t i l i z i n g a technique we have developed i n [MI]. O(log1ogn) phases. i t i s known t h a t Phase k The a l g o r i t h m c o n s i s t s of s t a r t s with a subset f (x*) = Max{aix*+bi: irN ) k N k c (1,. (even though ..,n) x* f o r which itself is n o t known). and n s i n g l e e v a l u a t i o n of w e form k q = 1 ~ ~ 1 The amount of work s o f a r i s c o n s t a n t ( s e e [SV'J). f x r [%,Pk] a t an takes Thus, we can simultaneously e v a l u a t e [~p$ i n ~O(log1og ] [a B ] k' k O(logn/log(nlnk)) time. rj) O(log1og nk) f at n/nk time on A q p o i n t s of T h i s i m p l i e s t h a t , once t h e i n t e r s e c t i o n p o i n t s are sorted (requires t i m e ) , w e can i n O(1ogn) s t e p s (each c o n s i s t i n g of n/nk f-evaluations) find a [ u ~ + $k+l] ~ , C[%,Bk] which c o n t a i n s x* and no i n t e r s e c t i o n ,k S i n c e q = 0(n/2' ), i t f o l l o w s t h a t t h e e n t i r e point l i e s i n i t s i n t e r i o r . e f f o r t of phase k is O(1ogn + (loglog(n/2 2k ) ) ( l o g n ) / 2 k ) . S i n c e k 5 - loglogn, i t follows t h a t the t o t a l e f f o r t i s 4. During phase F o r each p a i r w e f i n d t h e i n t e r s e c t i o n p o i n t of the participating lines. subinterval 1. A t t h e end of t h e phase each c l i q u e c o n t r i b u t e s p r e c i s e l y one l i n e t o t h e next s e t who l i e i n k < x* 5- Bk a r c s , which c o n s i s t s of p a i m i s e d i s j o i n t c l i q u e s whose c a r d i n a l i t i e s d i f f e r by a t most one. processors. i s known such t h a t ok The p a i r s a r e determined by a graph on p a i r s of l i n e s from Nk. n $ 1 k' k ~ c N ~f o]r a l l x r 19,B f (x) = Max[aix+bi: nodes and [ Moreover, an i n t e r v a l O(1ogn loglogn). P r o b a b i l i s t i c two-variable a l g o r i t h m I n t h i s s e c t i o n we i n d i c a t e a p r o b a b i l i s t i c 2-variable LP maximum of n which can r u n on t h e WRAM model. numbers a . s . in we t a k e a random sample of This t a k e s constant-time. O(1) O(1ogn) algorithm f o r It i s based on f i n d i n g t h e time on t h e WRAM model [M4]. S p e c i f i c a l l y , l i n e s and f i n d a l l t h e i r p o i n t s of i n t e r s e c t i o n . We now wish t o Locate x* i n an i n t e r v a l [a,$] t h a t c o n t a i n s no i n t e r s e c t i o n p o i n t i n i t s i n t e r i o r , s o t h a t t h e samplemaximum w i l l be known a t # (and i n f a c t over t h e e n t i r e [a,?]). This i s c a r r i e d o u t by a random s e a r c h over t h e s e t of i n t e r s e c t i o n p o i n t s . S p e c i f i c a l l y , pick an i n t e r s e c t i o n p o i n t x a t random and e v a l u a t e f (x) - (a.s. in constant-time) and the one-sided derivatives f (x), f+(x) (also Discard a portion of the set according to the posi- a.s. in constant-time). tion of x relative to x*, as learned from f (x) and (see [M2]) f+(x) It follows that this search will take an expected number of O(1ogn) Knowing the line L which determines the sample-maximum over . evaluations. [a,$], we now find the intersection points of L with all the other lines, and search for an interval [ ~ ' , @ ' ] C [ c u ,which ~] contains x* and no such intersection point in its interior. This is done essentially in the same way we do the first search, i.e., in O(1ogn) maxirmun at x*. time. Now we know which lines lie above the sample- Their number is expected to be 0Vn) procedure unless there are less than approaching 1 (as n 0(logn) lines left. However, with probability tends to infinity), this will not repeat more than twice. When we are left with less than one search step (i.e., fi and we repeat the entire O(1ogn) lines, we f-Lnd the minimum directly in time). The entire algorithm takes an expected time. 5. Deterministic and probabilistic algorithms for d variables For improving the 3-variable case we need to conkider the 2-variable 2 case with any number p(n < - p - n ) of processors. Let r = 2pIn. The < maximum can be found in O(log((logn)/logr)) time [SV, V]. Using this result, we solve 2-variable LP deterministically in O(log(n/r)loglog(n/r) loglog (nlr) ' lognllogr) + time and probabilistically in simply 0(lognllogr) time. These bounds imply that the 3-variable case is solvable deterministically 2 in O(1og n loglogn) time and probabilistically in O(1ogn loglogn) These bounds are then generalized to O(logd-'n and 0(logn(loglogn)d'2) time. loglogn) deterministically, probabilistically. The difference, which becomes more and more dramatic as d increases, is due to the fact that a random s e a r c h (which i s a s y m p t o t i c a l l y a s good a s a d e t e r m i n i s t i c one) does n o t r e q u i r e median-finding. The l a t t e r i s a r e l a t i v e l y c o s t l y o p e r a t i o n when we a r e dealing with d e t e r m i n i s t i c p a r a l l e l algorithms. 6. The optimal e x p l o s i o n problem We c o n s i d e r t h e following problem: Given a r e n objects, flying i n Find a time and a 3-space a t v a r i o u s speeds w i t h s t r a i g h t l i n e t r a j e c t o r i e s . This b a l l determines p l a c e a t which a s m a l l e s t b a l l encloses a l l t h e o b j e c t s . t h e s i z e of t h e s m a l l e s t bomb t h a t can d e s t r o y a l l t h e o b j e c t s , and t h e optimal time and p l a c e f o r t h e explosion. This problem i s finding the smallest b a l l enclosing n e q u i v a l e n t t o t h a t of p o i n t s i n 4-space. Also, a r e l a t e d n problem of f i n d i n g t h e s m a l l e s t b a l l t h a t touches a l l t h e (i.e., trajectories each o b j e c t touches t h e b a l l a t some time) i s e a s i e r than our p r e s e n t problem. The " s t a t i c " problems of s m a l l e s t b a l l s can be solved i n l i n e a r - t i m e , A whenever t h e dimension i s f i x e d , by methods resembling those of [M3]. seemingly r e l a t e d problem, namely, recognizing whether any two of n l i n e s i n R~ o(n2) time [Do]. i n t e r s e c t , i s c u r r e n t l y not known t o be s o l v a b l e i n given It i s t h u s i n t e r e s t i n g t h a t o u r optimal explosion problem c a n b e solved i n ( s e q u e n t i a l ) 2 2 O(n l o g n(1oglogn) ) 4 O(n log n loglogn) probabilistically. follow by combining two powerful r e s u l t s : time d e t e r m i n i s t i c a l l y and However, t h e s e low-order c o m p l e x i t i e s ( i ) t h e g e n e r a l scheme of u s i n g p a r a l l e l a l g o r i t h m s i n t h e d e s i g n of s e r i a l ones, a s proposed i n [MI], and ( i i ) R 3 . f a s t p a r a l l e l a l g o r i t h m s f o r t h e s t a t i c s m a l l e s t b a l l problem i n The bound c a n b e improved i f randomization i s allowed. Following i s a b r i e f s k e t c h of t h e a l g o r i t h m . Let r a d i u s of t h e s m a l l e s t b a l l e n c l o s i n g t h e o b j e c t s a t time F(t) i s convex and we know how t o e v a l u a t e i t a t any t F(t) t. denote t h e The f u n c t i o n i n O(n) time IE.131. Moreover, w e develop i n t h e p r e s e n t paper a p a r a l l e l a l g o r i t h m f o r e v a l u a t i n g F(t) t*. in 3 O(1og n l o g l o g n ) t i m e with n processors. Denote t h e minimum by Simulating t h i s p a r a l l e l a l g o r i t h m , w e can run i n with n o t s p e c i f i e d b u t confined t o a n i n t e r v a l t yk(% < yk T y p i c a l l y , t h e r e w i l l a l s o be a v a l u e q < and F(B ) > F(y ) (and t h e r e f o r e k k t r [ ak , Y k ) i s t h e same f o r a l l t* < q). and f o r a l l may produce a s m a l l number (independent of 3 O(1og n loglogn) [ak,Bk] < Bk) during s t a g e such t h a t F(%) for is such t h a t j [ak+l, Bkcl] .., < tm= Bk, ak = tl C F(t 5-1 > F(t ) = [ t j - l , tj+l] search1' over t h e s e t (tl,. However, i t f o l l o w s t h a t m [ y ,$ I), and ) . tr[yk,Pk]. However, each p r o c e s s o r t n) of c r i t i c a l v a l u e s of > F(tj). which Denoting A ) , w e then search (yk = t Af o r sane F(tj+l) > F(yk) The next i n t e r v a l S i n c e F i s convex, we can perform a "Fibonacci ..,tm ) which amounts t o <- 1811, two p a i r s of polynomials of a n o t h e r over J k. The t a s k of each p r o c e s s o r determine how t h e a l g o r i t h m should proceed i n t h e succeeding s t a g e . t h e s e v a l u e s by stages O(1ogm) e v a l u a t i o n s of s i n c e each p r o c e s s o r may need t o compare and t h e r e b y producing a t most 18 c r i t i c a l v a l u e s . The k k e f f o r t per s t a g e i s t h e r e f o r e of d e g r e e 9 ,Y ) t F. O(n logn) (one p a i r over and t h e t o t a l i s [ ak k 4 O(n l o g n l o g l o g n ) . We should mention t h a t t h i s i s i n f a c t t h e number of times we may need t o s o l v e s i n g l e - v a r i a b l e polynomial e q u a t i o n s of d e g r e e n o t g r e a t e r than 9. t h e e f f o r t involved i n s o l v i n g a s i n g l e e q u a t i o n i s independent of However, n. A p r o b a b i l i s t i c a l g o r i t h m , based on p r o b a b i l i s t i c a l l y f i n d i n g a s t a t i c 2 smallest b a l l i n O(logn(log1ogn) ) a probabilistic 2 2 O(n l o g n(log1ogn) ) problem. p a r a l l e l t i m e , i s u t i l i z e d i n designing sequential algorithm f o r the explosion 8 References A. Borodin and J. E. Hopcroft, "Routing, merging and s o r t i p a r a l l e l models of computation," STOC 1982, 338-344. Dantzig, L i n e a r programming and e x t e n s i o n s , P r i n c e t o n U n i v e r s i t y P r e s s , P r i n c e t o n , N J , 1963. G. B. D. Dobkin, p r i v a t e communication, November 1982. D. Dobkin, R. J. L i p t o n and S. R e i s s , "Linear programming i s log-space h a r d f o r P," Snf. Proc. L e t t 8 (1979) 96-97. L. M. Goldschlager, R. A. Shaw and J. S t a p l e s , "The maximum flow problem i s l o g space complete f o r P," ~ h e b r . ~ o m p . S c i . 21 (1982) 105-111. L. G . Khachiyan, "A polynomial a l g o r i t h m i n l i n e a r programming," S o v i e t Math. Pokl. 20 (1979) 191-194. N. Megiddo, "Applying p a r a l l e l computation a l g o r i t h m s i n t h e d e s i g n of s e r i a l a l g o r i t h m s , " FOCS 1981, 399-408. N. Megiddo, "Linear-time a l g o r i t h m s f o r l i n e a r programming i n R~ and r e l a t e d problems," FOCS 1982, 329-338. N. Megiddo, "Solving l i n e a r programming i n l i n e a r time when t h e dimension i s f i x e d , " r e s e a r c h r e p o r t , A p r i l 1982. N. Megiddo, " P a r a l l e l a l g o r i t h m s f o r f i n d i n g t h e maximum and t h e median almost s u r e l y i n constant-time" ( p r e l i m i n a r y r e p o r t ) October 1982. Y. Shiloach and U. Vishkin, "Finding t h e maximum, merging and s o r t i n g i n a p a r a l l e l computation mode1,'l J. Algorithms 2 (1981) 88-102. L. G. V a l i a n t , " P a r a l l e l i s m i n comparison problems," S U M J. Comput. 4 (1975) 348-355. B. Yamnitsky and L. A. Levin, "An o l d l i n e a r programming a l g o r i t h m works i n polynomial t i m e , " FOCS 1982, 327-328.