XMC1200 Microcontroller Series for Industrial Applications XMC1000 Family ARM® Cortex™-M0 32-bit processor core Data Sheet V1.4 2014-05 Microcontrollers Edition 2014-05 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. XMC1200 Microcontroller Series for Industrial Applications XMC1000 Family ARM® Cortex™-M0 32-bit processor core Data Sheet V1.4 2014-05 Microcontrollers XMC1200 XMC1000 Family XMC1200 Data Sheet Revision History: V1.4 2014-05 Previous Version: V1.3 Page Subjects Page 11 ADC channels of Table 2 is updated. Table 3 is added. Page 12 Description for Chip Identification Number of Section 1.4 is updated. Page 10 A new variant XMC1200-T038 is included in Table 1, Table 2 and Table 4. Page 20 The pad type is corrected for P1.6 in Table 6. Page 32 The tC12 , fC12, tC10, fC10, tC8 and fC8 parameters are updated in Table 12. Page 35 Figure 9 is added. Page 38 The tSR and tTSAL parameters are updated in Table 15. Page 41 Parameter name for tPSER is updated. The NWSFLASH parameter and test condition for tRET are added to Table 18. Page 44 The min value for VDDPBO parameter is added to Table 20. Footnote 1 is updated. Page 46 The ΔfLTT parameter is added to Table 21. Page 47 Figure 15 is added. Trademarks C166™, TriCore™ and DAVE™ are trademarks of Infineon Technologies AG. ARM®, ARM Powered® and AMBA® are registered trademarks of ARM, Limited. Cortex™, CoreSight™, ETM™, Embedded Trace Macrocell™ and Embedded Trace Buffer™ are trademarks of ARM, Limited. We Listen to Your Comments Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] Data Sheet V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Table of Contents Table of Contents 1 1.1 1.2 1.3 1.4 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Device Type Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chip Identification Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 2.1 2.2 2.2.1 2.2.2 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Pin Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port I/O Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 14 16 20 23 3 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.7.1 3.3.7.2 3.3.7.3 Electrical Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog to Digital Converters (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . Out of Range Comparator (ORC) Characteristics . . . . . . . . . . . . . . . . . Analog Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Sensor Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Rise/Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Up and Supply Threshold Charcteristics . . . . . . . . . . . . . . . . . . On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Wire Debug Port (SW-DP) Timing . . . . . . . . . . . . . . . . . . . . . . . SPD Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peripheral Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous Serial Interface (USIC SSC) Timing . . . . . . . . . . . . . . Inter-IC (IIC) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inter-IC Sound (IIS) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . 26 26 26 27 28 29 29 32 36 37 38 39 41 42 42 43 44 46 48 49 50 50 53 55 4 4.1 4.1.1 4.2 Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 57 57 59 Data Sheet 5 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Table of Contents 5 Data Sheet Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family About this Document About this Document This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1200 series devices. The document describes the characteristics of a superset of the XMC1200 series devices. For simplicity, the various device types are referred to by the collective term XMC1200 throughout this document. XMC1000 Family User Documentation The set of user documentation includes: • • • Reference Manual – decribes the functionality of the superset of devices. Data Sheets – list the complete ordering designations, available features and electrical characteristics of derivative devices. Errata Sheets – list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices. Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device. Application related guidance is provided by Users Guides and Application Notes. Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents. Data Sheet 7 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Summary of Features 1 Summary of Features The XMC1200 devices are members of the XMC1000 family of microcontrollers based on the ARM Cortex-M0 processor core. The XMC1200 series devices are optimized for LED Lighting and Human-Machine interface (HMI) applications. Cortex-M0 CPU Analog system EVR 2 x DCO Debug system NVIC SWD SPD ANACTRL SFRs PRNG 16-bit APB Bus Temperature sensor AHB to APB Bridge PAU AHB-Lite Bus Flash SFRs 200k + 0.5k1) Flash PORTS CCU40 ACMP & ORC 16k SRAM WDT USIC0 BCCU0 8k ROM SCU VADC LEDTS0 ERU0 LEDTS1 RTC Memories 1) 0.5kbytes of sector 0 (readable only). Figure 1 System Block Diagram CPU Subsystem • CPU Core – High Performance 32-bit ARM Cortex-M0 CPU – Most of 16-bit Thumb instruction set – Subset of 32-bit Thumb2 instruction set Data Sheet 8 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Summary of Features • • – High code density with 32-bit performance – Single cycle 32-bit hardware multiplier – System timer (SysTick) for Operating System support – Ultra low power consumption Nested Vectored Interrupt Controller (NVIC) Event Request Unit (ERU) for programmable processing of external and internal service requests On-Chip Memories • • • 8 kbytes on-chip ROM 16 kbytes on-chip high-speed SRAM up to 200 kbytes on-chip Flash program and data memory Communication Peripherals • • Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces LED and Touch-Sense Controller (LEDTS) for Human-Machine interface Analog Frontend Peripherals • • • • A/D Converters, up to 12 channels, includes 2 sample and hold stages and a fast 12bit analog to digital converter with adjustable gain Up to 8 channels of out of range comparators (ORC) Up to 3 fast analog comparators (ACMP) Temperature Sensor (TSE) Industrial Control Peripherals • • Capture/Compare Units 4 (CCU4) for use as general purpose timers Brightness and Colour Control Unit (BCCU), for LED color and dimming application System Control • • • • Window Watchdog Timer (WDT) for safety sensitive applications Real Time Clock module with alarm support (RTC) System Control Unit (SCU) for system configuration and control Pseudo random number generator (PRNG), provides random data with fast generation times Input/Output Lines • • • Programmable port driver control module (PORTS) Individual bit addressability Tri-stated in input mode Data Sheet 9 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Summary of Features • • Push/pull or open drain output mode Configurable pad hysteresis On-Chip Debug Support • • Support for debug features: 4 breakpoints, 2 watchpoints Various interfaces: ARM serial wire debug (SWD), single pin debug (SPD) 1.1 Ordering Information The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code “XMC1<DDD>-<Z><PPP><T><FFFF>” identifies: • • • • • <DDD> the derivatives function set <Z> the package variant – T: TSSOP – Q: VQFN <PPP> package pin count <T> the temperature range: – F: -40°C to 85°C – X: -40°C to 105°C <FFFF> the Flash memory size. For ordering codes for the XMC1200 please contact your sales representative or local distributor. This document describes several derivatives of the XMC1200 series, some descriptions may not apply to a specific product. Please see Table 1. For simplicity the term XMC1200 is used for all derivatives throughout this document. 1.2 Device Types These device types are available and can be ordered through Infineon’s direct and/or distribution channels. Table 1 Synopsis of XMC1200 Device Types Derivative Package Flash Kbytes SRAM Kbytes XMC1201-T038F0016 PG-TSSOP-38-9 16 16 XMC1201-T038F0032 PG-TSSOP-38-9 32 16 XMC1201-T038F0064 PG-TSSOP-38-9 64 16 XMC1201-T038F0128 PG-TSSOP-38-9 128 16 XMC1201-T038F0200 PG-TSSOP-38-9 200 16 Data Sheet 10 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Summary of Features Table 1 Synopsis of XMC1200 Device Types (cont’d) Derivative Package Flash Kbytes SRAM Kbytes XMC1200-T038F0200 PG-TSSOP-38-9 200 16 XMC1202-T028X0016 PG-TSSOP-28-16 16 16 XMC1202-T028X0032 PG-TSSOP-28-16 32 16 XMC1202-T016X0016 PG-TSSOP-16-8 16 16 XMC1202-T016X0032 PG-TSSOP-16-8 32 16 XMC1202-Q024X0016 PG-VQFN-24-19 16 16 XMC1202-Q024X0032 PG-VQFN-24-19 32 16 XMC1201-Q040F0016 PG-VQFN-40-13 16 16 XMC1201-Q040F0032 PG-VQFN-40-13 32 16 XMC1201-Q040F0064 PG-VQFN-40-13 64 16 XMC1201-Q040F0128 PG-VQFN-40-13 128 16 XMC1201-Q040F0200 PG-VQFN-40-13 200 16 XMC1202-Q040X0016 PG-VQFN-40-13 16 16 XMC1202-Q040X0032 PG-VQFN-40-13 32 16 1.3 Device Type Features The following table lists the available features per device type. Table 2 Features of XMC1200 Device Types1) Derivative ADC channel ACMP BCCU LEDTS XMC1200-T038 16 3 1 2 XMC1201-T038 16 - - 2 XMC1202-T028 14 3 1 - XMC1202-T016 11 2 1 - XMC1202-Q024 13 3 1 - XMC1201-Q040 16 - - 2 XMC1202-Q040 16 3 1 - 1) Features that are not included in this table are available in all the derivatives Data Sheet 11 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Summary of Features ADC Channels 1) Table 3 Package VADC0 G0 VADC0 G1 PG-TSSOP-16 CH0..CH5 CH0..CH4 PG-TSSOP-28 CH0..CH7 CH0 .. CH4, CH7 PG-TSSOP-38 CH0..CH7 CH0..CH7 PG-VQFN-24 CH0..CH7 CH0..CH4 PG-VQFN-40 CH0..CH7 CH1, CH5 .. CH7 1) Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port I/O Function table. 1.4 Chip Identification Number The Chip Identification Number allows software to identify the marking. It is a 8 words value with the most significant 7 words stored in Flash configuration sector 0 (CS0) at address location : 1000 0F00H (MSB) - 1000 0F1BH (LSB). The least significant word and most significant word of the Chip Identification Number are the value of registers DBGROMID and IDCHIP, respectively. Table 4 XMC1200 Chip Identification Number Derivative Value Marking XMC1201-T038F0016 00012012 01CF00FF 00001FF7 00006000 00000B00 00001000 00005000 101ED083H AA XMC1201-T038F0032 00012012 01CF00FF 00001FF7 00006000 00000B00 00001000 00009000 101ED083H AA XMC1201-T038F0064 00012012 01CF00FF 00001FF7 00006000 00000B00 00001000 00011000 101ED083H AA XMC1201-T038F0128 00012012 01CF00FF 00001FF7 00006000 00000B00 00001000 00021000 101ED083H AA XMC1201-T038F0200 00012012 01CF00FF 00001FF7 00006000 00000B00 00001000 00033000 101ED083H AA XMC1200-T038F0200 00012012 01CF00FF 00001FF7 0000E000 00000B00 00001000 00033000 101ED083H AA XMC1202-T028X0016 00012023 01CF00FF 00001FF7 00008000 00000B00 00001000 00005000 101ED083H AA XMC1202-T028X0032 00012023 01CF00FF 00001FF7 00008000 00000B00 00001000 00009000 101ED083H AA Data Sheet 12 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Summary of Features Table 4 XMC1200 Chip Identification Number (cont’d) Derivative Value Marking XMC1202-T016X0016 00012033 01CF00FF 00001FF7 00008000 00000B00 00001000 00005000 101ED083H AA XMC1202-T016X0032 00012033 01CF00FF 00001FF7 00008000 00000B00 00001000 00009000 101ED083H AA XMC1202-Q024X0016 00012063 01CF00FF 00001FF7 00008000 00000B00 00001000 00005000 101ED083H AA XMC1202-Q024X0032 00012063 01CF00FF 00001FF7 00008000 00000B00 00001000 00009000 101ED083H AA XMC1201-Q040F0016 00012042 01CF00FF 00001FF7 00006000 00000B00 00001000 00005000 101ED083H AA XMC1201-Q040F0032 00012042 01CF00FF 00001FF7 00006000 00000B00 00001000 00009000 101ED083H AA XMC1201-Q040F0064 00012042 01CF00FF 00001FF7 00006000 00000B00 00001000 00011000 101ED083H AA XMC1201-Q040F0128 00012042 01CF00FF 00001FF7 00006000 00000B00 00001000 00021000 101ED083H AA XMC1201-Q040F0200 00012042 01CF00FF 00001FF7 00006000 00000B00 00001000 00033000 101ED083H AA XMC1202-Q040X0016 00012043 01CF00FF 00001FF7 00008000 00000B00 00001000 00005000 101ED083H AA XMC1202-Q040X0032 00012043 01CF00FF 00001FF7 00008000 00000B00 00001000 00009000 101ED083H AA Data Sheet 13 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family General Device Information 2 General Device Information This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping. 2.1 Logic Symbols V DDP VSSP VDDP VSSP (2) (2) (1) (1) XMC1200 TSSOP -38 Port 0 16 bit Port 0 12 bit Port 1 6 bit Port 1 4 bit XMC1200 Port 2 4 bit TSSOP -28 Port 2 8 bit Port 2 4 bit Port 2 6 bit VDDP V SSP (1) (1) Port 0 8 bit XMC1200 Port 2 3 bit TSSOP-16 Port 2 3 bit Figure 2 Data Sheet XMC1200 Logic Symbol for TSSOP-38, TSSOP-28 and TSSOP-16 14 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family General Device Information V DD VSS VDDP VSSP (1) (1) (2) (1) V DDP VSSP (1) (1) Port 0 10 bit Port 0 16 bit XMC1200 VQFN-40 Port 1 7 bit XMC1200 VQFN-24 Port 2 4 bit Data Sheet Port 2 4 bit Port 2 4 bit Port 2 8 bit Figure 3 Port 1 4 bit XMC1200 Logic Symbol for VQFN-24 and VQFN-40 15 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family General Device Information 2.2 Pin Configuration and Definition The following figures summarize all pins, showing their locations on the different packages. P2.4 1 38 P2.3 Top View Figure 4 Data Sheet P2.5 2 37 P2.2 P2.6 3 36 P2.1 P2.7 4 35 P2.0 P2.8 5 34 P0.15 P2.9 6 33 P0.14 P2.10 7 32 P0.13 P2.11 8 31 P0.12 VSSP /VSS 9 30 P0.11 VDDP/VDD 10 29 P0.10 P1.5 11 28 P0.9 P1.4 12 27 P0.8 P1.3 13 26 VDDP P1.2 14 25 VSSP P1.1 15 24 P0.7 P1.0 16 23 P0.6 P0.0 17 22 P0.5 P0.1 18 21 P0.4 P0.2 19 20 P0.3 XMC1200 PG-TSSOP-38 Pin Configuration (top view) 16 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family General Device Information P2.6 1 28 P2.5 Top View Figure 5 P2.7 2 27 P2.2 P2.8 3 26 P2.1 P2.9 4 25 P2.0 P2.10 5 24 P0.15 P2.11 6 23 P0.14 VSSP /VSS 7 22 P0.13 VDDP/VDD 8 21 P0.12 P1.3 9 20 P0.10 P1.2 10 19 P0.9 P1.1 11 18 P0.8 P1.0 12 17 P0.7 P0.0 13 16 P0.6 P0.4 14 15 P0.5 XMC1200 PG-TSSOP-28 Pin Configuration (top view) P2.7/P2.8 1 16 P2.6 Top View Figure 6 Data Sheet P2.9 2 15 P2.0 P2.10 3 14 P0.15 P2.11 4 13 P0.14 VSSP/VSS 5 12 P0.9 VDDP/VDD 6 11 P0.8 P0.0 7 10 P0.7 P0.5 8 9 P0.6 XMC1200 PG-TSSOP-16 Pin Configuration (top view) 17 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family P1.1 P1.0 P0.0 P0.5 P0.6 P0.7 General Device Information 18 17 16 15 14 13 12 P1.2 P0.9 20 11 P1.3 P0.12 21 10 VDDP /V DD P0.13 22 9 VSSP /V SS P0.14 23 8 P2.11 P0.15 24 7 P2.10 P2.2 4 5 6 P2.9 3 P2.7/P2.8 2 P2.6 1 P2.1 Data Sheet 19 P2.0 Figure 7 P0.8 XMC1200 PG-VQFN-24 Pin Configuration (top view) 18 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family P1.1 P1.0 P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 General Device Information 30 29 28 27 26 25 24 23 22 21 V SSP 31 20 P1.2 VDDP 32 19 P1.3 P0.8 33 18 P1.4 P0.9 34 17 P1.5 P0.10 35 16 P1.6 P0.11 36 15 VDDP P0.12 37 14 V DD P0.13 38 13 V SS P0.14 39 12 P2.11 P0.15 40 11 P2.10 7 8 9 10 P2.6 P2.7 P2.8 P2.9 6 P2.5 P2.4 P2.2 4 5 P2.3 3 P2.1 Data Sheet 2 P2.0 Figure 8 1 XMC1200 PG-VQFN-40 Pin Configuration (top view) 19 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family General Device Information 2.2.1 Package Pin Summary The following general building block is used to describe each pin: Table 5 Package Pin Mapping Description Function Package A Package B Px.y N N ... Pad Type Pad Class The table is sorted by the “Function” column, starting with the regular Port pins (Px.y), followed by the supply pins. The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package. The “Pad Type” indicates the employed pad type: • • • • • STD_INOUT (standard bi-directional pads) STD_INOUT/AN (standard bi-directional pads with analog input) High Current (high current bi-directional pads) STD_IN/AN (standard input pads with analog input) Power (power supply) Details about the pad properties are defined in the Electrical Parameters. Table 6 Package Pin Mapping Function VQFN TSSOP TSSOP VQFN TSSOP Pad Type 40 38 28 24 16 P0.0 23 17 13 15 7 STD_INOUT P0.1 24 18 - - - STD_INOUT P0.2 25 19 - - - STD_INOUT P0.3 26 20 - - - STD_INOUT P0.4 27 21 14 - - STD_INOUT P0.5 28 22 15 16 8 STD_INOUT P0.6 29 23 16 17 9 STD_INOUT P0.7 30 24 17 18 10 STD_INOUT P0.8 33 27 18 19 11 STD_INOUT P0.9 34 28 19 20 12 STD_INOUT P0.10 35 29 20 - - STD_INOUT P0.11 36 30 - - - STD_INOUT P0.12 37 31 21 21 - STD_INOUT Data Sheet 20 Notes V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family General Device Information Table 6 Package Pin Mapping Function VQFN TSSOP TSSOP VQFN TSSOP Pad Type 40 38 28 24 16 P0.13 38 32 22 22 - STD_INOUT P0.14 39 33 23 23 13 STD_INOUT P0.15 40 34 24 24 14 STD_INOUT P1.0 22 16 12 14 - High Current P1.1 21 15 11 13 - High Current P1.2 20 14 10 12 - High Current P1.3 19 13 9 11 - High Current P1.4 18 12 - - - High Current P1.5 17 11 - - - High Current P1.6 16 - - - - STD_INOUT P2.0 1 35 25 1 15 STD_INOUT /AN P2.1 2 36 26 2 - STD_INOUT /AN P2.2 3 37 27 3 - STD_IN/AN P2.3 4 38 - - - STD_IN/AN P2.4 5 1 - - - STD_IN/AN P2.5 6 2 28 - - STD_IN/AN P2.6 7 3 1 4 16 STD_IN/AN P2.7 8 4 2 5 1 STD_IN/AN P2.8 9 5 3 5 1 STD_IN/AN P2.9 10 6 4 6 2 STD_IN/AN P2.10 11 7 5 7 3 STD_INOUT /AN P2.11 12 8 6 8 4 STD_INOUT /AN VSS 13 9 7 9 5 Power Data Sheet 21 Notes Supply GND, ADC reference GND V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family General Device Information Table 6 Package Pin Mapping Function VQFN TSSOP TSSOP VQFN TSSOP Pad Type 40 38 28 24 16 Notes VDD Supply VDD, ADC reference voltage/ORC reference voltage. VDD has to be supplied with the same voltage as VDDP 14 10 8 10 6 Power VDDP 15 10 8 10 6 Power I/O port supply VSSP 31 25 - - - Power I/O port ground VDDP 32 26 - - - Power I/O port supply VSSP Exp. Pad - - Exp. Pad - Power Exposed Die Pad The exposed die pad is connected internally to VSSP. For proper operation, it is mandatory to connect the exposed pad to the board ground. For thermal aspects, please refer to the Package and Reliability chapter. Data Sheet 22 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family General Device Information 2.2.2 Port I/O Functions The following general building block is used to describe each PORT pin: Table 7 Port I/O Function Description Function Outputs ALT1 P0.0 Pn.y ALTn Inputs HWO0 HWI0 MODA.OUT MODB.OUT MODB.INA MODA.OUT Input Input MODC.INA MODA.INA MODC.INB Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value. Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad). The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources. The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin. By Pn_HWSEL, it is possible to select between different hardware “masters” (HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers. Data Sheet 23 V1.4, 2014-05 Subject to Agreement on the Use of Product Information Data Sheet Table 8 Port I/O Functions Function Outputs ALT1 ALT2 ALT3 ALT4 P0.0 ERU0. PDOUT0 LEDTS0. LINE7 ERU0. GOUT0 CCU40. OUT0 P0.1 ERU0. PDOUT1 LEDTS0. LINE6 ERU0. GOUT1 P0.2 ERU0. PDOUT2 LEDTS0. LINE5 P0.3 ERU0. PDOUT3 LEDTS0. LINE4 P0.4 BCCU0. OUT0 P0.5 P0.6 ALT5 Inputs ALT6 ALT7 HWI0 HWI1 Input Input USIC0_CH0. USIC0_CH1. LEDTS0. SELO0 SELO0 EXTENDED7 LEDTS0. TSIN7 LEDTS0. TSIN7 BCCU0. TRAPINB CCU40.IN0C CCU40. OUT1 BCCU0. OUT8 LEDTS0. EXTENDED6 LEDTS0. TSIN6 LEDTS0. TSIN6 CCU40.IN1C ERU0. GOUT2 CCU40. OUT2 VADC0. EMUX02 LEDTS0. EXTENDED5 LEDTS0. TSIN5 LEDTS0. TSIN5 CCU40.IN2C ERU0. GOUT3 CCU40. OUT3 VADC0. EMUX01 LEDTS0. EXTENDED4 LEDTS0. TSIN4 LEDTS0. TSIN4 CCU40.IN3C LEDTS0. LINE3 LEDTS0. COL3 CCU40. OUT1 VADC0. EMUX00 WWDT. LEDTS0. SERVICE_O EXTENDED3 UT LEDTS0. TSIN3 LEDTS0. TSIN3 BCCU0. OUT1 LEDTS0. LINE2 LEDTS0. COL2 CCU40. OUT0 ACMP2. OUT LEDTS0. EXTENDED2 LEDTS0. TSIN2 LEDTS0. TSIN2 BCCU0. OUT2 LEDTS0. LINE1 LEDTS0. COL1 CCU40. OUT0 USIC0_CH1. USIC0_CH1. LEDTS0. MCLKOUT DOUT0 EXTENDED1 LEDTS0. TSIN1 LEDTS0. TSIN1 SCU. VDROP HWO0 HWO1 Input Input Input Input Input CCU40.IN0B USIC0_CH1. DX0C 24 P0.7 BCCU0. OUT3 LEDTS0. LINE0 LEDTS0. COL0 CCU40. OUT1 USIC0_CH0. USIC0_CH1. LEDTS0. SCLKOUT DOUT0 EXTENDED0 LEDTS0. TSIN0 LEDTS0. TSIN0 CCU40.IN1B USIC0_CH0. USIC0_CH1. USIC0_CH1. DX1C DX0D DX1C P0.8 BCCU0. OUT4 LEDTS1. LINE0 LEDTS0. COLA CCU40. OUT2 USIC0_CH0. USIC0_CH1. LEDTS1. SCLKOUT SCLKOUT EXTENDED0 LEDTS1. TSIN0 LEDTS1. TSIN0 CCU40.IN2B USIC0_CH0. USIC0_CH1. DX1B DX1B CCU40.IN3B USIC0_CH0. USIC0_CH1. DX2B DX2B BCCU0. OUT5 LEDTS1. LINE1 LEDTS0. COL6 CCU40. OUT3 USIC0_CH0. USIC0_CH1. LEDTS1. SELO0 SELO0 EXTENDED1 LEDTS1. TSIN1 LEDTS1. TSIN1 BCCU0. OUT6 LEDTS1. LINE2 LEDTS0. COL5 ACMP0. OUT USIC0_CH0. USIC0_CH1. LEDTS1. SELO1 SELO1 EXTENDED2 LEDTS1. TSIN2 LEDTS1. TSIN2 USIC0_CH0. USIC0_CH1. DX2C DX2C P0.11 BCCU0. OUT7 LEDTS1. LINE3 LEDTS0. COL4 USIC0_CH0. MCLKOUT USIC0_CH0. USIC0_CH1. LEDTS1. SELO2 SELO2 EXTENDED3 LEDTS1. TSIN3 LEDTS1. TSIN3 USIC0_CH0. USIC0_CH1. DX2D DX2D P0.12 BCCU0. OUT6 LEDTS1. LINE4 LEDTS0. COL3 LEDTS1. COL3 USIC0_CH0. SELO3 LEDTS1. EXTENDED4 LEDTS1. TSIN4 LEDTS1. TSIN4 P0.13 WWDT. LEDTS1. SERVICE_O LINE5 UT LEDTS0. COL2 LEDTS1. COL2 USIC0_CH0. SELO4 LEDTS1. EXTENDED5 LEDTS1. TSIN5 LEDTS1. TSIN5 USIC0_CH0. DX2F USIC0_CH0. USIC0_CH0. DX0A DX1A CCU40.IN0A CCU40.IN1A CCU40.IN2A CCU40.IN3A USIC0_CH0. DX2E P0.14 BCCU0. OUT7 LEDTS1. LINE6 LEDTS0. COL1 LEDTS1. COL1 USIC0_CH0. USIC0_CH0. LEDTS1. DOUT0 SCLKOUT EXTENDED6 LEDTS1. TSIN6 LEDTS1. TSIN6 P0.15 BCCU0. OUT8 LEDTS1. LINE7 LEDTS0. COL0 LEDTS1. COL0 USIC0_CH0. USIC0_CH1. LEDTS1. DOUT0 MCLKOUT EXTENDED7 LEDTS1. TSIN7 LEDTS1. TSIN7 USIC0_CH0. DX0B P1.0 BCCU0. OUT0 CCU40. OUT0 LEDTS0. COL0 LEDTS1. COLA ACMP1. OUT USIC0_CH0. DOUT0 USIC0_CH0. HWIN0 USIC0_CH0. DX0C USIC0_CH0. DOUT0 P1.1 VADC0. EMUX00 CCU40. OUT1 LEDTS0. COL1 LEDTS1. COL0 USIC0_CH0. USIC0_CH1. DOUT0 SELO0 USIC0_CH0. DOUT1 USIC0_CH0. HWIN1 USIC0_CH0. USIC0_CH0. USIC0_CH1. DX0D DX1D DX2E P1.2 VADC0. EMUX01 CCU40. OUT2 LEDTS0. COL2 LEDTS1. COL1 ACMP2. OUT USIC0_CH1. DOUT0 USIC0_CH0. DOUT2 USIC0_CH0. HWIN2 USIC0_CH1. DX0B P1.3 VADC0. EMUX02 CCU40. OUT3 LEDTS0. COL3 LEDTS1. COL2 USIC0_CH1. USIC0_CH1. SCLKOUT DOUT0 USIC0_CH0. DOUT3 USIC0_CH0. HWIN3 USIC0_CH1. USIC0_CH1. DX0A DX1A P1.4 VADC0. EMUX10 USIC0_CH1. LEDTS0. SCLKOUT COL4 LEDTS1. COL3 USIC0_CH0. USIC0_CH1. SELO0 SELO1 USIC0_CH0. USIC0_CH1. DX5E DX5E P1.5 VADC0. EMUX11 USIC0_CH0. LEDTS0. DOUT0 COLA BCCU0. OUT1 USIC0_CH0. USIC0_CH1. SELO1 SELO2 USIC0_CH1. DX5F XMC1200 XMC1000 Family V1.4, 2014-05 Subject to Agreement on the Use of Product Information P0.9 P0.10 BCCU0. TRAPINA Input USIC0_CH0. USIC0_CH1. DX2A DX2A Data Sheet Table 8 Port I/O Functions (cont’d) Function Outputs ALT3 ALT4 ALT5 Inputs ALT1 ALT2 ALT6 ALT7 P1.6 VADC0. EMUX12 USIC0_CH1. LEDTS0. DOUT0 COL5 USIC0_CH0. SCLKOUT USIC0_CH0. USIC0_CH1. SELO2 SELO3 P2.0 ERU0. PDOUT3 CCU40. OUT0 ERU0. GOUT3 LEDTS1. COL5 USIC0_CH0. USIC0_CH0. DOUT0 SCLKOUT P2.1 ERU0. PDOUT2 CCU40. OUT1 ERU0. GOUT2 LEDTS1. COL6 USIC0_CH0. USIC0_CH1. DOUT0 SCLKOUT P2.2 HWO0 HWO1 HWI0 HWI1 Input Input Input Input Input Input Input ERU0.0B0 USIC0_CH0. USIC0_CH0. USIC0_CH1. DX0E DX1E DX2F Input USIC0_CH0. DX5F VADC0. G0CH5 ACMP2.INP VADC0. G0CH6 ERU0.1B0 USIC0_CH0. USIC0_CH1. USIC0_CH1. DX0F DX3A DX4A ACMP2.INN VADC0. G0CH7 ERU0.0B1 USIC0_CH0. USIC0_CH0. USIC0_CH1. ORC0.AIN DX3A DX4A DX5A P2.3 VADC0. G1CH5 ERU0.1B1 USIC0_CH0. USIC0_CH1. USIC0_CH1. ORC1.AIN DX5B DX3C DX4C P2.4 VADC0. G1CH6 ERU0.0A1 USIC0_CH0. USIC0_CH0. USIC0_CH1. ORC2.AIN DX3B DX4B DX5B P2.5 VADC0. G1CH7 ERU0.1A1 USIC0_CH0. USIC0_CH1. USIC0_CH1. ORC3.AIN DX5D DX3E DX4E USIC0_CH0. USIC0_CH0. USIC0_CH1. ORC4.AIN DX3E DX4E DX5D P2.6 ACMP1.INN VADC0. G0CH0 ERU0.2A1 P2.7 ACMP1.INP VADC0. G1CH1 ERU0.3A1 USIC0_CH0. USIC0_CH1. USIC0_CH1. ORC5.AIN DX5C DX3D DX4D P2.8 ACMP0.INN VADC0. G0CH1 ERU0.3B1 USIC0_CH0. USIC0_CH0. USIC0_CH1. ORC6.AIN DX3D DX4D DX5C 25 P2.9 ACMP0.INP ERU0. PDOUT1 CCU40. OUT2 ERU0. GOUT1 LEDTS1. COL4 ACMP0. OUT USIC0_CH1. DOUT0 P2.11 ERU0. PDOUT0 CCU40. OUT3 ERU0. GOUT0 LEDTS1. COL3 USIC0_CH1. USIC0_CH1. SCLKOUT DOUT0 ACMP.REF VADC0. G0CH2 VADC0. G1CH4 ERU0.3B0 USIC0_CH0. USIC0_CH1. USIC0_CH1. ORC7.AIN DX5A DX3B DX4B VADC0. G0CH3 VADC0. G1CH2 ERU0.2B0 USIC0_CH0. USIC0_CH0. USIC0_CH1. DX3C DX4C DX0F VADC0. G0CH4 VADC0. G1CH3 ERU0.2B1 USIC0_CH1. USIC0_CH1. DX0E DX1E XMC1200 XMC1000 Family V1.4, 2014-05 Subject to Agreement on the Use of Product Information P2.10 VADC0. G1CH0 XMC1200 XMC1000 Family Electrical Parameter 3 Electrical Parameter This section provides the electrical parameter which are implementation-specific for the XMC1200. 3.1 General Parameters 3.1.1 Parameter Interpretation The parameters listed in this section represent partly the characteristics of the XMC1200 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the “Symbol” column: • • CC Such parameters indicate Controller Characteristics, which are distinctive feature of the XMC1200 and must be regarded for a system design. SR Such parameters indicate System Requirements, which must be provided by the application system in which the XMC1200 is designed in. Data Sheet 26 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.1.2 Absolute Maximum Ratings Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 9 Absolute Maximum Rating Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Cond ition 115 °C – 125 °C – 6 V – TJ SR -40 – TS SR -40 – VDDP SR -0.3 – Voltage on any pin with respect to VSSP VIN VDDP + 0.5 V Voltage on any analog input pin with respect to VSSP VAIN -0.5 – VAREF SR IIN SR -10 – 10 mA – Absolute sum of all input currents during overload condition Σ|IIN| SR − 50 mA – Analog comparator input voltage VCM Junction temperature Storage temperature Voltage on power supply pin with respect to VSSP Input current on any pin during overload condition Data Sheet SR -0.5 – SR – -0.3 – 27 or max. 6 whichever is lower VDDP + 0.5 V – or max. 6 VDDP + 0.3 V V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.1.3 Operating Conditions The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC1200. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise. Table 10 Operating Conditions Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition °C Temp. Range F Temp. Range X Ambient Temperature TA SR -40 − 85 -40 − 105 °C Digital supply voltage1) VDDP SR fMCLK CC fPCLK CC 1.8 − 5.5 V − − 33.2 MHz CPU clock − − 66.4 MHz Peripherals clock MCLK Frequency PCLK Frequency 1) See also the Supply Monitoring thresholds, Chapter 3.3.3. Data Sheet 28 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.2 DC Parameters 3.2.1 Input/Output Characteristics Table 11 provides the characteristics of the input/output pins of the XMC1200. Table 11 Input/Output Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Min. Output low voltage on port pins (with standard pads) VOLP Output low voltage on high current pads VOLP1 Output high voltage on port pins (with standard pads) VOHP Unit Test Conditions V IOL = 11 mA (5 V) IOL = 7 mA (3.3 V) IOL = 5 mA (5 V) IOL = 3.5 mA (3.3 V) IOL = 50 mA (5 V) IOL = 25 mA (3.3 V) IOL = 10 mA (5 V) IOL = 5 mA (3.3 V) IOH = -10 mA (5 V) IOH = -7 mA (3.3 V) IOH = -4.5 mA (5 V) IOH = -2.5 mA (3.3 V) IOH = -6 mA (5 V) V IOH = -8 mA (3.3 V) V IOH = -4 mA (3.3 V) 0.19 × V CMOS Mode (5 V, 3.3 V & 2.2 V) Max. CC – 1.0 V – 0.4 V CC – 1.0 V – 0.32 V – 0.4 V – V VDDP - – V CC VDDP 1.0 0.4 Output high voltage on high current pads VOHP1 CC VDDP - – 0.32 VDDP - – 1.0 VDDP - – 0.4 Input low voltage on port VILPS pins (Standard Hysteresis) SR VIHPS SR Input high voltage on port pins (Standard Hysteresis) Input low voltage on port VILPL pins (Large Hysteresis) Data Sheet – VDDP 0.7 × – V VDDP SR 0.08 × V – VDDP 29 CMOS Mode (5 V, 3.3 V & 2.2 V) CMOS Mode (5 V, 3.3 V & 2.2 V)3) V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter Table 11 Input/Output Characteristics (Operating Conditions apply) (cont’d) Parameter Symbol Limit Values Min. Input high voltage on port pins (Large Hysteresis) VIHPL Input Hysteresis1) HYS SR Unit Test Conditions V CMOS Mode (5 V, 3.3 V & 2.2 V)3) V CMOS Mode (5 V), Standard Hysteresis V CMOS Mode (3.3 V), Standard Hysteresis V CMOS Mode (2.2 V), Standard Hysteresis Max. 0.85 × – VDDP CC 0.08 × – VDDP 0.03 × – VDDP 0.02 × – VDDP 0.5 × 0.75 × V VDDP VDDP 0.4 × 0.75 × V VDDP VDDP 0.2 × 0.65 × V VDDP VDDP CMOS Mode(5 V), Large Hysteresis CMOS Mode(3.3 V), Large Hysteresis CMOS Mode(2.2 V), Large Hysteresis Pull-up resistor on port pins RPUP CC 20 50 kohm VIN = VSSP Pull-down resistor on port pins RPDP CC 20 50 kohm VIN = VDDP Input leakage current2) IOZP CC -1 1 μA SR -5 5 mA Overload current on any IOVP pin 0 < VIN < VDDP, TA ≤ 105 °C Absolute sum of overload currents Σ|IOV| SR – 25 mA 3) Voltage on any pin during VDDP power off VPO SR – 0.3 V 4) Maximum current per pin (excluding P1, VDDP and VSS) IMP SR -10 11 mA – Maximum current per high currrent pins IMP1A SR -10 50 mA – Data Sheet 30 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter Table 11 Input/Output Characteristics (Operating Conditions apply) (cont’d) Parameter Symbol Limit Values Min. Unit Test Conditions Max. Maximum current into VDDP (TSSOP28/16, VQFN24) IMVDD1 SR – 130 mA 3) Maximum current into VDDP (TSSOP38, VQFN40) IMVDD2 SR – 260 mA 3) Maximum current out of IMVSS1 SR VSS (TSSOP28/16, VQFN24) – 130 mA 3) Maximum current out of IMVSS2 SR VSS (TSSOP38, VQFN40) – 260 mA 3) 1) Not subject to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise. 2) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. 3) Not subject to production test, verified by design/characterization. 4) Not subject to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when VDDP is powered off. Data Sheet 31 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.2.2 Analog to Digital Converters (ADC) Table 12 shows the Analog to Digital Converter (ADC) characteristics. Table 12 ADC Characteristics (Operating Conditions apply) Parameter Supply voltage range (internal reference) Symbol VDD_int SR Values Typ. Max. 1.8 – 3.0 V SHSCFG.AREF = 11B 3.0 – 5.5 V SHSCFG.AREF = 10B 3.0 – 5.5 V SHSCFG.AREF = 00B VSSP – VDDP V VDD_ext SR Analog input voltage range VAIN SR Auxiliary analog reference ground (SH0-CH0, SH1-CH0) VREFGND SR VSSP Internal reference voltage (full scale value) VREFINT CC 4.82 Switched capacitance of an analog input1) CAINS CC Total capacitance of the reference input - 0.05 Data Sheet + 0.05 – - 0.05 CAREFT CC Note / Test Condition Min. Supply voltage range (external reference) Total capacitance of an CAINT CC analog input Unit VDDP V + 0.05 5 5.18 V -40°C - 105°C 4.9 5 5.1 V 0°C - 85°C 1) – 1.2 2 pF GNCTRxz.GAINy = 00B (unity gain) – 1.2 2 pF GNCTRxz.GAINy = 01B (gain g1) – 4.5 6 pF GNCTRxz.GAINy = 10B (gain g2) – 4.5 6 pF GNCTRxz.GAINy = 11B (gain g3) – – 10 pF 1) – – 10 pF 1) 32 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter Table 12 ADC Characteristics (Operating Conditions apply) (cont’d) Parameter Symbol Values Min. Gain settings Sample Time GIN CC tsample CC 3 Unit Note / Test Condition 1 – GNCTRxz.GAINy = 00B (unity gain) 3 – GNCTRxz.GAINy = 01B (gain g1) 6 – GNCTRxz.GAINy = 10B (gain g2) 12 – GNCTRxz.GAINy = 11B (gain g3) 1/ VDDP = 5.0 V Typ. – Max. – fADC 3 – – 1/ VDDP = 3.3 V fADC 30 – – 1/ VDDP = 1.8 V fADC Sigma delta loop hold time tSD_hold CC Conversion time in fast compare mode tCF CC Conversion time in 12-bit mode tC12 CC Maximum sample rate in 12-bit mode 3) fC12 CC 20 – – 9 μs Residual charge stored in an active sigma delta loop remains available 1/ 2) fADC 20 1/ – fADC / – – 1 sample pending – 2 samples pending 1/ 2) 42.5 – fADC / – 62.5 Conversion time in 10-bit mode tC10 CC Maximum sample rate in 10-bit mode 3) fC10 CC 18 fADC – fADC / – – 1 sample pending – 2 samples pending 1/ 2) 40.5 – fADC / – 58.5 Conversion time in 8-bit mode Data Sheet 2) fADC tC8 CC 16 fADC 33 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter Table 12 ADC Characteristics (Operating Conditions apply) (cont’d) Parameter Maximum sample rate in 8-bit mode 3) Symbol fC8 CC Values Min. Typ. Max. – – fADC / Unit Note / Test Condition – 1 sample pending – 2 samples pending 38.5 – – fADC / 54.5 DNL error EADNL CC – ±2.0 – LSB 12 INL error EAINL CC – ±4.0 – LSB 12 Gain error with external EAGAIN CC reference – ±0.5 – % SHSCFG.AREF = 00B (calibrated) Gain error with internal EAGAIN CC reference – ±3.6 – % SHSCFG.AREF = 1XB (calibrated), -40°C - 105°C – ±2.0 – % SHSCFG.AREF = 1XB (calibrated), 0°C - 85°C – ±6.0 – LSB 12 Calibrated Offset error EAOFF CC 1) Not subject to production test, verified by design/characterization. 2) No pending samples assumed, excluding sampling time and calibration. 3) Includes synchronization and calibration (average of gain and offset calibration). Data Sheet 34 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter VAIN 0 VSS 1X VAREF VREFINT 00 1 VREFGND VDD SAR Converter : VAGND CH7 . . CH0 Internal Reference VDDint/ VDD VDDext CHNR REFSEL AREF MC_VADC_AREFPATHS Figure 9 Data Sheet ADC Voltage Supply 35 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.2.3 Out of Range Comparator (ORC) Characteristics The Out-of-Range Comparator (ORC) triggers on analog input voltages (VAIN) above the VDDP on selected input pins (ORCx.AIN) and generates a service request trigger (ORCx.OUT). Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 13 Out of Range Comparator (ORC) Characteristics (Operating Conditions apply; VDDP = 3.0 V - 5.5 V) Parameter Symbol Values Min. Typ. DC Switching Level VODC Hysteresis CC 60 VOHYS CC 25 tOPDD CC 103 Unit Note / Test Condition Max. − 120 − VODC mV mV Never detected Overvoltage Pulse tOPDN CC − − 21 ns − − 11 ns Detection Delay tODD CC 39 − 132 ns 31 − 121 ns Release Delay tORD CC 44 − 240 ns 57 − 340 ns VAIN ≥ VDDP + 150 mV VAIN ≥ VDDP + 350 mV VAIN ≥ VDDP + 150 mV VAIN ≥ VDDP + 350 mV VAIN ≥ VDDP + 150 mV VAIN ≥ VDDP + 350 mV VAIN ≤ VDDP; VDDP = 5 V VAIN ≤ VDDP; VDDP = 3.3 V − 300 ns ORCCTRL.ENORCx = 1 88 tOED CC − − ns − ns VODC Enable Delay − VOH YS Always detected Overvoltage Pulse − VAIN ≥ VDDP + VODC VD D P VSS ORCx.AIN ORCx.OUT tOD D Figure 10 Data Sheet tOR D ORCx.OUT Trigger Generation 36 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.2.4 Analog Comparator Characteristics Table 14 below shows the Analog Comparator characteristics. Table 14 Analog Comparator Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Min. Typ. Max. Unit Notes/ Test Conditions Input Voltage VCMP SR -0.05 – VDDP + V 0.05 Input Offset VCMPOFF CC – – mV High power mode Δ VCMP < 200 mV +/-20 – mV Low power mode2) Δ VCMP < 200 mV CC – 25 – ns High power mode, Δ VCMP = 100 mV – 80 – ns High power mode, Δ VCMP = 25 mV – 250 – ns Low power mode, Δ VCMP = 100 mV – 700 – ns Low power mode, Δ VCMP = 25 mV CC – 100 – μA First active ACMP in high power mode, ΔVCMP > 30 mV – 66 – μA Each additional ACMP in high power mode, ΔVCMP > 30 mV – 10 – μA First active ACMP in low power mode – 6 – μA Each additional ACMP in low power mode CC – 15 – mV CC – 5 – ns – Propagation Delay1)2) Current Consumption2) tPDELAY IACMP Input Hysteresis2) VHYS Filter Delay 1)2) tFDELAY +/-3 1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay. 2) Not subject to production test, verified by design. Data Sheet 37 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.2.5 Table 15 Temperature Sensor Characteristics Temperature Sensor Characteristics1) Parameter Symbol Values Min. Measurement time Temperature sensor range Sensor Accuracy 2) tM CC − TSR SR -40 TTSAL CC − Typ. Max. Unit Note / Test Condition − 10 ms − 115 °C +/20 − °C TJ = -40 °C − +/12 − °C TJ = -25 °C -5 − 5 °C -2 − 2 °C -4 − 4 °C -2 − 2 °C TJ = 0 °C TJ = 25 °C TJ = 70 °C TJ = 115 °C 1) Not subject to production test, verified by design/characterization. 2) The temperature sensor accuracy is independent of the supply voltage. Data Sheet 38 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.2.6 Power Supply Current The total power supply current defined below consists of a leakage and a switching component. Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations). Table 16 Power Supply Parameters1) Parameter Symbol Values Min. Typ. 2) Unit Note / Test Condition fMCLK = 32 MHz fPCLK = 64 MHz fMCLK = 1 MHz fPCLK = 1 MHz fMCLK = 32 MHz fPCLK = 64 MHz fMCLK = 1 MHz fPCLK = 1 MHz Max. IDDPA CC − 8.8 11.5 mA − 3.9 − mA IDDPSE CC − Sleep mode current Peripherals clock enabled4) 6.2 − mA IDDPSD CC − Sleep mode current Peripherals clock disabled5) 1.2 − mA Deep Sleep mode current6) IDDPDS CC − Active mode current3) 0.24 − mA Wake-up time from Sleep to tSSA CC Active mode7) − 6 − cycles tDSA CC − 280 − μsec Wake-up time from Deep Sleep to Active mode8) 1) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation. 2) The typical values are measured at TA = + 25 °C and VDDP = 5 V. 3) CPU and all peripherals clock enabled, Flash is in active mode. 4) CPU is sleep, all peripherals clock enabled and Flash is in active mode. 5) CPU is sleep, Flash is powered down and code executed from RAM after wake-up. 6) CPU is sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up. 7) CPU is sleep, Flash is in active mode during sleep mode. 8) CPU is sleep, Flash is in power down mode during deep sleep mode. Data Sheet 39 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter Table 17 provides the active current consumption of some modules operating at 5 V power supply at 25° C. The typical values shown are used as a reference guide on the current consumption when these modules are enabled. Table 17 Typical Active Current Consumption1) Active Current Consumption Symbol Limit Values Unit Test Condition Typ. Baseload current ICPUDDC 5.04 mA Modules including Core, SCU, PORT, memories, ANATOP2) VADC and SHS IADCDDC IUSIC0DDC ICCU40DDC ILTSxDDC IBCCU0DDC IWDTDDC IRTCDDC 3.4 mA Set CGATCLR0.VADC to 13) 0.87 mA Set CGATCLR0.USIC0 to 14) 0.94 mA Set CGATCLR0.CCU40 to 15) 0.76 mA Set CGATCLR0.LEDTSx to 16) 0.24 mA Set CGATCLR0.BCCU0 to 17) 0.03 mA Set CGATCLR0.WDT to 18) 0.01 mA Set CGATCLR0.RTC to 19) USIC0 CCU40 LEDTSx BCCU0 WDT RTC 1) Not subject to production test, verified by design/characterisation. 2) Baseload current is measured with device running in user mode, MCLK=PCLK=32 MHz, with an endless loop in the flash memory. The clock to the modules stated in CGATSTAT0 are gated. 3) Active current is measured with: module enabled, MCLK=32 MHz, running in auto-scan conversion mode 4) Active current is measured with: module enabled, alternating messages sent to PC at 57.6kbaud every 200ms 5) Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU4 slice for PWM switching from 1500Hz and 1000Hz at regular intervals, 1 CCU4 slice in capture mode for reading period and duty cycle 6) Active current is measured with: module enabled, MCLK=32 MHz, 1 LED column, 6 LED/TS lines, Pad Scheme A with large pad hysteresis config, time slice duration = 1.048 ms 7) Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, FCLK=0.8MHz, Normal mode (BCCU Clk = FCLK/4), 3 BCCU Channels and 1 Dimming Engine, change color or dim every 1s 8) Active current is measured with: module enabled, MCLK=32 MHz, time-out mode; WLB = 0, WUB = 0x00008000; WDT serviced every 1s 9) Active current is measured with: module enabled, MCLK=32 MHz, Periodic interrupt enabled Data Sheet 40 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.2.7 Flash Memory Parameters Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 18 Flash Memory Parameters Parameter Symbol tERASE CC Program time per block tPSER CC Wake-Up time tWU CC ta CC Read time per word Data Retention Time tRET CC Erase Time per page Flash Wait States 1) Unit Typ. Max. 6.8 7.1 7.6 ms 204 μs 102 152 − 32.2 − μs − 50 − ns 10 − − years NWSFLASH CC 0 0.5 − 0 1.4 − 1 1.9 − − − 5*104 cycles − − 2*106 cycles Erase Cycles per page NECYC CC Total Erase Cycles Values Min. NTECYC CC Note / Test Condition Max. 100 erase / program cycles fMCLK = 8 MHz fMCLK = 16 MHz fMCLK = 32 MHz 1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical values are calculated from the execution of the Dhrystone benchmark program. Data Sheet 41 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.3 AC Parameters 3.3.1 Testing Waveforms VD D P VSS 90% 90% 10% 10% tR Figure 11 tF Rise/Fall Time Parameters VD D P VD D P / 2 Test Points VD D P / 2 VSS Figure 12 Testing Waveform, Output Delay VL OAD + 0.1V VL OAD - 0.1V Figure 13 Data Sheet Timing Reference Points VOH - 0.1V VOL + 0.1V Testing Waveform, Output High Impedance 42 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.3.2 Output Rise/Fall Times Table 19 provides the characteristics of the output rise/fall times in the XMC1200. Figure 11 describes the rise time and fall time parameters. Table 19 Output Rise/Fall Times Parameters (Operating Conditions apply) Parameter Rise/fall times on High Current Pad1)2) Rise/fall times on Standard Pad1)2) Symbol tHCPR, tHCPF tR, tF Limit Values Unit Test Conditions Min. Max. – 9 ns 50 pF @ 5 V3) – 12 ns 50 pF @ 3.3 V4) – 25 ns 50 pF @ 1.8 V5) – 12 ns 50 pF @ 5 V6) – 15 ns 50 pF @ 3.3 V7). – 31 ns 50 pF @ 1.8 V8). 1) Rise/Fall time parameters are taken with 10% - 90% of supply. 2) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation. 3) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.150 ns/pF at 5 V supply voltage. 4) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.205 ns/pF at 3.3 V supply voltage. 5) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage. 6) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.225 ns/pF at 5 V supply voltage. 7) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.288 ns/pF at 3.3 V supply voltage. 8) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.588 ns/pF at 1.8 V supply voltage. Data Sheet 43 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.3.3 Power-Up and Supply Threshold Charcteristics Table 20 provides the characteristics of the supply threshold in XMC1200. Table 20 Power-Up and Supply Threshold Parameters (Operating Conditions apply) 1) Parameter Symbol Values VDDP ramp-up time tRAMPUP SR VDDP/ − SVDDPrise 107 μs VDDP slew rate SVDDPOP SR 0 − 0.1 V/μs Slope during normal operation SVDDP10 SR 0 − 10 V/μs Slope during fast transient within +/10% of VDDP SVDDPrise SR 0 − 10 V/μs Slope during power-on or restart after brownout event SVDDPfall2) SR 0 − 0.25 V/μs Slope during supply falling out of the +/-10% limits3) VDDPPW CC 2.1 2.25 2.4 V ANAVDEL.VDEL_ SELECT = 00B 2.85 3 3.15 V ANAVDEL.VDEL_ SELECT = 01B 4.2 4.4 4.6 V ANAVDEL.VDEL_ SELECT = 10B Min. VDDP prewarning voltage Unit Typ. Max. Note / Test Condition VDDP brownout reset voltage VDDPBO CC 1.55 1.62 1.75 V calibrated, before user code starts running Start-up time from power-on reset tSSW SR − 320 – μs Time to the first user code instruction4) 1) Not all parameters are 100% tested, but are verified by design/characterisation. 2) A capacitor of at least 100 nF has to be added between VDDP and VSSP to fulfill the requirement as stated for this parameter. Data Sheet 44 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current. 4) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 32 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated. 5.0V } VDDP VDDPPW V DDPBO Figure 14 Data Sheet Supply Threshold Parameters 45 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.3.4 On-Chip Oscillator Characteristics Table 21 provides the characteristics of the 64 MHz clock output from the digital controlled oscillator, DCO1 in XMC1200. Table 21 64 MHz DCO1 Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Nominal frequency fNOM CC 63.5 64 64.5 MHz under nominal conditions1) after trimming Accuracy ΔfLT -1.7 – 3.4 % with respect to fNOM(typ), over temperature (0 °C to 85 °C)2) -3.9 – 4.0 % with respect to fNOM(typ), over temperature (-40 °C to 105 °C)2) -1.3 – 1.25 % with respect to fNOM(typ), over temperature (TA = 0 °C to 105 °C)2) -2.6 – 1.25 % with respect to fNOM(typ), over temperature (TA = -40 °C to 105 °C)2) Min. CC Accuracy with ΔfLTT CC calibration based on temperature sensor Unit Test Conditions Typ. Max. 1) The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25 °C. 2) Not subject to production test, verified by design/characterisation. Data Sheet 46 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter Figure 15 shows the typical curves for the accuracy of DCO1, with and without calibration based on temperature sensor, respectively. 4.00 3.00 Accuracy [%] 2.00 Without calibration based on temperature sensor 1.00 With calibration based on temperature sensor 0.00 - 1.00 - 2.00 - 3.00 - 4.00 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 Temperature [ °C] Figure 15 Typical DCO1 accuracy over temperature Table 22 provides the characteristics of the 32 kHz clock output from digital controlled oscillators, DCO2 in XMC1200. Table 22 32 kHz DCO2 Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Nominal frequency fNOM CC 32.5 32.75 33 kHz under nominal conditions1) after trimming Accuracy ΔfLT CC -1.7 – 3.4 % with respect to fNOM(typ), over temperature (0 °C to 85 °C)2) -3.9 – 4.0 % with respect to fNOM(typ), over temperature (-40 °C to 105 °C)2) Min. Typ. Unit Test Conditions Max. 1) The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25 °C. 2) Not subject to production test, verified by design/characterisation. Data Sheet 47 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.3.5 Serial Wire Debug Port (SW-DP) Timing The following parameters are applicable for communication through the SW-DP interface. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 23 SWD Interface Timing Parameters(Operating Conditions apply) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. t1 SR t2 SR t3 SR 50 – 500000 ns – 50 – 500000 ns – 10 – – ns – SWDIO input hold t4 SR after SWDCLK rising edge 10 – – ns – SWDCLK high time SWDCLK low time SWDIO input setup to SWDCLK rising edge SWDIO output valid time t5 after SWDCLK rising edge CC – – 68 ns CL = 50 pF – – 62 ns CL = 30 pF t6 SWDIO output hold time from SWDCLK rising edge CC 4 – – ns t1 t2 SWDCLK t6 SWDIO (Output ) t5 t3 t4 SWDIO (Input ) Figure 16 Data Sheet SWD Timing 48 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.3.6 SPD Timing Requirements The optimum SPD decision time between 0B and 1B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs). Table 24 Optimum Number of Sample Clocks for SPD Sample Effective Remark Sample Sampling Sample Freq. Factor Clocks 0B Clocks 1B Decision Time1) 8 MHz 4 1 to 5 6 to 12 0.69 µs The other closest option (0.81 µs) for the effective decision time is less robust. 1) Nominal sample frequency period multiplied with 0.5 + (max. number of 0B sample clocks) For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are: • • Frequency deviation of the sample clock is +/- 5% Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency) Data Sheet 49 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.3.7 Peripheral Timings Note: These parameters are not subject to production test, but verified by design and/or characterization. 3.3.7.1 Synchronous Serial Interface (USIC SSC) Timing The following parameters are applicable for a USIC channel operated in SSC mode. Note: Operating Conditions apply. Table 25 USIC SSC Master Mode Timing Parameter Symbol Values Min. Unit Typ. Max. Slave select output SELO t1 active to first SCLKOUT transmit edge CC 80 − − ns Slave select output SELO t2 inactive after last SCLKOUT receive edge CC 0 − − ns CC -10 − 10 ns Receive data input t4 DX0/DX[5:3] setup time to SCLKOUT receive edge SR 80 − − ns Data input DX0/DX[5:3] t5 hold time from SCLKOUT receive edge SR 0 − − ns Data output DOUT[3:0] valid time Table 26 t3 USIC SSC Slave Mode Timing Parameter Symbol Values Min. Unit Typ. Max. t10 Select input DX2 setup to first clock input DX1 transmit edge1) SR 10 − − ns t11 SR 10 − − ns Select input DX2 hold after last clock input DX1 receive edge1) Data Sheet Note / Test Condition 50 Note / Test Condition V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter Table 26 USIC SSC Slave Mode Timing (cont’d) Parameter Symbol Values Min. Unit Typ. Max. t12 SR 10 − − ns Data input DX0/DX[5:3] hold t13 time from clock input DX1 receive edge1) SR 10 − − ns Data output DOUT[3:0] valid t14 time CC - − 80 ns Receive data input DX0/DX[5:3] setup time to shift clock receive edge1) Note / Test Condition 1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0). Data Sheet 51 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter Master Mode Timing t1 Select Output SELOx t2 Inactive Inactive Active Clock Output SCLKOUT Receive Edge First Transmit Edge t3 Last Receive Edge Transmit Edge t3 Data Output DOUT[3:0] t4 Data Input DX0/DX[5:3] t4 t5 Data valid t5 Data valid Slave Mode Timing t1 0 Select Input DX2 Clock Input DX1 t1 1 Active Inactive Receive Edge First Transmit Edge t1 2 Data Input DX0/DX[5:3] Inactive Last Receive Edge Transmit Edge t1 2 t1 3 Data valid t13 Data valid t14 t1 4 Data Output DOUT[3:0] Transmit Edge: with this clock edge, transmit data is shifted to transmit data output. Receive Edge: with this clock edge, receive data at receive data input is latched . Drawn for BRGH .SCLKCFG = 00B. Also valid for for SCLKCFG = 01B with inverted SCLKOUT signal. USIC_SSC_TMGX.VSD Figure 17 USIC - SSC Master/Slave Mode Timing Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted. Data Sheet 52 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter 3.3.7.2 Inter-IC (IIC) Interface Timing The following parameters are applicable for a USIC channel operated in IIC mode. Note: Operating Conditions apply. Table 27 USIC IIC Standard Mode Timing1) Parameter Symbol Values Unit Min. Typ. Max. Fall time of both SDA and t1 SCL CC/SR - - 300 ns Rise time of both SDA and t2 SCL CC/SR - - 1000 ns 0 - - µs 250 - - ns 4.7 - - µs 4.0 - - µs 4.0 - - µs 4.7 - - µs 4.0 - - µs 4.7 - - µs - - 400 pF Data hold time t3 Note / Test Condition CC/SR Data set-up time t4 CC/SR LOW period of SCL clock t5 CC/SR HIGH period of SCL clock t6 CC/SR t7 Hold time for (repeated) START condition CC/SR Set-up time for repeated START condition CC/SR Set-up time for STOP condition CC/SR t8 t9 Bus free time between a STOP and START condition t10 Capacitive load for each bus line Cb SR CC/SR 1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s. Data Sheet 53 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter Table 28 USIC IIC Fast Mode Timing 1) Parameter Symbol Values Min. Fall time of both SDA and t1 SCL CC/SR Typ. Unit Max. 20 + 0.1*Cb 300 ns 20 + 0.1*Cb 300 ns 0 - - µs 100 - - ns 1.3 - - µs 0.6 - - µs 0.6 - - µs 0.6 - - µs 0.6 - - µs 1.3 - - µs - - 400 pF Note / Test Condition 2) Rise time of both SDA and t2 SCL CC/SR Data hold time t3 CC/SR Data set-up time t4 CC/SR LOW period of SCL clock t5 CC/SR HIGH period of SCL clock t6 CC/SR t7 Hold time for (repeated) START condition CC/SR Set-up time for repeated START condition CC/SR Set-up time for STOP condition CC/SR t8 t9 Bus free time between a STOP and START condition t10 Capacitive load for each bus line Cb SR CC/SR 1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s. 2) Cb refers to the total capacitance of one bus line in pF. Data Sheet 54 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter t1 SDA t2 t4 70% 30% t1 t3 t2 t6 SCL th t7 9 clock t5 t10 S SDA t8 t7 t9 SCL th 9 clock Sr Figure 18 3.3.7.3 P S USIC IIC Stand and Fast Mode Timing Inter-IC Sound (IIS) Interface Timing The following parameters are applicable for a USIC channel operated in IIS mode. Note: Operating Conditions apply. Table 29 USIC IIS Master Transmitter Timing Parameter Clock period Clock HIGH Symbol t1 CC t2 CC Values Min. Typ. Max. Unit Note / Test Condition VDDP ≥ 3 V VDDP < 3 V 2/fMCLK - - ns 4/fMCLK - - ns 0.35 x - - ns - - ns 0 - - ns - - 0.15 x ns t1min Clock Low t3 CC 0.35 x t1min Hold time Clock rise time t4 CC t5 CC t1min Data Sheet 55 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Electrical Parameter t1 t2 t5 t3 SCK t4 WA/ DOUT Figure 19 USIC IIS Master Transmitter Timing Table 30 USIC IIS Slave Receiver Timing Parameter Symbol t6 SR t7 SR Clock period Clock HIGH Values Unit Min. Typ. Max. 4/fMCLK - - ns 0.35 x - - ns - - ns - - ns - - ns Note / Test Condition t6min t8 SR Clock Low 0.35 x t6min t9 SR Set-up time 0.2 x t6min t10 SR Hold time 10 t6 t7 t8 SCK t9 t10 WA/ DIN Figure 20 Data Sheet USIC IIS Slave Receiver Timing 56 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Package and Reliability 4 Package and Reliability The XMC1200 is a member of the XMC1000 Derivatives of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies. Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the exposed die pad may vary. If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration. 4.1 Package Parameters Table 31 provides the thermal characteristics of the packages used in XMC1200. Table 31 Thermal Characteristics of the Packages Parameter Symbol Limit Values Unit Package Types Min. Max. Exposed Die Pad Dimensions Ex × Ey CC - 2.7 × 2.7 mm PG-VQFN-24-19 - 3.7 × 3.7 mm PG-VQFN-40-13 Thermal resistance Junction-Ambient RΘJA CC - 104.6 K/W PG-TSSOP-16-81) - 83.2 K/W PG-TSSOP-28-161) - 70.3 K/W PG-TSSOP-38-91) - 46.0 K/W PG-VQFN-24-191) - 38.4 K/W PG-VQFN-40-131) 1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered. Note: For electrical reasons, it is required to connect the exposed pad to the board ground VSSP, independent of EMC and thermal requirements. 4.1.1 Thermal Considerations When operating the XMC1200 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage. The maximum heat that can be dissipated depends on the package and its integration into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115 °C. Data Sheet 57 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Package and Reliability The difference between junction temperature and ambient temperature is determined by ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA The internal power consumption is defined as PINT = VDDP × IDDP (switching current and leakage current). The static external power consumption caused by the output drivers is defined as PIOSTAT = Σ((VDDP-VOH) × IOH) + Σ(VOL × IOL) The dynamic external power consumption caused by the output drivers (PIODYN) depends on the capacitive load connected to the respective pins and their switching frequencies. If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation: • • • • Reduce VDDP, if possible in the system Reduce the system frequency Reduce the number of output pins Reduce the load on active output drivers Data Sheet 58 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Package and Reliability 4.2 Figure 21 Data Sheet Package Outlines PG-TSSOP-38-9 59 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Package and Reliability Figure 22 Data Sheet PG-TSSOP-28-16 60 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Package and Reliability Figure 23 Data Sheet PG-TSSOP-16-8 61 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Package and Reliability Figure 24 Data Sheet PG-VQFN-24-19 62 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Package and Reliability Figure 25 PG-VQFN-40-13 All dimensions in mm. Data Sheet 63 V1.4, 2014-05 Subject to Agreement on the Use of Product Information XMC1200 XMC1000 Family Quality Declaration 5 Quality Declaration Table 32 shows the characteristics of the quality parameters in the XMC1200. Table 32 Quality Parameters Parameter Symbol Limit Values Unit Notes Min. Max. VHBM ESD susceptibility according to Human Body SR Model (HBM) - 2000 V Conforming to EIA/JESD22A114-B ESD susceptibility according to Charged Device Model (CDM) pins VCDM - 500 V Conforming to JESD22-C101-C Moisture sensitivity level MSL - 3 - JEDEC J-STD-020C SR CC Data Sheet 64 V1.4, 2014-05 Subject to Agreement on the Use of Product Information w w w . i n f i n e o n . c o m Published by Infineon Technologies AG