XMC1200 AB-Step Microcontroller Series for Industrial Applications XMC1000 Family ARM® Cortex™-M0 32-bit processor core Data Sheet V1.6 2015-04 Microcontrollers Edition 2015-04 Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. XMC1200 AB-Step Microcontroller Series for Industrial Applications XMC1000 Family ARM® Cortex™-M0 32-bit processor core Data Sheet V1.6 2015-04 Microcontrollers XMC1200 AB-Step XMC1000 Family XMC1200 Data Sheet Revision History: V1.6 2015-04 Previous Version: V1.5 Page Subjects Page 12 Chip Identification Number Table: • A new variant XMC1202-T028X0064 is added • The Chip Identification Numbers are updated with 00000C00 for every variant. Page 40 ADC Characteristics Table: • Footnote 1 is added to indicate the ADC clock frequency. • Minimum limit is changed to 2.0V, test condition for gain calibration sample time control is added for lower supply voltage range with internal reference. Page 47 Temperature Sensor Characteristics Table: • The sensor accuracy parameter limits and test conditions are updated. Page 57 DCO1 Characteristics Table: • The accuracy with calibration based on temperature sensor parameter is removed. Trademarks C166™, TriCore™ and DAVE™ are trademarks of Infineon Technologies AG. ARM®, ARM Powered® and AMBA® are registered trademarks of ARM, Limited. Cortex™, CoreSight™, ETM™, Embedded Trace Macrocell™ and Embedded Trace Buffer™ are trademarks of ARM, Limited. We Listen to Your Comments Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] Data Sheet V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Table of Contents Table of Contents 1 1.1 1.2 1.3 1.4 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Device Type Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chip Identification Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 2.1 2.2 2.2.1 2.2.2 2.2.3 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Pin Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port I/O Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardware Controlled I/O Function Description . . . . . . . . . . . . . . . . . . . 14 14 16 20 24 25 3 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.6.1 3.3.6.2 3.3.6.3 Electrical Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog to Digital Converters (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . Out of Range Comparator (ORC) Characteristics . . . . . . . . . . . . . . . . . Analog Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Sensor Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Up and Supply Monitoring Characteristics . . . . . . . . . . . . . . . . On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Wire Debug Port (SW-DP) Timing . . . . . . . . . . . . . . . . . . . . . . . SPD Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peripheral Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous Serial Interface (USIC SSC) Timing . . . . . . . . . . . . . . Inter-IC (IIC) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inter-IC Sound (IIS) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . 31 31 31 32 32 35 36 36 40 44 46 47 48 53 54 54 55 57 59 60 61 61 64 66 4 4.1 4.1.1 4.2 Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 68 68 70 Data Sheet 5 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Table of Contents 5 Data Sheet Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family About this Document About this Document This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1200 series devices. The document describes the characteristics of a superset of the XMC1200 series devices. For simplicity, the various device types are referred to by the collective term XMC1200 throughout this document. XMC1000 Family User Documentation The set of user documentation includes: • • • Reference Manual – decribes the functionality of the superset of devices. Data Sheets – list the complete ordering designations, available features and electrical characteristics of derivative devices. Errata Sheets – list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices. Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device. Application related guidance is provided by Users Guides and Application Notes. Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents. Data Sheet 7 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Summary of Features 1 Summary of Features The XMC1200 devices are members of the XMC1000 family of microcontrollers based on the ARM Cortex-M0 processor core. The XMC1200 series devices are optimized for LED Lighting and Human-Machine interface (HMI) applications. Cortex-M0 CPU Analog system EVR 2 x DCO Debug system NVIC SWD SPD ANACTRL SFRs PRNG 16-bit APB Bus Temperature sensor AHB to APB Bridge PAU AHB-Lite Bus Flash SFRs 200k + 0.5k1) Flash PORTS CCU40 ACMP & ORC 16k SRAM WDT USIC0 BCCU0 8k ROM SCU VADC LEDTS0 ERU0 LEDTS1 RTC Memories 1) 0.5kbytes of sector 0 (readable only). Figure 1 System Block Diagram CPU Subsystem • CPU Core – High-performance 32-bit ARM Cortex-M0 CPU – Most 16-bit Thumb and subset of 32-bit Thumb2 instruction set – Single cycle 32-bit hardware multiplier Data Sheet 8 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Summary of Features • • – System timer (SysTick) for Operating System support – Ultra low power consumption Nested Vectored Interrupt Controller (NVIC) Event Request Unit (ERU) for processing of external and internal service requests On-Chip Memories • • • 8 kbytes on-chip ROM 16 kbytes on-chip high-speed SRAM up to 200 kbytes on-chip Flash program and data memory Communication Peripherals • • Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces LED and Touch-Sense Controller (LEDTS) for Human-Machine interface Analog Frontend Peripherals • • • • A/D Converters – up to 12 channels – 2 sample and hold stages – fast 12-bit analog to digital converter with adjustable gain Up to 8 channels of out of range comparators (ORC) Up to 3 fast analog comparators (ACMP) Temperature Sensor (TSE) Industrial Control Peripherals • • Capture/Compare Units 4 (CCU4) as general purpose timers Brightness and Colour Control Unit (BCCU), for LED color and dimming application System Control • • • • Window Watchdog Timer (WDT) for safety sensitive applications Real Time Clock module with alarm support (RTC) System Control Unit (SCU) for system configuration and control Pseudo random number generator (PRNG) for fast random data generation Input/Output Lines • • • • • Programmable port driver control module (PORTS) Individual bit addressability Tri-stated in input mode Push/pull or open drain output mode Configurable pad hysteresis Data Sheet 9 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Summary of Features On-Chip Debug Support • • Support for debug features: 4 breakpoints, 2 watchpoints Various interfaces: ARM serial wire debug (SWD), single pin debug (SPD) 1.1 Ordering Information The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code “XMC1<DDD>-<Z><PPP><T><FFFF>” identifies: • • • • • <DDD> the derivatives function set <Z> the package variant – T: TSSOP – Q: VQFN <PPP> package pin count <T> the temperature range: – F: -40°C to 85°C – X: -40°C to 105°C <FFFF> the Flash memory size. For ordering codes for the XMC1200 please contact your sales representative or local distributor. This document describes several derivatives of the XMC1200 series, some descriptions may not apply to a specific product. Please see Table 1. For simplicity the term XMC1200 is used for all derivatives throughout this document. 1.2 Device Types These device types are available and can be ordered through Infineon’s direct and/or distribution channels. Table 1 Synopsis of XMC1200 Device Types Derivative Package Flash Kbytes SRAM Kbytes XMC1201-T038F0016 PG-TSSOP-38-9 16 16 XMC1201-T038F0032 PG-TSSOP-38-9 32 16 XMC1201-T038F0064 PG-TSSOP-38-9 64 16 XMC1201-T038F0128 PG-TSSOP-38-9 128 16 XMC1201-T038F0200 PG-TSSOP-38-9 200 16 XMC1200-T038F0200 PG-TSSOP-38-9 200 16 XMC1202-T028X0016 PG-TSSOP-28-16 16 16 XMC1202-T028X0032 PG-TSSOP-28-16 32 16 Data Sheet 10 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Summary of Features Table 1 Synopsis of XMC1200 Device Types (cont’d) Derivative Package Flash Kbytes SRAM Kbytes XMC1202-T028X0064 PG-TSSOP-28-16 64 16 XMC1202-T016X0016 PG-TSSOP-16-8 16 16 XMC1202-T016X0032 PG-TSSOP-16-8 32 16 XMC1202-Q024X0016 PG-VQFN-24-19 16 16 XMC1202-Q024X0032 PG-VQFN-24-19 32 16 XMC1201-Q040F0016 PG-VQFN-40-13 16 16 XMC1201-Q040F0032 PG-VQFN-40-13 32 16 XMC1201-Q040F0064 PG-VQFN-40-13 64 16 XMC1201-Q040F0128 PG-VQFN-40-13 128 16 XMC1201-Q040F0200 PG-VQFN-40-13 200 16 XMC1202-Q040X0016 PG-VQFN-40-13 16 16 XMC1202-Q040X0032 PG-VQFN-40-13 32 16 1.3 Device Type Features The following table lists the available features per device type. Table 2 Features of XMC1200 Device Types1) Derivative ADC channel ACMP BCCU LEDTS XMC1200-T038 16 3 1 2 XMC1201-T038 16 - - 2 XMC1202-T028 14 3 1 - XMC1202-T016 11 2 1 - XMC1202-Q024 13 3 1 - XMC1201-Q040 16 - - 2 XMC1202-Q040 16 3 1 - 1) Features that are not included in this table are available in all the derivatives Data Sheet 11 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Summary of Features ADC Channels 1) Table 3 Package VADC0 G0 VADC0 G1 PG-TSSOP-16 CH0..CH5 CH0..CH4 PG-TSSOP-28 CH0..CH7 CH0 .. CH4, CH7 PG-TSSOP-38 CH0..CH7 CH0..CH7 PG-VQFN-24 CH0..CH7 CH0..CH4 PG-VQFN-40 CH0..CH7 CH1, CH5 .. CH7 1) Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port I/O Function table. 1.4 Chip Identification Number The Chip Identification Number allows software to identify the marking. It is a 8 words value with the most significant 7 words stored in Flash configuration sector 0 (CS0) at address location : 1000 0F00H (MSB) - 1000 0F1BH (LSB). The least significant word and most significant word of the Chip Identification Number are the value of registers DBGROMID and IDCHIP, respectively. Table 4 XMC1200 Chip Identification Number Derivative Value Marking XMC1201-T038F0016 00012012 01CF00FF 00001FF7 00006000 00000C00 00001000 00005000 201ED083H AB XMC1201-T038F0032 00012012 01CF00FF 00001FF7 00006000 00000C00 00001000 00009000 201ED083H AB XMC1201-T038F0064 00012012 01CF00FF 00001FF7 00006000 00000C00 00001000 00011000 201ED083H AB XMC1201-T038F0128 00012012 01CF00FF 00001FF7 00006000 00000C00 00001000 00021000 201ED083H AB XMC1201-T038F0200 00012012 01CF00FF 00001FF7 00006000 00000C00 00001000 00033000 201ED083H AB XMC1200-T038F0200 00012012 01CF00FF 00001FF7 0000E000 00000C00 00001000 00033000 201ED083H AB XMC1202-T028X0016 00012023 01CF00FF 00001FF7 00008000 00000C00 00001000 00005000 201ED083H AB XMC1202-T028X0032 00012023 01CF00FF 00001FF7 00008000 00000C00 00001000 00009000 201ED083H AB Data Sheet 12 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Summary of Features Table 4 XMC1200 Chip Identification Number (cont’d) Derivative Value Marking XMC1202-T028X0064 00012023 01CF00FF 00001FF7 00008000 00000C00 00001000 00011000 201ED083H AB XMC1202-T016X0016 00012033 01CF00FF 00001FF7 00008000 00000C00 00001000 00005000 201ED083H AB XMC1202-T016X0032 00012033 01CF00FF 00001FF7 00008000 00000C00 00001000 00009000 201ED083H AB XMC1202-Q024X0016 00012063 01CF00FF 00001FF7 00008000 00000C00 00001000 00005000 201ED083H AB XMC1202-Q024X0032 00012063 01CF00FF 00001FF7 00008000 00000C00 00001000 00009000 201ED083H AB XMC1201-Q040F0016 00012042 01CF00FF 00001FF7 00006000 00000C00 00001000 00005000 201ED083H AB XMC1201-Q040F0032 00012042 01CF00FF 00001FF7 00006000 00000C00 00001000 00009000 201ED083H AB XMC1201-Q040F0064 00012042 01CF00FF 00001FF7 00006000 00000C00 00001000 00011000 201ED083H AB XMC1201-Q040F0128 00012042 01CF00FF 00001FF7 00006000 00000C00 00001000 00021000 201ED083H AB XMC1201-Q040F0200 00012042 01CF00FF 00001FF7 00006000 00000C00 00001000 00033000 201ED083H AB XMC1202-Q040X0016 00012043 01CF00FF 00001FF7 00008000 00000C00 00001000 00005000 201ED083H AB XMC1202-Q040X0032 00012043 01CF00FF 00001FF7 00008000 00000C00 00001000 00009000 201ED083H AB Data Sheet 13 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family General Device Information 2 General Device Information This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping. 2.1 Logic Symbols V DDP VSSP VDDP VSSP (2) (2) (1) (1) XMC1200 TSSOP -38 Port 0 16 bit Port 0 12 bit Port 1 6 bit Port 1 4 bit XMC1200 Port 2 4 bit TSSOP -28 Port 2 8 bit Port 2 4 bit Port 2 6 bit VDDP V SSP (1) (1) Port 0 8 bit XMC1200 Port 2 3 bit TSSOP-16 Port 2 3 bit Figure 2 Data Sheet XMC1200 Logic Symbol for TSSOP-38, TSSOP-28 and TSSOP-16 14 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family General Device Information V DD VSS VDDP VSSP (1) (1) (2) (1) V DDP VSSP (1) (1) Port 0 10 bit Port 0 16 bit XMC1200 VQFN-40 Port 1 7 bit XMC1200 VQFN-24 Port 2 4 bit Data Sheet Port 2 4 bit Port 2 4 bit Port 2 8 bit Figure 3 Port 1 4 bit XMC1200 Logic Symbol for VQFN-24 and VQFN-40 15 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family General Device Information 2.2 Pin Configuration and Definition The following figures summarize all pins, showing their locations on the different packages. P2.4 1 38 P2.3 Top View Figure 4 Data Sheet P2.5 2 37 P2.2 P2.6 3 36 P2.1 P2.7 4 35 P2.0 P2.8 5 34 P0.15 P2.9 6 33 P0.14 P2.10 7 32 P0.13 P2.11 8 31 P0.12 VSSP /VSS 9 30 P0.11 VDDP/VDD 10 29 P0.10 P1.5 11 28 P0.9 P1.4 12 27 P0.8 P1.3 13 26 VDDP P1.2 14 25 VSSP P1.1 15 24 P0.7 P1.0 16 23 P0.6 P0.0 17 22 P0.5 P0.1 18 21 P0.4 P0.2 19 20 P0.3 XMC1200 PG-TSSOP-38 Pin Configuration (top view) 16 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family General Device Information P2.6 1 28 P2.5 Top View Figure 5 P2.7 2 27 P2.2 P2.8 3 26 P2.1 P2.9 4 25 P2.0 P2.10 5 24 P0.15 P2.11 6 23 P0.14 VSSP /VSS 7 22 P0.13 VDDP/VDD 8 21 P0.12 P1.3 9 20 P0.10 P1.2 10 19 P0.9 P1.1 11 18 P0.8 P1.0 12 17 P0.7 P0.0 13 16 P0.6 P0.4 14 15 P0.5 XMC1200 PG-TSSOP-28 Pin Configuration (top view) P2.7/P2.8 1 16 P2.6 Top View Figure 6 Data Sheet P2.9 2 15 P2.0 P2.10 3 14 P0.15 P2.11 4 13 P0.14 VSSP/VSS 5 12 P0.9 VDDP/VDD 6 11 P0.8 P0.0 7 10 P0.7 P0.5 8 9 P0.6 XMC1200 PG-TSSOP-16 Pin Configuration (top view) 17 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family P1.1 P1.0 P0.0 P0.5 P0.6 P0.7 General Device Information 18 17 16 15 14 13 12 P1.2 P0.9 20 11 P1.3 P0.12 21 10 VDDP /V DD P0.13 22 9 VSSP /V SS P0.14 23 8 P2.11 P0.15 24 7 P2.10 P2.2 4 5 6 P2.9 3 P2.7/P2.8 2 P2.6 1 P2.1 Data Sheet 19 P2.0 Figure 7 P0.8 XMC1200 PG-VQFN-24 Pin Configuration (top view) 18 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family P1.1 P1.0 P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 General Device Information 30 29 28 27 26 25 24 23 22 21 V SSP 31 20 P1.2 VDDP 32 19 P1.3 P0.8 33 18 P1.4 P0.9 34 17 P1.5 P0.10 35 16 P1.6 P0.11 36 15 VDDP P0.12 37 14 V DD P0.13 38 13 V SS P0.14 39 12 P2.11 P0.15 40 11 P2.10 7 8 9 10 P2.6 P2.7 P2.8 P2.9 6 P2.5 P2.4 P2.2 4 5 P2.3 3 P2.1 Data Sheet 2 P2.0 Figure 8 1 XMC1200 PG-VQFN-40 Pin Configuration (top view) 19 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family General Device Information 2.2.1 Package Pin Summary The following general building block is used to describe each pin: Table 5 Package Pin Mapping Description Function Package A Package B Px.y N N ... Pad Type Pad Class The table is sorted by the “Function” column, starting with the regular Port pins (Px.y), followed by the supply pins. The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package. The “Pad Type” indicates the employed pad type: • • • • • STD_INOUT (standard bi-directional pads) STD_INOUT/AN (standard bi-directional pads with analog input) High Current (high current bi-directional pads) STD_IN/AN (standard input pads with analog input) Power (power supply) Details about the pad properties are defined in the Electrical Parameters. Table 6 Package Pin Mapping Function VQFN 40 TSSOP TSSOP VQFN 38 28 24 TSSOP Pad Type Notes 16 P0.0 23 17 13 15 7 STD_INO UT P0.1 24 18 - - - STD_INO UT P0.2 25 19 - - - STD_INO UT P0.3 26 20 - - - STD_INO UT P0.4 27 21 14 - - STD_INO UT P0.5 28 22 15 16 8 STD_INO UT P0.6 29 23 16 17 9 STD_INO UT Data Sheet 20 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family General Device Information Table 6 Package Pin Mapping Function VQFN 40 TSSOP TSSOP VQFN 38 28 24 TSSOP Pad Type Notes 16 P0.7 30 24 17 18 10 STD_INO UT P0.8 33 27 18 19 11 STD_INO UT P0.9 34 28 19 20 12 STD_INO UT P0.10 35 29 20 - - STD_INO UT P0.11 36 30 - - - STD_INO UT P0.12 37 31 21 21 - STD_INO UT P0.13 38 32 22 22 - STD_INO UT P0.14 39 33 23 23 13 STD_INO UT P0.15 40 34 24 24 14 STD_INO UT P1.0 22 16 12 14 - High Current P1.1 21 15 11 13 - High Current P1.2 20 14 10 12 - High Current P1.3 19 13 9 11 - High Current P1.4 18 12 - - - High Current P1.5 17 11 - - - High Current P1.6 16 - - - - STD_INO UT P2.0 1 35 25 1 15 STD_INO UT/AN Data Sheet 21 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family General Device Information Table 6 Package Pin Mapping Function VQFN 40 TSSOP TSSOP VQFN 38 28 24 TSSOP Pad Type Notes 16 P2.1 2 36 26 2 - STD_INO UT/AN P2.2 3 37 27 3 - STD_IN/A N P2.3 4 38 - - - STD_IN/A N P2.4 5 1 - - - STD_IN/A N P2.5 6 2 28 - - STD_IN/A N P2.6 7 3 1 4 16 STD_IN/A N P2.7 8 4 2 5 1 STD_IN/A N P2.8 9 5 3 5 1 STD_IN/A N P2.9 10 6 4 6 2 STD_IN/A N P2.10 11 7 5 7 3 STD_INO UT/AN P2.11 12 8 6 8 4 STD_INO UT/AN VSS 13 9 7 9 5 Power Supply GND, ADC reference GND VDD 14 10 8 10 6 Power Supply VDD, ADC reference voltage/ ORC reference voltage VDDP 15 10 8 10 6 Power When VDD is supplied, VDDP has to be supplied with the same voltage. Data Sheet 22 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family General Device Information Table 6 Package Pin Mapping Function VQFN 40 TSSOP TSSOP VQFN 38 28 24 TSSOP Pad Type Notes 16 VSSP 31 25 - - - Power I/O port ground VDDP 32 26 - - - Power I/O port supply VSSP Exp. Pad - - Exp. Pad - Power Exposed Die Pad The exposed die pad is connected internally to VSSP. For proper operation, it is mandatory to connect the exposed pad to the board ground. For thermal aspects, please refer to the Package and Reliability chapter. Data Sheet 23 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family General Device Information 2.2.2 Port I/O Functions The following general building block is used to describe each PORT pin: Table 7 Function Port I/O Function Description Outputs Inputs ALT1 ALTn P0.0 Pn.y Input MODA.OUT MODA.OUT Input MODC.INA MODA.INA MODC.INB Pn.y XMC1000 Control Logic PAD Input 0 MODA MODB MODB.OUT Input n HWI0 HWI1 SW Pn.y ALT1 ... ALTn HWO0 HWO1 Figure 9 VDDP ... MODA.INA GND Simplified Port Structure Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value. Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad). The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources. The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin. Please refer to the Port I/O Functions table for the complete Port I/O function mapping. Data Sheet 24 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family General Device Information 2.2.3 Hardware Controlled I/O Function Description The following general building block is used to describe the hardware I/O and pull control functions of each PORT pin: Table 8 Hardware Controlled I/O Function Description Function Outputs Inputs Pull Control P0.0 HWO0 HWI0 HW0_PD HW0_PU MODB.OUT MODB.INA MODC.OUT MODC.OUT Pn.y By Pn_HWSEL, it is possible to select between different hardware “masters” (HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers. Additional hardware signals HW0_PD/HW1_PD and HW0_PU/HW1_PU controlled by the peripherals can be used to control the pull devices of the pin. Please refer to the Hardware Controlled I/O Functions table for the complete hardware I/O and pull control function mapping. Data Sheet 25 V1.6, 2015-04 Subject to Agreement on the Use of Product Information Data Sheet 26 BCCU0. OUT7 BCCU0. OUT6 WWDT. LEDTS1. SERVICE_ LINE5 OUT BCCU0. OUT7 P0.11 P0.12 P0.13 P0.14 LEDTS1. LINE6 LEDTS1. LINE4 LEDTS1. LINE3 LEDTS1. LINE2 LEDTS1. LINE1 LEDTS1. LINE0 BCCU0. OUT6 LEDTS0. LINE0 LEDTS0. LINE1 P0.10 BCCU0. OUT2 P0.6 LEDTS0. LINE2 BCCU0. OUT5 BCCU0. OUT1 P0.5 LEDTS0. LINE3 P0.9 BCCU0. OUT0 P0.4 LEDTS0. LINE4 BCCU0. OUT4 ERU0. PDOUT3 P0.3 LEDTS0. LINE5 P0.8 ERU0. PDOUT2 P0.2 LEDTS0. LINE6 BCCU0. OUT3 ERU0. PDOUT1 P0.1 LEDTS0. LINE7 ALT2 P0.7 ERU0. PDOUT0 ALT1 LEDTS0. COL1 LEDTS0. COL2 LEDTS0. COL3 LEDTS0. COL4 LEDTS0. COL5 LEDTS0. COL6 LEDTS0. COLA LEDTS0. COL0 LEDTS0. COL1 LEDTS0. COL2 LEDTS0. COL3 ERU0. GOUT3 ERU0. GOUT2 ERU0. GOUT1 ERU0. GOUT0 ALT3 LEDTS1. COL1 LEDTS1. COL2 LEDTS1. COL3 USIC0_CH 0.MCLKOU T ACMP0. OUT CCU40. OUT3 CCU40. OUT2 CCU40. OUT1 CCU40. OUT0 CCU40. OUT0 CCU40. OUT1 CCU40. OUT3 CCU40. OUT2 CCU40. OUT1 CCU40. OUT0 ALT4 Outputs Port I/O Functions P0.0 Function Table 9 ALT5 ALT7 Input WWDT. SERVICE_ OUT SCU. VDROP USIC0_CH USIC0_CH 0.DOUT0 0.SCLKOU T USIC0_CH 0.SELO4 USIC0_CH 0.SELO3 USIC0_CH USIC0_CH 0.SELO2 1.SELO2 USIC0_CH USIC0_CH 0.SELO1 1.SELO1 USIC0_CH USIC0_CH 0.SELO0 1.SELO0 USIC0_CH USIC0_CH 0.SCLKOU 1.SCLKOU T T USIC0_CH USIC0_CH 0.SCLKOU 1.DOUT0 T USIC0_CH USIC0_CH 1.MCLKOU 1.DOUT0 T ACMP2. OUT VADC0. EMUX00 VADC0. EMUX01 VADC0. EMUX02 BCCU0. OUT8 BCCU0. TRAPINA USIC0_CH USIC0_CH BCCU0. 0.SELO0 1.SELO0 TRAPINB ALT6 Input Input Input Input USIC0_CH USIC0_CH 0.DX2D 1.DX2D USIC0_CH USIC0_CH 0.DX2C 1.DX2C USIC0_CH USIC0_CH 0.DX2B 1.DX2B USIC0_CH USIC0_CH 0.DX1B 1.DX1B USIC0_CH USIC0_CH USIC0_CH 0.DX1C 1.DX0D 1.DX1C USIC0_CH 1.DX0C USIC0_CH USIC0_CH 0.DX2A 1.DX2A Input Inputs USIC0_CH USIC0_CH 0.DX0A 0.DX1A USIC0_CH 0.DX2F CCU40.IN0 CCU40.IN1 CCU40.IN2 CCU40.IN3 USIC0_CH A A A A 0.DX2E CCU40.IN3 B CCU40.IN2 B CCU40.IN1 B CCU40.IN0 B CCU40.IN3 C CCU40.IN2 C CCU40.IN1 C CCU40.IN0 C Input Input XMC1200 AB-Step XMC1000 Family Subject to Agreement on the Use of Product Information V1.6, 2015-04 Data Sheet VADC0. EMUX00 VADC0. EMUX01 VADC0. EMUX02 VADC0. EMUX10 VADC0. EMUX11 P1.1 P1.2 P1.3 P1.4 P1.5 27 USIC0_CH 1.DOUT0 VADC0. G0CH5 VADC0. G1CH6 VADC0. G1CH7 ACMP1.INN VADC0. G0CH0 ACMP1.INP VADC0. G1CH1 P2.5 P2.6 P2.7 USIC0_CH USIC0_CH ACMP2.INP VADC0. 0.DOUT0 1.SCLKOU G0CH6 T USIC0_CH USIC0_CH 0.DOUT0 0.SCLKOU T USIC0_CH USIC0_CH 0.SELO2 1.SELO3 USIC0_CH USIC0_CH 0.SELO1 1.SELO2 USIC0_CH USIC0_CH 0.SELO0 1.SELO1 USIC0_CH USIC0_CH 1.SCLKOU 1.DOUT0 T ACMP2. OUT Input P2.4 LEDTS1. COL6 LEDTS1. COL5 USIC0_CH 0.DOUT0 USIC0_CH USIC0_CH 0.DOUT0 1.SELO0 ACMP1. OUT Input VADC0. G1CH5 ERU0. GOUT2 ERU0. GOUT3 USIC0_CH BCCU0. 0.SCLKOU OUT2 T BCCU0. OUT1 ALT7 USIC0_CH USIC0_CH 0.DOUT0 1.MCLKOU T ALT6 P2.3 CCU40. OUT1 CCU40. OUT0 USIC0_CH LEDTS0. 1.DOUT0 COL5 USIC0_CH LEDTS0. 0.DOUT0 COLA LEDTS1. COL3 USIC0_CH LEDTS0. 1.SCLKOU COL4 T LEDTS1. COL1 LEDTS1. COL0 LEDTS1. COLA LEDTS1. COL0 ALT5 ACMP2.INN VADC0. G0CH7 ERU0. PDOUT2 P2.1 Outputs ALT4 LEDTS1. COL2 LEDTS0. COL2 LEDTS0. COL1 LEDTS0. COL0 LEDTS0. COL0 ALT3 LEDTS0. COL3 CCU40. OUT3 CCU40. OUT2 CCU40. OUT1 CCU40. OUT0 LEDTS1. LINE7 ALT2 Port I/O Functions (cont’d) P2.2 ERU0. PDOUT3 P2.0 VADC0. EMUX12 BCCU0. OUT0 P1.0 P1.6 BCCU0. OUT8 ALT1 P0.15 Function Table 9 USIC0_CH 0.DX5F Input ERU0.3A1 ERU0.2A1 ERU0.1A1 ERU0.0A1 ERU0.1B1 ERU0.0B1 ERU0.1B0 Input Input Input USIC0_CH USIC0_CH USIC0_CH ORC5.AIN 0.DX5C 1.DX3D 1.DX4D USIC0_CH USIC0_CH USIC0_CH ORC4.AIN 0.DX3E 0.DX4E 1.DX5D USIC0_CH USIC0_CH USIC0_CH ORC3.AIN 0.DX5D 1.DX3E 1.DX4E USIC0_CH USIC0_CH USIC0_CH ORC2.AIN 0.DX3B 0.DX4B 1.DX5B USIC0_CH USIC0_CH USIC0_CH ORC1.AIN 0.DX5B 1.DX3C 1.DX4C USIC0_CH USIC0_CH USIC0_CH ORC0.AIN 0.DX3A 0.DX4A 1.DX5A USIC0_CH USIC0_CH USIC0_CH 0.DX0F 1.DX3A 1.DX4A USIC0_CH USIC0_CH USIC0_CH 0.DX0E 0.DX1E 1.DX2F USIC0_CH 1.DX5F USIC0_CH USIC0_CH 0.DX5E 1.DX5E USIC0_CH USIC0_CH 1.DX0A 1.DX1A USIC0_CH 1.DX0B USIC0_CH USIC0_CH USIC0_CH 0.DX0D 0.DX1D 1.DX2E USIC0_CH 0.DX0C USIC0_CH 0.DX0B Input Inputs ERU0.0B0 Input XMC1200 AB-Step XMC1000 Family Subject to Agreement on the Use of Product Information V1.6, 2015-04 Data Sheet ERU0. PDOUT1 ERU0. PDOUT0 P2.10 P2.11 CCU40. OUT3 CCU40. OUT2 ERU0. GOUT0 ERU0. GOUT1 Outputs LEDTS1. COL3 LEDTS1. COL4 ALT4 ALT5 USIC0_CH 1.DOUT0 ALT7 Input Input VADC0. G0CH3 USIC0_CH USIC0_CH ACMP.REF VADC0. 1.SCLKOU 1.DOUT0 G0CH4 T ACMP0. OUT ALT6 ACMP0.INP VADC0. G0CH2 ALT3 P2.9 ALT2 ACMP0.INN VADC0. G0CH1 ALT1 Port I/O Functions (cont’d) P2.8 Function Table 9 VADC0. G1CH3 VADC0. G1CH2 VADC0. G1CH4 VADC0. G1CH0 Input ERU0.2B1 ERU0.2B0 ERU0.3B0 Input Input Input USIC0_CH USIC0_CH 1.DX0E 1.DX1E USIC0_CH USIC0_CH USIC0_CH 0.DX3C 0.DX4C 1.DX0F USIC0_CH USIC0_CH USIC0_CH ORC7.AIN 0.DX5A 1.DX3B 1.DX4B USIC0_CH USIC0_CH USIC0_CH ORC6.AIN 0.DX3D 0.DX4D 1.DX5C Input Inputs ERU0.3B1 Input XMC1200 AB-Step XMC1000 Family 28 Subject to Agreement on the Use of Product Information V1.6, 2015-04 Data Sheet 29 LEDTS0. EXTENDED1 LEDTS0. EXTENDED0 LEDTS1. EXTENDED0 LEDTS1. EXTENDED1 LEDTS1. EXTENDED2 LEDTS1. EXTENDED3 LEDTS1. EXTENDED4 LEDTS1. EXTENDED5 LEDTS1. EXTENDED6 LEDTS1. EXTENDED7 P0.6 P0.7 P0.8 P0.9 P0.10 P0.11 P0.12 P0.13 P0.14 P0.15 USIC0_CH0.DOUT2 LEDTS0. EXTENDED2 P0.5 P1.2 LEDTS0. EXTENDED3 P0.4 USIC0_CH0.DOUT1 LEDTS0. EXTENDED4 P0.3 USIC0_CH0.DOUT0 LEDTS0. EXTENDED5 P0.2 P1.1 LEDTS0. EXTENDED6 P0.1 HWO1 Outputs P1.0 LEDTS0. EXTENDED7 HWO0 LEDTS1. TSIN7 LEDTS1. TSIN6 LEDTS1. TSIN5 LEDTS1. TSIN4 LEDTS1. TSIN3 LEDTS1. TSIN2 LEDTS1. TSIN1 LEDTS1. TSIN0 LEDTS0. TSIN0 LEDTS0. TSIN1 LEDTS0. TSIN2 LEDTS0. TSIN3 LEDTS0.TSIN4 LEDTS0.TSIN5 LEDTS0.TSIN6 LEDTS0.TSIN7 HWI0 USIC0_CH0.HWIN2 USIC0_CH0.HWIN1 USIC0_CH0.HWIN0 LEDTS1. TSIN7 LEDTS1. TSIN6 LEDTS1. TSIN5 LEDTS1. TSIN4 LEDTS1. TSIN3 LEDTS1. TSIN2 LEDTS1. TSIN1 LEDTS1. TSIN0 LEDTS0. TSIN0 LEDTS0. TSIN1 LEDTS0. TSIN2 LEDTS0. TSIN3 LEDTS0. TSIN4 LEDTS0. TSIN5 LEDTS0. TSIN6 LEDTS0. TSIN7 HWI1 Inputs Hardware Controlled I/O Functions P0.0 Function Table 10 BCCU0.OUT4 BCCU0.OUT3 BCCU0.OUT2 Reserved for LEDTS Scheme A: pull-down disabled always HW0_PD BCCU0.OUT4 BCCU0.OUT3 BCCU0.OUT2 HW1_PU Reserved for LEDTS Scheme B: pull-up enabled and pull-down disabled, and vice versa HW1_PD Pull Control Reserved for LEDTS Scheme A: pull-down enabled always HW0_PU XMC1200 AB-Step XMC1000 Family Subject to Agreement on the Use of Product Information V1.6, 2015-04 Data Sheet 30 ACMP2.OUT BCCU0.OUT8 ACMP1.OUT BCCU0.OUT2 BCCU0.OUT8 BCCU0.OUT1 BCCU0.OUT7 P2.3 P2.4 P2.5 P2.6 P2.7 P2.8 P2.9 BCCU0.OUT5 BCCU0.OUT0 P2.2 P2.11 BCCU0.OUT6 P2.1 BCCU0.OUT4 BCCU0.OUT1 P2.0 P2.10 BCCU0.OUT8 BCCU0.OUT5 HW0_PD P1.6 USIC0_CH0.HWIN3 HWI1 Inputs BCCU0.OUT7 HWI0 BCCU0.OUT6 USIC0_CH0.DOUT3 HWO1 Outputs P1.5 HWO0 Hardware Controlled I/O Functions (cont’d) P1.4 P1.3 Function Table 10 BCCU0.OUT5 BCCU0.OUT4 BCCU0.OUT7 BCCU0.OUT1 BCCU0.OUT8 BCCU0.OUT2 ACMP1.OUT BCCU0.OUT8 ACMP2.OUT BCCU0.OUT0 BCCU0.OUT6 BCCU0.OUT1 BCCU0.OUT8 BCCU0.OUT7 BCCU0.OUT6 BCCU0.OUT5 HW0_PU CCU40.OUT2 CCU40.OUT2 CCU40.OUT3 CCU40.OUT3 CCU40.OUT3 HW1_PD Pull Control CCU40.OUT2 CCU40.OUT2 CCU40.OUT3 CCU40.OUT3 CCU40.OUT3 HW1_PU XMC1200 AB-Step XMC1000 Family Subject to Agreement on the Use of Product Information V1.6, 2015-04 XMC1200 AB-Step XMC1000 Family Electrical Parameter 3 Electrical Parameter This section provides the electrical parameter which are implementation-specific for the XMC1200. 3.1 General Parameters 3.1.1 Parameter Interpretation The parameters listed in this section represent partly the characteristics of the XMC1200 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the “Symbol” column: • • CC Such parameters indicate Controller Characteristics, which are distinctive feature of the XMC1200 and must be regarded for a system design. SR Such parameters indicate System Requirements, which must be provided by the application system in which the XMC1200 is designed in. Data Sheet 31 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.1.2 Absolute Maximum Ratings Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 11 Absolute Maximum Rating Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Cond ition TJ SR -40 – TST SR -40 – VDDP SR -0.3 – 115 °C – 125 °C – 6 V – Voltage on any pin with respect to VSSP VIN VDDP + 0.5 V Voltage on any analog input pin with respect to VSSP VAIN -0.5 – VAREF SR IIN SR -10 – Junction temperature Storage temperature Voltage on power supply pin with respect to VSSP Input current on any pin during overload condition SR -0.5 – Absolute maximum sum of all ΣIIN SR input currents during overload condition Analog comparator input voltage 3.1.3 VCM SR -50 – -0.3 – or max. 6 whichever is lower VDDP + 0.5 V – or max. 6 10 mA – +50 mA – VDDP + 0.3 V Pin Reliability in Overload When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification. Table 12 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met: • • full operation life-time is not exceeded Operating Conditions are met for – pad supply levels (VDDP) – temperature If a pin current is outside of the Operating Conditions but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no Data Sheet 32 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter longer be guaranteed. Operation is still possible in most cases but with relaxed parameters. Note: An overload condition on one or more pins does not require a reset. Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery. Table 12 Overload Parameters Parameter Symbol Min. Values Typ. Max. Unit Note / Test Condition -5 – 5 mA – 25 mA Input current on any port pin during overload condition IOV SR Absolute sum of all input circuit currents during overload condition IOVS SR – Figure 10 shows the path of the input currents during overload via the ESD protection structures. The diodes against VDDP and ground are a simplified representation of these ESD protection structures. VDDP VDDP Pn.y IOVx GND ESD Figure 10 GND Pad Input Overload Current via ESD structures Table 13 and Table 14 list input voltages that can be reached under overload conditions. Note that the absolute maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload. Data Sheet 33 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Table 13 Pad Type Standard, High-current, AN/DIG_IN Table 14 Pad Type Standard, High-current, AN/DIG_IN Data Sheet PN-Junction Characterisitics for positive Overload IOV = 5 mA, TJ = -40 °C VIN = VDDP + 0.5 V IOV = 5 mA, TJ = 115 °C VIN = VDDP + 0.5 V PN-Junction Characterisitics for negative Overload IOV = 5 mA, TJ = -40 °C VIN = VSS - 0.5 V IOV = 5 mA, TJ = 115 °C VIN = VSS - 0.5 V 34 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.1.4 Operating Conditions The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC1200. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise. Table 15 Operating Conditions Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition °C Temp. Range F Temp. Range X Ambient Temperature TA SR -40 − 85 -40 − 105 °C Digital supply voltage1) VDDP SR fMCLK CC fPCLK CC 1.8 − 5.5 V − − 33.2 MHz CPU clock − − 66.4 MHz Peripherals clock Short circuit current of digital outputs ISC -5 − 5 mA Absolute sum of short circuit currents of the device ΣISC_D SR − − 25 mA MCLK Frequency PCLK Frequency SR 1) See also the Supply Monitoring thresholds, Chapter 3.3.2. Data Sheet 35 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.2 DC Parameters 3.2.1 Input/Output Characteristics Table 16 provides the characteristics of the input/output pins of the XMC1200. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 16 Input/Output Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Min. Output low voltage on port pins (with standard pads) VOLP Output low voltage on high current pads VOLP1 V IOL = 11 mA (5 V) IOL = 7 mA (3.3 V) IOL = 5 mA (5 V) IOL = 3.5 mA (3.3 V) IOL = 50 mA (5 V) IOL = 25 mA (3.3 V) IOL = 10 mA (5 V) IOL = 5 mA (3.3 V) IOH = -10 mA (5 V) IOH = -7 mA (3.3 V) IOH = -4.5 mA (5 V) IOH = -2.5 mA (3.3 V) IOH = -6 mA (5 V) V IOH = -8 mA (3.3 V) V IOH = -4 mA (3.3 V) 0.19 × V CMOS Mode (5 V, 3.3 V & 2.2 V) 1.0 V – 0.4 V CC – 1.0 V 0.32 V – VOHP Test Conditions CC – – Output high voltage on port pins (with standard pads) Unit Max. 0.4 V – V VDDP - – V CC VDDP 1.0 0.4 Output high voltage on high current pads VOHP1 CC VDDP - – 0.32 VDDP - – 1.0 VDDP - – 0.4 Input low voltage on port VILPS pins (Standard Hysteresis) SR VIHPS SR Input high voltage on port pins (Standard Hysteresis) Data Sheet – VDDP 0.7 × VDDP 36 – V CMOS Mode (5 V, 3.3 V & 2.2 V) V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Table 16 Input/Output Characteristics (Operating Conditions apply) (cont’d) Parameter Symbol Input low voltage on port VILPL pins (Large Hysteresis) SR Input high voltage on port pins (Large Hysteresis) VIHPL SR Rise time on High Current Pad1) tHCPR Fall time on High Current Pad1) Rise time on Standard Pad1) Fall time on Standard Pad1) Input Hysteresis8) Limit Values Unit Min. Max. – 0.08 × V VDDP 0.85 × – tR tF HYS CMOS Mode (5 V, 3.3 V & 2.2 V)10) 9 ns 50 pF @ 5 V2) – 12 ns 50 pF @ 3.3 V3) – 25 ns 50 pF @ 1.8 V4) 9 ns 50 pF @ 5 V2) – 12 ns 50 pF @ 3.3 V3) – 25 ns 50 pF @ 1.8 V4) CC – 12 ns 50 pF @ 5 V5) – 15 ns 50 pF @ 3.3 V6) – 31 ns 50 pF @ 1.8 V7) CC – 12 ns 50 pF @ 5 V5) – 15 ns 50 pF @ 3.3 V6) – 31 ns 50 pF @ 1.8 V7) V CMOS Mode (5 V), Standard Hysteresis V CMOS Mode (3.3 V), Standard Hysteresis V CMOS Mode (2.2 V), Standard Hysteresis CC – CC – CC 0.08 × – VDDP 0.03 × – VDDP 0.02 × – VDDP Data Sheet CMOS Mode (5 V, 3.3 V & 2.2 V)10) V VDDP tHCPF Test Conditions 0.5 × 0.75 × V VDDP VDDP 0.4 × 0.75 × V VDDP VDDP 0.2 × 0.65 × V VDDP VDDP 37 CMOS Mode(5 V), Large Hysteresis CMOS Mode(3.3 V), Large Hysteresis CMOS Mode(2.2 V), Large Hysteresis V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Table 16 Input/Output Characteristics (Operating Conditions apply) (cont’d) Parameter Symbol Limit Values Min. Unit Test Conditions Max. Pin capacitance (digital inputs/outputs) CIO CC – 10 pF Pull-up resistor on port pins RPUP CC 20 50 kohm VIN = VSSP Pull-down resistor on port pins RPDP CC 20 50 kohm VIN = VDDP Input leakage current9) IOZP CC -1 1 μA 0 < VIN < VDDP, TA ≤ 105 °C Voltage on any pin during VDDP power off VPO SR – 0.3 V 10) Maximum current per pin (excluding P1, VDDP and VSS) IMP SR -10 11 mA – Maximum current per high currrent pins IMP1A SR -10 50 mA – Maximum current into VDDP (TSSOP28/16, VQFN24) IMVDD1 SR – 130 mA 10) Maximum current into VDDP (TSSOP38, VQFN40) IMVDD2 SR – 260 mA 10) Maximum current out of IMVSS1 SR VSS (TSSOP28/16, VQFN24) – 130 mA 10) Maximum current out of IMVSS2 SR VSS (TSSOP38, VQFN40) – 260 mA 10) 1) Rise/Fall time parameters are taken with 10% - 90% of supply. 2) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.150 ns/pF at 5 V supply voltage. 3) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.205 ns/pF at 3.3 V supply voltage. 4) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage. 5) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.225 ns/pF at 5 V supply voltage. 6) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.288 ns/pF at 3.3 V supply voltage. 7) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.588 ns/pF at 1.8 V supply voltage. Data Sheet 38 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 8) Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise. 9) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. 10) However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when VDDP is powered off. Data Sheet 39 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.2.2 Analog to Digital Converters (ADC) Table 17 shows the Analog to Digital Converter (ADC) characteristics. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 17 ADC Characteristics (Operating Conditions apply) 1) Parameter Symbol Values Min. Supply voltage range (internal reference) Unit Note / Test Condition Typ. Max. VDD_int SR 2.0 – 3.0 V SHSCFG.AREF = 11B CALCTR.CALGNSTC = 0CH 3.0 – 5.5 V SHSCFG.AREF = 10B 3.0 – 5.5 V SHSCFG.AREF = 00B VSSP – VDDP V Supply voltage range (external reference) VDD_ext Analog input voltage range VAIN SR Auxiliary analog reference ground VREFGND VSSP SR - 0.05 SR - 0.05 VSSP + 0.05 – 1.0 V G0CH0 – 0.2 V G1CH0 - 0.05 Internal reference voltage (full scale value) VREFINT 5 V CC Switched capacitance CAINS CC of an analog input – 1.2 2 pF GNCTRxz.GAINy = 00B (unity gain) – 1.2 2 pF GNCTRxz.GAINy = 01B (gain g1) – 4.5 6 pF GNCTRxz.GAINy = 10B (gain g2) – 4.5 6 pF GNCTRxz.GAINy = 11B (gain g3) Total capacitance of an analog input CAINT CC – – 10 pF Total capacitance of the reference input CAREFT – 10 pF Data Sheet – CC 40 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Table 17 ADC Characteristics (Operating Conditions apply) (cont’d)1) Parameter Symbol Values Min. Gain settings Sample Time GIN CC tsample CC 3 Unit Note / Test Condition Typ. Max. 1 – GNCTRxz.GAINy = 00B (unity gain) 3 – GNCTRxz.GAINy = 01B (gain g1) 6 – GNCTRxz.GAINy = 10B (gain g2) 12 – GNCTRxz.GAINy = 11B (gain g3) 1/ VDD = 5.0 V – – fADC 3 – – 1/ VDD = 3.3 V fADC 30 – – 1/ VDD = 2.0 V fADC Sigma delta loop hold time tSD_hold Conversion time in fast compare mode tCF CC Conversion time in 12-bit mode tC12 CC 20 – – μs Residual charge stored in an active sigma delta loop remains available 1/ 2) CC 9 fADC Maximum sample rate fC12 CC in 12-bit mode 3) 20 – – 1/ fADC fADC / – 1 sample – – 42.5 pending fADC / – 2 samples pending 62.5 Conversion time in 10-bit mode tC10 CC Maximum sample rate fC10 CC in 10-bit mode 3) 18 – – 1/ Data Sheet tC8 CC 2) fADC fADC / – 1 sample – – 40.5 pending fADC / – 2 samples pending 58.5 Conversion time in 8-bit mode 2) 16 1/ 2) fADC 41 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Table 17 ADC Characteristics (Operating Conditions apply) (cont’d)1) Parameter Symbol Maximum sample rate fC8 CC in 8-bit mode 3) Values Unit Note / Test Condition Min. Typ. Max. – – fADC / – 38.5 – fADC / – – 54.5 RMS noise 4) ENRMS – 1.5 – CC 1 sample pending 2 samples pending LSB DC input, 12 VDD = 5.0 V, VAIN = 2.5 V, 25°C DNL error EADNL CC – ±2.0 – LSB 12 INL error EAINL CC – ±4.0 – LSB 12 Gain error with external reference EAGAIN – ±0.5 – % CC SHSCFG.AREF = 00B (calibrated) – ±3.6 – % SHSCFG.AREF = 1XB (calibrated), -40°C - 105°C – ±2.0 – % SHSCFG.AREF = 1XB (calibrated), 0°C - 85°C EAOFF CC – ±8.0 – mV Calibrated, VDD = 5.0 V Gain error with internal EAGAIN reference 5) CC Offset error 1) The parameters are defined for ADC clock frequency fSH = 32MHz, SHSCFG.DIVS = 0000B. Usage of any other frequencies may affect the ADC performance. 2) No pending samples assumed, excluding sampling time and calibration. 3) Includes synchronization and calibration (average of gain and offset calibration). 4) This parameter can also be defined as an SNR value: SNR[dB] = 20 × log(AMAXeff / NRMS). With AMAXeff = 2N / 2, SNR[dB] = 20 × log ( 2048 / NRMS) [N = 12]. NRMS = 1.5 LSB12, therefore, equals SNR = 20 × log (2048 / 1.5) = 62.7 dB. 5) Includes error from the reference voltage. Data Sheet 42 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter VAIN SAR Converter : 0 VSS 1X VCAL 00 1 VREFGND VDD VREF VAGND CH7 . . CH0 VREFINT VAREF Internal Reference VDDint/ VDD VDDext CHNR REFSEL AREF MC_VADC_AREFPATHS Figure 11 Data Sheet ADC Voltage Supply 43 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.2.3 Out of Range Comparator (ORC) Characteristics The Out-of-Range Comparator (ORC) triggers on analog input voltages (VAIN) above the VDDP on selected input pins (ORCx.AIN) and generates a service request trigger (ORCx.OUT). Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 18 Out of Range Comparator (ORC) Characteristics (Operating Conditions apply; VDDP = 3.0 V - 5.5 V; CL = 0.25 pF) Parameter Symbol Values Min. Typ. DC Switching Level VODC Hysteresis Always detected Overvoltage Pulse Never detected Overvoltage Pulse CC 54 VOHYS CC 15 tOPDD CC 103 88 Unit Note / Test Condition Max. − 183 mV − 54 mV − − ns − − ns tOPDN CC − − 21 ns − − 11 ns VAIN ≥ VDDP + VODC VAIN ≥ VDDP + 150 mV VAIN ≥ VDDP + 350 mV VAIN ≥ VDDP + 150 mV VAIN ≥ VDDP + 350 mV VAIN ≥ VDDP + 150 mV VAIN ≥ VDDP + 350 mV CC 39 − 132 ns 31 − 121 ns Release Delay tORD CC 44 − 240 ns 57 − 340 ns VAIN ≤ VDDP; VDDP = 5 V VAIN ≤ VDDP; VDDP = 3.3 V Enable Delay tOED CC − − 300 ns ORCCTRL.ENORCx = 1 VODC VOH YS Detection Delay of a tODD persistent Overvoltage VD D P VSS ORCx.AIN ORCx.OUT tOD D Figure 12 Data Sheet tOR D ORCx.OUT Trigger Generation 44 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter V AIN (V) T < tOPDN VDDP + 350 mV T < tOPDN VDDP + 150 mV tOPDN < T < tOPDD t OPDN < T < tOPDD T > tOPDD T > tOPDD T > tOPDD V DDP + 60 mV VDDP VSSA Figure 13 Data Sheet Never detected Overvoltage Pulse (Too low) Overvoltage may be detected (long enough, level uncertain ) Never detected Overvoltage Pulse (Too short) Overvoltage may be detected Always detected Overvoltage Pulse Never detected Overvoltage Pulse (Too short) Overvoltage may be detected Always detected Overvoltage Pulse ORC Detection Ranges 45 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.2.4 Analog Comparator Characteristics Table 19 below shows the Analog Comparator characteristics. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 19 Analog Comparator Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Min. Typ. Max. Unit Notes/ Test Conditions Input Voltage VCMP SR -0.05 – VDDP + V 0.05 Input Offset VCMPOFF CC – – mV High power mode Δ VCMP < 200 mV +/-20 – mV Low power mode Δ VCMP < 200 mV CC – 25 – ns High power mode, Δ VCMP = 100 mV – 80 – ns High power mode, Δ VCMP = 25 mV – 250 – ns Low power mode, Δ VCMP = 100 mV – 700 – ns Low power mode, Δ VCMP = 25 mV CC – 100 – μA First active ACMP in high power mode, ΔVCMP > 30 mV – 66 – μA Each additional ACMP in high power mode, ΔVCMP > 30 mV – 10 – μA First active ACMP in low power mode – 6 – μA Each additional ACMP in low power mode CC – +/-15 – mV CC – 5 ns – Propagation Delay1) Current Consumption Input Hysteresis Filter Delay 1) tPDELAY IACMP VHYS tFDELAY +/-3 – 1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay. Data Sheet 46 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.2.5 Temperature Sensor Characteristics Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 20 Temperature Sensor Characteristics Parameter Symbol Values Min. Measurement time Temperature sensor range Sensor Accuracy1) Typ. Max. Unit Note / Test Condition tM CC − TSR SR -40 TTSAL CC -6 − 10 ms − 115 °C – 6 °C -10 – 10 °C -18 – 18 °C TJ > 20°C 0°C ≤ TJ ≤ 20°C -25°C ≤ TJ < 0°C -31 Start-up time after enabling tTSSTE SR − – 31 °C − 15 μs -40°C ≤ TJ < 25°C 1) The temperature sensor accuracy is independent of the supply voltage. Data Sheet 47 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.2.6 Power Supply Current The total power supply current defined below consists of a leakage and a switching component. Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations). Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 21 Power Supply Parameters; VDDP = 5V Parameter Symbol Values Unit Min. Typ.1) Max. Active mode current Peripherals enabled fMCLK / fPCLK in MHz2) Active mode current Peripherals disabled fMCLK / fPCLK in MHz3) Active mode current Code execution from RAM Flash is powered down fMCLK / fPCLK in MHz Sleep mode current Peripherals clock enabled fMCLK / fPCLK in MHz4) Data Sheet Note / Test Condition IDDPAE CC − 8.8 11.5 mA 32 / 64 − 7.7 − mA 24 / 48 − 6.4 − mA 16 / 32 − 5.3 − mA 8 / 16 − 3.9 − mA 1/1 IDDPAD CC − 4.8 − mA 32 / 64 − 4.1 − mA 24 / 48 − 3.3 − mA 16 / 32 − 2.6 − mA 8 / 16 − 1.5 − mA 1/1 IDDPAR CC − 6.7 − mA 32 / 64 − 5.8 − mA 24 / 48 − 4.9 − mA 16 / 32 − 4.0 − mA 8 / 16 − 3.1 − mA 1/1 IDDPSE CC − 6.2 − mA 32 / 64 5.6 − mA 24 / 48 5.0 − mA 16 / 32 4.4 − mA 8 / 16 3.7 − mA 1/1 48 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Table 21 Power Supply Parameters; VDDP = 5V (cont’d) Parameter Symbol Values Unit Min. Typ.1) Max. 1.8 − mA 32 / 64 1.7 − mA 24 / 48 1.6 − mA 16 / 32 1.5 − mA 8 / 16 1.4 − mA 1/1 1.2 − mA 32 / 64 1.1 − mA 24 / 48 1.0 − mA 16 / 32 0.8 − mA 8 / 16 0.7 − mA 1/1 IDDPDS CC − − Wake-up time from Sleep to tSSA CC 0.24 − mA 6 − cycles − 280 − μsec Sleep mode current Peripherals clock disabled Flash active fMCLK / fPCLK in MHz5) Sleep mode current Peripherals clock disabled Flash powered down fMCLK / fPCLK in MHz6) Deep Sleep mode current IDDPSD CC − Note / Test Condition IDDPSR CC − 7) Active mode8) Wake-up time from Deep Sleep to Active mode9) tDSA CC 1) The typical values are measured at TA = + 25 °C and VDDP = 5 V. 2) CPU and all peripherals clock enabled, Flash is in active mode. 3) CPU enabled, all peripherals clock disabled, Flash is in active mode. 4) CPU in sleep, all peripherals clock enabled and Flash is in active mode. 5) CPU in sleep, Flash is in active mode. 6) CPU in sleep, Flash is powered down and code executed from RAM after wake-up. 7) CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up. 8) CPU in sleep, Flash is in active mode during sleep mode. 9) CPU in sleep, Flash is in powered down mode during deep sleep mode. Data Sheet 49 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Figure 14 shows typical graphs for active mode supply current for VDDP = 5V, VDDP = 3.3V, VDDP = 1.8V across different clock frequencies. 10 9 8 7 6 I (m A) 5 ID D P A E 5 V /3.3 V 4 ID D P A E 1 .8 V 3 ID D P A D 5V /3 .3V /1.8V 2 1 0 1/1 8/16 16 /3 2 2 4/48 3 2/64 M CLK / PCLK (M Hz) C ondition: 1. T A = +25°C Figure 14 Data Sheet Active mode, a) peripherals clocks enabled, b) peripherals clocks disabled: Supply current IDDPA over supply voltage VDDP for different clock frequencies 50 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Figure 15 shows typical graphs for sleep mode current for VDDP = 5V, VDDP = 3.3V, VDDP = 1.8V across different clock frequencies. 1.4 1.2 1 0.8 I (m A) 0.6 0.4 0.2 0 ID DPS R 5V/3.3V/1.8V 1/1 8/16 16/32 24/48 32/64 M CLK / P CLK (M Hz) C o n d itio n s: 1 . T A = +2 5 °C Figure 15 Data Sheet Sleep mode, peripherals clocks disabled, Flash powered down: Supply current IDDPSR over supply voltage VDDP for different clock frequencies 51 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Table 22 provides the active current consumption of some modules operating at 5 V power supply at 25° C. The typical values shown are used as a reference guide on the current consumption when these modules are enabled. Table 22 Typical Active Current Consumption Active Current Consumption Symbol Limit Values Unit Test Condition Typ. Baseload current ICPUDDC 5.04 mA Modules including Core, SCU, PORT, memories, ANATOP1) VADC and SHS IADCDDC IUSIC0DDC ICCU40DDC ILTSxDDC IBCCU0DDC IWDTDDC IRTCDDC 3.4 mA Set CGATCLR0.VADC to 12) 0.87 mA Set CGATCLR0.USIC0 to 13) 0.94 mA Set CGATCLR0.CCU40 to 14) 0.76 mA Set CGATCLR0.LEDTSx to 15) 0.24 mA Set CGATCLR0.BCCU0 to 16) 0.03 mA Set CGATCLR0.WDT to 17) 0.01 mA Set CGATCLR0.RTC to 18) USIC0 CCU40 LEDTSx BCCU0 WDT RTC 1) Baseload current is measured with device running in user mode, MCLK=PCLK=32 MHz, with an endless loop in the flash memory. The clock to the modules stated in CGATSTAT0 are gated. 2) Active current is measured with: module enabled, MCLK=32 MHz, running in auto-scan conversion mode 3) Active current is measured with: module enabled, alternating messages sent to PC at 57.6kbaud every 200ms 4) Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU4 slice for PWM switching from 1500Hz and 1000Hz at regular intervals, 1 CCU4 slice in capture mode for reading period and duty cycle 5) Active current is measured with: module enabled, MCLK=32 MHz, 1 LED column, 6 LED/TS lines, Pad Scheme A with large pad hysteresis config, time slice duration = 1.048 ms 6) Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, FCLK=0.8MHz, Normal mode (BCCU Clk = FCLK/4), 3 BCCU Channels and 1 Dimming Engine, change color or dim every 1s 7) Active current is measured with: module enabled, MCLK=32 MHz, time-out mode; WLB = 0, WUB = 0x00008000; WDT serviced every 1s 8) Active current is measured with: module enabled, MCLK=32 MHz, Periodic interrupt enabled Data Sheet 52 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.2.7 Flash Memory Parameters Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 23 Flash Memory Parameters Parameter Symbol tERASE CC Program time per block tPSER CC Wake-Up time tWU CC ta CC Read time per word Data Retention Time tRET CC Erase Time per page Flash Wait States 1) Unit Typ. Max. 6.8 7.1 7.6 ms 204 μs 102 152 − 32.2 − μs − 50 − ns 10 − − years NWSFLASH CC 0 0 0 0 1 1 1 1.3 2 − − 5*104 cycles − − 2*106 cycles Erase Cycles per page NECYC CC Total Erase Cycles Values Min. NTECYC CC Note / Test Condition Max. 100 erase / program cycles fMCLK = 8 MHz fMCLK = 16 MHz fMCLK = 32 MHz 1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical values are calculated from the execution of the Dhrystone benchmark program. Data Sheet 53 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.3 AC Parameters 3.3.1 Testing Waveforms VD D P VSS 90% 90% 10% 10% tR Figure 16 tF Rise/Fall Time Parameters VD D P VD D P / 2 Test Points VD D P / 2 VSS Figure 17 Testing Waveform, Output Delay VL OAD + 0.1V VL OAD - 0.1V Figure 18 Data Sheet Timing Reference Points VOH - 0.1V VOL + 0.1V Testing Waveform, Output High Impedance 54 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.3.2 Power-Up and Supply Monitoring Characteristics Table 24 provides the characteristics of the power-up and supply monitoring in XMC1200. The guard band between the lowest valid operating voltage and the brownout reset threshold provides a margin for noise immunity and hysteresis. The electrical parameters may be violated while VDDP is outside its operating range. The brownout detection triggers a reset within the defined range. The prewarning detection can be used to trigger an early warning and issue corrective and/or fail-safe actions in case of a critical supply voltage drop. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 24 Power-Up and Supply Monitoring Parameters (Operating Conditions apply) 1) Parameter Symbol Values Min. Unit Typ. Max. Note / Test Condition VDDP ramp-up time tRAMPUP SR VDDP/ − SVDDPrise 107 μs VDDP slew rate SVDDPOP SR 0 − 0.1 V/μs Slope during normal operation SVDDP10 SR 0 − 10 V/μs Slope during fast transient within +/10% of VDDP SVDDPrise SR 0 − 10 V/μs Slope during power-on or restart after brownout event SVDDPfall2) SR 0 − 0.25 V/μs Slope during supply falling out of the +/-10% limits3) VDDPPW CC 2.1 2.25 2.4 V ANAVDEL.VDEL_ SELECT = 00B 2.85 3 3.15 V ANAVDEL.VDEL_ SELECT = 01B 4.2 4.4 4.6 V ANAVDEL.VDEL_ SELECT = 10B VDDP prewarning voltage Data Sheet 55 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Table 24 Power-Up and Supply Monitoring Parameters (Operating Conditions apply) (cont’d)1) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition calibrated, before user code starts running VDDP brownout reset voltage VDDPBO CC 1.55 1.62 1.75 V VDDP voltage to ensure defined pad states VDDPPA CC − 1.0 − V Start-up time from power-on reset tSSW SR − 320 – μs Time to the first user code instruction in all start-up modes4) BMI program time tBMI SR − 8.25 – ms Time taken from a user-triggered system reset after BMI installation is is requested 1) Not all parameters are 100% tested, but are verified by design/characterisation. 2) A capacitor of at least 100 nF has to be added between VDDP and VSSP to fulfill the requirement as stated for this parameter. 3) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current. 4) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 32 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated. 5.0V } VDDP VDDPPW V DDPBO Figure 19 Data Sheet Supply Threshold Parameters 56 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.3.3 On-Chip Oscillator Characteristics Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 25 provides the characteristics of the 64 MHz clock output from the digital controlled oscillator, DCO1 in XMC1200. Table 25 64 MHz DCO1 Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Min. Unit Test Conditions Typ. Max. Nominal frequency fNOM CC – 64 – MHz under nominal conditions1) after trimming Accuracy2) ΔfLT -1.7 – 3.4 % with respect to fNOM(typ), over temperature (0 °C to 85 °C) -3.9 – 4.0 % with respect to fNOM(typ), over temperature (-40 °C to 105 °C) CC 1) The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25 °C. 2) The accuracy of the DCO1 oscillator can be further improved through alternative methods, refer to XMC1000 Oscillator Handling Application Note. Data Sheet 57 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Figure 20 shows the typical curves for the accuracy of DCO1, with and without calibration based on temperature sensor, respectively. 4.00 3.00 Accuracy [%] 2.00 Without calibration based on temperature sensor 1.00 With calibration based on temperature sensor 0.00 - 1.00 - 2.00 - 3.00 - 4.00 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 Temperature [ °C] Figure 20 Typical DCO1 accuracy over temperature Table 26 provides the characteristics of the 32 kHz clock output from digital controlled oscillators, DCO2 in XMC1200. Table 26 32 kHz DCO2 Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Nominal frequency fNOM CC – 32.75 – kHz under nominal conditions1) after trimming Accuracy ΔfLT CC -1.7 – 3.4 % with respect to fNOM(typ), over temperature (0 °C to 85 °C) -3.9 – 4.0 % with respect to fNOM(typ), over temperature (-40 °C to 105 °C) Min. Typ. Unit Test Conditions Max. 1) The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25 °C. Data Sheet 58 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.3.4 Serial Wire Debug Port (SW-DP) Timing The following parameters are applicable for communication through the SW-DP interface. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 27 SWD Interface Timing Parameters(Operating Conditions apply) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. t1 SR t2 SR t3 SR 50 – 500000 ns – 50 – 500000 ns – 10 – – ns – SWDIO input hold t4 SR after SWDCLK rising edge 10 – – ns – SWDCLK high time SWDCLK low time SWDIO input setup to SWDCLK rising edge SWDIO output valid time t5 after SWDCLK rising edge CC – – 68 ns CL = 50 pF – – 62 ns CL = 30 pF t6 SWDIO output hold time from SWDCLK rising edge CC 4 – – ns t1 t2 SWDCLK t6 SWDIO (Output ) t5 t3 t4 SWDIO (Input ) Figure 21 Data Sheet SWD Timing 59 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.3.5 SPD Timing Requirements The optimum SPD decision time between 0B and 1B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs). Table 28 Optimum Number of Sample Clocks for SPD Sample Effective Remark Sample Sampling Sample Freq. Factor Clocks 0B Clocks 1B Decision Time1) 8 MHz 4 1 to 5 6 to 12 0.69 µs The other closest option (0.81 µs) for the effective decision time is less robust. 1) Nominal sample frequency period multiplied with 0.5 + (max. number of 0B sample clocks) For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are: • • Frequency deviation of the sample clock is +/- 5% Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency) Data Sheet 60 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.3.6 Peripheral Timings Note: These parameters are not subject to production test, but verified by design and/or characterization. 3.3.6.1 Synchronous Serial Interface (USIC SSC) Timing The following parameters are applicable for a USIC channel operated in SSC mode. Note: Operating Conditions apply. Table 29 USIC SSC Master Mode Timing Parameter Symbol Values Min. SCLKOUT master clock period Unit Typ. Max. tCLK CC 62.5 − − ns Slave select output SELO t1 active to first SCLKOUT transmit edge CC 80 − − ns Slave select output SELO t2 inactive after last SCLKOUT receive edge CC 0 − − ns CC -10 − 10 ns Receive data input t4 DX0/DX[5:3] setup time to SCLKOUT receive edge SR 80 − − ns Data input DX0/DX[5:3] t5 hold time from SCLKOUT receive edge SR 0 − − ns Data output DOUT[3:0] valid time Data Sheet t3 61 Note / Test Condition V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Table 30 USIC SSC Slave Mode Timing Parameter Symbol Values Min. Unit Typ. Max. − − ns Select input DX2 setup to t10 first clock input DX1 transmit edge1) SR 10 − − ns Select input DX2 hold after last clock input DX1 receive edge1) t11 SR 10 − − ns Receive data input DX0/DX[5:3] setup time to shift clock receive edge1) t12 SR 10 − − ns Data input DX0/DX[5:3] hold t13 time from clock input DX1 receive edge1) SR 10 − − ns Data output DOUT[3:0] valid t14 time CC - − 80 ns DX1 slave clock period tCLK SR 125 Note / Test Condition 1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0). Data Sheet 62 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Master Mode Timing t1 Select Output SELOx t2 Inactive Inactive Active Clock Output SCLKOUT Receive Edge First Transmit Edge t3 Last Receive Edge Transmit Edge t3 Data Output DOUT[3:0] t4 Data Input DX0/DX[5:3] t4 t5 Data valid t5 Data valid Slave Mode Timing t1 0 Select Input DX2 Clock Input DX1 t1 1 Active Inactive Receive Edge First Transmit Edge t1 2 Data Input DX0/DX[5:3] Inactive Last Receive Edge Transmit Edge t1 2 t1 3 Data valid t13 Data valid t14 t1 4 Data Output DOUT[3:0] Transmit Edge: with this clock edge, transmit data is shifted to transmit data output. Receive Edge: with this clock edge, receive data at receive data input is latched . Drawn for BRGH .SCLKCFG = 00B. Also valid for for SCLKCFG = 01B with inverted SCLKOUT signal. USIC_SSC_TMGX.VSD Figure 22 USIC - SSC Master/Slave Mode Timing Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted. Data Sheet 63 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter 3.3.6.2 Inter-IC (IIC) Interface Timing The following parameters are applicable for a USIC channel operated in IIC mode. Note: Operating Conditions apply. Table 31 USIC IIC Standard Mode Timing1) Parameter Symbol Values Unit Min. Typ. Max. Fall time of both SDA and t1 SCL CC/SR - - 300 ns Rise time of both SDA and t2 SCL CC/SR - - 1000 ns 0 - - µs 250 - - ns 4.7 - - µs 4.0 - - µs 4.0 - - µs 4.7 - - µs 4.0 - - µs 4.7 - - µs - - 400 pF Data hold time t3 Note / Test Condition CC/SR Data set-up time t4 CC/SR LOW period of SCL clock t5 CC/SR HIGH period of SCL clock t6 CC/SR t7 Hold time for (repeated) START condition CC/SR Set-up time for repeated START condition CC/SR Set-up time for STOP condition CC/SR t8 t9 Bus free time between a STOP and START condition t10 Capacitive load for each bus line Cb SR CC/SR 1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s. Data Sheet 64 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter Table 32 USIC IIC Fast Mode Timing 1) Parameter Symbol Values Min. Fall time of both SDA and t1 SCL CC/SR Typ. Unit Max. 20 + 0.1*Cb 300 ns 20 + 0.1*Cb 300 ns 0 - - µs 100 - - ns 1.3 - - µs 0.6 - - µs 0.6 - - µs 0.6 - - µs 0.6 - - µs 1.3 - - µs - - 400 pF Note / Test Condition 2) Rise time of both SDA and t2 SCL CC/SR Data hold time t3 CC/SR Data set-up time t4 CC/SR LOW period of SCL clock t5 CC/SR HIGH period of SCL clock t6 CC/SR t7 Hold time for (repeated) START condition CC/SR Set-up time for repeated START condition CC/SR Set-up time for STOP condition CC/SR t8 t9 Bus free time between a STOP and START condition t10 Capacitive load for each bus line Cb SR CC/SR 1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s. 2) Cb refers to the total capacitance of one bus line in pF. Data Sheet 65 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter t1 SDA t2 t4 70% 30% t1 t3 t2 t6 SCL th t7 9 clock t5 t10 S SDA t8 t7 t9 SCL th 9 clock Sr Figure 23 3.3.6.3 P S USIC IIC Stand and Fast Mode Timing Inter-IC Sound (IIS) Interface Timing The following parameters are applicable for a USIC channel operated in IIS mode. Note: Operating Conditions apply. Table 33 USIC IIS Master Transmitter Timing Parameter Clock period Clock HIGH Symbol t1 CC t2 CC Values Min. Typ. Max. Unit Note / Test Condition VDDP ≥ 3 V VDDP < 3 V 2/fMCLK - - ns 4/fMCLK - - ns 0.35 x - - ns - - ns 0 - - ns - - 0.15 x ns t1min Clock Low t3 CC 0.35 x t1min Hold time Clock rise time t4 CC t5 CC t1min Data Sheet 66 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Electrical Parameter t1 t2 t5 t3 SCK t4 WA/ DOUT Figure 24 USIC IIS Master Transmitter Timing Table 34 USIC IIS Slave Receiver Timing Parameter Symbol t6 SR t7 SR Clock period Clock HIGH Values Unit Min. Typ. Max. 4/fMCLK - - ns 0.35 x - - ns - - ns - - ns - - ns Note / Test Condition t6min t8 SR Clock Low 0.35 x t6min t9 SR Set-up time 0.2 x t6min t10 SR Hold time 10 t6 t7 t8 SCK t9 t10 WA/ DIN Figure 25 Data Sheet USIC IIS Slave Receiver Timing 67 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Package and Reliability 4 Package and Reliability The XMC1200 is a member of the XMC1000 Derivatives of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies. Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the exposed die pad may vary. If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration. 4.1 Package Parameters Table 35 provides the thermal characteristics of the packages used in XMC1200. Table 35 Thermal Characteristics of the Packages Parameter Symbol Limit Values Unit Package Types Min. Max. Exposed Die Pad Dimensions Ex × Ey CC - 2.7 × 2.7 mm PG-VQFN-24-19 - 3.7 × 3.7 mm PG-VQFN-40-13 Thermal resistance Junction-Ambient RΘJA CC - 104.6 K/W PG-TSSOP-16-81) - 83.2 K/W PG-TSSOP-28-161) - 70.3 K/W PG-TSSOP-38-91) - 46.0 K/W PG-VQFN-24-191) - 38.4 K/W PG-VQFN-40-131) 1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered. Note: For electrical reasons, it is required to connect the exposed pad to the board ground VSSP, independent of EMC and thermal requirements. 4.1.1 Thermal Considerations When operating the XMC1200 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage. The maximum heat that can be dissipated depends on the package and its integration into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115 °C. Data Sheet 68 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Package and Reliability The difference between junction temperature and ambient temperature is determined by ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA The internal power consumption is defined as PINT = VDDP × IDDP (switching current and leakage current). The static external power consumption caused by the output drivers is defined as PIOSTAT = Σ((VDDP-VOH) × IOH) + Σ(VOL × IOL) The dynamic external power consumption caused by the output drivers (PIODYN) depends on the capacitive load connected to the respective pins and their switching frequencies. If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation: • • • • Reduce VDDP, if possible in the system Reduce the system frequency Reduce the number of output pins Reduce the load on active output drivers Data Sheet 69 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Package and Reliability 4.2 Figure 26 Data Sheet Package Outlines PG-TSSOP-38-9 70 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Package and Reliability Figure 27 Data Sheet PG-TSSOP-28-16 71 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Package and Reliability Figure 28 Data Sheet PG-TSSOP-16-8 72 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Package and Reliability Figure 29 Data Sheet PG-VQFN-24-19 73 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Package and Reliability Figure 30 PG-VQFN-40-13 All dimensions in mm. Data Sheet 74 V1.6, 2015-04 Subject to Agreement on the Use of Product Information XMC1200 AB-Step XMC1000 Family Quality Declaration 5 Quality Declaration Table 36 shows the characteristics of the quality parameters in the XMC1200. Table 36 Quality Parameters Parameter Symbol Limit Values Unit Notes Min. Max. VHBM ESD susceptibility according to Human Body SR Model (HBM) - 2000 V Conforming to EIA/JESD22A114-B ESD susceptibility according to Charged Device Model (CDM) pins VCDM - 500 V Conforming to JESD22-C101-C Moisture sensitivity level MSL - 3 - JEDEC J-STD-020D - 260 °C Profile according to JEDEC J-STD-020D SR CC Soldering temperature TSDR SR Data Sheet 75 V1.6, 2015-04 Subject to Agreement on the Use of Product Information w w w . i n f i n e o n . c o m Published by Infineon Technologies AG