AX2061 LCD Driver for Low Multiplex Rates OVERVIEW The AX2061 is an LCD driver for low multiplex rates. Figure 1 shows the block diagram of the AX2061. The chip is controlled by a microcontroller using the SPI interface. The microcontroller writes pixel (segment) data into the pixel data memory. Display updates may be delayed using the pixel data latches. The pixel data latches drive the segment drivers, while the row counter drives the row drivers. Features • • • • • • • • • • Single−chip LCD Controller/Driver 5 Row, 76 Segment Outputs Wide Power Supply Range: from 2.2 V to 3.6 V 4−bit Contrast Register Selectable Row Drive Configuration: Static or 2/3/4/5 Row Multiplexing Internal Generation of LCD Bias Voltages with Charge Pump from a Single 2.2 to 3.6 V Power Supply 76 × 5−bit RAM for Display Data Storage Auto−incremented Display Data Loading Low Power Consumption Internal 32 kHz Oscillator SPI−Bus Interface www.onsemi.com ORDERING INFORMATION Device Package Shipping AX2061−1−WD1 Wafer/Die Contact Sales See additional information on page 16 of this data sheet. SEG75 SEG0 COM4 COM0 VI VD3 VD2 VD1 VDDCORE BLOCK DIAGRAM CAP VDD Voltage Regulator / Pump Row Drivers Segment Drivers ICLK RREF SYSCLK (32kHz) optional Oscillator 32 kHz Frequency Frame Divider Counter ROW# Pixel Latches LATCH Pixel ROW# Address VSS Counter Pixel Data Registers SEG# SEL CLK MOSI SPI MISO optional Figure 1. Functional Block Diagram of the AX2061 © Semiconductor Components Industries, LLC, 2016 March, 2016 − Rev. 3 1 Publication Order Number: AX2061/D AX2061 Table 1. PIN FUNCTION DESCRIPTIONS Number of Pins Type COM0−4 Symbol 5 A Row driver outputs Description SEG0−75 76 A Segment driver outputs SEL 1 I SPI select CLK 1 I SPI clock MISO 1 O SPI data output Can optionally be connected to read back register contents from the AX2061. Reading registers is not required for the AX2061 functionality. MOSI 1 I SPI data input LATCH 1 I/O Latch pixel data into pixel latches For alternative functionalities as well as required handling if not used see the circuit description section SYSCLK 1 I/O 32 kHz clock input (default) For alternative functionalities as well as required handling if not used see the circuit description section ICLK 1 I/O Internal 32 kHz clock output For alternative functionalities as well as required handling if not used see the circuit description section RREF 1 A Reference resistor for internal 32kHz oscillator Connect 1 MW from RREF pin to VSS Note that the reference resistor is required even if the internal 32 kHz oscillator is not used to generate the framing clock VD1 2 A Decoupling output for internally generated LCD voltage VD1 Connect 100 nF capacitor from VD1 to VSS VD2 2 A Decoupling output for internally generated LCD voltage VD2 Connect 220 nF capacitor from VD2 to VSS VD3 2 A Decoupling output for internally generated LCD voltage VD3 Connect 100 nF capacitor from VD3 to VSS VI 2 A Decoupling output for internal charge pump Connect 1 mF capacitor from VI to VSS, note that voltage levels on this pin can reach up to 5.2 V VDD 2 P Supply voltage input VDDCORE 2 A Decoupling output for internally generated supply voltage for the core functionality of the IC Connect 1 mF capacitor from VDDCORE to VSS CAPN 2 A Charge pump floating capacitor negative terminal Connect 100 nF capacitor between CAPN and CAPP CAPP 2 A Charge pump floating capacitor positive terminal Connect 1 mF capacitor between CAPN and CAPP VSS 10 P Ground TST 1 N Pin used for production testing, leave unconnected Total 116 A = analog input I = digital input signal O = digital output signal I/O = digital input/output signal N = not to be connected P = power or ground All digital inputs are Schmitt trigger inputs, digital input and output levels are LVCMOS/LVTTL compatible and 5 V tolerant. www.onsemi.com 2 AX2061 Table 2. Pin Symbol Pin Symbol Pin Symbol Pin Symbol 1 SEG0 30 SEG29 59 ICLK 88 SEG47 2 SEG1 31 SEG30 60 SYSCLK 89 SEG48 3 SEG2 32 SEG31 61 LATCH 90 SEG49 4 SEG3 33 SEG32 62 MOSI 91 SEG50 5 SEG4 34 SEG33 63 MISO 92 SEG51 6 SEG5 35 SEG34 64 TST 93 SEG52 7 SEG6 36 COM0 65 VD1 94 SEG53 8 SEG7 37 COM1 66 VD1 95 SEG54 9 SEG8 38 COM2 67 VSS 96 SEG55 10 SEG9 39 COM3 68 RREF 97 SEG56 11 SEG10 40 COM4 69 VSS 98 SEG57 12 SEG11 41 VDD 70 VD2 99 SEG58 13 SEG12 42 VDD 71 VD2 100 SEG59 14 SEG13 43 VSS 72 VSS 101 SEG60 15 SEG14 44 VSS 73 VSS 102 SEG61 16 SEG15 45 VDDCORE 74 VD3 103 SEG62 17 SEG16 46 VDDCORE 75 VD3 104 SEG63 18 SEG17 47 VSS 76 SEG35 105 SEG64 19 SEG18 48 VSS 77 SEG36 106 SEG65 20 SEG19 49 VI 78 SEG37 107 SEG66 21 SEG20 50 VI 79 SEG38 108 SEG67 22 SEG21 51 VSS 80 SEG39 109 SEG68 23 SEG22 52 VSS 81 SEG40 110 SEG69 24 SEG23 53 CAPN 82 SEG41 111 SEG70 25 SEG24 54 CAPN 83 SEG42 112 SEG71 26 SEG25 55 CAPP 84 SEG43 113 SEG72 27 SEG26 56 CAPP 85 SEG44 114 SEG73 28 SEG27 57 SEL 86 SEG45 115 SEG74 29 SEG28 58 CLK 87 SEG46 116 SEG75 www.onsemi.com 3 AX2061 SPECIFICATIONS Table 3. ABSOLUTE MAXIMUM RATINGS Symbol Description Condition Min Max Units −0.5 5.5 V 100 mA 800 mW 10 mA 40 mA −0.5 5.5 V −2000 2000 V VDD_IO Supply voltage IDD Supply current Ptot Total power consumption II1 DC current into any pin IO Output Current Via Input voltage digital pins Ves Electrostatic handling Tamb Operating temperature −40 85 °C Tstg Storage temperature −65 150 °C Tj Junction Temperature 150 °C −10 HBM Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. 2. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC Characteristics Table 4. SUPPLIES Symbol Description Condition Min Typ Max Units TAMB Operational ambient temperature −40 27 85 °C VDD Power supply voltage 2.2 3.0 3.6 V ISTB Total standby current Register Settings: Reg Reg Reg Reg Reg Reg 2 3 4 5 6 7 = = = = = = 4 mA 10 mA 0x310 0x054 0x00C 0x000 0x50f 0x0C3 VD1, VD2, VD3, VI, VDDCORE decoupling and capacitor between CAPN and CAPP according to the section Application Information. (Note 1) IDDRUN Total operating current Register Settings: Reg Reg Reg Reg Reg Reg 2 3 4 5 6 7 = = = = = = 0x31C 0x700 0x007 0x000 0x50f 0x043 VD1, VD2, VD3, VI, VDDCORE decoupling and capacitor between CAPN and CAPP according to the section Application Information. 1. It is not recommended to use any mode with CPENA=0 as the settling time to low current consumption can be very long after CPENA is switched from 1 to 0. Recommended usage is to keep CPENA=1 even when the row and segment outputs are disabled. www.onsemi.com 4 AX2061 Table 5. LOGIC Symbol Description Condition Min Typ Max Units Digital Inputs VT+ Schmitt trigger low to high threshold point 1.9 V VT− Schmitt trigger high to low threshold point 1.2 V VIL Input voltage, low VIH Input voltage, high 2.0 IL Input leakage current −1 0.8 V V 1 mA Digital Outputs IOH Output Current, high VDD = 3 V, VOH = 2.4 V 4 mA IOL Output Current, low VDD = 3 V, VOL = 0.4 V 4 mA AC Characteristics Table 6. OSCILLATOR Symbol Description Condition Min Typ Max Units 25 32 39 kHz 80 kHz fosc Internal oscillator frequency fext External clock input Input at pin SYSCLK (Note 1) Ndiv Clock frequency divider ratio Programmable via register DIVIDER 1 REXT External resistor Between pin RREF and VSS (Note 2) 0.99 FREQ_OSC[3:0]=0101 FREQ_OSC[3:0]=1111 1. The usable frequency range will depend on the characteristics of the display used. 2. AX2061 will work with less accurate resistors, but the spread of fosc will be larger. www.onsemi.com 5 20 0.02 32 222 1 1.01 MW AX2061 Table 7. LCD Drive Characteristics Unless otherwise specified: VDD = 3.0 V, VSS = 0 V, internal 32 kHz oscillator, Tamb = 25°C. VD1, VD2, VD3, VI, VDDCORE decoupling and capacitor between CAPN and CAPP according to the section Application Information. Symbol Item LCD drive voltages Common and segment voltage drop VD1 Condition LCD segment and row CONTRAST[3:0] = 0000 pins are open−circuit CONTRAST[3:0] = 0001 Min. Typ. Max. Units Typ. −100mV 0.98 Typ. +100mV V 2SVD1 V 1.00 CONTRAST[3:0] = 0010 1.02 CONTRAST[3:0] = 0011 1.04 CONTRAST[3:0] = 0100 1.06 CONTRAST[3:0] = 0101 1.09 CONTRAST[3:0] = 0110 1.11 CONTRAST[3:0] = 0111 1.13 CONTRAST[3:0] = 1000 1.16 CONTRAST[3:0] = 1001 1.19 CONTRAST[3:0] = 1010 1.21 CONTRAST[3:0] = 1011 1.24 CONTRAST[3:0] = 1100 1.27 CONTRAST[3:0] = 1101 1.30 CONTRAST[3:0] = 1110 1.34 CONTRAST[3:0] = 1111 1.38 VD2 LCD segment and row pins are open−circuit (without panel load) 2SVD1S0.9 VD3 LCD segment and row pins are open−circuit 3SVD1S0.9 VDR Each common is loaded with 100 mA and each segment is loaded with 10 mA 3SVD1 50 V mV Table 8. SPI TIMING Symbol Description Condition Min. Typ. Max. Units Tss SEL falling edge to CLK rising edge 10 ns Tsh CLK falling edge to SEL rising edge 10 Tssd SEL falling edge to MISO driving 0 10 ns Tssz SEL rising edge to MISO high−Z 0 10 ns Ts MOSI setup time 10 ns Th MOSI hold time 10 ns Tst CLK falling edge to MISO output Tck CLK period 50 ns Tcl CLK low duration 40 ns Tch CLK high duration 40 ns ns 10 For a figure showing the SPI timing parameters see section Serial Interface. www.onsemi.com 6 ns AX2061 CIRCUIT DESCRIPTION Overview internal 32 kHz oscillator Figure 1 shows the block diagram of the AX2061. The chip is controlled by a microcontroller using the SPI interface. The microcontroller writes pixel (segment) data into the pixel data memory. Display updates may be delayed using the pixel data latches. The pixel data latches drive the segment drivers, while the row counter drives the row drivers. The pixel data latch may be controlled by a dedicated signal, or via control register writes. This allows delayed display updates. At the beginning of an update, the latch can be set to opaque. The following pixel data writes will not be visible until the latch is again set to transparent. An on−board voltage regulator and charge pump generates all the necessary LCD voltages, namely VD1, VD2 and VD3 from VDD. A 4 bit contrast D/A converter adjusts these voltages. Clocking may be derived either from the internal 32 kHz oscillator or via external clock inputs. 1 0 frequency division 0 1 frame counter DIVCLKSRC FRMCLKSRC SYSCLK Figure 2. Frame Clocking Options Both the device pin SYSCLK as well as the pin ICLK can be configured to output either the internal 32 kHz oscillator output, the frequency divider output or a frame synchronisation output by programming the PINCFG register. The frame synchronisation output allows multiple AX2061 devices to be synchronized. In order to synchronize multiple AX2061, one device must be the master device. The master device should output the divider clock output on SYSCLK, and the frame sync signal on ICLK. These signals should be routed to the SYSCLK and ICLK pins of the slave devices. Slave devices must be configured to accept the frame sync signal on ICLK (FRMSYNC=1) and to accept the framing clock from SYSCLK (FRMCLKSRC=1). Unused pins must either be set to “high impedance / input” and externally be bonded to ground, or be set to “drive 0” and left unconnected. Reset The AX2061 generates an internal power−on reset once VDDCORE has reached a level allowing safe operation of the circuit. The device condition after power−on reset is: • LCD voltage generation off (CPENA = 0) • Internal 32 kHz oscillator running • SPI ready for use • All LCD pins driven to ground (MODE=0000) • Pixel Data memory is undefined LCD Drive Configurations The AX2061 has 5 row terminals (COM0—COM4) and 76 segment terminals (SEG0—SEG75), so that it can drive an LCD display with a maximum of 380 (76 x 5) segments. The driving method is 1/1 duty to 1/5 duty dynamic drive with four voltages VSS, VD1, VD2 and VD3. lt is also possible to set static drive. LCD display on/off can be controlled by software. After power−up it is possible to reset the device via an SPI access by writing the bit RST first to 1 then clearing it to 0. Clock Sources After reset the device is configured to generating the frame clock from a clock input at the pin SYSCLK. This input is passed through the frequency division system which consists of a pre−scaler and a main divider. By default the total division ratio is 1. Other division factors are set by programming the register DIVIDER. The AX2061 contains an internal 32 kHz oscillator. This oscillator is started−up at power−on and is used to clock the charge pump for the LCD voltage generation. It can be used to derive the frame clock instead of an input via a device pin. To set this clock source DIVCLKSCRC must be set to 1. LCD Voltage Generation The LCD drive voltages VD1−VD3 are generated by the built−in LCD system voltage circuit. The LCD system voltage circuit is turned on and off using the control register (bit CPENA). Pixel Address to Segment / Row Mapping The mapping between pixel addresses and rows/segments is detailed in the table below: Table 9. MAPPING BETWEEN PIXEL ADDRESSES AND ROWS/SEGMENTS Pixel Address 9 8 7 Row Number www.onsemi.com 7 6 5 4 3 2 Segment Number 1 0 AX2061 Table 10. DETAILED MAPPING BETWEEN PIXEL ADDRESSES AND ROWS/SEGMENTS … … 383 n/a Pixel Address Coordinate 384 Row 3, Segment 0 0 Row 0, Segment 0 … … … … 459 Row 3, Segment 75 75 Row 0, Segment 75 450 n/a 76 n/a … … … … 511 n/a 127 n/a 512 Row 4, Segment 0 128 Row 1, Segment 0 … … … … 587 Row 4, Segment 75 203 Row 1, Segment 75 488 n/a 204 n/a … … … … 639 n/a 255 n/a 256 Row 2, Segment 0 … … 331 Row 2, Segment 75 332 n/a Control of LCD Display and Drive Waveform Setting of Drive Duty In the AX2061, the drive duty can be set to 1/1 to 1/5 using the configuration register MODE[3:0]. Table 11. WAVEFORMS Duty Mode 1/1 1000 Waveform Memory ROW FRMCLK 0 COM0 COM1 SEG0 COM2 SEG1 * COM4 SEG2 * SEG0 SEG3 * SEG2 SEG4 * SEG3 SEG5 SEG4 SEG6 COM3 SEG1 SEG5 * SEG7 SEG6 SEG7 SEG8 * SEG8 SEG9 * SEG9 www.onsemi.com 8 AX2061 Table 11. WAVEFORMS Duty Mode 1/2 1001 Waveform Memory FRMCLK ROW COM0 0 COM1 SEG0 COM2 1 * * SEG1 * COM4 SEG2 * SEG0 SEG3 * * SEG1 SEG4 * * * * * COM3 SEG2 SEG5 SEG3 SEG4 SEG6 SEG5 SEG7 SEG6 SEG8 * SEG7 SEG9 * SEG8 SEG9 1/3 1010 ROW FRMCLK 0 COM0 1 COM1 SEG0 COM2 SEG1 * SEG2 * SEG0 SEG3 * * SEG1 SEG4 * * SEG2 SEG5 COM3 COM4 SEG3 SEG6 SEG4 2 * * * * * * * SEG5 SEG7 SEG6 SEG8 * SEG7 SEG9 * SEG8 SEG9 1/4 1011 FRMCLK ROW COM0 0 COM1 SEG0 COM2 1 COM4 SEG2 * SEG0 SEG3 * * SEG1 SEG4 * * SEG2 SEG5 SEG6 SEG4 * * * SEG8 * SEG7 SEG9 * www.onsemi.com 9 * * * SEG7 SEG6 SEG9 * * SEG5 SEG8 * * * SEG3 3 * SEG1 COM3 2 * AX2061 Table 11. WAVEFORMS Duty Mode 1/5 1100 Waveform Memory FRMCLK ROW COM0 0 COM1 SEG0 COM2 1 COM4 SEG2 * SEG0 SEG3 * * SEG4 * * SEG3 SEG5 SEG4 SEG6 SEG5 SEG7 SEG6 SEG7 SEG8 * * 4 * COM3 * SEG2 3 * SEG1 SEG1 2 * * * * * SEG8 * * SEG9 * * * * * * SEG9 MODE[3:0] field. Pixel data memory row 0 then controls the corresponding SEG waveform. Static Drive The AX2061 provides software setting of the LCD static drive. Static drive can be selected using the control register Table 12. WAVEFORMS Mode Waveform Memory 0010 ROW FRMCLK COM0 0 COM1 COM2 SEG0 COM3 SEG1 COM4 SEG0 SEG2 SEG1 SEG3 SEG2 * SEG4 SEG3 SEG4 SEG5 * SEG5 SEG6 * SEG7 SEG7 * SEG8 SEG8 * SEG6 SEG9 SEG9 Serial Interface Reading of most registers is possible but it is never necessary for the functionality of the AX2061. This means that it is optional to connect the MOSI pin to the mater microcontroller. Figure 3 shows a write/read access to the interface. The AX2061 can be programmed via a four wire serial interface according SPI using the pins CLK, MOSI, MISO and SEL. When the interface signal SEL is pulled low, a four byte command (T0−T3), followed by a variable length configuration data stream (T4−Tx) is expected on the input signal pin MOSI. Data read from the interface appears on MISO. www.onsemi.com 10 AX2061 SPI Timing SEL MOSI T0 T1 T2 T3 MISO Tssd Ts Th T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 Tx R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 Rx Tcl Tch Tck Tst Tssz Figure 3. Serial Interface Timing CIRCUIT DESCRIPTION This section describes the bits of the register bank in detail. No checks are made whether the programmed combination of bits makes sense! Bit 0 is always the LSB. NOTE: Whole registers or register bits marked as reserved should be kept at their default values. NOTE: All addresses not documented here must not be accessed, neither in reading nor in writing. SPI transaction can be of variable length. The first 4 bits of each SPI transaction code the command to be executed by the AX2061. The first command bit, T0, distinguishes Write (0) from Read(1) accesses. The following three command bits (T1:T3) specify the register to access. Even though many registers can be read as well as written, reading a register is never required for the functionality of the AX2061. Register 000 (Pixel Data) has variable length, i.e. as many consecutive data elements as required can be read or written in a single SPI transaction. All other registers are twelve bits long. SPI Frame Formats SPI transactions start with a falling edge on SEL. The first four bits indicate the command, the following bits are interpreted according to the command bits. Table 13. REGISTER OVERVIEW Cmd Name Reset T1 :T2 :T3 Bit 11 10 9 000 PIXELDA TA −−−−− PIXELDATA… 010 CONFIG 0000 0001 0000 RST 011 DIVIDER 0000 0000 0000 PRESCALER[3:0] 100 CONTRA ST 0000 0010 0111 REVISION[7:0] 101 PINCFG 0111 0111 0111 LAT CHR 110 INT 0101 0000 0001 reserved 111 OSCILLA TOR 0000 0010 0011 reserved − 8 7 6 Description 5 4 3 2 1 0 Pixel Data CP ENA DIV CLK SRC FRM CLK SRC FRM SYNC LATCH[1:0] MODE[3:0] Configuration DIVIDER[7:0] LATCHDRV[2:0] SYS CLKR CONTRAST_O FF[1 :0] SYSCLKDRV[2:0] reserved CONF Pixel Data Register Divider CONTRAST[3:0] Contrast ICLKR Pin Configuration ICLKDRV[2:0] BUF_CUR[3:0] EN_OSC_ PROG FREQ_OSC[3:0] Internal Configuration reserved Oscillator frequency programming bits. After that, Pixel Data (PD) can be read or written, one pixel at a time. The Pixel Address auto increments. An arbitrary number of consecutive pixels may be read or written in a single transaction. The first command bit, T0, distinguishes Write (0) from Read(1) accesses. The command code (T1:T2:T3 = 000) is followed by a 10 bit Pixel Address (PA), and two dummy www.onsemi.com 11 AX2061 Table 14. PIXEL DATA REGISTER T0 T1 T2 T3 0 0 0 0 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 − − PD(PA) PD(PA+1) … Pixel Address PA(9:0) For a description of the mapping between pixel addresses and rows/segments see the section Pixel address to segment / row mapping. CONFIG Register Table 15. CONFIG REGISTER Name Bits R/W Reset Description MODE 3:0 RW 0000 See table below LATCH 5:4 RW 01 See table below FRMSYNC 6 RW 0 When 1, the framing generator is restarted if ICLK = 1; this allows synchronisation of multiple AX2061 FRMCLKSRC 7 RW 0 Framing clock source; 0 = divider output, 1 = SYSCLK DIVCLKSRC 8 RW 0 Divider clock source; 0 = SYSCLK, 1 = internal 32 kHz oscillator CPENA 9 RW 0 Charge Pump Enable RST 11 RW 0 Reset chip by writing 1 to RST, and then 0 Table 16. MODES Bits Meaning 0000 Off; all LCD COM and SEG pins are driven to GND 0010 Static 1000 Dynamic 1/1 1001 Dynamic 1/2 1010 Dynamic 1/3 1011 Dynamic 1/4 1100 Dynamic 1/5 Table 17. LATCH MODE Bits Meaning 00 Latch Opaque 01 Latch Transparent 10 The LATCH pin controls the pixel latch. Pin LATCH = 0: Opaque; pin LATCH = 1: Transparent 11 The LATCH pin controls the pixel latch. Pin LATCH = 0: Transparent; pin LATCH = 1: Opaque DIVIDER Register Table 18. DIVIDER REGISTER Name Bits R/W Reset DIVIDER 7:0 RW 00000000 PRESCALER 11:8 RW 0000 Description Divider; divides the prescaler output by DIVIDER + 1 Prescaler; divides the clock input by 2PRESCALER CONTRAST Register The refresh frequency will be f REFRESH + 2 PRESCALER f CLK ( DIVIDER ) 1) Table 19. CONTRAST REGISTER (Note that this is the frequency at which drive signals change. Drive signals will repeat after 2 times the refresh period times the dynamic multiplex ratio.) Name Bits R/W Bits CONTRAST 3:0 RW 0111 REVISION 11:4 R 00000001 Description Contrast Chip revision For a table containing the contrast encoding see the Specifications section on LCD drive characteristics. www.onsemi.com 12 AX2061 PINCFG Register Table 20. PINCFG REGISTER Name ICLKDRV ICLKR SYSCLKDRV SYSCLKR LATCHDRV LATCHR Bits R/W Reset Description 2:0 RW 111 3 R − ICLK pad observation 6:4 RW 111 SYSCLK drive mode 7 R − 10:8 RW 111 11 R − ICLK drive mode SYSCLK pad observation LATCH drive mode LATCH pad observation Table 21. ICLK DRIVE MODE Bits Table 23. LATCH DRIVE MODE Meaning Bits Meaning 000 Drive 0 000 Drive 0 001 Drive 1 001 Drive 1 010 Internal 32 kHz oscillator clock 010 Internal 32 kHz oscillator clock 011 Divider output clock 011 Divider output clock 100 Frame sync output 100 Frame sync output 101 Latch output 101 Latch output 111 High Impedance / Input 111 High Impedance / Input Table 22. SYSCLK DRIVE MODE Bits INT Register Meaning 000 Drive 0 001 Drive 1 010 Internal 32 kHz oscillator clock 011 Divider output clock 100 Frame sync output 101 Latch output 111 High Impedance / Input Table 24. INT REGISTER Name Bits R/W Reset CONTRAST_OFF[1:0] 9:8 RW 01 BUF_CUR 3:0 RW 0001 Description Contrast offset adjustment, for Contrast bits see CONTRAST Register Internal setting of the LCD Drive Voltage Buffers. MUST BE SET TO 1111. Table 25. CONTRAST OFFSET CODING Bits Meaning 00 2 LSB, 40 mV offset 01 Default 10 1 LSB, 20 mV offset 11 −1 LSB, −20 mV offset www.onsemi.com 13 AX2061 OSCILLATOR Register Table 26. OSCILLATOR REGISTER Name Bits R/W Reset CONF 7 RW 0 MUST BE SET TO 1. EN_OSC_PROG 6 RW 0 Enable oscillator programming. This bit must be set to high for changes of FREQ_OSC to take effect. 5:2 R − Internal oscillator frequency programming. FREQ_OSC Description For oscillator frequencies at specific FREQ_OSC settings, see the Specifications section on the Oscillator. www.onsemi.com 14 AX2061 APPLICATION INFORMATION Application Diagram with External Clocking VDD VDD COM[4:0] MOSI MISO SEL CLK LCD panel microcontroller large block cap, for example 330 mF LATCH SYSCLK ICLK AX2061 SEG[75:0] 1 mF 100 nF 1 MW 100 nF 220 nF 100 nF 1 mF VSS Figure 4. Application Diagram with External Clocking The unused pins LATCH and ICLK should be either configured to drive 0 or configured to be inputs and tied to VSS. MISO can optionally be connected to read back register contents from the AX2061. Reading registers is not required for the AX2061 functionality. Application Diagram with Internal Clocking VDD optional COM[4:0] MOSI MISO SEL CLK LCD panel microcontroller VDD large block cap, for example 330 mF LATCH SYSCLK ICLK AX2061 SEG[75:0] 1 mF 100 nF 1 MW 100 nF 220 nF 100 nF 1 mF VSS Figure 5. Application Diagram with Internal Clocking The unused pins LATCH, ICLK and SYSCLK should be either configured to drive 0 or configured to be inputs and tied to VSS. MISO can optionally be connected to read back register contents from the AX2061. Reading registers is not required for the AX2061 functionality. www.onsemi.com 15 AX2061 DIE OUTLINE, PAD COORDINATES AND WAFER INFORMATION Table 27. Pin X−OUT 1 40 2 3 120 & 290 40 4 5 120 & 290 40 6 7 120 & 290 40 8 9 120 & 290 40 10 11 120 & 290 40 12 13 120 & 290 40 14 15 120 & 290 40 16 17 120 & 290 40 18 19 120 & 290 40 20 21 120 & 290 40 22 23 120 & 290 40 24 25 120 & 290 40 26 27 120 & 290 40 28 29 120 & 290 40 30 31 120 & 290 40 32 33 120 & 290 40 34 35 120 & 290 40 36 37 120 & 290 40 38 39 120 & 290 40 40 41 120 & 290 40 42 43 120 & 290 40 44 45 120 & 290 40 46 47 X−IN 120 & 290 40 Y Symbol Pin X−IN 2655 SEG0 59 956 &1126 2609 SEG1 60 2563 SEG2 61 2517 SEG3 62 2470 SEG4 63 2424 SEG5 64 2378 SEG6 65 2332 SEG7 66 2285 SEG8 67 2239 SEG9 68 2193 SEG10 69 2147 SEG11 70 2100 SEG12 71 2054 SEG13 72 2008 SEG14 73 1962 SEG15 74 1915 SEG16 75 1869 SEG17 76 1823 SEG18 77 1777 SEG19 78 1730 SEG20 79 1684 SEG21 80 1638 SEG22 81 1592 SEG23 82 1545 SEG24 83 1499 SEG25 84 1453 SEG26 85 1407 SEG27 86 1360 SEG28 87 1314 SEG29 88 1268 SEG30 89 1222 SEG31 90 1175 SEG32 91 1129 SEG33 92 1083 SEG34 93 1037 COM0 94 990 COM1 95 944 COM2 96 898 COM3 97 852 COM4 98 805 VDD 99 760 VDD 100 715 VSS 101 670 VSS 102 625 VDDCORE 103 580 VDDCORE 104 535 VSS 105 www.onsemi.com 16 X−OUT 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 Y Symbol 40 ICLK 85 SYSCLK 130 LATCH 175 MOSI 220 MISO 265 TST 310 VD1 355 VD1 400 VSS 445 RREF 490 VSS 535 VD2 580 VD2 625 VSS 670 VSS 715 VD3 760 VD3 805 SEG35 852 SEG36 898 SEG37 944 SEG38 990 SEG39 1037 SEG40 1083 SEG41 1129 SEG42 1175 SEG43 1222 SEG44 1268 SEG45 1314 SEG46 1360 SEG47 1407 SEG48 1453 SEG49 1499 SEG50 1545 SEG51 1592 SEG52 1638 SEG53 1684 SEG54 1730 SEG55 1777 SEG56 1823 SEG57 1869 SEG58 1915 SEG59 1962 SEG60 2008 SEG61 2054 SEG62 2100 SEG63 2147 SEG64 AX2061 Table 27. Pin X−OUT 48 49 106 445 VI 107 400 VI 108 355 VSS 109 310 VSS 110 265 CAPN 111 220 CAPN 112 175 CAPP 113 130 CAPP 114 85 SEL 115 40 CLK 116 120 & 290 40 120 & 290 40 56 57 Pin VSS 40 54 55 Symbol 120 & 290 52 53 Y 490 40 50 51 X−IN 120 & 290 120 & 290 40 58 120 & 290 X−IN X−OUT Y Symbol 1206 2193 SEG65 2239 SEG66 2285 SEG67 2332 SEG68 2378 SEG69 2424 SEG70 2470 SEG71 2517 SEG72 2563 SEG73 2609 SEG74 2655 SEG75 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 956 &1126 1206 Inner pads are duplicated. In the application only one of the duplicate rows needs to be connected. Die marking position at coordinates 0/0 Figure 6. Pad Layout and Marking Position of the Die Table 28. Die size 1.4 mm x 2.8 mm Wafer size 8” 70 mm x 70 mm Wafer thickness 19 mil Minimal pad pitch in y dimension 90 mm GDPW 7370 Minimal pad pitch in x dimension 250 mm Saw lane width 100 mm Item Die pad openings Dimension www.onsemi.com 17 AX2061 ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 18 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative AX2061/D