AX2061 D

AX2061
LCD Driver for Low
Multiplex Rates
OVERVIEW
The AX2061 is an LCD driver for low multiplex rates. Figure 1
shows the block diagram of the AX2061. The chip is controlled by a
microcontroller using the SPI interface. The microcontroller writes
pixel (segment) data into the pixel data memory. Display updates may
be delayed using the pixel data latches. The pixel data latches drive the
segment drivers, while the row counter drives the row drivers.
Features
•
•
•
•
•
•
•
•
•
•
Single−chip LCD Controller/Driver 5 Row, 76 Segment Outputs
Wide Power Supply Range: from 2.2 V to 3.6 V
4−bit Contrast Register
Selectable Row Drive Configuration: Static or 2/3/4/5 Row
Multiplexing
Internal Generation of LCD Bias Voltages with Charge Pump
from a Single 2.2 to 3.6 V Power Supply
76 × 5−bit RAM for Display Data Storage
Auto−incremented Display Data Loading
Low Power Consumption
Internal 32 kHz Oscillator
SPI−Bus Interface
www.onsemi.com
ORDERING INFORMATION
Device
Package
Shipping
AX2061−1−WD1
Wafer/Die
Contact Sales
See additional information on page 16 of this data sheet.
SEG75
SEG0
COM4
COM0
VI
VD3
VD2
VD1
VDDCORE
BLOCK DIAGRAM
CAP
VDD
Voltage Regulator / Pump
Row Drivers
Segment Drivers
ICLK
RREF
SYSCLK (32kHz)
optional
Oscillator
32 kHz
Frequency
Frame
Divider
Counter
ROW#
Pixel Latches
LATCH
Pixel
ROW#
Address
VSS
Counter
Pixel Data Registers
SEG#
SEL
CLK
MOSI
SPI
MISO
optional
Figure 1. Functional Block Diagram of the AX2061
© Semiconductor Components Industries, LLC, 2016
March, 2016 − Rev. 3
1
Publication Order Number:
AX2061/D
AX2061
Table 1. PIN FUNCTION DESCRIPTIONS
Number of Pins
Type
COM0−4
Symbol
5
A
Row driver outputs
Description
SEG0−75
76
A
Segment driver outputs
SEL
1
I
SPI select
CLK
1
I
SPI clock
MISO
1
O
SPI data output
Can optionally be connected to read back register contents from the AX2061.
Reading registers is not required for the AX2061 functionality.
MOSI
1
I
SPI data input
LATCH
1
I/O
Latch pixel data into pixel latches
For alternative functionalities as well as required handling if not used see the
circuit description section
SYSCLK
1
I/O
32 kHz clock input (default)
For alternative functionalities as well as required handling if not used see the
circuit description section
ICLK
1
I/O
Internal 32 kHz clock output
For alternative functionalities as well as required handling if not used see the
circuit description section
RREF
1
A
Reference resistor for internal 32kHz oscillator
Connect 1 MW from RREF pin to VSS
Note that the reference resistor is required even if the internal 32 kHz oscillator is
not used to generate the framing clock
VD1
2
A
Decoupling output for internally generated LCD voltage VD1
Connect 100 nF capacitor from VD1 to VSS
VD2
2
A
Decoupling output for internally generated LCD voltage VD2
Connect 220 nF capacitor from VD2 to VSS
VD3
2
A
Decoupling output for internally generated LCD voltage VD3
Connect 100 nF capacitor from VD3 to VSS
VI
2
A
Decoupling output for internal charge pump
Connect 1 mF capacitor from VI to VSS, note that voltage levels on this pin can
reach up to 5.2 V
VDD
2
P
Supply voltage input
VDDCORE
2
A
Decoupling output for internally generated supply voltage for the core functionality
of the IC
Connect 1 mF capacitor from VDDCORE to VSS
CAPN
2
A
Charge pump floating capacitor negative terminal
Connect 100 nF capacitor between CAPN and CAPP
CAPP
2
A
Charge pump floating capacitor positive terminal
Connect 1 mF capacitor between CAPN and CAPP
VSS
10
P
Ground
TST
1
N
Pin used for production testing, leave unconnected
Total
116
A = analog input
I = digital input signal
O = digital output signal
I/O = digital input/output signal
N = not to be connected
P = power or ground
All digital inputs are Schmitt trigger inputs, digital input
and output levels are LVCMOS/LVTTL compatible and 5 V
tolerant.
www.onsemi.com
2
AX2061
Table 2.
Pin
Symbol
Pin
Symbol
Pin
Symbol
Pin
Symbol
1
SEG0
30
SEG29
59
ICLK
88
SEG47
2
SEG1
31
SEG30
60
SYSCLK
89
SEG48
3
SEG2
32
SEG31
61
LATCH
90
SEG49
4
SEG3
33
SEG32
62
MOSI
91
SEG50
5
SEG4
34
SEG33
63
MISO
92
SEG51
6
SEG5
35
SEG34
64
TST
93
SEG52
7
SEG6
36
COM0
65
VD1
94
SEG53
8
SEG7
37
COM1
66
VD1
95
SEG54
9
SEG8
38
COM2
67
VSS
96
SEG55
10
SEG9
39
COM3
68
RREF
97
SEG56
11
SEG10
40
COM4
69
VSS
98
SEG57
12
SEG11
41
VDD
70
VD2
99
SEG58
13
SEG12
42
VDD
71
VD2
100
SEG59
14
SEG13
43
VSS
72
VSS
101
SEG60
15
SEG14
44
VSS
73
VSS
102
SEG61
16
SEG15
45
VDDCORE
74
VD3
103
SEG62
17
SEG16
46
VDDCORE
75
VD3
104
SEG63
18
SEG17
47
VSS
76
SEG35
105
SEG64
19
SEG18
48
VSS
77
SEG36
106
SEG65
20
SEG19
49
VI
78
SEG37
107
SEG66
21
SEG20
50
VI
79
SEG38
108
SEG67
22
SEG21
51
VSS
80
SEG39
109
SEG68
23
SEG22
52
VSS
81
SEG40
110
SEG69
24
SEG23
53
CAPN
82
SEG41
111
SEG70
25
SEG24
54
CAPN
83
SEG42
112
SEG71
26
SEG25
55
CAPP
84
SEG43
113
SEG72
27
SEG26
56
CAPP
85
SEG44
114
SEG73
28
SEG27
57
SEL
86
SEG45
115
SEG74
29
SEG28
58
CLK
87
SEG46
116
SEG75
www.onsemi.com
3
AX2061
SPECIFICATIONS
Table 3. ABSOLUTE MAXIMUM RATINGS
Symbol
Description
Condition
Min
Max
Units
−0.5
5.5
V
100
mA
800
mW
10
mA
40
mA
−0.5
5.5
V
−2000
2000
V
VDD_IO
Supply voltage
IDD
Supply current
Ptot
Total power consumption
II1
DC current into any pin
IO
Output Current
Via
Input voltage digital pins
Ves
Electrostatic handling
Tamb
Operating temperature
−40
85
°C
Tstg
Storage temperature
−65
150
°C
Tj
Junction Temperature
150
°C
−10
HBM
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections
of this specification is not implied.
2. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC Characteristics
Table 4. SUPPLIES
Symbol
Description
Condition
Min
Typ
Max
Units
TAMB
Operational ambient temperature
−40
27
85
°C
VDD
Power supply voltage
2.2
3.0
3.6
V
ISTB
Total standby current
Register Settings:
Reg
Reg
Reg
Reg
Reg
Reg
2
3
4
5
6
7
=
=
=
=
=
=
4
mA
10
mA
0x310
0x054
0x00C
0x000
0x50f
0x0C3
VD1, VD2, VD3, VI, VDDCORE
decoupling and capacitor between CAPN
and CAPP according to the section
Application Information. (Note 1)
IDDRUN
Total operating current
Register Settings:
Reg
Reg
Reg
Reg
Reg
Reg
2
3
4
5
6
7
=
=
=
=
=
=
0x31C
0x700
0x007
0x000
0x50f
0x043
VD1, VD2, VD3, VI, VDDCORE
decoupling and capacitor between CAPN
and CAPP according to the section
Application Information.
1. It is not recommended to use any mode with CPENA=0 as the settling time to low current consumption can be very long after CPENA is
switched from 1 to 0. Recommended usage is to keep CPENA=1 even when the row and segment outputs are disabled.
www.onsemi.com
4
AX2061
Table 5. LOGIC
Symbol
Description
Condition
Min
Typ
Max
Units
Digital Inputs
VT+
Schmitt trigger low to high threshold point
1.9
V
VT−
Schmitt trigger high to low threshold point
1.2
V
VIL
Input voltage, low
VIH
Input voltage, high
2.0
IL
Input leakage current
−1
0.8
V
V
1
mA
Digital Outputs
IOH
Output Current, high
VDD = 3 V, VOH = 2.4 V
4
mA
IOL
Output Current, low
VDD = 3 V, VOL = 0.4 V
4
mA
AC Characteristics
Table 6. OSCILLATOR
Symbol
Description
Condition
Min
Typ
Max
Units
25
32
39
kHz
80
kHz
fosc
Internal oscillator frequency
fext
External clock input
Input at pin SYSCLK (Note 1)
Ndiv
Clock frequency divider ratio
Programmable via register DIVIDER
1
REXT
External resistor
Between pin RREF and VSS (Note 2)
0.99
FREQ_OSC[3:0]=0101
FREQ_OSC[3:0]=1111
1. The usable frequency range will depend on the characteristics of the display used.
2. AX2061 will work with less accurate resistors, but the spread of fosc will be larger.
www.onsemi.com
5
20
0.02
32
222
1
1.01
MW
AX2061
Table 7. LCD Drive Characteristics
Unless otherwise specified: VDD = 3.0 V, VSS = 0 V, internal 32 kHz oscillator, Tamb = 25°C. VD1, VD2, VD3, VI, VDDCORE decoupling
and capacitor between CAPN and CAPP according to the section Application Information.
Symbol
Item
LCD drive voltages
Common and segment
voltage drop
VD1
Condition
LCD segment and row CONTRAST[3:0] = 0000
pins are open−circuit
CONTRAST[3:0] = 0001
Min.
Typ.
Max.
Units
Typ.
−100mV
0.98
Typ.
+100mV
V
2SVD1
V
1.00
CONTRAST[3:0] = 0010
1.02
CONTRAST[3:0] = 0011
1.04
CONTRAST[3:0] = 0100
1.06
CONTRAST[3:0] = 0101
1.09
CONTRAST[3:0] = 0110
1.11
CONTRAST[3:0] = 0111
1.13
CONTRAST[3:0] = 1000
1.16
CONTRAST[3:0] = 1001
1.19
CONTRAST[3:0] = 1010
1.21
CONTRAST[3:0] = 1011
1.24
CONTRAST[3:0] = 1100
1.27
CONTRAST[3:0] = 1101
1.30
CONTRAST[3:0] = 1110
1.34
CONTRAST[3:0] = 1111
1.38
VD2
LCD segment and row pins are open−circuit (without
panel load)
2SVD1S0.9
VD3
LCD segment and row pins are open−circuit
3SVD1S0.9
VDR
Each common is loaded with 100 mA and each
segment is loaded with 10 mA
3SVD1
50
V
mV
Table 8. SPI TIMING
Symbol
Description
Condition
Min.
Typ.
Max.
Units
Tss
SEL falling edge to CLK rising edge
10
ns
Tsh
CLK falling edge to SEL rising edge
10
Tssd
SEL falling edge to MISO driving
0
10
ns
Tssz
SEL rising edge to MISO high−Z
0
10
ns
Ts
MOSI setup time
10
ns
Th
MOSI hold time
10
ns
Tst
CLK falling edge to MISO output
Tck
CLK period
50
ns
Tcl
CLK low duration
40
ns
Tch
CLK high duration
40
ns
ns
10
For a figure showing the SPI timing parameters see
section Serial Interface.
www.onsemi.com
6
ns
AX2061
CIRCUIT DESCRIPTION
Overview
internal 32 kHz
oscillator
Figure 1 shows the block diagram of the AX2061. The
chip is controlled by a microcontroller using the SPI
interface. The microcontroller writes pixel (segment) data
into the pixel data memory. Display updates may be delayed
using the pixel data latches. The pixel data latches drive the
segment drivers, while the row counter drives the row
drivers.
The pixel data latch may be controlled by a dedicated
signal, or via control register writes. This allows delayed
display updates. At the beginning of an update, the latch can
be set to opaque. The following pixel data writes will not be
visible until the latch is again set to transparent.
An on−board voltage regulator and charge pump
generates all the necessary LCD voltages, namely VD1,
VD2 and VD3 from VDD. A 4 bit contrast D/A converter
adjusts these voltages.
Clocking may be derived either from the internal 32 kHz
oscillator or via external clock inputs.
1
0
frequency
division
0
1
frame
counter
DIVCLKSRC
FRMCLKSRC
SYSCLK
Figure 2. Frame Clocking Options
Both the device pin SYSCLK as well as the pin ICLK can
be configured to output either the internal 32 kHz oscillator
output, the frequency divider output or a frame
synchronisation output by programming the PINCFG
register. The frame synchronisation output allows multiple
AX2061 devices to be synchronized. In order to synchronize
multiple AX2061, one device must be the master device.
The master device should output the divider clock output on
SYSCLK, and the frame sync signal on ICLK. These signals
should be routed to the SYSCLK and ICLK pins of the slave
devices. Slave devices must be configured to accept the
frame sync signal on ICLK (FRMSYNC=1) and to accept
the framing clock from SYSCLK (FRMCLKSRC=1).
Unused pins must either be set to “high impedance / input”
and externally be bonded to ground, or be set to “drive 0” and
left unconnected.
Reset
The AX2061 generates an internal power−on reset once
VDDCORE has reached a level allowing safe operation of
the circuit.
The device condition after power−on reset is:
• LCD voltage generation off (CPENA = 0)
• Internal 32 kHz oscillator running
• SPI ready for use
• All LCD pins driven to ground (MODE=0000)
• Pixel Data memory is undefined
LCD Drive Configurations
The AX2061 has 5 row terminals (COM0—COM4) and
76 segment terminals (SEG0—SEG75), so that it can drive
an LCD display with a maximum of 380 (76 x 5) segments.
The driving method is 1/1 duty to 1/5 duty dynamic drive
with four voltages VSS, VD1, VD2 and VD3. lt is also
possible to set static drive. LCD display on/off can be
controlled by software.
After power−up it is possible to reset the device via an SPI
access by writing the bit RST first to 1 then clearing it to 0.
Clock Sources
After reset the device is configured to generating the
frame clock from a clock input at the pin SYSCLK. This
input is passed through the frequency division system which
consists of a pre−scaler and a main divider. By default the
total division ratio is 1. Other division factors are set by
programming the register DIVIDER.
The AX2061 contains an internal 32 kHz oscillator. This
oscillator is started−up at power−on and is used to clock the
charge pump for the LCD voltage generation. It can be used
to derive the frame clock instead of an input via a device pin.
To set this clock source DIVCLKSCRC must be set to 1.
LCD Voltage Generation
The LCD drive voltages VD1−VD3 are generated by the
built−in LCD system voltage circuit. The LCD system
voltage circuit is turned on and off using the control register
(bit CPENA).
Pixel Address to Segment / Row Mapping
The mapping between pixel addresses and rows/segments
is detailed in the table below:
Table 9. MAPPING BETWEEN PIXEL ADDRESSES
AND ROWS/SEGMENTS
Pixel Address
9
8
7
Row Number
www.onsemi.com
7
6
5
4
3
2
Segment Number
1
0
AX2061
Table 10. DETAILED MAPPING BETWEEN PIXEL
ADDRESSES AND ROWS/SEGMENTS
…
…
383
n/a
Pixel Address
Coordinate
384
Row 3, Segment 0
0
Row 0, Segment 0
…
…
…
…
459
Row 3, Segment 75
75
Row 0, Segment 75
450
n/a
76
n/a
…
…
…
…
511
n/a
127
n/a
512
Row 4, Segment 0
128
Row 1, Segment 0
…
…
…
…
587
Row 4, Segment 75
203
Row 1, Segment 75
488
n/a
204
n/a
…
…
…
…
639
n/a
255
n/a
256
Row 2, Segment 0
…
…
331
Row 2, Segment 75
332
n/a
Control of LCD Display and Drive Waveform
Setting of Drive Duty
In the AX2061, the drive duty can be set to 1/1 to 1/5 using
the configuration register MODE[3:0].
Table 11. WAVEFORMS
Duty
Mode
1/1
1000
Waveform
Memory
ROW
FRMCLK
0
COM0
COM1
SEG0
COM2
SEG1
*
COM4
SEG2
*
SEG0
SEG3
*
SEG2
SEG4
*
SEG3
SEG5
SEG4
SEG6
COM3
SEG1
SEG5
*
SEG7
SEG6
SEG7
SEG8
*
SEG8
SEG9
*
SEG9
www.onsemi.com
8
AX2061
Table 11. WAVEFORMS
Duty
Mode
1/2
1001
Waveform
Memory
FRMCLK
ROW
COM0
0
COM1
SEG0
COM2
1
*
*
SEG1
*
COM4
SEG2
*
SEG0
SEG3
*
*
SEG1
SEG4
*
*
*
*
*
COM3
SEG2
SEG5
SEG3
SEG4
SEG6
SEG5
SEG7
SEG6
SEG8
*
SEG7
SEG9
*
SEG8
SEG9
1/3
1010
ROW
FRMCLK
0
COM0
1
COM1
SEG0
COM2
SEG1
*
SEG2
*
SEG0
SEG3
*
*
SEG1
SEG4
*
*
SEG2
SEG5
COM3
COM4
SEG3
SEG6
SEG4
2
*
*
*
*
*
*
*
SEG5
SEG7
SEG6
SEG8
*
SEG7
SEG9
*
SEG8
SEG9
1/4
1011
FRMCLK
ROW
COM0
0
COM1
SEG0
COM2
1
COM4
SEG2
*
SEG0
SEG3
*
*
SEG1
SEG4
*
*
SEG2
SEG5
SEG6
SEG4
*
*
*
SEG8
*
SEG7
SEG9
*
www.onsemi.com
9
*
*
*
SEG7
SEG6
SEG9
*
*
SEG5
SEG8
*
*
*
SEG3
3
*
SEG1
COM3
2
*
AX2061
Table 11. WAVEFORMS
Duty
Mode
1/5
1100
Waveform
Memory
FRMCLK
ROW
COM0
0
COM1
SEG0
COM2
1
COM4
SEG2
*
SEG0
SEG3
*
*
SEG4
*
*
SEG3
SEG5
SEG4
SEG6
SEG5
SEG7
SEG6
SEG7
SEG8
*
*
4
*
COM3
*
SEG2
3
*
SEG1
SEG1
2
*
*
*
*
*
SEG8
*
*
SEG9
*
*
*
*
*
*
SEG9
MODE[3:0] field. Pixel data memory row 0 then controls
the corresponding SEG waveform.
Static Drive
The AX2061 provides software setting of the LCD static
drive. Static drive can be selected using the control register
Table 12. WAVEFORMS
Mode
Waveform
Memory
0010
ROW
FRMCLK
COM0
0
COM1
COM2
SEG0
COM3
SEG1
COM4
SEG0
SEG2
SEG1
SEG3
SEG2
*
SEG4
SEG3
SEG4
SEG5
*
SEG5
SEG6
*
SEG7
SEG7
*
SEG8
SEG8
*
SEG6
SEG9
SEG9
Serial Interface
Reading of most registers is possible but it is never
necessary for the functionality of the AX2061. This means
that it is optional to connect the MOSI pin to the mater
microcontroller.
Figure 3 shows a write/read access to the interface.
The AX2061 can be programmed via a four wire serial
interface according SPI using the pins CLK, MOSI, MISO
and SEL. When the interface signal SEL is pulled low, a four
byte command (T0−T3), followed by a variable length
configuration data stream (T4−Tx) is expected on the input
signal pin MOSI. Data read from the interface appears on
MISO.
www.onsemi.com
10
AX2061
SPI Timing
SEL
MOSI
T0
T1
T2
T3
MISO
Tssd
Ts Th
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
Tx
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
Rx
Tcl Tch Tck
Tst
Tssz
Figure 3. Serial Interface Timing
CIRCUIT DESCRIPTION
This section describes the bits of the register bank in
detail.
No checks are made whether the programmed
combination of bits makes sense! Bit 0 is always the LSB.
NOTE: Whole registers or register bits marked as
reserved should be kept at their default values.
NOTE: All addresses not documented here must not be
accessed, neither in reading nor in writing.
SPI transaction can be of variable length. The first 4 bits
of each SPI transaction code the command to be executed by
the AX2061. The first command bit, T0, distinguishes
Write (0) from Read(1) accesses. The following three
command bits (T1:T3) specify the register to access.
Even though many registers can be read as well as written,
reading a register is never required for the functionality of
the AX2061.
Register 000 (Pixel Data) has variable length, i.e. as many
consecutive data elements as required can be read or written
in a single SPI transaction. All other registers are twelve bits
long.
SPI Frame Formats
SPI transactions start with a falling edge on SEL. The first
four bits indicate the command, the following bits are
interpreted according to the command bits.
Table 13. REGISTER OVERVIEW
Cmd
Name
Reset
T1 :T2
:T3
Bit
11
10
9
000
PIXELDA
TA
−−−−−
PIXELDATA…
010
CONFIG
0000
0001
0000
RST
011
DIVIDER
0000
0000
0000
PRESCALER[3:0]
100
CONTRA
ST
0000
0010
0111
REVISION[7:0]
101
PINCFG
0111
0111
0111
LAT
CHR
110
INT
0101
0000
0001
reserved
111
OSCILLA
TOR
0000
0010
0011
reserved
−
8
7
6
Description
5
4
3
2
1
0
Pixel Data
CP
ENA
DIV
CLK
SRC
FRM
CLK
SRC
FRM
SYNC
LATCH[1:0]
MODE[3:0]
Configuration
DIVIDER[7:0]
LATCHDRV[2:0]
SYS
CLKR
CONTRAST_O
FF[1 :0]
SYSCLKDRV[2:0]
reserved
CONF
Pixel Data Register
Divider
CONTRAST[3:0]
Contrast
ICLKR
Pin
Configuration
ICLKDRV[2:0]
BUF_CUR[3:0]
EN_OSC_
PROG
FREQ_OSC[3:0]
Internal
Configuration
reserved
Oscillator
frequency
programming
bits. After that, Pixel Data (PD) can be read or written, one
pixel at a time. The Pixel Address auto increments. An
arbitrary number of consecutive pixels may be read or
written in a single transaction.
The first command bit, T0, distinguishes Write (0) from
Read(1) accesses. The command code (T1:T2:T3 = 000) is
followed by a 10 bit Pixel Address (PA), and two dummy
www.onsemi.com
11
AX2061
Table 14. PIXEL DATA REGISTER
T0
T1
T2
T3
0
0
0
0
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
−
−
PD(PA)
PD(PA+1)
…
Pixel Address PA(9:0)
For a description of the mapping between pixel addresses
and rows/segments see the section Pixel address to segment
/ row mapping.
CONFIG Register
Table 15. CONFIG REGISTER
Name
Bits
R/W
Reset
Description
MODE
3:0
RW
0000
See table below
LATCH
5:4
RW
01
See table below
FRMSYNC
6
RW
0
When 1, the framing generator is restarted if ICLK = 1; this allows
synchronisation of multiple AX2061
FRMCLKSRC
7
RW
0
Framing clock source; 0 = divider output, 1 = SYSCLK
DIVCLKSRC
8
RW
0
Divider clock source; 0 = SYSCLK, 1 = internal 32 kHz oscillator
CPENA
9
RW
0
Charge Pump Enable
RST
11
RW
0
Reset chip by writing 1 to RST, and then 0
Table 16. MODES
Bits
Meaning
0000
Off; all LCD COM and SEG pins are driven to GND
0010
Static
1000
Dynamic 1/1
1001
Dynamic 1/2
1010
Dynamic 1/3
1011
Dynamic 1/4
1100
Dynamic 1/5
Table 17. LATCH MODE
Bits
Meaning
00
Latch Opaque
01
Latch Transparent
10
The LATCH pin controls the pixel latch.
Pin LATCH = 0: Opaque; pin LATCH = 1: Transparent
11
The LATCH pin controls the pixel latch.
Pin LATCH = 0: Transparent; pin LATCH = 1: Opaque
DIVIDER Register
Table 18. DIVIDER REGISTER
Name
Bits
R/W
Reset
DIVIDER
7:0
RW
00000000
PRESCALER
11:8
RW
0000
Description
Divider; divides the prescaler output by DIVIDER + 1
Prescaler; divides the clock input by 2PRESCALER
CONTRAST Register
The refresh frequency will be
f REFRESH +
2 PRESCALER
f CLK
( DIVIDER ) 1)
Table 19. CONTRAST REGISTER
(Note that this is the frequency at which drive signals
change. Drive signals will repeat after 2 times the refresh
period times the dynamic multiplex ratio.)
Name
Bits
R/W
Bits
CONTRAST
3:0
RW
0111
REVISION
11:4
R
00000001
Description
Contrast
Chip revision
For a table containing the contrast encoding see the
Specifications section on LCD drive characteristics.
www.onsemi.com
12
AX2061
PINCFG Register
Table 20. PINCFG REGISTER
Name
ICLKDRV
ICLKR
SYSCLKDRV
SYSCLKR
LATCHDRV
LATCHR
Bits
R/W
Reset
Description
2:0
RW
111
3
R
−
ICLK pad observation
6:4
RW
111
SYSCLK drive mode
7
R
−
10:8
RW
111
11
R
−
ICLK drive mode
SYSCLK pad observation
LATCH drive mode
LATCH pad observation
Table 21. ICLK DRIVE MODE
Bits
Table 23. LATCH DRIVE MODE
Meaning
Bits
Meaning
000
Drive 0
000
Drive 0
001
Drive 1
001
Drive 1
010
Internal 32 kHz oscillator clock
010
Internal 32 kHz oscillator clock
011
Divider output clock
011
Divider output clock
100
Frame sync output
100
Frame sync output
101
Latch output
101
Latch output
111
High Impedance / Input
111
High Impedance / Input
Table 22. SYSCLK DRIVE MODE
Bits
INT Register
Meaning
000
Drive 0
001
Drive 1
010
Internal 32 kHz oscillator clock
011
Divider output clock
100
Frame sync output
101
Latch output
111
High Impedance / Input
Table 24. INT REGISTER
Name
Bits
R/W
Reset
CONTRAST_OFF[1:0]
9:8
RW
01
BUF_CUR
3:0
RW
0001
Description
Contrast offset adjustment, for Contrast bits see CONTRAST Register
Internal setting of the LCD Drive Voltage Buffers. MUST BE SET TO 1111.
Table 25. CONTRAST OFFSET CODING
Bits
Meaning
00
2 LSB, 40 mV offset
01
Default
10
1 LSB, 20 mV offset
11
−1 LSB, −20 mV offset
www.onsemi.com
13
AX2061
OSCILLATOR Register
Table 26. OSCILLATOR REGISTER
Name
Bits
R/W
Reset
CONF
7
RW
0
MUST BE SET TO 1.
EN_OSC_PROG
6
RW
0
Enable oscillator programming. This bit must be set to high for
changes of FREQ_OSC to take effect.
5:2
R
−
Internal oscillator frequency programming.
FREQ_OSC
Description
For oscillator frequencies at specific FREQ_OSC
settings, see the Specifications section on the Oscillator.
www.onsemi.com
14
AX2061
APPLICATION INFORMATION
Application Diagram with External Clocking
VDD
VDD
COM[4:0]
MOSI
MISO
SEL
CLK
LCD panel
microcontroller
large block cap,
for example
330 mF
LATCH
SYSCLK
ICLK
AX2061
SEG[75:0]
1 mF
100 nF
1 MW
100 nF
220 nF
100 nF
1 mF
VSS
Figure 4. Application Diagram with External Clocking
The unused pins LATCH and ICLK should be either
configured to drive 0 or configured to be inputs and tied to
VSS.
MISO can optionally be connected to read back register
contents from the AX2061. Reading registers is not required
for the AX2061 functionality.
Application Diagram with Internal Clocking
VDD
optional
COM[4:0]
MOSI
MISO
SEL
CLK
LCD panel
microcontroller
VDD
large block cap,
for example
330 mF
LATCH
SYSCLK
ICLK
AX2061
SEG[75:0]
1 mF
100 nF
1 MW
100 nF
220 nF
100 nF
1 mF
VSS
Figure 5. Application Diagram with Internal Clocking
The unused pins LATCH, ICLK and SYSCLK should be
either configured to drive 0 or configured to be inputs and
tied to VSS.
MISO can optionally be connected to read back register
contents from the AX2061. Reading registers is not required
for the AX2061 functionality.
www.onsemi.com
15
AX2061
DIE OUTLINE, PAD COORDINATES AND WAFER INFORMATION
Table 27.
Pin
X−OUT
1
40
2
3
120 & 290
40
4
5
120 & 290
40
6
7
120 & 290
40
8
9
120 & 290
40
10
11
120 & 290
40
12
13
120 & 290
40
14
15
120 & 290
40
16
17
120 & 290
40
18
19
120 & 290
40
20
21
120 & 290
40
22
23
120 & 290
40
24
25
120 & 290
40
26
27
120 & 290
40
28
29
120 & 290
40
30
31
120 & 290
40
32
33
120 & 290
40
34
35
120 & 290
40
36
37
120 & 290
40
38
39
120 & 290
40
40
41
120 & 290
40
42
43
120 & 290
40
44
45
120 & 290
40
46
47
X−IN
120 & 290
40
Y
Symbol
Pin
X−IN
2655
SEG0
59
956 &1126
2609
SEG1
60
2563
SEG2
61
2517
SEG3
62
2470
SEG4
63
2424
SEG5
64
2378
SEG6
65
2332
SEG7
66
2285
SEG8
67
2239
SEG9
68
2193
SEG10
69
2147
SEG11
70
2100
SEG12
71
2054
SEG13
72
2008
SEG14
73
1962
SEG15
74
1915
SEG16
75
1869
SEG17
76
1823
SEG18
77
1777
SEG19
78
1730
SEG20
79
1684
SEG21
80
1638
SEG22
81
1592
SEG23
82
1545
SEG24
83
1499
SEG25
84
1453
SEG26
85
1407
SEG27
86
1360
SEG28
87
1314
SEG29
88
1268
SEG30
89
1222
SEG31
90
1175
SEG32
91
1129
SEG33
92
1083
SEG34
93
1037
COM0
94
990
COM1
95
944
COM2
96
898
COM3
97
852
COM4
98
805
VDD
99
760
VDD
100
715
VSS
101
670
VSS
102
625
VDDCORE
103
580
VDDCORE
104
535
VSS
105
www.onsemi.com
16
X−OUT
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
Y
Symbol
40
ICLK
85
SYSCLK
130
LATCH
175
MOSI
220
MISO
265
TST
310
VD1
355
VD1
400
VSS
445
RREF
490
VSS
535
VD2
580
VD2
625
VSS
670
VSS
715
VD3
760
VD3
805
SEG35
852
SEG36
898
SEG37
944
SEG38
990
SEG39
1037
SEG40
1083
SEG41
1129
SEG42
1175
SEG43
1222
SEG44
1268
SEG45
1314
SEG46
1360
SEG47
1407
SEG48
1453
SEG49
1499
SEG50
1545
SEG51
1592
SEG52
1638
SEG53
1684
SEG54
1730
SEG55
1777
SEG56
1823
SEG57
1869
SEG58
1915
SEG59
1962
SEG60
2008
SEG61
2054
SEG62
2100
SEG63
2147
SEG64
AX2061
Table 27.
Pin
X−OUT
48
49
106
445
VI
107
400
VI
108
355
VSS
109
310
VSS
110
265
CAPN
111
220
CAPN
112
175
CAPP
113
130
CAPP
114
85
SEL
115
40
CLK
116
120 & 290
40
120 & 290
40
56
57
Pin
VSS
40
54
55
Symbol
120 & 290
52
53
Y
490
40
50
51
X−IN
120 & 290
120 & 290
40
58
120 & 290
X−IN
X−OUT
Y
Symbol
1206
2193
SEG65
2239
SEG66
2285
SEG67
2332
SEG68
2378
SEG69
2424
SEG70
2470
SEG71
2517
SEG72
2563
SEG73
2609
SEG74
2655
SEG75
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
956 &1126
1206
Inner pads are duplicated.
In the application only one
of the duplicate rows needs
to be connected.
Die marking position at
coordinates 0/0
Figure 6. Pad Layout and Marking Position of the Die
Table 28.
Die size
1.4 mm x 2.8 mm
Wafer size
8”
70 mm x 70 mm
Wafer thickness
19 mil
Minimal pad pitch in y dimension
90 mm
GDPW
7370
Minimal pad pitch in x dimension
250 mm
Saw lane width
100 mm
Item
Die pad openings
Dimension
www.onsemi.com
17
AX2061
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
18
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
AX2061/D