MC74HC73A Dual J-K Flip-Flop with Reset High−Performance Silicon−Gate CMOS The MC74HC73A is identical in pinout to the LS73. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. Each flip−flop is negative−edge clocked and has an active−low asynchronous reset. The MC74HC73A is identical in function to the HC107, but has a different pinout. Features • • • • • • • • • Output Drive Capability: 10 LSTTL Loads Outputs Directly Interface to CMOS, NMOS, and TTL Operating Voltage Range: 2.0 to 6.0 V Low Input Current: 1.0 mA High Noise Immunity Characteristic of CMOS Devices In Compliance with the JEDEC Standard No. 7.0 A Requirements Chip Complexity: 92 FETs or 23 Equivalent Gates NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable These are Pb−Free Devices LOGIC DIAGRAM 14 J1 PIN ASSIGNMENT 12 Q1 1 CLOCK 1 13 3 K1 Q1 2 RESET 1 7 J2 9 Q2 5 CLOCK 2 8 10 K2 CLOCK 1 1 14 J1 RESET 1 2 13 Q1 K1 3 12 Q1 VCC 4 11 GND CLOCK 2 5 10 K2 RESET 2 6 9 Q2 J2 7 8 Q2 www.onsemi.com MARKING DIAGRAMS 14 SOIC−14 D SUFFIX CASE 751A 14 1 HC73AG AWLYWW 1 14 14 1 TSSOP−14 DT SUFFIX CASE 948G 1 HC 73A ALYWG G A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or G = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. Q2 6 RESET 2 PIN 4 = VCC PIN 11 = GND FUNCTION TABLE Inputs Outputs Reset Clock J K L H H H H H H H X X L L H H X X X X L H L H X X X L H Q Q L H No Change L H H L Toggle No Change No Change No Change © Semiconductor Components Industries, LLC, 2016 January, 2016 − Rev. 10 1 Publication Order Number: MC74HC73/D MC74HC73A MAXIMUM RATINGS Symbol Parameter Value Unit – 0.5 to + 7.0 V VCC DC Supply Voltage (Referenced to GND) Vin DC Input Voltage (Referenced to GND) – 1.5 to VCC + 1.5 V Vout DC Output Voltage (Referenced to GND) – 0.5 to VCC + 0.5 V Iin DC Input Current, per Pin ± 20 mA Iout DC Output Current, per Pin ± 25 mA ICC DC Supply Current, VCC and GND Pins ± 50 mA PD Power Dissipation in Still Air 500 mW Tstg Storage Temperature – 65 to + 150 _C TL Lead Temperature, 1 mm from Case for 10 Seconds (PSOIC Package) SOIC Package† This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND v (Vin or Vout) v VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open. _C 260 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. †Derating — SOIC Package: – 7 mW/_C from 65_ to 125_C RECOMMENDED OPERATING CONDITIONS Symbol VCC Vin, Vout Parameter DC Supply Voltage (Referenced to GND) DC Input Voltage, Output Voltage (Referenced to GND) TA Operating Temperature, All Package Types tr, tf Input Rise and Fall Time (Figure 1) VCC = 2.0 V VCC = 4.5 V VCC = 6.0 V Min Max Unit 2.0 6.0 V 0 VCC V – 55 + 125 _C 0 0 0 1000 500 400 ns Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) Guaranteed Limit Symbol Parameter Test Conditions VCC V – 55 to 25_C v 85_C v 125_C Unit VIH Minimum High−Level Input Voltage Vout = 0.1 V or VCC – 0.1 V |Iout| v 20 μA 2.0 4.5 6.0 1.5 3.15 4.2 1.5 3.15 4.2 1.5 3.15 4.2 V VIL Maximum Low−Level Input Voltage Vout = 0.1 V or VCC – 0.1 V |Iout| v 20 μA 2.0 4.5 6.0 0.3 0.9 1.2 0.3 0.9 1.2 0.3 0.9 1.2 V VOH Minimum High−Level Output Voltage Vin = VIH or VIL |Iout| v 20 μA 2.0 4.5 6.0 1.9 4.4 5.9 1.9 4.4 5.9 1.9 4.4 5.9 V 4.5 6.0 3.98 5.48 3.84 5.34 3.70 5.20 2.0 4.5 6.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 4.5 6.0 0.26 0.26 0.33 0.33 0.40 0.40 Vin = VIH or VIL VOL Maximum Low−Level Output Voltage |Iout| v 4.0 mA |Iout| v 5.2 mA Vin = VIH or VIL |Iout| v 20 μA Vin = VIH or VIL |Iout| v 4.0 mA |Iout| v 5.2 mA V Iin Maximum Input Leakage Current Vin = VCC or GND 6.0 ± 0.1 ± 1.0 ± 1.0 μA ICC Maximum Quiescent Supply Current (per Package) Vin = VCC or GND Iout = 0 μA 6.0 4 40 80 μA Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. www.onsemi.com 2 MC74HC73A AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns) Guaranteed Limit Symbol Parameter VCC V – 55 to 25_C v 85_C v 125_C Unit fmax Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 4) 2.0 4.5 6.0 6.0 30 35 4.8 24 28 4.0 20 24 MHz tPLH, tPHL Maximum Propagation Delay, Clock to Q or Q (Figures 1 and 4) 2.0 4.5 6.0 125 25 21 155 31 26 190 38 32 ns tPLH, tPHL Maximum Propagation Delay, Reset to Q or Q (Figures 2 and 4) 2.0 4.5 6.0 155 31 26 195 39 33 235 47 40 ns tTLH, tTHL Maximum Output Transition Time, Any Output (Figures 1 and 4) 2.0 4.5 6.0 75 15 13 95 19 16 110 22 19 ns Maximum Input Capacitance — 10 10 10 pF Cin Typical @ 25°C, VCC = 5.0 V CPD 35 Power Dissipation Capacitance (Per Flip−Flop)* pF * Used to determine the no−load dynamic power consumption: P D = CPD VCC2 f + ICC VCC . TIMING REQUIREMENTS (Input tr = tf = 6 ns) Guaranteed Limit Symbol Parameter VCC V – 55 to 25_C v 85_C v 125_C Unit tsu Minimum Setup Time, J or K to Clock (Figure 3) 2.0 4.5 6.0 100 20 17 125 25 21 150 30 26 ns th Minimum Hold Time, Clock to J or K (Figure 3) 2.0 4.5 6.0 3 3 3 3 3 3 3 3 3 ns trec Minimum Recovery Time, Reset Inactive to Clock (Figure 2) 2.0 4.5 6.0 100 20 17 125 25 21 150 30 26 ns tw Minimum Pulse Width, Clock (Figure 1) 2.0 4.5 6.0 80 16 14 100 20 17 120 24 20 ns tw Minimum Pulse Width, Reset (Figure 2) 2.0 4.5 6.0 80 16 14 100 20 17 120 24 20 ns Maximum Input Rise and Fall Times (Figure 1) 2.0 4.5 6.0 1000 500 400 1000 500 400 1000 500 400 ns tr, tf www.onsemi.com 3 MC74HC73A SWITCHING WAVEFORMS CLOCK tf 90% 50% 10% tr tw VCC VCC 50% RESET GND GND tPHL tw 1/fmax tPLH tPHL Q or Q 50% Q 90% 50% 10% tPLH 50% Q trec tTHL tTLH VCC Figure 1. 50% CLOCK GND Figure 2. VALID VCC TEST POINT J or K GND tsu OUTPUT th DEVICE UNDER TEST VCC CLOCK 50% GND CL* Figure 3. *Includes all probe and jig capacitance Figure 4. EXPANDED LOGIC DIAGRAM RESET 2, 6 12, 9 CL J K 14, 7 3, 10 CL CLOCK Q CL CL CL CL CL CL CL CL CL 1, 5 CL CL CL www.onsemi.com 4 13, 8 Q MC74HC73A ORDERING INFORMATION Package Shipping† MC74HC73ADG SOIC−14 (Pb−Free) 55 Units / Rail MC74HC73ADR2G SOIC−14 (Pb−Free) 2500 / Tape & Reel NLV74HC73ADR2G* SOIC−14 (Pb−Free) 2500 / Tape & Reel MC74HC73ADTG TSSOP−14 (Pb−Free) 96 Units / Tube MC74HC73ADTR2G TSSOP−14 (Pb−Free) 2500 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. www.onsemi.com 5 MC74HC73A PACKAGE DIMENSIONS TSSOP−14 CASE 948G ISSUE B 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. S S N 2X 14 L/2 0.25 (0.010) 8 M B −U− L PIN 1 IDENT. F 7 1 0.15 (0.006) T U N S DETAIL E K A −V− ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ K1 J J1 SECTION N−N −W− C 0.10 (0.004) −T− SEATING PLANE D H G DETAIL E DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.50 0.60 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ SOLDERING FOOTPRINT* 7.06 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 6 INCHES MIN MAX 0.193 0.200 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.020 0.024 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ MC74HC73A PACKAGE DIMENSIONS SOIC−14 NB CASE 751A−03 ISSUE K D A B 14 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 8 A3 E H L 1 0.25 M DETAIL A 7 B 13X M b 0.25 M C A S B S e DETAIL A h A X 45 _ M A1 C SEATING PLANE DIM A A1 A3 b D E e H h L M MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.19 0.25 0.35 0.49 8.55 8.75 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ INCHES MIN MAX 0.054 0.068 0.004 0.010 0.008 0.010 0.014 0.019 0.337 0.344 0.150 0.157 0.050 BSC 0.228 0.244 0.010 0.019 0.016 0.049 0_ 7_ SOLDERING FOOTPRINT* 6.50 14X 1.18 1 1.27 PITCH 14X 0.58 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 7 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC74HC73/D