MC74LVXU04 D

MC74LVXU04
Hex Inverter
(Unbuffered)
The MC74LVX04 is an advanced high speed CMOS unbuffered hex
inverter. The inputs tolerate voltages up to 7.0 V, allowing the
interface of 5.0 V systems to 3.0 V systems.
http://onsemi.com
Features
•
•
•
•
•
•
•
High Speed: tPD = 4.1 ns (Typ) at VCC = 3.3 V
Low Power Dissipation: ICC = 2 mA (Max) at TA = 25°C
Power Down Protection Provided on Inputs
Balanced Propagation Delays
Low Noise: VOLP = 0.5 V (Max)
Pin and Function Compatible with Other Standard Logic Families
These Devices are Pb−Free and are RoHS Compliant
A0
A1
A2
A3
A4
A5
1
2
3
4
5
6
9
8
11
10
13
12
SOIC−14 NB
D SUFFIX
CASE 751A
TSSOP−14
DT SUFFIX
CASE 948G
PIN ASSIGNMENT
VCC
A5
O5
A4
O4
A3
O3
14
13
12
11
10
9
8
O0
O1
O2
1
2
3
4
5
6
7
A0
O0
A1
O1
A2
O2
GND
O3
14−Lead (Top View)
O4
MARKING DIAGRAMS
14
O5
LVXU04G
AWLYWW
Figure 1. Logic Diagram
1
PIN NAMES
SOIC−14 NB
Pins
Function
An
On
Data Inputs
Outputs
14
LVX
U04
ALYWG
G
FUNCTION TABLE
1
An
On
L
H
H
L
TSSOP−14
LVXU04
A
WL, L
Y
WW, W
G or G
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 4 of this data sheet.
© Semiconductor Components Industries, LLC, 2014
August, 2014 − Rev. 4
1
Publication Order Number:
MC74LVXU04/D
MC74LVXU04
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
VCC
DC Supply Voltage
−0.5 to +7.0
V
VIN
DC Input Voltage
−0.5 to +7.0
V
−0.5 to VCC + 0.5
V
VI < GND
−20
mA
VO < GND
±20
mA
VOUT
DC Output Voltage
IIK
DC Input Diode Current
IOK
DC Output Diode Current
IOUT
DC Output Sink Current
±25
mA
ICC
DC Supply Current per Supply Pin
±50
mA
−65 to +150
_C
260
_C
TSTG
Storage Temperature Range
TL
Lead Temperature, 1 mm from Case for 10 Seconds
TJ
Junction Temperature under Bias
+150
_C
qJA
Thermal Resistance
SOIC
TSSOP
250
_C/W
PD
Power Dissipation in Still Air at 85_C
SOIC
TSSOP
250
mW
MSL
Moisture Sensitivity
FR
Flammability Rating
VESD
ILatchup
Level 1
Oxygen Index: 30% − 35%
ESD Withstand Voltage
UL 94−V0 @ 0.125 in
Human Body Model (Note 1)
Machine Model (Note 2)
Charged Device Model (Note 3)
Latchup Performance
Above VCC and Below GND at 85_C (Note 4)
> 2000
> 200
2000
V
±300
mA
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. Tested to EIA/JESD22−A114−A.
2. Tested to EIA/JESD22−A115−A.
3. Tested to JESD22−C101−A.
4. Tested to EIA/JESD78.
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Parameter
Supply Voltage
VI
Input Voltage
VO
Output Voltage
TA
Operating Free−Air Temperature
Dt/DV
Input Transition Rise or Fall Rate
(Note 5)
(HIGH or LOW State)
VCC = 3.0 V ± 0.3 V
Min
Max
Unit
2.0
3.6
V
0
5.5
V
0
VCC
V
−40
+85
_C
0
100
ns/V
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond
the Recommended Operating Ranges limits may affect device reliability.
5. Unused inputs may not be left open. All inputs must be tied to a high− or low−logic input voltage level.
http://onsemi.com
2
MC74LVXU04
DC ELECTRICAL CHARACTERISTICS
Symbol
Parameter
Test Conditions
TA = 25°C
VCC
V
Min
1.5
2.0
2.4
VIH
High−Level Input Voltage
2.0
3.0
3.6
VIL
Low−Level Input Voltage
2.0
3.0
3.6
VOH
High−Level Output Voltage
(Vin = VIH or VIL)
IOH = −50 mA
IOH = −50 mA
IOH = −4 mA
2.0
3.0
3.0
VOL
Low−Level Output Voltage
(Vin = VIH or VIL)
IOL = 50 mA
IOL = 50 mA
IOL = 4 mA
2.0
3.0
3.0
Iin
Input Leakage Current
Vin = 5.5 V or GND
ICC
Quiescent Supply Current
Vin = VCC or GND
Typ
TA = −40 to 85°C
Max
Min
0.5
0.8
0.8
1.9
2.9
2.58
Max
1.5
2.0
2.4
2.0
3.0
0.0
0.0
Unit
V
0.5
0.8
0.8
1.9
2.9
2.48
V
V
0.1
0.1
0.36
0.1
0.1
0.44
V
3.6
±0.1
±1.0
mA
3.6
2.0
20.0
mA
AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0ns)
TA = 25°C
Symbol
tPLH,
tPHL
tOSHL
tOSLH
Typ
Max
Min
Max
Unit
CL = 15 pF
CL = 50 pF
5.4
7.9
10.1
13.6
1.0
1.0
12.5
16.0
ns
VCC = 3.3 ± 0.3V CL = 15 pF
CL = 50 pF
4.1
6.6
6.2
9.7
1.0
1.0
7.5
11.0
Parameter
Test Conditions
Propagation Delay, Input to
Output
Output−to−Output Skew
(Note 6)
VCC = 2.7V
VCC = 2.7V
VCC = 3.3 ±0.3V
Min
TA = −40 to 85°C
CL = 50 pF
CL = 50 pF
1.5
1.5
1.5
1.5
ns
6. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter
guaranteed by design.
CAPACITIVE CHARACTERISTICS
TA = 25°C
Typ
Max
Cin
Input Capacitance
4
10
CPD
Power Dissipation Capacitance (Note 7)
18
Symbol
Min
TA = −40 to 85°C
Parameter
Min
Max
Unit
10
pF
pF
7. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC / 6 (per buffer). CPD is used to determine the
no−load dynamic power consumption; PD = CPD VCC2 fin + ICC VCC.
NOISE CHARACTERISTICS (Input tr = tf = 3.0 ns, CL = 50 pF, VCC = 3.3 V, Measured in SOIC Package)
TA = 25°C
Typ
Max
Unit
VOLP
Quiet Output Maximum Dynamic VOL
0.3
0.5
V
VOLV
Quiet Output Minimum Dynamic VOL
−0.3
−0.5
V
VIHD
Minimum High Level Dynamic Input Voltage
2.0
V
VILD
Maximum Low Level Dynamic Input Voltage
0.8
V
Symbol
Characteristic
http://onsemi.com
3
MC74LVXU04
TEST POINT
VCC
A
OUTPUT
50%
DEVICE
UNDER
TEST
GND
tPLH
O
tPHL
CL*
50% VCC
*Includes all probe and jig capacitance
Figure 2. Switching Waveforms
Figure 3. Test Circuit
ORDERING INFORMATION
Package
Shipping†
MC74LVXU04DG
SOIC−14 NB
(Pb−Free)
55 Units / Rail
MC74LVXU04DR2G
SOIC−14 NB
(Pb−Free)
2500 Tape & Reel
MC74LVXU04DTG
TSSOP−14
(Pb−Free)
96 Units / Rail
MC74LVXU04DTR2G
TSSOP−14
(Pb−Free)
2500 Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
4
MC74LVXU04
PACKAGE DIMENSIONS
TSSOP−14
CASE 948G
ISSUE B
14X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
N
2X
14
L/2
0.25 (0.010)
8
M
B
−U−
L
PIN 1
IDENT.
F
7
1
0.15 (0.006) T U
N
S
DETAIL E
K
A
−V−
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
ÇÇÇ
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
K1
J J1
SECTION N−N
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
H
G
DETAIL E
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
INCHES
MIN
MAX
MIN MAX
4.90
5.10 0.193 0.200
4.30
4.50 0.169 0.177
−−−
1.20
−−− 0.047
0.05
0.15 0.002 0.006
0.50
0.75 0.020 0.030
0.65 BSC
0.026 BSC
0.50
0.60 0.020 0.024
0.09
0.20 0.004 0.008
0.09
0.16 0.004 0.006
0.19
0.30 0.007 0.012
0.19
0.25 0.007 0.010
6.40 BSC
0.252 BSC
0_
8_
0_
8_
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
14X
0.36
14X
1.26
DIMENSIONS: MILLIMETERS
For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
5
MC74LVXU04
PACKAGE DIMENSIONS
D
SOIC−14 NB
CASE 751A−03
ISSUE K
A
B
14
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF AT
MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE
MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER
SIDE.
8
A3
E
H
L
1
0.25
M
DETAIL A
7
B
13X
M
b
0.25
M
C A
S
B
S
e
DETAIL A
h
A
X 45 _
M
A1
C
SEATING
PLANE
DIM
A
A1
A3
b
D
E
e
H
h
L
M
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.19
0.25
0.35
0.49
8.55
8.75
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
INCHES
MIN
MAX
0.054 0.068
0.004 0.010
0.008 0.010
0.014 0.019
0.337 0.344
0.150 0.157
0.050 BSC
0.228 0.244
0.010 0.019
0.016 0.049
0_
7_
SOLDERING FOOTPRINT*
6.50
14X
1.18
1
1.27
PITCH
14X
0.58
DIMENSIONS: MILLIMETERS
For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
6
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC74LVXU04/D