MC74HC393A D

MC74HC393A
Dual 4-Stage Binary Ripple
Counter
High−Performance Silicon−Gate CMOS
The MC74HC393A is identical in pinout to the LS393. The device
inputs are compatible with standard CMOS outputs; with pullup
resistors, they are compatible with LSTTL outputs.
This device consists of two independent 4−bit binary ripple counters
with parallel outputs from each counter stage. A ÷ 256 counter can be
obtained by cascading the two binary counters.
Internal flip−flops are triggered by high−to−low transitions of the
clock input. Reset for the counters is asynchronous and active−high.
State changes of the Q outputs do not occur simultaneously because of
internal ripple delays. Therefore, decoded output signals are subject to
decoding spikes and should not be used as clocks or as strobes except
when gated with the Clock of the HC393A.
http://onsemi.com
PIN ASSIGNMENT
Features
•
•
•
•
•
•
•
•
•
Output Drive Capability: 10 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS, and TTL
Operating Voltage Range: 2.0 to 6.0 V
Low Input Current: 1 mA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the JEDEC Standard No. 7 A Requirements
Chip Complexity: 236 FETs or 59 Equivalent Gates
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
These Devices are Pb−Free, Halogen Free and are RoHS Compliant
TSSOP−14
DT SUFFIX
CASE 948G
SOIC−14 NB
D SUFFIX
CASE 751A
CLOCK a
1
14
VCC
RESET a
2
13
CLOCK b
Q1a
3
12
RESET b
Q2a
4
11
Q1b
Q3a
5
10
Q2b
Q4a
6
9
Q3b
GND
7
8
Q4b
MARKING DIAGRAMS
14
14
HC
393A
ALYWG
G
HC393AG
AWLYWW
1
1
SOIC−14 NB
A
L, WL
Y, YY
W, WW
G or G
LOGIC DIAGRAM
3, 11
CLOCK
1, 13
4, 10
BINARY
COUNTER
5, 9
6, 8
RESET
Q1
Q2
TSSOP−14
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
Q3
Q4
FUNCTION TABLE
2, 12
Inputs
PIN 14 = VCC
PIN 7 = GND
Clock
Reset
Outputs
X
H
L
H
L
L
L
L
L
No Change
No Change
No Change
Advance to
Next State
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
© Semiconductor Components Industries, LLC, 2014
August, 2014 − Rev. 7
1
Publication Order Number:
MC74HC393A/D
MC74HC393A
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
–0.5 to +7.0
V
DC Input Voltage (Referenced to GND)
–0.5 to VCC + 0.5
V
DC Output Voltage (Referenced to GND)
–0.5 to VCC + 0.5
V
VCC
DC Supply Voltage (Referenced to GND)
Vin
Vout
Iin
DC Input Current, per Pin
±20
mA
Iout
DC Output Current, per Pin
±25
mA
ICC
DC Supply Current, VCC and GND Pins
±50
mA
PD
Power Dissipation in Still Air,
500
450
mW
Tstg
Storage Temperature
–65 to +150
_C
TL
Lead Temperature, 1 mm from Case for 10 Seconds
SOIC or TSSOP Package
SOIC Package†
TSSOP Package†
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
_C
260
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of
these limits are exceeded, device functionality should not be assumed, damage may occur and
reliability may be affected.
†Derating: SOIC Package: –7 mW/_C from 65_ to 125_C
TSSOP Package: −6.1 mW/_C from 65_ to 125_C
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Vin, Vout
Parameter
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time
VCC = 2.0 V
VCC = 3.0 V
VCC = 4.5 V
VCC = 6.0 V
(Figure 1)
Min
Max
Unit
2.0
6.0
V
0
VCC
V
–55
+125
_C
0
0
0
0
1000
600
500
400
ns
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond
the Recommended Operating Ranges limits may affect device reliability.
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Guaranteed Limit
Symbol
Parameter
Test Conditions
VCC
V
–55 to
25_C
v85_C
v125_C
Unit
VIH
Minimum High−Level Input
Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
V
VIL
Maximum Low−Level Input
Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
0.5
0.9
1.35
1.80
0.5
0.9
1.35
1.80
0.5
0.9
1.35
1.80
V
VOH
Minimum High−Level Output
Voltage
Vin = VIH or VIL
|Iout| v 20 mA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
3.0
4.5
6.0
2.48
3.98
5.48
2.34
3.84
5.34
2.20
3.70
5.20
Vin = VIH or VIL
|Iout| v 2.4 mA
|Iout| v 4.0 mA
|Iout| v 5.2 mA
http://onsemi.com
2
MC74HC393A
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) (continued)
Guaranteed Limit
Symbol
VOL
Parameter
Test Conditions
Maximum Low−Level Output
Voltage
Vin = VIH or VIL
|Iout| v 20 mA
Vin = VIH or VIL
|Iout| v 2.4 mA
|Iout| v 4.0 mA
|Iout| v 5.2 mA
VCC
V
–55 to
25_C
v85_C
v125_C
Unit
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
V
3.0
4.5
6.0
0.26
0.26
0.26
0.33
0.33
0.33
0.40
0.40
0.40
Iin
Maximum Input Leakage Current
Vin = VCC or GND
6.0
±0.1
±1.0
±1.0
mA
ICC
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
Iout = 0 mA
6.0
4
40
160
mA
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns)
Guaranteed Limit
VCC
V
–55 to
25_C
v85_C
v125_C
Unit
fmax
Maximum Clock Frequency (50% Duty Cycle)
(Figures 1 and 3)
2.0
3.0
4.5
6.0
10
15
30
50
9
14
28
45
8
12
25
40
MHz
tPLH,
tPHL
Maximum Propagation Delay, Clock to Q1
(Figures 1 and 3)
2.0
3.0
4.5
6.0
70
40
24
20
80
45
30
26
90
50
36
31
ns
tPLH,
tPHL
Maximum Propagation Delay, Clock to Q2
(Figures 1 and 3)
2.0
3.0
4.5
6.0
100
56
34
20
105
70
45
38
180
100
55
48
ns
tPLH,
tPHL
Maximum Propagation Delay, Clock to Q3
(Figures 1 and 3)
2.0
3.0
4.5
6.0
130
80
44
37
150
105
55
47
180
130
70
58
ns
tPLH,
tPHL
Maximum Propagation Delay, Clock to Q4
(Figures 1 and 3)
2.0
3.0
4.5
6.0
160
110
52
44
250
185
65
55
300
210
82
65
ns
tPHL
Maximum Propagation Delay, Reset to any Q
(Figures 2 and 3)
2.0
3.0
4.5
6.0
80
48
30
26
95
65
38
33
110
75
50
43
ns
tTLH,
tTHL
Maximum Output Transition Time, Any Output
(Figures 1 and 3)
2.0
3.0
4.5
6.0
75
27
15
13
95
32
19
16
110
36
22
19
ns
−
10
10
10
pF
Symbol
Cin
Parameter
Maximum Input Capacitance
Typical @ 25°C, VCC = 5.0 V
CPD
35
Power Dissipation Capacitance (Per Counter)*
* Used to determine the no−load dynamic power consumption: P D = CPD VCC2 f + ICC VCC .
http://onsemi.com
3
pF
MC74HC393A
TIMING REQUIREMENTS (Input tr = tf = 6 ns)
Guaranteed Limit
Symbol
Parameter
VCC
V
–55 to
25_C
v85_C
v125_C
Unit
trec
Minimum Recovery Time, Reset Inactive to Clock
(Figure 2)
2.0
3.0
4.5
6.0
25
15
10
9
30
20
13
11
40
30
15
13
ns
tw
Minimum Pulse Width, Clock
(Figure 1)
2.0
3.0
4.5
6.0
75
27
15
13
95
32
19
15
110
36
22
19
ns
tw
Minimum Pulse Width, Reset
(Figure 2)
2.0
3.0
4.5
6.0
75
27
15
13
95
32
19
15
110
36
22
19
ns
Maximum Input Rise and Fall Times
(Figure 1)
2.0
3.0
4.5
6.0
1000
800
500
400
1000
800
500
400
1000
800
500
400
ns
tr, tf
PIN DESCRIPTIONS
INPUTS
Clock (Pins 1, 13)
Clock input. The internal flip−flops are toggled and the
counter state advances on high−to−low transitions of the
clock input.
OUTPUTS
Q1, Q2, Q3, Q4 (Pins 3, 4, 5, 6, 8, 9, 10, 11)
Parallel binary outputs Q4 is the most significant bit.
CONTROL INPUTS
Reset (Pins 2, 12)
Active−high, asynchronous reset. A separate reset is
provided for each counter. A high at the Reset input prevents
counting and forces all four outputs low.
http://onsemi.com
4
MC74HC393A
SWITCHING WAVEFORMS
CLOCK
tr
tf
90%
50%
10%
tw
VCC
50%
GND
GND
tw
tPHL
1/fmax
tPLH
Q
VCC
RESET
tPHL
50%
Q
90%
50%
10%
trec
VCC
50%
CLOCK
GND
tTHL
tTLH
Figure 1.
Figure 2.
TEST
POINT
OUTPUT
DEVICE
UNDER
TEST
CL*
*Includes all probe and jig capacitance
Figure 3. Test Circuit
EXPANDED LOGIC DIAGRAM
CLOCK
1, 13
C
D
Q
C
D
D
RESET
4, 10
Q2
5, 9
Q3
Q
Q
2, 12
http://onsemi.com
5
Q1
Q
Q
C
3, 11
Q
Q
C
D
Q
6, 8
Q4
MC74HC393A
TIMING DIAGRAM
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0
CLOCK
RESET
Q1
Q2
Q3
Q4
COUNT SEQUENCE
Outputs
Count
Q4
Q3
Q2
Q1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
ORDERING INFORMATION
Package
Shipping†
MC74HC393ADG
SOIC−14 NB
(Pb−Free)
55 Units / Rail
MC74HC393ADR2G
SOIC−14 NB
(Pb−Free)
2500 / Tape & Reel
NLV74HC393ADR2G*
SOIC−14 NB
(Pb−Free)
2500 / Tape & Reel
MC74HC393ADTR2G
TSSOP−14
(Pb−Free)
2500 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable
http://onsemi.com
6
MC74HC393A
PACKAGE DIMENSIONS
TSSOP−14
DT SUFFIX
CASE 948G
ISSUE B
14X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
S
S
N
2X
14
L/2
0.25 (0.010)
8
M
B
−U−
L
PIN 1
IDENT.
F
7
1
0.15 (0.006) T U
N
S
DETAIL E
K
A
−V−
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
ÇÇÇ
K1
J J1
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
SECTION N−N
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
H
G
DETAIL E
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.50
0.60
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
14X
0.36
14X
1.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
7
INCHES
MIN MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.020 0.024
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
MC74HC393A
PACKAGE DIMENSIONS
SOIC−14 NB
CASE 751A−03
ISSUE K
D
A
B
14
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF AT
MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE
MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER
SIDE.
8
A3
E
H
L
1
0.25
M
DETAIL A
7
B
13X
M
b
0.25
M
C A
S
B
S
DETAIL A
h
A
X 45 _
M
A1
e
DIM
A
A1
A3
b
D
E
e
H
h
L
M
C
SEATING
PLANE
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.19
0.25
0.35
0.49
8.55
8.75
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
INCHES
MIN
MAX
0.054 0.068
0.004 0.010
0.008 0.010
0.014 0.019
0.337 0.344
0.150 0.157
0.050 BSC
0.228 0.244
0.010 0.019
0.016 0.049
0_
7_
SOLDERING FOOTPRINT*
6.50
14X
1.18
1
1.27
PITCH
14X
0.58
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
8
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC74HC393A/D