EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G Dual Common Base-Collector Bias Resistor Transistors http://onsemi.com 3 2 R1 NPN and PNP Silicon Surface Mount Transistors with Monolithic Bias Resistor Network 1 R2 Q2 R2 Q1 The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base−emitter resistor. These digital transistors are designed to replace a single device and its external resistor bias network. The BRT eliminates these individual components by integrating them into a single device. In the EMC2DXV5T1G series, two complementary BRT devices are housed in the SOT−553 package which is ideal for low power surface mount applications where board space is at a premium. R1 4 5 5 1 SOT−553 CASE 463B Features • • • • • Simplifies Circuit Design Reduces Board Space Reduces Component Count NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable These are Pb−Free Devices MAXIMUM RATINGS (TA = 25°C unless otherwise noted, common for Q1 and Q2, − minus sign for Q1 (PNP) omitted) Rating Collector-Base Voltage Collector-Emitter Voltage Collector Current MARKING DIAGRAM Ux M G G Ux = Specific Device Code x = C, 3, E, or 5 M = Date Code G = Pb−Free Package (Note: Microdot may be in either location) Symbol Value Unit VCBO 50 Vdc ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. VCEO 50 Vdc IC 100 mAdc Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. © Semiconductor Components Industries, LLC, 2014 May, 2014 − Rev. 7 1 Publication Order Number: EMC2DXV5T1/D EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G THERMAL CHARACTERISTICS Characteristic Symbol Max Unit 357 (Note 1) 2.9 (Note 1) mW mW/°C 350 (Note 1) °C/W 500 (Note 1) 4.0 (Note 1) mW mW/°C RqJA 250 (Note 1) °C/W TJ, Tstg −55 to +150 °C ONE JUNCTION HEATED PD Total Device Dissipation TA = 25°C Derate above 25°C Thermal Resistance, Junction-to-Ambient RqJA BOTH JUNCTIONS HEATED Total Device Dissipation TA = 25°C Derate above 25°C PD Thermal Resistance, Junction-to-Ambient Junction and Storage Temperature 1. FR−4 @ Minimum Pad DEVICE ORDERING INFORMATION, MARKING AND RESISTOR VALUES Transistor 1 − PNP Device Transistor 2 − NPN R1 (K) R2 (K) R1 (K) R2 (K) EMC2DXV5T1G UC 22 22 22 22 4000 / Tape & Reel NSVEMC2DXV5T1G* UC 22 22 22 22 4000 / Tape & Reel U3 10 10 10 10 EMC3DXV5T1G EMC3DXV5T5G Package Shipping† Marking SOT−553 (Pb−Free) 4000 / Tape & Reel 8000 / Tape & Reel EMC4DXV5T1G UE 10 47 47 47 4000 / Tape & Reel EMC5DXV5T1G U5 4.7 10 47 47 4000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable. PD , POWER DISSIPATION (MILLIWATTS) 250 200 150 100 50 0 -50 RqJA = 833°C/W 0 50 100 TA, AMBIENT TEMPERATURE (°C) Figure 1. Derating Curve http://onsemi.com 2 150 EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Collector-Base Cutoff Current (VCB = 50 V, IE = 0) ICBO − − 100 nAdc Collector-Emitter Cutoff Current (VCB = 50 V, IB = 0) ICEO − − 500 nAdc IEBO − − − − − − − − 0.2 0.5 0.2 1.0 mAdc Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0) V(BR)CBO 50 − − Vdc Collector-Emitter Breakdown Voltage (IC = 2.0 mA, IB = 0) V(BR)CEO 50 − − Vdc hFE 60 35 80 20 100 60 140 35 − − − − VCE(SAT) − − 0.25 Vdc Q1 TRANSISTOR: PNP OFF CHARACTERISTICS Emitter-Base Cutoff Current (VEB = 6.0 V, IC = 0) EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G EMC5DXV5T1G ON CHARACTERISTICS DC Current Gain (VCE = 10 V, IC = 5.0 mA) EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G EMC5DXV5T1G Collector−Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA) Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW) VOL − − 0.2 Vdc Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW) VOH 4.9 − − Vdc R1 15.4 7.0 3.3 22 10 4.7 28.6 13 6.1 kW R1/R2 0.8 0.8 0.17 0.38 1.0 1.0 0.21 0.47 1.2 1.2 0.25 0.56 Collector-Base Cutoff Current (VCB = 50 V, IE = 0) ICBO − − 100 Collector-Emitter Cutoff Current (VCB = 50 V, IB = 0) ICEO − − 500 nAdc Emitter-Base Cutoff Current (VEB = 6.0 V, IC = 0) IEBO − − − − − − 0.2 0.5 0.1 mAdc Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0) V(BR)CBO 50 − − Vdc Collector-Emitter Breakdown Voltage (IC = 2.0 mA, IB = 0) V(BR)CEO 50 − − Vdc hFE 60 35 80 100 60 140 − − − VCE(SAT) − − 0.25 Vdc Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW) VOL − − 0.2 Vdc Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW) VOH 4.9 − − Vdc kW Input Resistor EMC2DXV5T1G EMC3DXV5T1G, EMC4DXV5T1G EMC5DXV5T1G Resistor Ratio EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G EMC5DXV5T1G Q2 TRANSISTOR: NPN OFF CHARACTERISTICS EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G, EMC5DXV5T1G nAdc ON CHARACTERISTICS DC Current Gain (VCE = 10 V, IC = 5.0 mA) EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G, EMC5DXV5T1G Collector−Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA) Input Resistor EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G, EMC5DXV5T1G R1 15.4 7.0 33 22 10 47 28.6 13 61 Resistor Ratio EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G, EMC5DXV5T1G R1/R2 0.8 0.8 0.8 1.0 1.0 1.0 1.2 1.2 1.2 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. http://onsemi.com 3 EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G 1000 10 VCE = 10 V IC/IB = 10 1 hFE, DC CURRENT GAIN VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V) TYPICAL ELECTRICAL CHARACTERISTICS − EMC2DXV5T1 PNP TRANSISTOR 25°C TA=-25°C 75°C 0.1 0.01 TA=75°C 25°C -25°C 100 10 0 20 IC, COLLECTOR CURRENT (mA) 40 10 1 50 Figure 2. VCE(sat) versus IC Figure 3. DC Current Gain 100 IC, COLLECTOR CURRENT (mA) 3 2 1 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (V) 25°C 75°C f = 1 MHz lE = 0 mA TA = 25°C TA=-25°C 10 1 0.1 0.01 0.001 50 Figure 4. Output Capacitance VO = 5 V 0 1 2 3 4 5 6 7 Vin, INPUT VOLTAGE (V) VO = 0.2 V TA=-25°C 10 25°C 75°C 1 0.1 0 10 8 9 Figure 5. Output Current versus Input Voltage 100 V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) 4 0 100 IC, COLLECTOR CURRENT (mA) 20 30 IC, COLLECTOR CURRENT (mA) 40 Figure 6. Input Voltage versus Output Current http://onsemi.com 4 50 10 EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G 1 1000 IC/IB = 10 VCE = 10 V TA=-25°C 25°C hFE, DC CURRENT GAIN VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V) TYPICAL ELECTRICAL CHARACTERISTICS − EMC2DXV5T1 NPN TRANSISTOR 0.1 75°C 0.01 0.001 0 20 40 IC, COLLECTOR CURRENT (mA) TA=75°C 25°C -25°C 100 10 50 1 10 IC, COLLECTOR CURRENT (mA) Figure 7. VCE(sat) versus IC Figure 8. DC Current Gain 100 IC, COLLECTOR CURRENT (mA) 2 1 0 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (V) 25°C 75°C f = 1 MHz IE = 0 mA TA = 25°C 1 0.1 0.01 VO = 5 V 0.001 50 TA=-25°C 10 0 1 2 3 4 5 6 7 Vin, INPUT VOLTAGE (V) 10 VO = 0.2 V TA=-25°C 25°C 75°C 1 0.1 0 10 8 9 10 Figure 10. Output Current versus Input Voltage Figure 9. Output Capacitance V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) 4 3 100 20 30 IC, COLLECTOR CURRENT (mA) 40 Figure 11. Input Voltage versus Output Current http://onsemi.com 5 50 EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G 1000 1 VCE = 10 V IC/IB = 10 hFE , DC CURRENT GAIN VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V) TYPICAL ELECTRICAL CHARACTERISTICS − EMC3DXV5T1 PNP TRANSISTOR TA=-25°C 0.1 25°C 75°C 0.01 20 10 -25°C 10 IC, COLLECTOR CURRENT (mA) Figure 12. VCE(sat) versus IC Figure 13. DC Current Gain 40 50 4 1 100 IC, COLLECTOR CURRENT (mA) 3 2 1 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (V) TA=-25°C 10 1 0.1 0.01 0.001 50 VO = 5 V 0 Figure 14. Output Capacitance 1 2 6 7 3 4 5 Vin, INPUT VOLTAGE (V) VO = 0.2 V TA=-25°C 10 25°C 75°C 1 0 10 8 9 Figure 15. Output Current versus Input Voltage 100 0.1 100 25°C 75°C f = 1 MHz lE = 0 mA TA = 25°C V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) 25°C 100 IC, COLLECTOR CURRENT (mA) 0 0 TA=75°C 20 30 IC, COLLECTOR CURRENT (mA) 40 Figure 16. Input Voltage versus Output Current http://onsemi.com 6 50 10 EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G 1000 1 VCE = 10 V IC/IB = 10 25°C hFE, DC CURRENT GAIN VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V) TYPICAL ELECTRICAL CHARACTERISTICS − EMC3DXV5T1 NPN TRANSISTOR TA=-25°C 0.1 75°C 0.01 -25°C 100 10 0.001 0 20 50 40 1 100 10 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 17. VCE(sat) versus IC Figure 18. DC Current Gain 4 100 IC, COLLECTOR CURRENT (mA) f = 1 MHz IE = 0 mA TA = 25°C 3 2 1 75°C 25°C TA=-25°C 10 1 0.1 0.01 VO = 5 V 0 0 0.001 50 10 20 30 40 VR, REVERSE BIAS VOLTAGE (V) Figure 19. Output Capacitance 2 0 4 6 Vin, INPUT VOLTAGE (V) VO = 0.2 V TA=-25°C 10 25°C 75°C 1 0.1 0 10 8 10 Figure 20. Output Current versus Input Voltage 100 V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) TA=75°C 25°C 20 30 40 IC, COLLECTOR CURRENT (mA) Figure 21. Input Voltage versus Output Current http://onsemi.com 7 50 EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G 180 1 IC/IB = 10 hFE , DC CURRENT GAIN (NORMALIZED) VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V) TYPICAL ELECTRICAL CHARACTERISTICS −EMC4DXV5T1 PNP TRANSISTOR TA=-25°C 25°C 0.1 75°C 0.01 0.001 0 20 40 60 IC, COLLECTOR CURRENT (mA) 25°C 140 -25°C 120 100 80 60 40 20 0 80 TA=75°C VCE = 10 V 160 1 2 4 6 Figure 22. VCE(sat) versus IC 100 IC, COLLECTOR CURRENT (mA) 3.5 Cob , CAPACITANCE (pF) TA=75°C f = 1 MHz lE = 0 V TA = 25°C 4 3 2.5 2 1.5 1 0.5 0 2 4 6 8 10 15 20 25 30 35 VR, REVERSE BIAS VOLTAGE (V) 40 45 25°C -25°C 10 VO = 5 V 1 50 Figure 24. Output Capacitance 0 2 4 6 Vin, INPUT VOLTAGE (V) 8 10 Figure 25. Output Current versus Input Voltage +12 V 10 VO = 0.2 V V in , INPUT VOLTAGE (VOLTS) 80 90 100 Figure 23. DC Current Gain 4.5 0 8 10 15 20 40 50 60 70 IC, COLLECTOR CURRENT (mA) 25°C TA=-25°C 75°C Typical Application for PNP BRTs 1 LOAD 0.1 0 10 20 30 IC, COLLECTOR CURRENT (mA) 40 50 Figure 26. Input Voltage versus Output Current Figure 27. Inexpensive, Unregulated Current Source http://onsemi.com 8 EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G 1000 1 VCE = 10 V IC/IB = 10 TA=75°C 25°C 0.1 0.01 TA=75°C hFE, DC CURRENT GAIN VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V) TYPICAL ELECTRICAL CHARACTERISTICS − EMC5DXV5T1 PNP TRANSISTOR -25°C 20 10 30 50 40 60 100 IC, COLLECTOR CURRENT (mA) Figure 28. VCE(sat) versus IC Figure 29. DC Current Gain 1000 100 IC, COLLECTOR CURRENT (mA) f = 1 MHz IE = 0 mA TA = 25°C 10 Cob , CAPACITANCE (pF) 10 1 IC, COLLECTOR CURRENT (mA) 12 8 6 4 SERIES 1 2 0 -25°C 10 1 0 25°C 100 75°C 10 1 VO = 5 V 0.1 0.01 0 5 10 15 25 35 20 30 VR, REVERSE BIAS VOLTAGE (V) 40 45 Figure 30. Output Capacitance TA=-25°C 25°C 0 2 4 6 8 Vin, INPUT VOLTAGE (V) 10 12 Figure 31. Output Current versus Input Voltage http://onsemi.com 9 EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G 10 1000 VCE = 10 V IC/IB = 10 hFE, DC CURRENT GAIN VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V) TYPICAL ELECTRICAL CHARACTERISTICS − EMC4DXV5T1, EMC5DXV5T1 NPN TRANSISTOR 1 25°C TA=-25°C 75°C 0.1 TA=75°C 25°C -25°C 100 0.01 0 10 50 20 40 IC, COLLECTOR CURRENT (mA) 10 IC, COLLECTOR CURRENT (mA) 1 Figure 32. VCE(sat) versus IC Figure 33. DC Current Gain 1 100 f = 1 MHz IE = 0 mA TA = 25°C IC, COLLECTOR CURRENT (mA) 0.4 0.2 0 0 10 20 30 VR, REVERSE BIAS VOLTAGE (V) 25°C 75°C 0.6 1 0.1 0.01 VO = 5 V 0.001 50 40 TA=-25°C 10 0 2 4 6 Vin, INPUT VOLTAGE (V) 100 VO = 0.2 V TA=-25°C 10 25°C 75°C 1 0.1 0 10 8 10 Figure 35. Output Current versus Input Voltage Figure 34. Output Capacitance V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) 0.8 100 20 30 40 50 IC, COLLECTOR CURRENT (mA) Figure 36. Input Voltage versus Output Current http://onsemi.com 10 EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G PACKAGE DIMENSIONS SOT−553, 5 LEAD CASE 463B ISSUE C D −X− 5 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. A L 4 1 2 E −Y− 3 b e HE c 5 PL 0.08 (0.003) DIM A b c D E e L HE M X Y MILLIMETERS NOM MAX 0.55 0.60 0.22 0.27 0.13 0.18 1.60 1.65 1.20 1.25 0.50 BSC 0.10 0.20 0.30 1.55 1.60 1.65 MIN 0.50 0.17 0.08 1.55 1.15 INCHES NOM 0.022 0.009 0.005 0.063 0.047 0.020 BSC 0.008 0.004 0.061 0.063 MIN 0.020 0.007 0.003 0.061 0.045 MAX 0.024 0.011 0.007 0.065 0.049 0.012 0.065 RECOMMENDED SOLDERING FOOTPRINT* 0.3 0.0118 0.45 0.0177 1.35 0.0531 1.0 0.0394 0.5 0.5 0.0197 0.0197 SCALE 20:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 11 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative EMC2DXV5T1/D