EMC2DXV5T1 D

EMC2DXV5T1G,
EMC3DXV5T1G,
EMC4DXV5T1G,
EMC5DXV5T1G
Dual Common
Base-Collector Bias
Resistor Transistors
http://onsemi.com
3
2
R1
NPN and PNP Silicon Surface Mount
Transistors with Monolithic Bias
Resistor Network
1
R2
Q2
R2
Q1
The BRT (Bias Resistor Transistor) contains a single transistor with
a monolithic bias network consisting of two resistors; a series base
resistor and a base−emitter resistor. These digital transistors are
designed to replace a single device and its external resistor bias
network. The BRT eliminates these individual components by
integrating them into a single device. In the EMC2DXV5T1G series,
two complementary BRT devices are housed in the SOT−553 package
which is ideal for low power surface mount applications where board
space is at a premium.
R1
4
5
5
1
SOT−553
CASE 463B
Features
•
•
•
•
•
Simplifies Circuit Design
Reduces Board Space
Reduces Component Count
NSV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q101
Qualified and PPAP Capable
These are Pb−Free Devices
MAXIMUM RATINGS (TA = 25°C unless otherwise noted, common for Q1
and Q2, − minus sign for Q1 (PNP) omitted)
Rating
Collector-Base Voltage
Collector-Emitter Voltage
Collector Current
MARKING DIAGRAM
Ux M G
G
Ux = Specific Device Code
x = C, 3, E, or 5
M = Date Code
G
= Pb−Free Package
(Note: Microdot may be in either location)
Symbol
Value
Unit
VCBO
50
Vdc
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
VCEO
50
Vdc
IC
100
mAdc
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
© Semiconductor Components Industries, LLC, 2014
May, 2014 − Rev. 7
1
Publication Order Number:
EMC2DXV5T1/D
EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
357 (Note 1)
2.9 (Note 1)
mW
mW/°C
350 (Note 1)
°C/W
500 (Note 1)
4.0 (Note 1)
mW
mW/°C
RqJA
250 (Note 1)
°C/W
TJ, Tstg
−55 to +150
°C
ONE JUNCTION HEATED
PD
Total Device Dissipation
TA = 25°C
Derate above 25°C
Thermal Resistance, Junction-to-Ambient
RqJA
BOTH JUNCTIONS HEATED
Total Device Dissipation
TA = 25°C
Derate above 25°C
PD
Thermal Resistance, Junction-to-Ambient
Junction and Storage Temperature
1. FR−4 @ Minimum Pad
DEVICE ORDERING INFORMATION, MARKING AND RESISTOR VALUES
Transistor 1 − PNP
Device
Transistor 2 − NPN
R1 (K)
R2 (K)
R1 (K)
R2 (K)
EMC2DXV5T1G
UC
22
22
22
22
4000 / Tape & Reel
NSVEMC2DXV5T1G*
UC
22
22
22
22
4000 / Tape & Reel
U3
10
10
10
10
EMC3DXV5T1G
EMC3DXV5T5G
Package
Shipping†
Marking
SOT−553
(Pb−Free)
4000 / Tape & Reel
8000 / Tape & Reel
EMC4DXV5T1G
UE
10
47
47
47
4000 / Tape & Reel
EMC5DXV5T1G
U5
4.7
10
47
47
4000 / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP
Capable.
PD , POWER DISSIPATION (MILLIWATTS)
250
200
150
100
50
0
-50
RqJA = 833°C/W
0
50
100
TA, AMBIENT TEMPERATURE (°C)
Figure 1. Derating Curve
http://onsemi.com
2
150
EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Collector-Base Cutoff Current (VCB = 50 V, IE = 0)
ICBO
−
−
100
nAdc
Collector-Emitter Cutoff Current (VCB = 50 V, IB = 0)
ICEO
−
−
500
nAdc
IEBO
−
−
−
−
−
−
−
−
0.2
0.5
0.2
1.0
mAdc
Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0)
V(BR)CBO
50
−
−
Vdc
Collector-Emitter Breakdown Voltage (IC = 2.0 mA, IB = 0)
V(BR)CEO
50
−
−
Vdc
hFE
60
35
80
20
100
60
140
35
−
−
−
−
VCE(SAT)
−
−
0.25
Vdc
Q1 TRANSISTOR: PNP
OFF CHARACTERISTICS
Emitter-Base Cutoff Current
(VEB = 6.0 V, IC = 0)
EMC2DXV5T1G
EMC3DXV5T1G
EMC4DXV5T1G
EMC5DXV5T1G
ON CHARACTERISTICS
DC Current Gain
(VCE = 10 V, IC = 5.0 mA)
EMC2DXV5T1G
EMC3DXV5T1G
EMC4DXV5T1G
EMC5DXV5T1G
Collector−Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA)
Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW)
VOL
−
−
0.2
Vdc
Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW)
VOH
4.9
−
−
Vdc
R1
15.4
7.0
3.3
22
10
4.7
28.6
13
6.1
kW
R1/R2
0.8
0.8
0.17
0.38
1.0
1.0
0.21
0.47
1.2
1.2
0.25
0.56
Collector-Base Cutoff Current (VCB = 50 V, IE = 0)
ICBO
−
−
100
Collector-Emitter Cutoff Current (VCB = 50 V, IB = 0)
ICEO
−
−
500
nAdc
Emitter-Base Cutoff Current
(VEB = 6.0 V, IC = 0)
IEBO
−
−
−
−
−
−
0.2
0.5
0.1
mAdc
Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0)
V(BR)CBO
50
−
−
Vdc
Collector-Emitter Breakdown Voltage (IC = 2.0 mA, IB = 0)
V(BR)CEO
50
−
−
Vdc
hFE
60
35
80
100
60
140
−
−
−
VCE(SAT)
−
−
0.25
Vdc
Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW)
VOL
−
−
0.2
Vdc
Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW)
VOH
4.9
−
−
Vdc
kW
Input Resistor
EMC2DXV5T1G
EMC3DXV5T1G, EMC4DXV5T1G
EMC5DXV5T1G
Resistor Ratio
EMC2DXV5T1G
EMC3DXV5T1G
EMC4DXV5T1G
EMC5DXV5T1G
Q2 TRANSISTOR: NPN
OFF CHARACTERISTICS
EMC2DXV5T1G
EMC3DXV5T1G
EMC4DXV5T1G, EMC5DXV5T1G
nAdc
ON CHARACTERISTICS
DC Current Gain
(VCE = 10 V, IC = 5.0 mA)
EMC2DXV5T1G
EMC3DXV5T1G
EMC4DXV5T1G, EMC5DXV5T1G
Collector−Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA)
Input Resistor
EMC2DXV5T1G
EMC3DXV5T1G
EMC4DXV5T1G, EMC5DXV5T1G
R1
15.4
7.0
33
22
10
47
28.6
13
61
Resistor Ratio
EMC2DXV5T1G
EMC3DXV5T1G
EMC4DXV5T1G, EMC5DXV5T1G
R1/R2
0.8
0.8
0.8
1.0
1.0
1.0
1.2
1.2
1.2
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
http://onsemi.com
3
EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G
1000
10
VCE = 10 V
IC/IB = 10
1
hFE, DC CURRENT GAIN
VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V)
TYPICAL ELECTRICAL CHARACTERISTICS − EMC2DXV5T1 PNP TRANSISTOR
25°C
TA=-25°C
75°C
0.1
0.01
TA=75°C
25°C
-25°C
100
10
0
20
IC, COLLECTOR CURRENT (mA)
40
10
1
50
Figure 2. VCE(sat) versus IC
Figure 3. DC Current Gain
100
IC, COLLECTOR CURRENT (mA)
3
2
1
0
10
20
30
40
VR, REVERSE BIAS VOLTAGE (V)
25°C
75°C
f = 1 MHz
lE = 0 mA
TA = 25°C
TA=-25°C
10
1
0.1
0.01
0.001
50
Figure 4. Output Capacitance
VO = 5 V
0
1
2
3
4
5
6
7
Vin, INPUT VOLTAGE (V)
VO = 0.2 V
TA=-25°C
10
25°C
75°C
1
0.1
0
10
8
9
Figure 5. Output Current versus Input Voltage
100
V in , INPUT VOLTAGE (VOLTS)
Cob , CAPACITANCE (pF)
4
0
100
IC, COLLECTOR CURRENT (mA)
20
30
IC, COLLECTOR CURRENT (mA)
40
Figure 6. Input Voltage versus Output Current
http://onsemi.com
4
50
10
EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G
1
1000
IC/IB = 10
VCE = 10 V
TA=-25°C
25°C
hFE, DC CURRENT GAIN
VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V)
TYPICAL ELECTRICAL CHARACTERISTICS − EMC2DXV5T1 NPN TRANSISTOR
0.1
75°C
0.01
0.001
0
20
40
IC, COLLECTOR CURRENT (mA)
TA=75°C
25°C
-25°C
100
10
50
1
10
IC, COLLECTOR CURRENT (mA)
Figure 7. VCE(sat) versus IC
Figure 8. DC Current Gain
100
IC, COLLECTOR CURRENT (mA)
2
1
0
0
10
20
30
40
VR, REVERSE BIAS VOLTAGE (V)
25°C
75°C
f = 1 MHz
IE = 0 mA
TA = 25°C
1
0.1
0.01
VO = 5 V
0.001
50
TA=-25°C
10
0
1
2
3
4
5
6
7
Vin, INPUT VOLTAGE (V)
10
VO = 0.2 V
TA=-25°C
25°C
75°C
1
0.1
0
10
8
9
10
Figure 10. Output Current versus Input Voltage
Figure 9. Output Capacitance
V in , INPUT VOLTAGE (VOLTS)
Cob , CAPACITANCE (pF)
4
3
100
20
30
IC, COLLECTOR CURRENT (mA)
40
Figure 11. Input Voltage versus Output
Current
http://onsemi.com
5
50
EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G
1000
1
VCE = 10 V
IC/IB = 10
hFE , DC CURRENT GAIN
VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V)
TYPICAL ELECTRICAL CHARACTERISTICS − EMC3DXV5T1 PNP TRANSISTOR
TA=-25°C
0.1
25°C
75°C
0.01
20
10
-25°C
10
IC, COLLECTOR CURRENT (mA)
Figure 12. VCE(sat) versus IC
Figure 13. DC Current Gain
40
50
4
1
100
IC, COLLECTOR CURRENT (mA)
3
2
1
0
10
20
30
40
VR, REVERSE BIAS VOLTAGE (V)
TA=-25°C
10
1
0.1
0.01
0.001
50
VO = 5 V
0
Figure 14. Output Capacitance
1
2
6
7
3
4
5
Vin, INPUT VOLTAGE (V)
VO = 0.2 V
TA=-25°C
10
25°C
75°C
1
0
10
8
9
Figure 15. Output Current versus Input
Voltage
100
0.1
100
25°C
75°C
f = 1 MHz
lE = 0 mA
TA = 25°C
V in , INPUT VOLTAGE (VOLTS)
Cob , CAPACITANCE (pF)
25°C
100
IC, COLLECTOR CURRENT (mA)
0
0
TA=75°C
20
30
IC, COLLECTOR CURRENT (mA)
40
Figure 16. Input Voltage versus Output
Current
http://onsemi.com
6
50
10
EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G
1000
1
VCE = 10 V
IC/IB = 10
25°C
hFE, DC CURRENT GAIN
VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V)
TYPICAL ELECTRICAL CHARACTERISTICS − EMC3DXV5T1 NPN TRANSISTOR
TA=-25°C
0.1
75°C
0.01
-25°C
100
10
0.001
0
20
50
40
1
100
10
IC, COLLECTOR CURRENT (mA)
IC, COLLECTOR CURRENT (mA)
Figure 17. VCE(sat) versus IC
Figure 18. DC Current Gain
4
100
IC, COLLECTOR CURRENT (mA)
f = 1 MHz
IE = 0 mA
TA = 25°C
3
2
1
75°C
25°C
TA=-25°C
10
1
0.1
0.01
VO = 5 V
0
0
0.001
50
10
20
30
40
VR, REVERSE BIAS VOLTAGE (V)
Figure 19. Output Capacitance
2
0
4
6
Vin, INPUT VOLTAGE (V)
VO = 0.2 V
TA=-25°C
10
25°C
75°C
1
0.1
0
10
8
10
Figure 20. Output Current versus Input Voltage
100
V in , INPUT VOLTAGE (VOLTS)
Cob , CAPACITANCE (pF)
TA=75°C
25°C
20
30
40
IC, COLLECTOR CURRENT (mA)
Figure 21. Input Voltage versus Output
Current
http://onsemi.com
7
50
EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G
180
1
IC/IB = 10
hFE , DC CURRENT GAIN (NORMALIZED)
VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V)
TYPICAL ELECTRICAL CHARACTERISTICS −EMC4DXV5T1 PNP TRANSISTOR
TA=-25°C
25°C
0.1
75°C
0.01
0.001
0
20
40
60
IC, COLLECTOR CURRENT (mA)
25°C
140
-25°C
120
100
80
60
40
20
0
80
TA=75°C
VCE = 10 V
160
1
2
4
6
Figure 22. VCE(sat) versus IC
100
IC, COLLECTOR CURRENT (mA)
3.5
Cob , CAPACITANCE (pF)
TA=75°C
f = 1 MHz
lE = 0 V
TA = 25°C
4
3
2.5
2
1.5
1
0.5
0
2
4
6
8 10 15 20 25 30 35
VR, REVERSE BIAS VOLTAGE (V)
40
45
25°C
-25°C
10
VO = 5 V
1
50
Figure 24. Output Capacitance
0
2
4
6
Vin, INPUT VOLTAGE (V)
8
10
Figure 25. Output Current versus Input Voltage
+12 V
10
VO = 0.2 V
V in , INPUT VOLTAGE (VOLTS)
80 90 100
Figure 23. DC Current Gain
4.5
0
8 10 15 20 40 50 60 70
IC, COLLECTOR CURRENT (mA)
25°C
TA=-25°C
75°C
Typical Application
for PNP BRTs
1
LOAD
0.1
0
10
20
30
IC, COLLECTOR CURRENT (mA)
40
50
Figure 26. Input Voltage versus Output Current
Figure 27. Inexpensive, Unregulated Current Source
http://onsemi.com
8
EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G
1000
1
VCE = 10 V
IC/IB = 10
TA=75°C
25°C
0.1
0.01
TA=75°C
hFE, DC CURRENT GAIN
VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V)
TYPICAL ELECTRICAL CHARACTERISTICS − EMC5DXV5T1 PNP TRANSISTOR
-25°C
20
10
30
50
40
60
100
IC, COLLECTOR CURRENT (mA)
Figure 28. VCE(sat) versus IC
Figure 29. DC Current Gain
1000
100
IC, COLLECTOR CURRENT (mA)
f = 1 MHz
IE = 0 mA
TA = 25°C
10
Cob , CAPACITANCE (pF)
10
1
IC, COLLECTOR CURRENT (mA)
12
8
6
4
SERIES 1
2
0
-25°C
10
1
0
25°C
100
75°C
10
1
VO = 5 V
0.1
0.01
0
5
10
15
25
35
20
30
VR, REVERSE BIAS VOLTAGE (V)
40
45
Figure 30. Output Capacitance
TA=-25°C
25°C
0
2
4
6
8
Vin, INPUT VOLTAGE (V)
10
12
Figure 31. Output Current versus Input Voltage
http://onsemi.com
9
EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G
10
1000
VCE = 10 V
IC/IB = 10
hFE, DC CURRENT GAIN
VCE(sat), COLLECTOR EMITTER SATURATION VOLTAGE (V)
TYPICAL ELECTRICAL CHARACTERISTICS − EMC4DXV5T1, EMC5DXV5T1 NPN TRANSISTOR
1
25°C
TA=-25°C
75°C
0.1
TA=75°C
25°C
-25°C
100
0.01
0
10
50
20
40
IC, COLLECTOR CURRENT (mA)
10
IC, COLLECTOR CURRENT (mA)
1
Figure 32. VCE(sat) versus IC
Figure 33. DC Current Gain
1
100
f = 1 MHz
IE = 0 mA
TA = 25°C
IC, COLLECTOR CURRENT (mA)
0.4
0.2
0
0
10
20
30
VR, REVERSE BIAS VOLTAGE (V)
25°C
75°C
0.6
1
0.1
0.01
VO = 5 V
0.001
50
40
TA=-25°C
10
0
2
4
6
Vin, INPUT VOLTAGE (V)
100
VO = 0.2 V
TA=-25°C
10
25°C
75°C
1
0.1
0
10
8
10
Figure 35. Output Current versus Input Voltage
Figure 34. Output Capacitance
V in , INPUT VOLTAGE (VOLTS)
Cob , CAPACITANCE (pF)
0.8
100
20
30
40
50
IC, COLLECTOR CURRENT (mA)
Figure 36. Input Voltage versus Output Current
http://onsemi.com
10
EMC2DXV5T1G, EMC3DXV5T1G, EMC4DXV5T1G, EMC5DXV5T1G
PACKAGE DIMENSIONS
SOT−553, 5 LEAD
CASE 463B
ISSUE C
D
−X−
5
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM
THICKNESS OF BASE MATERIAL.
A
L
4
1
2
E
−Y−
3
b
e
HE
c
5 PL
0.08 (0.003)
DIM
A
b
c
D
E
e
L
HE
M
X Y
MILLIMETERS
NOM
MAX
0.55
0.60
0.22
0.27
0.13
0.18
1.60
1.65
1.20
1.25
0.50 BSC
0.10
0.20
0.30
1.55
1.60
1.65
MIN
0.50
0.17
0.08
1.55
1.15
INCHES
NOM
0.022
0.009
0.005
0.063
0.047
0.020 BSC
0.008
0.004
0.061
0.063
MIN
0.020
0.007
0.003
0.061
0.045
MAX
0.024
0.011
0.007
0.065
0.049
0.012
0.065
RECOMMENDED
SOLDERING FOOTPRINT*
0.3
0.0118
0.45
0.0177
1.35
0.0531
1.0
0.0394
0.5
0.5
0.0197 0.0197
SCALE 20:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
11
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
EMC2DXV5T1/D