MCR25 D

MCR25DG, MCR25MG,
MCR25NG
Silicon Controlled Rectifiers
Reverse Blocking Thyristors
Designed primarily for half−wave ac control applications, such as
motor controls, heating controls, and power supplies; or wherever
half−wave, silicon gate−controlled devices are needed.
www.onsemi.com
SCRs
25 AMPERES RMS
400 thru 800 VOLTS
Features
•
•
•
•
•
•
•
•
Blocking Voltage to 800 Volts
On-State Current Rating of 25 Amperes RMS
High Surge Current Capability − 300 Amperes
Rugged, Economical TO−220AB Package
Glass Passivated Junctions for Reliability and Uniformity
Minimum and Maximum Values of IGT, VGT, and IH Specified for
Ease of Design
High Immunity to dv/dt − 100 V/msec Minimum @ 125°C
These are Pb−Free Devices*
G
A
K
MARKING
DIAGRAM
AY WW
MCR25xG
AKA
MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)
Rating
Symbol
Peak Repetitive Off−State Voltage (Note 1)
(TJ = −40 to 125°C, Sine Wave,
50 to 60 Hz, Gate Open)
MCR25DG
MCR25MG
MCR25NG
VDRM,
VRRM
On-State RMS Current
(180° Conduction Angles; TC = 80°C)
IT(RMS)
25
A
ITSM
300
A
I2t
373
A2sec
PGM
20.0
W
Peak Non-repetitive Surge Current
(1/2 Cycle, Sine Wave 60 Hz, TJ = 125°C)
Circuit Fusing Consideration (t = 8.3 ms)
Forward Peak Gate Power
(Pulse Width ≤ 1.0 ms, TC = 80°C)
Forward Average Gate Power
(t = 8.3 ms, TC = 80°C)
Value
Unit
V
1
2
TO−220AB
CASE 221A−09
STYLE 3
3
400
600
800
PG(AV)
0.5
W
Forward Peak Gate Current
(Pulse Width ≤ 1.0 ms, TC = 80°C)
IGM
2.0
A
Operating Junction Temperature Range
TJ
−40 to +125
°C
Storage Temperature Range
Tstg
−40 to +150
°C
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
1. VDRM and VRRM for all types can be applied on a continuous basis. Ratings
apply for zero or negative gate voltage; positive gate voltage shall not be
applied concurrent with negative potential on the anode. Blocking voltages
shall not be tested with a constant current source such that the voltage ratings
of the devices are exceeded.
A
Y
WW
x
G
AKA
= Assembly Location
= Year
= Work Week
= D, M, or N
= Pb−Free Package
= Diode Polarity
PIN ASSIGNMENT
1
Cathode
2
Anode
3
Gate
4
Anode
ORDERING INFORMATION
Device
Package
Shipping
MCR25DG
TO−220AB
(Pb−Free)
50 Units / Rail
MCR25MG
TO−220AB
(Pb−Free)
50 Units / Rail
MCR25NG
TO−220AB
(Pb−Free)
50 Units / Rail
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2015
January, 2015 − Rev. 6
1
Publication Order Number:
MCR25/D
MCR25DG, MCR25MG, MCR25NG
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance,
Symbol
Value
Unit
RqJC
RqJA
1.5
62.5
°C/W
TL
260
°C
Junction−to−Case
Junction−to−Ambient
Maximum Lead Temperature for Soldering Purposes 1/8″ from Case for 10 Seconds
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)
Symbol
Characteristic
Min
Typ
Max
−
−
−
−
0.01
2.0
Unit
OFF CHARACTERISTICS
Peak Repetitive Forward or Reverse Blocking Current
(VAK = Rated VDRM or VRRM, Gate Open)
IDRM
IRRM
TJ = 25°C
TJ = 125°C
mA
ON CHARACTERISTICS
Peak Forward On-State Voltage (Note 2)
(ITM = 50 A)
VTM
−
−
1.8
V
Gate Trigger Current (Continuous dc)
(VD = 12 V, RL = 100 W)
IGT
4.0
12
30
mA
Gate Trigger Voltage (Continuous dc)
(VD = 12 V, RL = 100 W)
VGT
0.5
0.67
1.0
V
Holding Current
(VD =12 Vdc, Initiating Current = 200 mA, Gate Open)
IH
5.0
13
40
mA
Latching Current
(VD = 12 V, IG = 30 mA)
IL
−
35
80
mA
Critical Rate of Rise of Off−State Voltage
(VD = 67% of Rated VDRM, Exponential Waveform, Gate Open, TJ = 125°C)
dv/dt
100
250
−
V/ms
Critical Rate of Rise of On−State Current
(IPK = 50 A, Pw = 30 msec, diG/dt = 1 A/msec, Igt = 50 mA)
di/dt
−
−
50
A/ms
DYNAMIC CHARACTERISTICS
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Indicates Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.
Voltage Current Characteristic of SCR
+ Current
Symbol
Parameter
VDRM
Peak Repetitive Off State Forward Voltage
IDRM
Peak Forward Blocking Current
VRRM
Peak Repetitive Off State Reverse Voltage
IRRM
Peak Reverse Blocking Current
VTM
Peak On State Voltage
IH
Holding Current
Anode +
VTM
on state
IRRM at VRRM
Reverse Blocking Region
(off state)
Reverse Avalanche Region
Anode −
www.onsemi.com
2
IH
+ Voltage
IDRM at VDRM
Forward Blocking Region
(off state)
40
1.0
35
0.9
VGT, GATE TRIGGER VOLTAGE (V)
I GT, GATE TRIGGER CURRENT (mA)
MCR25DG, MCR25MG, MCR25NG
30
25
20
15
10
5
0
−40 −25 −10
5
20 35 50 65 80 95 110 125
TJ, JUNCTION TEMPERATURE (°C)
0.8
0.7
0.6
0.5
0.4
0.3
0.2
−40 −25 −10
5
20 35 50 65 80 95 110 125
TJ, JUNCTION TEMPERATURE (°C)
Figure 2. Typical Gate Trigger Voltage versus
Junction Temperature
I T, INSTANTANEOUS ON-STATE CURRENT (A)
Figure 1. Typical Gate Trigger Current versus
Junction Temperature
1
Typical @ 25°C
R(t) TRANSIENT THERMAL R (NORMALIZED)
100
Maximum @ 125°C
10
Maximum @ 25°C
1
0.1
Z
+R
qJC
@ R(t)
0.01
0.5
0.9
1.3
1.7
2.1
2.5
2.9
0.1
VT, INSTANTANEOUS ON-STATE VOLTAGE (VOLTS)
Figure 3. Typical On−State Characteristics
1
10
100
t, TIME (ms)
1000
1@104
Figure 4. Transient Thermal Response
100
IL , LATCHING CURRENT (mA)
100
I H , HOLDING CURRENT (mA)
qJC(t)
0.1
10
10
1
−40 −25 −10
5
20 35 50 65 80 95 110 125
TJ, JUNCTION TEMPERATURE (°C)
1
−40 −25 −10
5 20 35 50 65 80 95 110 125
TJ, JUNCTION TEMPERATURE (°C)
Figure 5. Typical Holding Current versus
Junction Temperature
Figure 6. Typical Latching Current versus
Junction Temperature
www.onsemi.com
3
P(AV), AVERAGE POWER DISSIPATION (WATTS)
MCR25DG, MCR25MG, MCR25NG
130
TC , CASE TEMPERATURE ( °C)
120
a
a = Conduction
Angle
110
100
dc
90
80
a = 30°
0
60°
180°
90°
2
4
6
8
10 12 14 16
18
IT(RMS), RMS ON−STATE CURRENT (AMPS)
20
32
28
180°
a
24
16
a = 30°
12
8
4
0
0
2
4
6
8
10 12 14 16 18
IT(AV), AVERAGE ON−STATE CURRENT (AMPS)
20
Figure 8. On State Power Dissipation
Figure 7. Typical RMS Current Derating
2500
1200
Gate Cathode Open,
(dv/dt does not depend on RGK)
Gate-Cathode Open,
(dv/dt does not depend on RGK)
2000
STATIC dv/dt (V/us)
1000
800
85°C
600
100°C
110°C
1500
VPK = 275
1000
VPK = 400
400
VPK = 600
TJ = 125°C
500
200
0
VPK = 800
0
200
300
400
500
600
700
800
80
85
90
VPK , Peak Voltage (Volts)
Figure 9. Typical Exponential Static dv/dt
Versus Peak Voltage
95
100
105
110
TJ, Junction Temperature (°C )
1 CYCLE
280
260
240
220
200
TJ=125° C f=60 Hz
180
160
1
2
3
115
120
Figure 10. Typical Exponential Static dv/dt
Versus Junction Temperature
300
I TSM, SURGE CURRENT (AMPS)
STATIC dv/dt (V/us)
90°
60°
a = Conduction
Angle
20
dc
4
5
6
7
NUMBER OF CYCLES
8
9
Figure 11. Maximum Non−Repetitive Surge Current
www.onsemi.com
4
10
125
MCR25DG, MCR25MG, MCR25NG
PACKAGE DIMENSIONS
TO−220
CASE 221A−09
ISSUE AH
−T−
B
SEATING
PLANE
C
F
T
S
4
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
T
U
V
Z
A
Q
1 2 3
U
H
K
Z
L
R
V
J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
G
D
INCHES
MIN
MAX
0.570
0.620
0.380
0.415
0.160
0.190
0.025
0.038
0.142
0.161
0.095
0.105
0.110
0.161
0.014
0.024
0.500
0.562
0.045
0.060
0.190
0.210
0.100
0.120
0.080
0.110
0.045
0.055
0.235
0.255
0.000
0.050
0.045
----0.080
MILLIMETERS
MIN
MAX
14.48
15.75
9.66
10.53
4.07
4.83
0.64
0.96
3.61
4.09
2.42
2.66
2.80
4.10
0.36
0.61
12.70
14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
5.97
6.47
0.00
1.27
1.15
----2.04
N
STYLE 3:
PIN 1.
2.
3.
4.
CATHODE
ANODE
GATE
ANODE
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
5
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MCR25/D