MC10EL16 D

MC10EL16, MC100EL16
5.0 V ECL Differential
Receiver
http://onsemi.com
MARKING
DIAGRAMS*
8
1
SOIC−8
D SUFFIX
CASE 751
Features
190 ps Propagation Delay
PECL Mode Operating Range: VCC = 4.2 V to 5.7 V with VEE = 0 V
NECL Mode Operating Range: VCC = 0 V with VEE = −4.2 V to −5.7 V
Internal Input Pulldown Resistors
Pb−Free Packages are Available
NC
1
8
D
2
7
Q
D
3
6
Q
VBB
4
5
VEE
8
HEL16
ALYW
G
1
8
8
1
TSSOP−8
DT SUFFIX
CASE 948R
KEL16
ALYW
G
1
1
8
HL16
ALYWG
G
4S M G
G
•
•
•
•
•
8
VCC
1
4
1
KL16
ALYWG
G
2H M G
G
The MC10EL/100EL16 is a differential receiver. The device is
functionally equivalent to the E116 device with higher performance
capabilities. With output transition times significantly faster than the
E116, the EL16 is ideally suited for interfacing with high frequency
sources.
The VBB pin, an internally generated voltage supply, is available to
this device only. For single-ended input conditions, the unused
differential input is connected to VBB as a switching reference voltage.
VBB may also rebias AC coupled inputs. When used, decouple VBB
and VCC via a 0.01 mF capacitor and limit current sourcing or sinking
to 0.5 mA. When not used, VBB should be left open.
Under open input conditions (pulled to VEE) internal input clamps
will force the Q output LOW.
The 100 Series contains temperature compensation.
1
4
DFN8
MN SUFFIX
CASE 506AA
H = MC10
K = MC100
4S = MC10
2H = MC100
A = Assembly Location
L
Y
W
M
G
= Wafer Lot
= Year
= Work Week
= Date Code
= Pb−Free Package
(Note: Microdot may be in either location)
*For additional marking information, refer to
Application Note AND8002/D.
Figure 1. Logic Diagram and Pinout Assignment
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
© Semiconductor Components Industries, LLC, 2008
August, 2008 − Rev. 8
1
Publication Order Number:
MC10EL16/D
MC10EL16, MC100EL16
Table 1. PIN DESCRIPTION
PIN
FUNCTION
D, D
Q, Q
VBB
VCC
VEE
NC
EP
ECL Data Inputs
ECL Data Outputs
Reference Voltage Output
Positive Supply
Negative Supply
No Connect
(DFN8 only) Thermal exposed pad must be connected to a
sufficient thermal conduit. Electrically connect to the most
negative supply (GND) or leave unconnected, floating open.
Table 2. ATTRIBUTES
Characteristics
Value
Internal Input Pulldown Resistor
75 KW
Internal Input Pullup Resistor
ESD Protection
N/A
Human Body Model
Machine Model
Charge Device Model
> 500 V
> 100 V
> 2 KV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)
Flammability Rating
Level 1
Oxygen Index: 28 to 34
UL 94 V−0 @ 0.125 in
Transistor Count
47
Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
Table 3. MAXIMUM RATINGS
Rating
Units
VCC
Symbol
PECL Mode Power Supply
Parameter
VEE = 0 V
Condition 1
8
V
VEE
NECL Mode Power Supply
VCC = 0 V
−8
V
VI
PECL Mode Input Voltage
NECL Mode Input Voltage
VEE = 0 V
VCC = 0 V
6
−6
V
V
Iout
Output Current
Continuous
Surge
50
100
mA
mA
IBB
VBB Sink/Source
± 0.5
mA
TA
Operating Temperature Range
−40 to +85
°C
Tstg
Storage Temperature Range
−65 to +150
°C
qJA
Thermal Resistance (Junction−to−Ambient)
0 lfpm
500 lfpm
SOIC−8
SOIC−8
190
130
°C/W
°C/W
qJC
Thermal Resistance (Junction−to−Case)
Standard Board
SOIC−8
41 to 44
°C/W
qJA
Thermal Resistance (Junction−to−Ambient)
0 lfpm
500lfpm
TSSOP−8
TSSOP−8
185
140
°C/W
°C/W
qJC
Thermal Resistance (Junction−to−Case)
Standard Board
TSSOP−8
41 to 44 ± 5%
°C/W
qJA
Thermal Resistance (Junction−to−Ambient)
0 lfpm
500 lfpm
DFN8
DFN8
129
84
°C/W
°C/W
Tsol
Wave Solder
<2 to 3 sec @ 248°C
<2 to 3 sec @ 260°C
265
265
°C
qJC
Thermal Resistance (Junction−to−Case)
35 to 40
°C/W
Pb
Pb−Free
(Note 2)
Condition 2
VI VCC
VI VEE
DFN8
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
2. JEDEC standard multilayer board − 2S2P (2 signal, 2 power)
http://onsemi.com
2
MC10EL16, MC100EL16
Table 4. 10EL SERIES PECL DC CHARACTERISTICS VCC = 5.0 V; VEE = 0 V (Note 3)
−40°C
Symbol
Characteristic
Typ
Max
18
22
Max
18
22
3920
4010
4110
4020
4105
4190
Output LOW Voltage (Note 4)
3050
3200
3350
3050
3210
VIH
Input HIGH Voltage (Single−Ended)
3770
4110
VIL
Input LOW Voltage (Single−Ended)
3050
VBB
Output Voltage Reference
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 5)
IIH
Input HIGH Current
IIL
Input LOW Current
Power Supply Current
VOH
Output HIGH Voltage (Note 4)
VOL
Min
85°C
Typ
IEE
Min
25°C
Typ
Max
Unit
18
22
mA
4090
4185
4280
mV
3370
3050
3227
3405
mV
3870
4190
3940
4280
mV
3500
3050
3520
3050
3555
mV
3.57
3.7
3.65
3.75
3.69
3.81
V
2.5
4.6
2.5
4.6
2.5
4.6
V
150
mA
150
Min
150
0.5
0.5
0.3
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.25 V / −0.5 V.
4. Outputs are terminated through a 50 W resistor to VCC − 2.0 V.
5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input
signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V.
Table 5. 10EL SERIES NECL DC CHARACTERISTICS VCC = 0 V; VEE = −5.0 V (Note 6)
−40°C
Symbol
Characteristic
Min
25°C
Typ
Max
18
22
Min
85°C
Typ
Max
18
22
Min
Typ
Max
Unit
18
22
mA
−815
−720
mV
−1773
−1595
mV
−1060
−720
mV
−1480
−1950
−1445
mV
−1.35
−1.25
−1.31
−1.19
V
−2.5
−0.4
−2.5
−0.4
V
150
mA
IEE
Power Supply Current
VOH
Output HIGH Voltage (Note 7)
−1080
−990
−890
−980
−895
−810
−910
VOL
Output LOW Voltage (Note 7)
−1950
−1800
−1650
−1950
−1790
−1630
−1950
VIH
Input HIGH Voltage (Single−Ended)
−1230
−890
−1130
−810
VIL
Input LOW Voltage (Single−Ended)
−1950
−1500
−1950
VBB
Output Voltage Reference
−1.43
−1.30
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 8)
−2.5
−0.4
IIH
Input HIGH Current
IIL
Input LOW Current
150
0.5
150
0.5
0.3
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
6. Input and output parameters vary 1:1 with VCC. VEE can vary +0.25 V / −0.5 V.
7. Outputs are terminated through a 50 W resistor to VCC − 2.0 V.
8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input
signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V.
http://onsemi.com
3
MC10EL16, MC100EL16
Table 6. 100EL SERIES PECL DC CHARACTERISTICS VCC = 5.0 V; VEE = 0 V (Note 9)
−40°C
Symbol
Characteristic
Min
25°C
Typ
Max
18
22
Min
85°C
Typ
Max
18
22
Min
Typ
Max
Unit
21
26
mA
IEE
Power Supply Current
VOH
Output HIGH Voltage (Note 10)
3915
3995
4120
3975
4045
4120
3975
4050
4120
mV
VOL
Output LOW Voltage (Note 10)
3170
3305
3445
3190
3295
3380
3190
3295
3380
mV
VIH
Input HIGH Voltage (Single−Ended)
3835
4120
3835
4120
3835
4120
mV
VIL
Input LOW Voltage (Single−Ended)
3190
3525
3190
3525
3190
3525
mV
VBB
Output Voltage Reference
3.62
3.74
3.62
3.74
3.62
3.74
V
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 11)
2.5
4.6
2.5
4.6
2.5
4.6
V
IIH
Input HIGH Current
150
mA
IIL
Input LOW Current
150
150
0.5
0.5
0.5
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
9. Input and output parameters vary 1:1 with VCC. VEE can vary +0.8 V / −0.5 V.
10. Outputs are terminated through a 50 W resistor to VCC − 2.0 V.
11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input
signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V.
Table 7. 100EL SERIES NECL DC CHARACTERISTICS VCC = 0 V; VEE = −5.0 V (Note 12)
−40°C
Symbol
Characteristic
Min
Typ
25°C
Max
Min
Typ
85°C
Max
Min
Typ
Max
Unit
IEE
Power Supply Current
18
22
18
22
21
26
mA
VOH
Output HIGH Voltage (Note 13)
−1085
−1005
−880
−1025
−955
−880
−1025
−955
−880
mV
VOL
Output LOW Voltage (Note 13)
−1830
−1695
−1555
−1810
−1705
−1620
−1810
−1705
−1620
mV
VIH
Input HIGH Voltage (Single−Ended)
−1165
−880
−1165
−880
−1165
−880
mV
VIL
Input LOW Voltage (Single−Ended)
−1810
−1475
−1810
−1475
−1810
−1475
mV
VBB
Output Voltage Reference
−1.38
−1.26
−1.38
−1.26
−1.38
−1.26
V
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 14)
−2.5
−0.4
−2.5
−0.4
−2.5
−0.4
V
IIH
Input HIGH Current
150
mA
IIL
Input LOW Current
150
0.5
150
0.5
0.5
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.8 V / −0.5 V.
13. Outputs are terminated through a 50 W resistor to VCC − 2.0 V.
14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin
and 1 V.
http://onsemi.com
4
MC10EL16, MC100EL16
Table 8. AC CHARACTERISTICS VCC = 5.0 V; VEE = 0 V or VCC = 0 V; V EE= −5.0 V (Note 15)
−40°C
Symbol
Characteristic
Min
fmax
Maximum Toggle Frequency
tPLH
tPHL
Propagation Delay to Output
tSKEW
Duty Cycle Skew (Diff) (Note 16)
tJITTER
Random Clock Jitter (RMS)
VPP
Input Swing (Note 17)
150
tr
tf
Output Rise/Fall Times Q
(20% − 80%)
100
Typ
25°C
Max
Min
85°C
Typ
Max
Min
Typ
Max
1.75
(Diff)
(SE)
125
75
250
250
375
425
5
20
175
125
250
250
325
375
5
20
205
155
280
280
355
405
ps
5
20
ps
0.7
190
1000
150
350
100
Unit
GHz
ps
190
1000
150
350
100
190
1000
mV
350
ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
15. 10 Series: VEE can vary +0.25 V / −0.5 V.
100 Series: VEE can vary +0.8 V / −0.5 V.
16. Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device.
17. VPP(min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈ 40.
Q
Zo = 50 W
D
Receiver
Device
Driver
Device
Q
D
Zo = 50 W
50 W
50 W
VTT
VTT = VCC − 2.0 V
Figure 2. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020/D − Termination of ECL Logic Devices.)
http://onsemi.com
5
MC10EL16, MC100EL16
ORDERING INFORMATION
Package
Shipping†
SOIC−8
98 Units / Rail
MC10EL16DG
SOIC−8
(Pb−Free)
98 Units / Rail
MC10EL16DR2
SOIC−8
2500 / Tape & Reel
MC10EL16DR2G
SOIC−8
(Pb−Free)
2500 / Tape & Reel
MC10EL16DT
TSSOP−8
98 Units / Rail
MC10EL16DTG
TSSOP−8
(Pb−Free)
98 Units / Rail
MC10EL16DTR2
TSSOP−8
2500 / Tape & Reel
MC10EL16DTR2G
TSSOP−8
(Pb−Free)
2500 / Tape & Reel
MC10EL16MNR4
DFN8
1000 / Tape & Reel
DFN8
(Pb−Free)
1000 / Tape & Reel
SOIC−8
98 Units / Rail
MC100EL16DG
SOIC−8
(Pb−Free)
98 Units / Rail
MC100EL16DR2
SOIC−8
2500 / Tape & Reel
MC100EL16DR2G
SOIC−8
(Pb−Free)
2500 / Tape & Reel
MC100EL16DT
TSSOP−8
98 Units / Rail
MC100EL16DTG
TSSOP−8
(Pb−Free)
98 Units / Rail
MC100EL16DTR2
TSSOP−8
2500 / Tape & Reel
MC100EL16DTR2G
TSSOP−8
(Pb−Free)
2500 / Tape & Reel
MC100EL16MNR4
DFN8
1000 / Tape & Reel
DFN8
(Pb−Free)
1000 / Tape & Reel
Device
MC10EL16D
MC10EL16MNR4G
MC100EL16D
MC100EL16MNR4G
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AN1405/D
− ECL Clock Distribution Techniques
AN1406/D
− Designing with PECL (ECL at +5.0 V)
AN1503/D
− ECLinPS I/O SPiCE Modeling Kit
AN1504/D
− Metastability and the ECLinPS Family
AN1568/D
− Interfacing Between LVDS and ECL
AN1672/D
− The ECL Translator Guide
AND8001/D
− Odd Number Counters Design
AND8002/D
− Marking and Date Codes
AND8020/D
− Termination of ECL Logic Devices
AND8066/D
− Interfacing with ECLinPS
AND8090/D
− AC Characteristics of ECL Devices
http://onsemi.com
6
MC10EL16, MC100EL16
PACKAGE DIMENSIONS
SOIC−8 NB
CASE 751−07
ISSUE AH
−X−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.
A
8
5
S
B
0.25 (0.010)
M
Y
M
1
4
−Y−
K
G
C
N
DIM
A
B
C
D
G
H
J
K
M
N
S
X 45 _
SEATING
PLANE
−Z−
0.10 (0.004)
H
D
0.25 (0.010)
M
Z Y
S
X
M
J
S
SOLDERING FOOTPRINT*
1.52
0.060
7.0
0.275
4.0
0.155
0.6
0.024
1.270
0.050
SCALE 6:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
7
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0_
8 _
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0 _
8 _
0.010
0.020
0.228
0.244
MC10EL16, MC100EL16
PACKAGE DIMENSIONS
TSSOP−8
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948R−02
ISSUE A
8x
0.15 (0.006) T U
0.10 (0.004)
S
2X
L/2
L
8
5
1
PIN 1
IDENT
0.15 (0.006) T U
K REF
M
T U
V
S
0.25 (0.010)
B
−U−
4
M
A
−V−
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE -W-.
S
F
DETAIL E
C
0.10 (0.004)
−T− SEATING
PLANE
D
−W−
G
DETAIL E
http://onsemi.com
8
DIM
A
B
C
D
F
G
K
L
M
MILLIMETERS
MIN
MAX
2.90
3.10
2.90
3.10
0.80
1.10
0.05
0.15
0.40
0.70
0.65 BSC
0.25
0.40
4.90 BSC
0_
6_
INCHES
MIN
MAX
0.114
0.122
0.114
0.122
0.031
0.043
0.002
0.006
0.016
0.028
0.026 BSC
0.010
0.016
0.193 BSC
0_
6_
MC10EL16, MC100EL16
PACKAGE DIMENSIONS
DFN8
CASE 506AA−01
ISSUE D
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994 .
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
A
B
PIN ONE
REFERENCE
2X
0.10 C
2X
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
TOP VIEW
0.10 C
0.08 C
SEATING
PLANE
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.20 REF
0.20
0.30
2.00 BSC
1.10
1.30
2.00 BSC
0.70
0.90
0.50 BSC
0.20
−−−
0.25
0.35
A
0.10 C
8X
DIM
A
A1
A3
b
D
D2
E
E2
e
K
L
E
(A3)
SIDE VIEW
A1
C
D2
e
e/2
4
1
8X
L
E2
K
8
5
8X
b
0.10 C A B
0.05 C
NOTE 3
BOTTOM VIEW
ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
9
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC10EL16/D