TCST5250 Datasheet

TCST5250
Vishay Semiconductors
Transmissive Optical Sensor with Phototransistor Output
FEATURES
C
• Package type: leaded
A
• Detector type: phototransistor
• Dimensions (L x W x H in mm): 14.3 x 6 x 9.5
• Gap (in mm): 2.7
C
• Aperture (in mm): 0.5
E
• Typical output current under test: IC = 1.5 mA
• Daylight blocking filter
21834
C
E
19208_1
• Emitter wavelength: 950 nm
• Lead (Pb)-free soldering released
DESCRIPTION
The TCST5250 is a transmissive sensor that includes an
infrared emitter and a phototransistor, located face-to-face
on the optical axes in a leaded package which blocks visible
light.
• Compliant to RoHS directive 2002/95/EC
accordance to WEEE 2002/96/EC
and
in
APPLICATIONS
• Optical switch
• Shaft encoder
PRODUCT SUMMARY
PART NUMBER
GAP WIDTH
(mm)
APERTURE WIDTH
(mm)
TYPICAL OUTPUT
CURRENT UNDER TEST (1)
(mA)
DAYLIGHT
BLOCKING FILTER
INTEGRATED
2.7
0.5
1.5
Yes
TCST5250
Note
(1) Conditions like in table basic characteristics/coupler
ORDERING INFORMATION
ORDERING CODE
TCST5250
PACKAGING
VOLUME (1)
REMARKS
Tube
MOQ: 4860 pcs, 30 pcs/tube
-
Note
(1) MOQ: minimum order quantity
ABSOLUTE MAXIMUM RATINGS
PARAMETER
(1)
TEST CONDITION
SYMBOL
VALUE
UNIT
Tamb ≤ 25 °C
Ptot
250
mW
COUPLER
Total power dissipation
Ambient temperature range
Tamb
- 25 to + 85
°C
Storage temperature range
Tstg
- 40 to + 100
°C
Tsd
260
°C
Soldering temperature
Distance to package 1.6 mm, t ≤ 5 s
INPUT (EMITTER)
Reverse voltage
VR
6
V
Forward current
IF
60
mA
tp ≤ 10 µs
IFSM
3
A
Tamb ≤ 25 °C
PV
100
mW
Tj
100
°C
Collector emitter voltage
VCEO
70
V
Emitter collector voltage
VECO
7
V
IC
100
mA
Forward surge current
Power dissipation
Junction temperature
OUTPUT (DETECTOR)
Collector current
Document Number: 83787
Rev. 1.5, 17-Aug-09
For technical questions, contact: [email protected]
www.vishay.com
1
TCST5250
Transmissive Optical Sensor with
Phototransistor Output
Vishay Semiconductors
ABSOLUTE MAXIMUM RATINGS
PARAMETER
(1)
TEST CONDITION
SYMBOL
VALUE
UNIT
Tamb ≤ 25 °C
PV
150
mW
Tj
100
°C
OUTPUT (DETECTOR)
Power dissipation
Junction temperature
Note
(1) T
amb = 25 °C, unless otherwise specified
ABSOLUTE MAXIMUM RATINGS
P - Power Dissipation (mW)
400
300
Coupled device
200
Phototransistor
IR-diode
100
0
30
0
95 11088
60
90
120
150
Tamb - Ambient Temperature (°C)
Fig. 1 - Power Dissipation Limit vs. Ambient Temperature
BASIC CHARACTERISTICS
(1)
PARAMETER
TEST CONDITION
SYMBOL
MIN.
TYP.
MAX.
UNIT
Collector current
VCE = 10 V, IF = 20 mA
IC
0.5
1.5
15
mA
Collector emitter saturation
voltage
IF = 20 mA, IC = 0.2 mA
VCEsat
0.4
V
COUPLER
INPUT (EMITTER)
IF = 60 mA
VF
1.25
VR = 0 V, f = 1 MHz
Cj
50
IC = 1 mA
VCEO
70
7
Forward voltage
Junction capacitance
1.5
V
pF
OUTPUT (DETECTOR)
Collector emitter voltage
V
IE = 10 µA
VECO
VCE = 25 V, IF = 0 A, E = 0 lx
ICEO
10
Turn-on time
IC = 1 mA, VCE = 5 V,
RL = 100 Ω (see figure 2)
ton
15
µs
Turn-off time
IC = 1 mA, VCE = 5 V,
RL = 100 Ω (see figure 2)
toff
10
µs
Emitter collector voltage
Collector dark current
V
100
nA
SWITCHING CHARACTERISTICS
Note
Tamb = 25 °C, unless otherwise specified
(1)
www.vishay.com
2
For technical questions, contact: [email protected]
Document Number: 83787
Rev. 1.5, 17-Aug-09
TCST5250
Transmissive Optical Sensor with
Phototransistor Output
Vishay Semiconductors
IF
IF
IF
0
+5V
0
IC = 1 mA; adjusted by I F
tp
IC
t
100 %
90 %
RG = 50 Ω
tp
= 0.01
T
t p = 50 µs
Channel I
tr
R L ≥ 1 MΩ
CL ≤ 20 pF
Channel II
50 Ω
10 %
0
Oscilloscope
100 Ω
td
tp
td
tr
t on (= td + tr)
20223
ts
t on
ts
tf
t off (= ts + tf)
Pulse duration
Delay time
Rise time
Turn-on time
Fig. 2 - Test Circuit for ton and toff
t
tf
t off
Storage time
Fall time
Turn-off time
96 11698
Fig. 3 - Switching Times
BASIC CHARACTERISTICS
Tamb = 25 °C, unless otherwise specified
10 000
ICEO - Collector Dark Current (nA)
IF - Forward Current (mA)
1000
100
10
1
1000
100
10
1
0.1
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VF - Forward Voltage (V)
96 11862
10
VCE = 10 V
VCE = 5 V
I F = 20 mA
I C - Collector Current (mA)
CTR rel - Relative Current Transfer Ratio
100
Fig. 6 - Collector Dark Current vs. Ambient Temperature
2.0
1.5
1.0
0.5
0
- 25
25
50
75
Tamb - Ambient Temperature (°C)
0
95 11090
Fig. 4 - Forward Current vs. Forward Voltage
95 11089
VCE = 25 V
IF = 0 A
0
25
50
75
100
Tamb - Ambient Temperature (°C)
Fig. 5 - Relative Current Transfer Ratio vs. Ambient Temperature
Document Number: 83787
Rev. 1.5, 17-Aug-09
1
0.1
0.01
0.001
0.1
95 11083
1
10
100
I F - Forward Current (mA)
Fig. 7 - Collector Current vs. Forward Current
For technical questions, contact: [email protected]
www.vishay.com
3
TCST5250
Vishay Semiconductors
Transmissive Optical Sensor with
Phototransistor Output
110
I F = 20 mA
1
4 mA
2 mA
0.1
1 mA
0.4 mA
0.01
0.1
10
1
100
VCE - Collector Emitter Voltage (V)
20224
I Crel - Relative Collector Current
I C - Collector Current (mA)
10
100
A = 0.5 mm
80
s
70
60
50
40
30
20
10
0
- 0.5 - 0.4 - 0.3 - 0.2 - 0.1 0
96 12006
Fig. 8 - Collector Current vs. Collector Emitter Voltage
0
90
0.1 0.2 0.3 0.4 0.5
s - Displacement (mm)
Fig. 11 - Relative Collector Current vs. Displacement
CTR - Current Transfer Ratio (%)
100
VCE = 5 V
10
1
0.1
0
0.1
100
10
I F - Forward Current (mA)
95 11085
Fig. 9 - Current Transfer Ratio vs. Forward Current
ton / t off - Turn on/Turn off Time (µs)
20
Non saturated
operation
VS = 5 V
R L = 100 Ω
15
10
t on
5
t off
0
0
95 11086
2
4
6
8
10
I C - Collector Current (mA)
Fig. 10 - Turn-on/Turn-off Time vs. Collector Current
www.vishay.com
4
For technical questions, contact: [email protected]
Document Number: 83787
Rev. 1.5, 17-Aug-09
TCST5250
Transmissive Optical Sensor with
Phototransistor Output
Vishay Semiconductors
PACKAGE DIMENSIONS in millimeters
15192
Document Number: 83787
Rev. 1.5, 17-Aug-09
For technical questions, contact: [email protected]
www.vishay.com
5
TCST5250
Vishay Semiconductors
Transmissive Optical Sensor with
Phototransistor Output
TUBE DIMENSIONS in millimeters
20257
www.vishay.com
6
For technical questions, contact: [email protected]
Document Number: 83787
Rev. 1.5, 17-Aug-09
Packaging and Ordering Information
Vishay Semiconductors
Packaging and Ordering Information
PART NUMBER
MOQ (1)
PCS PER TUBE
TUBE SPEC.
(FIGURE)
CONSTITUENTS
(FORMS)
CNY70
4000
80
1
28
TCPT1300X01
2000
Reel
(2)
29
TCRT1000
1000
Bulk
-
26
TCRT1010
1000
Bulk
-
26
TCRT5000
4500
50
2
27
TCRT5000L
2400
48
3
27
TCST1030
5200
65
5
24
TCST1030L
2600
65
6
24
TCST1103
1020
85
4
24
TCST1202
1020
85
4
24
TCST1230
4800
60
7
24
TCST1300
1020
85
4
24
TCST2103
1020
85
4
24
TCST2202
1020
85
4
24
TCST2300
1020
85
4
24
TCST5250
4860
30
8
24
TCUT1300X01
2000
Reel
(2)
29
TCZT8020-PAER
2500
Bulk
-
22
Notes
(1) MOQ: minimum order quantity
(2) Please refer to datasheets
TUBE SPECIFICATION FIGURES
15198
Fig. 1
Document Number: 80112
Rev. 1.1, 02-Jul-09
For technical questions, contact: [email protected]
www.vishay.com
1
Packaging and Ordering Information
Vishay Semiconductors Packaging and Ordering Information
15210
Fig. 2
15201
Fig. 3
www.vishay.com
2
For technical questions, contact: [email protected]
Document Number: 80112
Rev. 1.1, 02-Jul-09
Packaging and Ordering Information
Packaging and Ordering Information Vishay Semiconductors
15199
Fig. 4
15202
Fig. 5
Document Number: 80112
Rev. 1.1, 02-Jul-09
For technical questions, contact: [email protected]
www.vishay.com
3
Packaging and Ordering Information
Vishay Semiconductors Packaging and Ordering Information
15196
Fig. 6
15195
Fig. 7
www.vishay.com
4
For technical questions, contact: [email protected]
Document Number: 80112
Rev. 1.1, 02-Jul-09
Packaging and Ordering Information
Packaging and Ordering Information Vishay Semiconductors
20257
Fig. 8
Document Number: 80112
Rev. 1.1, 02-Jul-09
For technical questions, contact: [email protected]
www.vishay.com
5
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000