TND359/D Rev 0, Jan-09 High-Efficiency 255 W ATX Power Supply Reference Design Documentation Package 1 © 2009 ON Semiconductor Disclaimer: ON Semiconductor is providing this reference design documentation package “AS IS” and the recipient assumes all risk associated with the use and/or commercialization of this design package. No licenses to ON Semiconductor’s or any third party’s Intellectual Property is conveyed by the transfer of this documentation. This reference design documentation package is provided only to assist the customers in evaluation and feasibility assessment of the reference design. The design intent is to demonstrate that efficiencies beyond 85% are achievable cost effectively utilizing ON Semiconductor provided ICs and discrete components in conjunction with other inexpensive components. It is expected that users may make further refinements to meet specific performance goals. 2 Table of Contents 1. Overview................................................................................................... 4 2. Specifications .......................................................................................... 5 3. Architecture Overview............................................................................. 7 3.1 Primary Side: PFC Stage................................................................................. 7 3.2 Primary Side: Half bridge resonant LLC Converter.......................................... 7 3.3 Secondary Side: Synchronous Rectification .................................................... 7 3.4 Secondary Side: DC-DC Conversion Stage .................................................... 8 3.5 Secondary Side: Monitoring and Supervisory Stage........................................ 8 3.6 Standby Power ................................................................................................ 8 4. Performance Results ..................................................................................9 4.1 Total Efficiency ............................................................................................................9 4.2 Power Factor ...............................................................................................................9 4.3 Standby Power ..........................................................................................................10 4.4 Input Current..............................................................................................................10 4.5 Inrush Current............................................................................................................10 4.6 Output Transient Response (Dynamic Loading) ........................................................11 4.7 Overshoot at Turn-On/Turn-Off..................................................................................11 4.8 Output Ripple / Noise.................................................................................................13 4.9 Hold-up Time .............................................................................................................20 4.10 Timing / Housekeeping / Control..............................................................................21 4.11 Output Protection.....................................................................................................23 5. Evaluation Guidelines ..............................................................................26 6. Schematics................................................................................................28 7. Parts List ...................................................................................................29 8. Resources/Contact Information ..............................................................36 9. Appendix ...................................................................................................36 3 1. Overview ON Semiconductor was the first semiconductor company to provide an 80 PLUS-certified open reference design for an ATX power supply in 2005. A second generation 80 PLUS-certified open reference design with improved efficiency was then introduced in 2007. ON Semiconductor is now introducing its third generation 80 PLUS-certified open reference design with a drastic efficiency improvement. This is a 255 W multi-output power supply for the ATX form factor. Achieving a maximum efficiency of 90% at 50% load, and at 230 and 240 Vac, this third generation reference design achieves >88% efficiency at 50% load, and 100 and 115 Vac. All efficiency measurements were obtained at the end of a 41 cm (16 in.) cable, ensuring the design can be used ‘as is’ in all standard desktop PC configurations. This reference document provides the details behind this third generation design. The design manual provides a detailed view of the performance achieved with this design in terms of efficiency, performance, thermals and other key parameters. In addition, a detailed list of the bill-of-materials (BOM) is also provided. ON Semiconductor will also be able to provide technical support to help our customers design and manufacture a similar ATX power supply customized to meet their specific requirements. The results achieved in this third generation design were possible due to the use of advanced new components from ON Semiconductor. These new ICs not only speeded up the overall development cycle for this new design, but also helped achieve the high efficiencies while at the same time keeping a check on the overall cost. This third generation design consists of a single PCB designed to fit into the standard ATX enclosure along with a fan. Figure 1 below presents the overall architecture employed in this design. Detailed schematics are included later in this design manual. Figure 1: Reference Design Architecture Simplified Block Diagram 4 As seen in figure 1, the first stage, active Power Factor Correction (PFC) stage, is built around ON Semiconductor’s Continuous Conduction Mode (CCM) PFC controller, NCP1654. The NCP1654 provides an integrated, robust and cost-effective PFC solution. The second stage features a resonant half-bridge LLC topology using ON Semiconductor’s controller, NCP1396. This topology ensures maximum efficiency and minimizes EMI. The NCP1027, standby controller, is used to generate the 5 V standby output. The NCP1027 is an optimized integrated circuit for the ATX power supply and incorporates a high-voltage MOSFET. On the secondary side, this architecture uses a synchronous rectification scheme built around ON Semiconductor’s NCP4302 controller in order to generate a 12 V output. Finally, two identical DC-DC controllers are used to down-convert the 12 V into +5 V, +3.3 V and -12 V. The DC-DC controller is the NCP1587, a low voltage synchronous buck controller in a very small surface mount 8-pin package. Each DC-DC controller drives two NTD4809 (30 V, 58 A, single N-channel power MOSFET) in a synchronous rectification scheme. With the introduction of this third generation, high-efficiency ATX Power Supply, ON Semiconductor has shown that with judicious choice of design tradeoffs, optimum performance is achieved at minimum cost. 2. Specifications The design closely follows the ATX12V version 2.2 power supply guidelines and specifications available from www.formfactors.org, unless otherwise noted. This 255 W reference design exceeds the 80 PLUS Silver (www.80plus.org), ENERGY STAR® 5.0 (www.energystar.gov), and Climate Savers Computing Initiative (CSCI) Step 3 (www.climatesaverscomputing.org) efficiency targets for desktop PC multi-output power supplies. Table 1 hereafter shows a summary of the efficiency targets from these different organizations. Multi-Output ATX Power Supplies Levels Specification • Multiple-Output • Non-Redundant • PFC 0.9 at 100% of rated output 20% of 50% of 100% of rated rated rated output output output 80% 80% efficiency efficiency 80% efficiency Compliance ENERGY STAR rev. 4.0 & CSCI step #1 Effective date: July 2007 • Multiple-Output • Non-Redundant • PFC 0.9 at 50% of rated output 82% 85% efficiency efficiency 82% efficiency ENERGY STAR rev. 5.0 (Effective date: July 2009) & CSCI step #2 (June 2008 thru July 2009) • Multiple-Output • Non-Redundant • PFC 0.9 at 50% of rated output 85% 88% efficiency efficiency 85% efficiency CSCI step #3 (July 2009 thru June 2010) • Multiple-Output • Non-Redundant • PFC 0.9 at 50% of rated output 87% 90% efficiency efficiency 87% efficiency CSCI step #4 (July 2010 thru June 2011) Table 1: Summary of Efficiency Targets 5 Key specifications for this reference design are included in Table below. Input Voltage (Vac) Min. Typ. Max. Frequency (HZ) Output Voltage (Vdc) 47 50 60 50 50 63 +12 VA +12 VB +5 V +3.3 V -12 V +5 VSB 90 100 115 230 240 264 Output Power Output Voltage (Vdc) Full Load DC Current (A) +12 VA 9.50 114.0 +12 VB 5.12 61.4 +5 V 9.44 47.2 +3.3 V 5.03 16.6 -12 V +5 VSB 0.32 2.39 3.8 11.95 Full Load Total Output Power = 255 W Output Voltage (Vdc) +12 VA +12 VB +5 V +3.3 V -12 V +5 VSB DC Output Current Min Full Load Max DC Current DC Current DC Current (A) (A) (A) 0 9.50 13.0 0 5.12 7.0 0.3 9.44 15.0 0.3 5.03 8.0 0 0.32 0.4 0 2.39 3.0 Full Load Output Power (W) Notes Peak +12 VAdc output current up to 14 A. Peak +12 VBdc output current to be 8 A. The maximum combined load on the +12 VAdc and +12 VBdc outputs shall not exceed 220 W. The maximum continuous combined load on the +5Vdc and +3.3 Vdc outputs shall not exceed 80 W. Output Voltage Regulation (V) Tolerance (%) Min. Typ. Max. +11.4 +11.4 +4.75 +3.14 -10.8 +4.75 +12 +12 +5 +3.3 -12 +5 +12.6 +12.6 +5.25 +3.47 -13.2 +5.25 ±5 ±5 ±5 ±5 ±10 ±5 Output Ripple / Noise (mVpp) 120 120 70 50 250 100 Table 2: Target Specifications Target specifications for other key parameters of the reference design include: Efficiency: Minimum efficiency of 85% at 20% and at 100% of rated output power, and 88% at 50% of rated output power as defined by the 80 PLUS requirements. Power Factor: Power factor of 0.9 or greater at 100 % load. Input Voltage: Universal Mains: 90 Vac to 265 Vac, frequency: 47 to 63 Hz. Safety Features: As per the ATX12V version 2.2 power supply guidelines, this design includes safety features such as OVP, UVP, and OCP. 6 3. Architecture Overview The architecture selected is designed around a succession of conversion stages as illustrated in Figure 1. The first stage is a universal input, active power factor boost stage delivering a constant output voltage of 385 V to the second stage, the half bridge resonant LLC converter. On the secondary side, this architecture uses a synchronous rectification scheme built around ON Semiconductor’s NCP4302 controller in order to generate a +12 V output. Finally, the +12 V is downconverted +5 V, +3.3 V and -12 V by a DC-DC conversion stage, built around two identical DC-DC controllers. In addition, a small integrated flyback converter delivers 12 W of standby power to another isolated 5 V rail. All the different voltage rails are monitored by a dedicated supervisory controller. ON Semiconductor has developed multiple power management controllers and MOSFET devices in support of the ATX program. Web-downloadable data sheets, design tools and technical resources are available to assist design optimization. The semiconductor components, supporting the ATX Generation 3 platform, are the NCP1654 PFC controller, the NCP1396 half-bridge resonant LLC controller, the NCP4302 synchronous rectification, the NCP1027 standby controller, the NCP1587 DCDC controller with synchronous rectification, and the NTD4809 single N-channel power MOSFET driven by the NCP1587, in synchronous rectification. 3.1 Primary Side: PFC Stage There are a variety of PFC topologies available. These include discontinuous conduction mode (DCM), critical conduction mode (CRM) and continuous conduction mode (CCM). At this power level, CCM is the preferred choice and the NCP1654 will implement an IEC61000-3-2 compliant, fixed frequency, peak current mode or average current mode PFC boost converter with very few external components. 3.2 Primary Side: Half bridge resonant LLC Converter The heart of the half-bridge resonant LLC converter stage is the NCP1396 resonant mode controller. Thanks to its proprietary high-voltage technology, this controller includes a bootstrapped MOSFET driver for half-bridge applications accepting bulk voltages up to 600 V. Protections featuring various reaction times, e.g. immediate shutdown or timer-based event, brown-out, broken optocoupler detection etc., contribute to a safer converter design, without engendering additional circuitry complexity. An adjustable dead-time also helps lower the shoot-through current contribution as the switching frequency increases. More information about LLC structure can be found in the ON Semiconductor application note AND8311/D (Understanding the LLC Structure in Resonant Applications). 3.3 Secondary Side: Synchronous Rectification The 12 V output generated by the half-bridge resonant LLC converter is rectified using a proprietary synchronous rectification scheme built around two NCP4302 and two external single N-channel MOSFETs. 7 3.4 Secondary Side: DC-DC Conversion Stage Two identical DC-DC controllers are used to down-convert the 12 V into +5 V and +3.3 V. The DC-DC controller is the NCP1587, a low voltage synchronous buck controller in a very small surface mount 8pin package. The NCP1587 is a low cost PWM controllers designed to operate from a 5 V or 12 V supply. This device is capable of producing an output voltage as low as 0.8 V. The NCP1587 provides a 1 A gate driver design and an internally set 275 kHz (NCP1587) oscillator. Other efficiency enhancing features of the gate driver include adaptive non overlap circuitry. The NCP1587 also incorporates an externally compensated error amplifier and a capacitor programmable soft start function. Protection features include programmable short circuit protection and under voltage lockout. Each DC-DC controller drives two NTD4809 (30 V, 58 A, single N-channel power MOSFET) in a synchronous rectification scheme. The -12 V is generated from the +5 V using a small discrete-based converter. 3.5 Secondary Side: Monitoring and Supervisory Stage The four dc outputs +5 V, +3.3 V, +12 VA and +12 VB are monitored by a dedicated monitoring controller which also provides over-current protection, over-voltage protection, under-voltage protection and generates the Power Good logic signal. 3.6 Standby Power The NCP1027 integrates a fixed frequency current mode controller and a 700 volt MOSFET. The NCP1027 is an ideal part to implement a flyback topology delivering 15 W to an isolated 5 V output. At light loads the IC will operate in skip cycle mode, thereby reducing its switching losses and delivering high efficiency throughout the load range. 8 4. Performance Results Measurements are done at three loading conditions, the load being expressed as a % of the rated output power, i.e. at 20%, 50% and at 100% of rated output power. Measurements are also done at four AC line voltages, at 100 Vac, 115 Vac, 230 Vac and 240 Vac, at 50 Hz, 60 Hz and 63 Hz. All measurements are taken at the end of the 41 cm-long (16 inches) cable. The converter efficiency is measured according to the loading conditions detailed in Table 3: Load as % of rated output power 20% 50% 100% Max. +12VA 1.90 4.75 9.50 13.0 +12VB 1.02 2.56 5.12 7.0 Output Current (A) +5V +3.3V 1.89 1.01 4.72 2.52 9.44 5.03 15.0 8.0 -12V 0.06 0.16 0.32 0.4 +5VSB 0.48 1.20 2.39 3.0 Table 3: Load Matrix for Efficiency Measurements 4.1 Total Efficiency AC Input 100 VAC / 50 HZ 115 VAC / 60 HZ 230 VAC / 50 HZ 240 VAC / 63 HZ Total Efficiency (%) 20% Load 50% Load 100% Load 85.9% 88.3% 85.9% 86.3% 88.8% 86.8% 86.5% 90.1% 88.7% 86.5% 90.1% 88.8% Table 4: Efficiency Results The converter achieves over 85% efficiency with room to spare over all load conditions. All measurements are done at the end of the power cable. 4.2 Power Factor The power factor exceeds 0.9 over all operating conditions as shown in Table . Power Factor Specification AC Input 20% Load 50% Load 100% Load 100 VAC / 50 HZ 0.96 0.983 0.987 PF > 0.90 @100% 115 VAC / 60 HZ 0.945 0.978 0.986 & 50% of rated 230 VAC / 50 HZ 0.714 0.912 0.966 output power 240 VAC / 63 HZ 0.689 0.902 0.962 Table 5: Power Factor vs Load as % of Rated Output Power 9 4.3 Standby Power 100 VAC / 50 HZ 115 VAC / 60 HZ 230 VAC / 50 HZ Output Current on +5VSB (A) 0.147 0.171 0.244 Input Power (W) 0.36 0.31 0.55 240 VAC / 63 HZ 0.312 0.57 AC Input Specification < 1W • U.S. Department of Energy, FEMP (Federal Energy Management Program): http://www1.eere.energy.gov/femp/procurement/index.html • Executive Order 13221 of July 31, 2001: http://www1.eere.energy.gov/femp/pdfs/eo13221.pdf Table 6: Standby Power vs AC Line Voltage 4.4 Input Current AC Input 90 VAC / 47 HZ 100 VAC / 50 HZ 115 VAC / 63 HZ 180 VAC / 50 HZ 230 VAC / 53 HZ 240 VAC / 60 HZ 264 VAC / 63 HZ Measurement (A) Specification 20% Load 50% Load 100% Load 0.673 1.609 3.245 0.614 1.458 2.952 0.544 1.271 2.549 90V (max 3.6A) 180V (max.1.8A) 0.363 0.799 1.573 @ 100% load 0.355 0.667 1.266 0.353 0.646 1.217 0.339 0.597 1.092 Table 7: Input Current vs Load and AC Line Voltage 4.5 Inrush Current Parameter Description Min. Typ. Initial In-rush Current Secondary In-rush Current Table 8: Inrush Current Specification AC Input 90 VAC/47 HZ 120 VAC/63 HZ 220 VAC/50 HZ 264 VAC/63 HZ Max. 55 35 Units A (Peak) A (Peak) Output Measurement (A) Specification Load 100% Initial In-rush Current 9.9 Load Secondary In-rush Current 8.0 100% Initial In-rush Current 17.9 Initial In-rush Current < 55 A Load Secondary In-rush Current 16.2 100% Initial In-rush Current 25.4 Secondary In-rush Current < 35 A Load Secondary In-rush Current 24.5 100% Initial In-rush Current 34.1 Load Secondary In-rush Current 33.3 Table 9: Inrush Current vs AC Line Voltage 10 4.6 Output Transient Response (Dynamic Loading) Output Transient starting Load T1 / T2 (0.1 A/µsec), T1 / T2 (1 ms) DC Output +12 VA +12 VB +5 V +3.3 V -12 V +5 VSB Load (A) Voltage Max. (V) Min. Load Step Max. Overshoot Undershoot 0.5 6.5 6.5 0.6 0.6 0.5 3.5 3.5 0.6 0.6 0.3 5 10 0.25 0.25 0.3 2.66 5.34 0.17 0.17 0 0.17 0.33 0.6 0.6 0 1.33 2.67 0.25 0.25 Table 10: Output Transient Response (Dynamic Loading) 4.7 Overshoot at Turn-On/Turn-Off DC Output +12VA +12VB +5V +3.3V -12V +5VSB Min. – Load Load Step – Specification Step Max. 0.34 N/A 1.2 0.38 N/A 1.2 0.21 0.23 0.5 0.15 0.17 0.33 0.18 0.20 -1.2 0.21 0.20 0.5 Table 11: Overshoot at Turn-On/Turn-Off Measured and Calculated Data at 115V / 60HZ DC Output Min. – Load Step Unit VP-P Load Step – Max. +12 VA N/A +12 VB N/A 11 +5 V +3.3 V -12 V +5 VSB Figure 2: Dynamic Load Test Waveforms 12 4.8 Output Ripple / Noise The ripple voltage of each output is measured at no load and at the maximum load for each output., and at the four different line voltages. The output ripple is measured across 10 μF/MLC parallel 1000 μF low ESR/ESL termination capacitors. Figure 3 through 6 show the output voltage ripple measurements. All outputs meet the voltage ripple requirements. DC Output No Load (A) Full Load (A) +12 VA 0 9.50 Output Ripple / Noise Max (mVp-p) 120 +12 VB 0 5.12 120 +5 V 0 9.44 70 +3.3 V 0 5.03 50 -12 V 0 0.32 250 +5 VSB 0 2.39 100 Table 12: Output Ripple / Noise Specification 4.8.1 100 VAC / 50 HZ - Ripple / Noise Test Waveform No Load Full Load No Load Full Load +12 VA +12 VB 13 No Load Full Load No Load Full Load No Load Full Load No Load Full Load +5 V +3.3 V -12 V +5 VsB Figure 3: 100 VAC / 50 HZ - Ripple / Noise Test Waveform 14 4.8.2 115 VAC / 60 HZ - Ripple / Noise Test Waveform No Load Full Load No Load Full Load No Load Full Load No Load Full Load +12 VA +12 VB +5 V +3.3 V 15 No Load Full Load No Load Full Load -12 V +5 VSB Figure 4: 115 VAC / 60 HZ - Ripple / Noise Test Waveform 16 4.8.3 230 VAC / 50 HZ - Ripple / Noise Test Waveform No Load Full Load No Load Full Load No Load Full Load No Load Full Load +12 VA +12 VB +5 V +3.3 V 17 No Load Full Load No Load Full Load -12 V +5 VSB Figure 5: 230 VAC / 50 HZ - Ripple / Noise Test Waveform 18 4.8.3 240 VAC / 63 HZ - Ripple / Noise Test Waveform No Load Full Load No Load Full Load No Load Full Load No Load Full Load +12 VA +12 VB +5 V +3.3 V 19 No Load Full Load No Load Full Load -12 V +5 VSB Figure 6: 240 VAC / 63 HZ - Ripple / Noise Test Waveform 4.9 Hold-up Time The required holdup time at 50% load is 16 ms. Holdup time is measured from the moment the AC power is removed to when the PWR_OK signal goes low. Figure 7 shows the holdup time at 50% load, and at 115 Vac and 230 Vac. Channel 4 is the AC power and Channel 1 is the PWR_OK signal. AC Input 115 VAC / 60 HZ 230 VAC / 50 HZ Dropout Loading Measurement Condition (msec) 50% Load 22 50% Load 23 Table 13: Hold-up Time Specification Specification > 16 ms 20 115 VAC 60HZ - 50% Load 230 VAC / 50 HZ - 50% Load Figure 7: Hold-up Time 4.10 Timing / Housekeeping / Control 4.10.1 AC On / Off Control AC On / Off Test Parameter Description Main Outputs Rise Time 2 ms < T2 < 20 ms POK delay 100 ms < T3 < 500 ms Power down warning 1 ms < T4 Hold-up time T6 > 16 ms PS_ON Timing (on) T7 < 1000 ms Main Outputs Rise Time 2 ms < T2 < 20 ms Figure 8: AC On / Off Control 21 4.10.2 PS_ON On / Off Control PS_ON On / Off Test Parameter Description Rise Time 2 ms < T2 < 20 ms POK delay 100 ms < T3 < 500 ms Power down warning 1 ms < T4 PS_ON Timing (off) T8 < 60 ms PS_ON Timing (on) T9 < 350 ms -12VDC Rise Time 0.1 ms < T10 < 20 ms Figure 9: PS_ON On / Off Control 4.10.3 Logic Timings Parameter Description Description T1 Delay from Standby within regulation to DC outputs turn on 5 300 T2 Standby, +3.3VDC, +5VDC,and 12VDC output rise time 2 20 T3 Delay from output voltages within regulation limits to POK asserted at turn on 100 500 T4 Delay from POK deasserted to output voltages (3.3V, 5V, 12V, -12V) dropping out of regulation limits 1 T5 Delay from DC output deasserted to Standby out of regulation at turn off. 5 T6 Delay from loss of AC to desertions of PWOK. 16 T7 PS_ON Timing (on) 1000 T8 PS_ON Timing (off) 60 T9 Delay from PS-ON reasserted to output turn on 350 T10 -12VDC output rise time Min. 0.1 Max. 20 DC Output Measurements Units AC IN PS_ON N/A 148 N/A +12V +5V +3.3V +5Vsb +12V +5V +3.3V +12V +5V +3.3V -12V +12V +5V +3.3V N/A +12V +5V +3.3V +12V +5V +3.3V +12V +5V +3.3V -12V 2.8 2.6 2.8 14 250 244 244 1.6 4.8 6.8 6 608 600 600 604 143 178 179 4.2 2.4 2.2 N/A 256 250 252 28.4 30 32.4 12 1.822 ms 65.6 67.2 69.2 80.8 86.8 86.8 1.239 Table 14: Logic Timings 22 4.10.4 PWR_OK CONTROL AND LOGIC SIGNALS RIPPLE/NOISE Measurement Max. Unit 35 400 mVP-P PWR_OK Full Load Table 15: PWR_OK Timings 4.10.5 PS_ON CONTROL AND LOGIC SIGNALS RIPPLE/NOISE Measurement Max. Unit 30 400 mVP-P PS_ON Full Load Table 16: PS_ON Timings 4.11 Output Protection 4.11.1 Output Over-Voltage Protection DC Output +12 VA / B +5 V +3.3 V -12 V +5 VSB Specification Measurements (V) Min. (V) Max. (V) 13.5 15 5.6 7 6.36 3.76 4.3 4.2 -13.5 -15 5.6 7 Table 17: Output Over-Voltage Protection 4.11.2 Output Under-Voltage Protection +12VA +5 V +12 VB +3.3 V Figure 10: 115 VAC / 60 HZ DC Output Under-Voltage Protection @ Full Load 23 4.11.3 Short Circuit Protection +12 VA +12 VB +5 V +3.3 V +5 VSB Figure 11: 115 VAC / 60 HZ DC Output Short circuit protection @ Full Load 24 4.11.3 Over-Current Protection DC Output +12 VA +12 VB +5 V +3.3 V -12 V +5 VSB Over Current Protection Measurements (A) Min. (A) Max. (A) 15 21 (< 240 VAC) 19.6 8.5 11.5 (< 240 VAC) 10.0 18 24 20.5 10 13 10.9 N/A N/A N/A 3 6 6.0 Table 18: Over-Current Protection +12 VA +12 VB +5 V +3.3 V +5VSB Figure 12: DC Output Short circuit protection @ Full Load 25 5. Evaluation Guidelines Evaluation of the reference design should be attempted only by persons who are intimately familiar with power conversion circuitry. Lethal mains referenced voltages and high dc voltages are present within the primary section of the ATX circuitry. All testing should be done using a mains high-isolation transformer to power the demonstration unit so that appropriate test equipment probing will not affect or potentially damage the test equipment or the ATX circuitry. The evaluation engineer should also avoid connecting the ground terminal of oscilloscope probes or other test probes to floating or switching nodes (e.g. the source of the active clamp MOSFET). It is not recommended to touch heat sinks, on which primary active components are mounted, to avoid the possibility of receiving RF burns or shocks. High impedance, low capacitance test probes should be used where appropriate for minimal interaction with the circuits under investigation. As with all sensitive switchmode circuitry, the power supply under test should be switched off from the ac mains whenever the test probes are connected and/or disconnected. The evaluating engineer should also be aware of the idiosyncrasies of constant current type electronic loads when powering up the ATX demonstration unit. If the loads are adjusted to be close to the ATX’s maximum rated output power, the unit could shut down at turn on due to the instantaneous overloading effect of the constant current loads. As a consequence, electronic loads should be set to constant resistance mode or rheostats should be used for loads. The other alternative is to start the supply at light to medium load and then increase the constant current electronic loads to the desired level. The board is designed to fit in a traditional ATX enclosure as shown in Figure . 26 Figure 13: ON Semiconductor’s 255 W Reference Design for ATX Power Supplies 27 6. Schematics The power supply is implemented using a single sided PCB board. Added flexibility is provided by using daughter cards for the PFC (NCP1654) circuit and the NCP1396 resonant mode controller. The individual PCB board schematics are shown in figure 14. 28 ACL R11 10K R3 0.5- 1W 4 2 R12A 24K C5 1 R52 3.6K(1%) 5 65Khz R57 23.2K R56 HV R56 30K C60 47uF/25V 18-(1206) 33C57 1uF Q11 2SC4672 R77 33- 1 Css R57 30K C64 Q10 NC R76 1.8K R58 15K R59 6.8K Q12 C D26 NC D27 NC R60 MMBT2907 Q13 Q14 R79 10K 150K 3 CTMR HB 14 4 RT NC. 13 5 BO VCC 12 6 FB MLOW 11 7 DT GND 10 10K R71 10- R69 1K R70 1K Q5 D21 1N4148 8 4.7K 9 FAN Control Q20 MMBT2222 R301 Q21 1K IS12A IC21 817 R250 +5Vsb IS5 R253 1K Q16 R252 470- 1K -12V/0.32A C63 103 IS12B C209-1 224(1812) PS_ON R256 240- P4-3 R251 4.7k LM393(1/2) C67 105 L10 C230 3uH C200 VS33 VS5 D100 ES1D C201 NC. 220uF/25V P5-5 C202 100P R262 47C250104 C252 R263 2K C251 C203 Comp. 1K 474 563 6 FB C220 2200uF/16V C255 B C256 104 TO D-D C258 104 IS12A/B FPBO C257104 P5-3 7 D105 5 11 4148 R254 47- 14 13 IS12A/B FPBO IC17 12 8 104 10 D104 15 4148 C259 104 VS12B OTP 9 R264 2.2K VS5 VS33 GND IS12B RI IS12A PGO IS33 PGI IS5 PSONB VCC FPOB 104 6 D103 ES1D C210A 220uF/25V C210 NC. R265 1K C211 100P 1 BST 1K 563 6 FB 4 2 TG D1064148 R266 10K 1uH 75K +5V 16K R210 5.11K Add 2200uF/10V +5V/+3.3V Max.80W NC. L8 6.8uH IS33 B VS33 IS33 VS33 DPAK Q35 R215 10- DPAK RS33 L13 0.002 3uH +3.3V 104 NTD4809N 4148 D107 R211 NC. C214 NC. +5V/9.44A 47.2W 330uF/10V C208 C207 2200uF/10V C217 4 BG R209 R267 1K 104 Phase 8 NCP1587 3 R268 62K NC. RS5 C232 NTD4809N Comp. 1 C216 C206 Q34 R21410- IC19 R208 C212 16 C213 104 C261 2 PS223 C260 10/50V GND GND VS12A VS5 RS5-1 NC. RS5 NTD4809N 4148 DPAK D113 R205 NC. C205 NC. C253104 TM1 T10K OPT. IS5 IS5 10t N2 L7 6.8uH Q33 NCP1587 R204 5.11K C254 104 VS5 DPAK D112 4148 R21310- L11 Be core R203 27K 104 1.5uH C142 330uF/25V D101 SR24E Phase 8 4 BG 18K Q32 NTD4809N 2 TG C209 224(1812) C143 220uF/25V L9 R212 10- IC18 1 BST R202 NC. C204 104 P5-6 P4-2 Q17 MMBT2222 IS12V IS12A/B VS12B VS12BVS12A VS12A IS12B P4-1 P4-1 IS33 R255 470- C R216 R73 1.1K IS33 IS5 C262 100/25V GND MMBT2222 IC4 AZ431 SOT23 - AZ431 D22 7.5B P5-2 IC5 R88100LM393(1/2) C66 105 IC3 FAN 12V A 10K IS12A 10K 1K C65 104 R89 IC5 1 2 2.54 D121 +5Vsb PGI R86 CON3 Dlyadj 5 6.2B 5VSB 817 + C62 R74 3.3K 683 D23 +5Vsb R87 22K D120 6.2B R302 3.6B 10K +12V R303 15TM2 T204K 4.7K(1%) GND 6 D25 PGO R269 330- D29 R83 6.8K(1%) D24 MMBT2907 R67 R66 5.1K +5Vsb 499K(1%) R145 C134 1N4148 1N4148 R72 IC20 VCC1 R85 470K GATE 7 D102 SR24E 11 4148 223 AZ431 817 PGO R80 NC R84 2 TRIG 4 REF R261 47- D28 HV+ 12 B R144 C141 18K(1%) IC16 R300 10K SF 9 SO16 R64 1.1K(1%) HV+ R82 499K(1%) R143 68K 104 1 SYNC/CS VCC8 2SA1797 10 R81 R140 10K IC15 MVPP 15 8 FF 8.2K(1%) R62 R63 10K C59 222 6 R260 47- NC MBR60L45CTG C131 R13110-(2W) 561 C61 104 R259 47- R78 NC 4.7uF/50V PFC OK Jump 15 R61 2K C58 3,14 VCC1 VCC1 1K VBOOT 16 2 FMAX 10uF/25V 10- B R142 NCP4302 R65 R258 200- R75 NC 7 B 22- 1N4148 IC23 R68 D 7.5B D73 3 CATH IC2 NCP1396A jump CTL1 10TO220 80A55V 2.2- J9 D77 R149 10R138 Q31 12K D20 R148 1K 7.5B R137 1N4148 R141 C55 C54 2.2uF 220nF C145 1n/50V 0.8uH 80A55V 4148 6 16 5 R55 1K D5 D78 GND L9 Vcc 5 4 10-(1206) C56 47uF/25V (EE35) F D72 TO220 D71 T1/P3 2T RS12B-1 0.002 3 Gnd 6 3.3K Vcc 5 7 3 C52 0.1uF 10K 2 NCP1654 1nF R55 47K 82.5K 0.47uF 8 R257100- C50 C53 1 R135 Q30 8,9 R53 IC1 R54 10,11 220P UF 1A600V R51 3.3M MBR60L45CTG C4-1 D4 0.1-3Ws R3-1 nc. T1/P2 F 3 Gnd CY5 R12 5,6 TO220 Q4 STP12NM50 R147 1K 0.002 C140 A A 22- PPTC(NSMD100) TO220 220uF/450V R9 0-(1%) R146 IC20 AZ431 R5 10K 1n/50V R206 SPP15N60C3 474 R134 6.2K C146 Peak 8A +12VB C144 D110 1N4744 C6 C136 C137 C138 C139 C130561 10-(2W) D70 E T1(1/3) SSS8050(TO92) C1 474 CY4 472 R130 E +12VA RS12B 2200uF/16V CY3 472 12,13,14 Ls=80uH Lm=620uH C2 Peak 14A VS12B L6 0.8uH 2200uF/16V AC IN 85-264V CY2 472 Dlyadj 5 NCP4302 10K VS12A 0.002 2200uF/16V CY1 472 CORE RH16*17*9 GND WIRE 2t 4 REF 0.002 RS12A-1 RS12A C132 GND 6 PS_ON AC INLET AC IN R8 1.8M(1%) Q1 3 CATH EE35 IS12A/B GATE 7 2200uF/16V 2 3 4 1 R10 TO220 2 TRIG 2200uF/16V 3.3M 3 2 1 D D3 R7 1.8M(1%) A T1 T1/P1 0.1*50 33t 1,2 104 1 SYNC/CS VCC8 220uF/16V R6 2 2.2- 0.1*80 2T TO220 3 1uF 3A1000V 0.1*50t 680uH 120uH 4 LQA08TC600 D2 L2 L3 IC14 10K R132 Q3 STP12NM50 HV+ STP80NF55 STP80NF55 R1 R133 R13 10- 2W 223/630V C4 MOV 471K 3.96 CX2 0.47 1M(1/4W) N BD1 10A600V 1 CX3 0.33 LF3 0.8*25 3mH 333/630V F1 5A/250V L CON1 2 1 CX1 LF1 0.8*25t 3mH N.C. 24K ACN SW1 0-1 Switch N.C. D1 STTH310(UF5407G) To +5Vsb system C218 C215 +3.3V/5.03A 16.6W C219 2200uF/10V 2200uF/10V 2200uF/10V GND DC-DC Stage (CTL2) P5-1 HV-B+ HV-B+ EE25 ACL 10-(2W)C110 102 VCC1 1N4006 ACN P5-4 T2 D122 D48 D51 D123 ACN C105 220uF/25V R99 2.2M 1N4006 VCC1 R105 0- C100 IC10 22uF400V R100 2.2M 1 VCC R101 27K L=0.9mH GND 8 100- S1 5t R106 R102 78.7K C102 104 C108 2200uF/10V C109 1000uF/10V D54 1N4734A 1W 5.32-5.88V A GND LL4148 P2 19t R110100- IC12 R108 R150 1K C107 10K(1%) Drain 5 684 IC11 NCP1027 IC12 817(1/2) DR6*8 D49 2 Ramp Comp. OPP 7 3 Brown-Out 4 FB C101 103 +5Vsb/2.39A D52 MBR20L45CT 3.3K(1206) C104 100uF/35V L5 R111 D50 P1 UF4007 55t R103 C103 10uF/25V A P6KE200 ES1D 817(1/2) ACL CY6 AZ431 R109 2008.12.10 ON SEMICONDUCTOR. 10K(1%) Title 222 Size A1 D70,D71,C133,C135,R4,R134,R135,R139 Figure 14: Schematics Date: File: POWER SUPPLY ATX 255W >85% Number Revision ON -Semi ATX255W 11-Dec-2008 D:\WORK\layout\MAINSTAY_F.K.ddb Sheet of Drawn By: V8 D 7. Parts List The bill of materials (BOM) for the design is provided in this section. To reflect the schematics shown in the previous section, the BOM have also been broken into different sections and provided in separate tables – Table 19 through 22. It should be noted that a number of components used during the development cycle were based on availability. As a result, further cost reductions and better inventory management can be achieved by component standardization, i.e. the unique part numbers can be SIGNIFICANTLY reduced by standardization and re-use of component values and case sizes. This will result in a lower cost BOM and better inventory management. QTY SYMBOL DESCRIPTION VENDOR VENDOR P/N MAIN BOARD (PFC Stage, Synchronous Rectification Output Stage) 1 HS1 HEAT SINK 93*60*4 AL4.0t 1 BD1 DIO.BRI 10A 600V / TS10P05G Taizhi 1 D2 DIO.NR LQA08TC600 8A 600V TO-220AC 1 Q1 FET.NCH SPP15N60C3 TO220 INFINEON 2 Q3, Q4 FET.NCH STP12NM50 TO-220 ST 1 SCREW(BD1) SCREW PAN-HEAD M3*10 LONGFEI 4 SCREW(D2, Q1, Q3, Q4) SCREW PAN-HEAD M3*6 LONGFEI 4 SL(D2, Q1, Q3, Q4) SLTO-220 13*19*0.3mm JUNHO 4 B(D2, Q1, Q3, Q4) BUSHING TO-220 JUNHO 1 HS2 HEAT SINK 93*60*4 AL4.0t 2 Q30, Q31 STP80NF55-06 80A55V TO220 ST 1 D52, MBR20L45CT 20A 45V TO-220 ON 2 D70, D71 MBR60L45CTG 60A 45V TO-220 ON 5 SCREW(D52, Q32, Q31, Q70, Q71) SCREW PAN-HEAD M3*6 5 SL(Q30, Q31, D70, D71, D52) SLTO-220 13*19*0.3mm JUNHO BUSHING TO-220 JUNHO PANJIT QSPEED Taizhi LONGFEI 1 B(Q30, Q31, D70, D71, D52) R3 RES.WW. 0.1R 3WS NKNP Synton-Tech 1 R13 RES.MO. 10- 2W Synton-Tech 3 R130, R131, R111 RES.CR. 10- 2WS Synton-Tech 1 D48 P6KE200A DO-15 PANJIT 1 D50 UF4007 DO-41 PANJIT 1 D1 STTH310 3A 1000V / UF5407G DII 1 C109 CAP.ELE 1000uF 10V 10*16KY SU'SCON 1 R1 RES.CR. 1M 1/4W 3 RS12A, RS12A-1, RS12B COPPER 0.002- 1 F1 MST 5A/250V 2 LF1.LF3 0.8*25t L=3mH+30% L=2.5mm MEIHUA 1 L2 POT3319 0.1Φ*50t*61t L=0.68uH MEIHUA 1 L3 T80-26+UL L=120uH±20% MEIHUA 1 L5 DR6*8 L=3.6uH MEIHUA 2 L6, L9 R8*20+UL L=0.8uH 2.4Φ*5.5t 5 CONQUER J.X.E. (ASC-2203VGH)25T J-YH-R8*20-789 29 1 T1 YC3501 L=0.63mH Ls=80uH MEIHUA 1 T2 EE25 MEIHUA 1 MOV TVR10471KSY 1 IC10 NCP1027P065G DIP-8 4 IC23, IC12, IC20, IC21 PHOTO PC817B DIP-4P 1 D54 1N4734A 1W 5.32-5.88V 2 D122, D123 1N4006 1 C4-1 CAP.PEI 0.022uF 630V 1 C4 CAP.PEI 0.033uF 630V PAC 2 C1, C6 CAP.MEF 0.47uF 400V P=10 UTX 1 CX3 CAP.MPP 0.33uF 275vac p=15 UTX 1 CX2 CAP.MPP 0.47uf 275V HQX P=15 1 C100 CAP.ELE 22uF 450V 8*11 1 C55 CAP.ELE 2.2uF 50V 5*11 1 C2 CAP.ELE 220uf 450V NDB 1 C56 CAP.ELE 47uF 25V 5*11 NDB 1 C105 CAP.ELE 220uF 25V 6.3*11 NDB 1 C103 CAP.ELE 10uF 50V 5*11 NDB 1 C104 CAP.ELE 100uF 35V 6*11 NDB 5 C136, C137, C138, C139, C140 CAP.ELE 2200uF 16V 10*25 KZE NDB 1 C108 CAP.ELE 2200uF 10V 10*16 NDB 1 C110 CAP.CER 1000PF 1KV Y5P P=5 SEC 2 C130, C131 CAP.CER 560PF 1KV Y5P SEC 1 C146 CAP.ELE 220uF 16V 6.3*11 2 CY3, CY4 CAP.CER 4700PF Y2 SEC 1 CY6 CAP.CER 2200PF Y1 SEC 3 J4, J5, J6 JUMP 0.8Φ P=12.5mm 3 J7, J19, J22 JUMP 0.8Φ P=20mm 8 J1, J2, J3, J8, J11, J15, J18, J24 JUMP 0.8Φ P=10mm 1 J23 JUMP 0.8Φ P=5mm 1 MB CONNECT MB CONNECT 24-PORT EVERBIZ 1 CPU CONNECT CPU CONNECT 4-PORT(2*2) EVERBIZ 3 P3, P4, P5 SATA+SATA CONNECT EVERBIZ 2 P6, P7 SATA CONNECT EVERBIZ 2 P8, P9 FDD CONNECT 4-PORT EVERBIZ 2 HS3, HS4 HEAT SINK 28*38*5 CU1.2t Taizhi 1 CON1 WAFER 3.96(3-1)PIN 180° SUNDA 8 J10, J12, J13, J14, J16, R9, J20, R105 RES.SMD 0- 5% 0805 1 J9 RES.SMD 33- 5% 0805 1 J21 RES.SMD 0- 5% 1206 1 R3-1 RES.SMD 0.5- 1% 2512 5 R5, R10, R11, R133, R140 RES.SMD 10K 5% 0805 2 R7, R8 RES.SMD 1.8M 5% 0805 2 R12, R12A RES.SMD 24K 5% 0805 TKS ON SHARP R75PI2330JEMEJ UTX SU'SCON 2Y5P102K102C56E 30 1 R54 RES.SMD 47K 1% 0805 1 R55 RES.SMD 82.5K 1% 0805 1 R56 RES.SMD 12K 5% 0805 1 R57 RES.SMD 23.2K 5% 0805 2 R51, R6 RES.SMD 3.3M 5% 0805 1 R52 RES.SMD 3.6K 1% 0805 2 R81, R82 RES.SMD 499K 1% 0805 1 R83 RES.SMD 6.8K 1% 0805 2 R99, R100 RES.SMD 2.2M 5% 0805 1 R101 RES.SMD 27K 5% 0805 1 R102 RES.SMD 78.7K 1% 0805 1 R103 RES.SMD 3.3K 5% 1206 6 R142, R147, R148, R250, R253, R150 RES.SMD 1K 5% 0805 2 R108, R109 RES.SMD 10K 1% 0805 1 R110 RES.SMD 100- 5% 0805 2 R132, R141 RES.SMD 2.2- 5% 0805 1 R134 RES.SMD 6.2K 5% 0805 1 R135 RES.SMD 3.3K 5% 0805 2 R137, R138 RES.SMD 10- 5% 0805 1 R53 RES.SMD 10- 5% 1206 1 R143 RES.SMD 68K 5% 0805 1 R144 RES.SMD 18K 1% 0805 1 R145 RES.SMD 4.7K 1% 0805 2 R146, R149 RES.SMD 22- 5% 0805 1 R251 RES.SMD 4.7K 5% 0805 1 R252 RES.SMD 470- 5% 0805 1 R269 RES.SMD 330- 5% 0805 1 C5 CAP.MON 220P 50V 0805 X7R 1 C50 CAP.MON 0.47uF 50V X7R 0805 2 C101, C102 CAP.MON 0.01uF 50V X7R 0805 2 C107, C54 CAP.MON 0.22uF 50V X7R 0805 3 C53, C144, C145 CAP.MON 1000PF 50V X7R 0805 3 C134, C132, C52 CAP.MON 0.1uF 50V X7R 0805 1 C141 CAP.MON 0.022uF 50V X7R 0805 1 D51 ES1D 1A 200V SMA 4 D5, D72, D73, D49 DIO.NR LL4148 2 D77, D78 DIO.ZEN RLZ7.5B 2 Q16, Q17 MMBT2222 SOT23 1 IC1 NCP1654A 65Khz SO-8 ON 2 IC11, IC16 TL431 ON 2 IC14, IC15 NCP4302 SO-8 ON 1 PCB CEM-1 1oz 1.6t 145*108.5 NO.SPB011V5 TSC TSC ROHM Table 19: Main Board (PFC Stage, Synchronous Rectification Output Stage) 31 QTY SYMBOL DESCRIPTION VENDOR VENDOR P/N DC-DC Converter Stage, Supervisory Stage (referred to as CTL2 in schematics of figure 14) 1 C220 CAP.ELE 2200uF 16V 10*25 1 L11 BEAD RH035100ST-A8 NDB 1 RS33 COPPER 0.002- 1 C208 CAP.ELE PSC 680uF 10V 10*11.5 NDB 5 C206, C207, C215, C218, C219 CAP.ELE 2200uF 16V 10*25 NDB 1 C260 CAP.ELE 10uF 50V 5*11 KY NDB 1 C142 CAP.ELE 330uF 25V 8*15 KY NDB 1 C143, C200, C200A CAP.ELE 220uF 25V KY 6.3*11 NDB 1 C209 CAP.PEI 0.47uF 100V P=10 欣統 1 C262 CAP.ELE 100uF 25V 6.3*11 NDB 1 D110 1N4744 1 Q21 S8050L-C EBC TO92 1 L7 HKH080 L=6.8uH 1 L8 HKH080 L=6.8uH MEIHUA 1 L9 DR6*8 L=3.6uH MEIHUA 2 L10, L13 R6*20+UL L=3.0uH±20% 1.2Φ*11.5t MEIHUA 1 RS5 R8*20+UL L=1uH±20% 1 TM1 T10K TKS TTC05103KSY 1 TM2 T204K TKS TTC05204KSY 1 HS7 HEAT SINK 25.5*12.5 Cu1.2t 2 HS8, HS9 HEAT SINK 40.5*12.5 Cu1.2t 1 CON3 WAFER P=2.5*2 90° SUNDA 1 P4(CTL3-PCB) Pin Header 3pin 90° P=2.54mm SUNDA 1 P5(CTL3-PCB) Pin Header 6pin 90° P=2.54mm 1 PPTC Fuse 1A 1206 3 R266, R300, R302 RES.SMD 10K 5% 0805 1 R203 RES.SMD 27K 1% 0805 2 R204, R210 RES.SMD 5.11K 1% 0805 4 R212, R214, R213, R215 RES.SMD 10- 5% 0805 1 R206 RES.SMD 75K 5% 1206 1 R216 RES.SMD 18K 5% 1206 1 R209 RES.SMD 16K 1% 0805 5 R254, R259, R260, R261, R262 RES.SMD 47- 5% 0805 1 R255 RES.SMD 470- 1% 0805 1 R256 RES.SMD 240- 1% 0805 1 R257 RES.SMD 100- 1% 0805 1 R258 RES.SMD 200- 1% 0805 1 R263 RES.SMD 2K 5% 0805 1 R264 RES.SMD 2.2K 5% 0805 5 R265, R267, R301, R202, R208 RES.SMD 1K 5% 0805 1 R268 RES.SMD 62K 1% 0805 1 R303 RES.SMD 15- 5% 0805 2 C209, C209-1 CAP.MON 0.22uF 50V X7R 1812 14 C204, C213, C216, C217, C250, C252, C253, C254, C255, C256, C257, C258, C259, C261 CAP.MON 0.1uF 50V X7R 0805 2 C202, C211 CAP.MON 100P 50V X7R 0805 2 C203, C212 CAP.MON 0.056uF 50V X7R 0805 Tzai Yuan UTC HKH-080CE/034 R6*20-0003 Taizhi Taizhi SUNDA CONQUER nSMD100 32 1 C251 CAP.MON 0.47uF 16V X7R 0805 2 D100, D103 ES1D 1A 200V SMA 2 D101, D102 DIO.SB SR24 2A 40V SMA 6 D104, D105, D112, D113, D106, D107 DIO.ZEN LL4148 2 D120, D121 DIO.ZEN RLZ6.2B 1 Q20 MMBT2222 SOT23 4 Q32, Q33, Q34, Q35 NTD4809N-D 58A 30V DPAK ON 1 IC17 PS223 SOP-16 SITI 2 IC18, IC19 NCP1587 SO-8 ON 1 IC20 TL431 ON 1 PCB FR4 1oz 1.6t 62*83.5 NO.PB011V5-CTL3 TSC PANJIT TSC ROHM Table 20: DC-DC Converter Stage, Supervisory Stage (referred to as CTL2 in schematics of figure 14) 33 P/N QTY 1 1 1 1 1 1 1 4 2 1 1 1 1 1 2 SYMBOL DESCRIPTION VENDOR HB Resonant LLC-Stage (referred to as CTL1 in schematics of figure 14 ) C58 CAP.ELE 4.7uF 50V KMG 5*11 NDB C60 CAP.ELE 47/25V KMG 5*11 NDB C64 CAP.ELE. 10uF 25V NDB P2 (CTL2-PCB) Pin Header 3pin 90° P=2.54mm SUNDA P3 (CTL2-PCB) Pin Header 13pin 90° P=2.54mm SUNDA HS 25*16*8 PCB HOLD RCC-5 KANGYANG R55, R69, R70, R84 RES.SMD 1K 5% 0805 R56, R57 RES.SMD 30K 5% 0805 R58 RES.SMD 15K 5% 0805 R59 RES.SMD 6.8K 5% 0805 R60 RES.SMD 8.2K 1% 0805 R61 RES.SMD 150K 5% 0805 R62 RES.SMD 2K 5% 0805 R64, R73 RES.SMD 1.1K 1% 0805 6 R63, R67, R72, R79, R80, R86 RES.SMD 10K 5% 0805 1 1 2 1 1 1 1 1 1 1 1 2 1 1 3 1 4 1 1 2 1 1 1 2 1 1 R65 R66 R68, R71 R74 R76 R77 R88 R85 R87 R89 C59 C61, C65 C62 C63 C66, C67, C57 D20 D21, D24, D25, D29 D22 D23 Q5, Q12 Q11 Q14 IC2 IC3, IC4 IC5 PCB RES.SMD 18- 5% 1206 RES.SMD 5.1K 5% 0805 RES.SMD 10- 5% 0805 RES.SMD 3.3K 5% 0805 RES.SMD 1.8K 5% 0805 RES.SMD 33- 5% 0805 RES.SMD 100- 5% 0805 RES.SMD 470K 5% 0805 RES.SMD 22K 5% 0805 RES.SMD 4.7K 5% 0805 CAP.MON 2200PF 50V X7R 0805 CAP.MON 0.1uF 50V X7R 0805 CAP.MON 0.068uF 50V X7R 0805 CAP.MON 0.01uF 50V X7R 0805 CAP.MON 1uF 25V X7R 0805 UF 1A600V / US1J DIO.ZEN. LL4148 DIO.ZEN. RLZ7.5B DIO.ZEN. RLZ3.6B MMBT2907 2SC4672 2SA1797 NCP1396A SO-16 TL431 LM393 SO-8 FR4 1oz 1.6t 44*56 NO.SPB011V4-CTL2 PANJIT TSC ROHM ROHM PANJIT ROHM ROHM ON ON ON VENDOR P/N LM393D Table 21: HB Resonant LLC-Stage (referred to as CTL1 in schematics of figure 14) 34 QTY 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 4 1 4 4 1 1 1 SYMBOL SW1 SW-INLET SW-INLET SW-INLET INLET(G)-GND CORE(INLET-GND) DTOD-BOARD FAN CY1, CY2 CX1 AC INLET CASE CASE MYLAR SCREW(AC INLET) SCREW(CASE) SCREW(INLET-GND)) SCREW(S1~S4) SCREW(FAN) SCREW(GND) DESCRIPTION Mechanical and Miscellaneous Items 0-1 4P 10A Look SW UL1015#18 L=115mm UL1015#16 L=60mm White UL1015#16 L=60mm Black UL1015#18 L=125mm RH16*9*17 80*80*25mm 12V CAP.CER 4700PF Y2 CAP.MPP 1uF 275VAC HQX P=22.5 10A/15A 250V CASE 150.2*140*84mm CASE 140*148.2*85.5mm MYLAR FILM 165*110*0.35mm SCREW F3*10 ISO(BLACK) SCREW F3*6 ISO(BLACK) SCREW F3*5 ISO(BLACK) SCREW MAIN BOARD M3*4 ISO SCREW I5*10 TAP (BLACK) SCREW K/NUT 8#32T FAN GUARD 80*80mm COLOR-GOLD SANP BUSHING NB-27A VENDOR SWEETA CHARNG MIN CHARNG MIN CHARNG MIN CHARNG MIN SUNON SEC UTX SWEETA VENDOR P/N SS21-BBIWG-R SC-9-1 JUNHO LONGFEI LONGFEI LONGFEI LONGFEI LONGFEI LONGFEI PRO-CROWN KANGYANG Table 22: Mechanical and Miscellaneous Items 35 8. Resources/Contact Information Data sheets, applications information and samples for the ON Semiconductor components are available at www.onsemi.com. Links to the datasheets of the main components used in this design are included in the Appendix. Authors of this document are: Edward Weng, Patrick Wang, Roman Stuler, and Laurent Jenck. 9. Appendix Link to ON Semiconductor’s web site: ON Semiconductor Home Page Industry information links: ENERGY STAR 80 PLUS Efficiency Requirements Climate Savers Computing Initiative IEC61000-3-2 Requirements ATX 12 V Form Factor European Union (EU) Energy Star Page Additional collateral from ON Semiconductor: NCP1654 Continuous conduction mode PFC controller NCP1396 Resonant mode controller with high voltage drivers NCP4302 Synchronous rectification controller NCP1587 Low voltage synchronous buck controller NCP1027 High voltage integrated switcher NTD4809 Single N-Channel MOSFET 30 V, 58 A MBR20L45 20 A, 45 V dual schottky rectifier 36