255 W, 80 PLUS® Silver Certified ATX Power Supply GreenPoint Reference Design

TND359/D
Rev 0, Jan-09
High-Efficiency
255 W ATX Power Supply
Reference Design
Documentation Package
1
© 2009 ON Semiconductor
Disclaimer: ON Semiconductor is providing this reference design documentation
package “AS IS” and the recipient assumes all risk associated with the use and/or
commercialization of this design package. No licenses to ON Semiconductor’s or any
third party’s Intellectual Property is conveyed by the transfer of this documentation.
This reference design documentation package is provided only to assist the customers
in evaluation and feasibility assessment of the reference design. The design intent is
to demonstrate that efficiencies beyond 85% are achievable cost effectively utilizing
ON Semiconductor provided ICs and discrete components in conjunction with other
inexpensive components. It is expected that users may make further refinements to
meet specific performance goals.
2
Table of Contents
1.
Overview................................................................................................... 4
2.
Specifications .......................................................................................... 5
3.
Architecture Overview............................................................................. 7
3.1 Primary Side: PFC Stage................................................................................. 7
3.2 Primary Side: Half bridge resonant LLC Converter.......................................... 7
3.3 Secondary Side: Synchronous Rectification .................................................... 7
3.4 Secondary Side: DC-DC Conversion Stage .................................................... 8
3.5 Secondary Side: Monitoring and Supervisory Stage........................................ 8
3.6 Standby Power ................................................................................................ 8
4. Performance Results ..................................................................................9
4.1 Total Efficiency ............................................................................................................9
4.2 Power Factor ...............................................................................................................9
4.3 Standby Power ..........................................................................................................10
4.4 Input Current..............................................................................................................10
4.5 Inrush Current............................................................................................................10
4.6 Output Transient Response (Dynamic Loading) ........................................................11
4.7 Overshoot at Turn-On/Turn-Off..................................................................................11
4.8 Output Ripple / Noise.................................................................................................13
4.9 Hold-up Time .............................................................................................................20
4.10 Timing / Housekeeping / Control..............................................................................21
4.11 Output Protection.....................................................................................................23
5. Evaluation Guidelines ..............................................................................26
6. Schematics................................................................................................28
7. Parts List ...................................................................................................29
8. Resources/Contact Information ..............................................................36
9. Appendix ...................................................................................................36
3
1. Overview
ON Semiconductor was the first semiconductor company to provide an 80 PLUS-certified open
reference design for an ATX power supply in 2005. A second generation 80 PLUS-certified open
reference design with improved efficiency was then introduced in 2007. ON Semiconductor is now
introducing its third generation 80 PLUS-certified open reference design with a drastic efficiency
improvement. This is a 255 W multi-output power supply for the ATX form factor. Achieving a
maximum efficiency of 90% at 50% load, and at 230 and 240 Vac, this third generation reference
design achieves >88% efficiency at 50% load, and 100 and 115 Vac. All efficiency measurements
were obtained at the end of a 41 cm (16 in.) cable, ensuring the design can be used ‘as is’ in all
standard desktop PC configurations.
This reference document provides the details behind this third generation design. The design manual
provides a detailed view of the performance achieved with this design in terms of efficiency,
performance, thermals and other key parameters. In addition, a detailed list of the bill-of-materials
(BOM) is also provided. ON Semiconductor will also be able to provide technical support to help our
customers design and manufacture a similar ATX power supply customized to meet their specific
requirements.
The results achieved in this third generation design were possible due to the use of advanced new
components from ON Semiconductor. These new ICs not only speeded up the overall development
cycle for this new design, but also helped achieve the high efficiencies while at the same time keeping
a check on the overall cost.
This third generation design consists of a single PCB designed to fit into the standard ATX enclosure
along with a fan. Figure 1 below presents the overall architecture employed in this design. Detailed
schematics are included later in this design manual.
Figure 1: Reference Design Architecture Simplified Block Diagram
4
As seen in figure 1, the first stage, active Power Factor Correction (PFC) stage, is built around ON
Semiconductor’s Continuous Conduction Mode (CCM) PFC controller, NCP1654. The NCP1654
provides an integrated, robust and cost-effective PFC solution. The second stage features a resonant
half-bridge LLC topology using ON Semiconductor’s controller, NCP1396. This topology ensures
maximum efficiency and minimizes EMI. The NCP1027, standby controller, is used to generate the 5
V standby output. The NCP1027 is an optimized integrated circuit for the ATX power supply and
incorporates a high-voltage MOSFET.
On the secondary side, this architecture uses a synchronous rectification scheme built around ON
Semiconductor’s NCP4302 controller in order to generate a 12 V output. Finally, two identical DC-DC
controllers are used to down-convert the 12 V into +5 V, +3.3 V and -12 V. The DC-DC controller is
the NCP1587, a low voltage synchronous buck controller in a very small surface mount 8-pin package.
Each DC-DC controller drives two NTD4809 (30 V, 58 A, single N-channel power MOSFET) in a
synchronous rectification scheme.
With the introduction of this third generation, high-efficiency ATX Power Supply, ON Semiconductor
has shown that with judicious choice of design tradeoffs, optimum performance is achieved at
minimum cost.
2. Specifications
The design closely follows the ATX12V version 2.2 power supply guidelines and specifications
available from www.formfactors.org, unless otherwise noted. This 255 W reference design exceeds
the 80 PLUS Silver (www.80plus.org), ENERGY STAR® 5.0 (www.energystar.gov), and Climate
Savers Computing Initiative (CSCI) Step 3 (www.climatesaverscomputing.org) efficiency targets for
desktop PC multi-output power supplies. Table 1 hereafter shows a summary of the efficiency targets
from these different organizations.
Multi-Output ATX Power Supplies
Levels
Specification
• Multiple-Output
• Non-Redundant
• PFC 0.9 at 100%
of rated output
20% of 50% of 100% of
rated rated rated
output output output
80%
80%
efficiency efficiency
80%
efficiency
Compliance
ENERGY STAR rev. 4.0
&
CSCI step #1
Effective date: July 2007
• Multiple-Output
• Non-Redundant
• PFC 0.9 at 50%
of rated output
82%
85%
efficiency efficiency
82%
efficiency
ENERGY STAR rev. 5.0
(Effective date: July 2009)
&
CSCI step #2
(June 2008 thru July 2009)
• Multiple-Output
• Non-Redundant
• PFC 0.9 at 50%
of rated output
85%
88%
efficiency efficiency
85%
efficiency
CSCI step #3
(July 2009 thru June 2010)
• Multiple-Output
• Non-Redundant
• PFC 0.9 at 50%
of rated output
87%
90%
efficiency efficiency
87%
efficiency
CSCI step #4
(July 2010 thru June 2011)
Table 1: Summary of Efficiency Targets
5
Key specifications for this reference design are included in Table below.
Input
Voltage
(Vac)
Min.
Typ.
Max.
Frequency
(HZ)
Output
Voltage
(Vdc)
47
50
60
50
50
63
+12 VA
+12 VB
+5 V
+3.3 V
-12 V
+5 VSB
90
100
115
230
240
264
Output Power
Output
Voltage
(Vdc)
Full Load
DC Current
(A)
+12 VA
9.50
114.0
+12 VB
5.12
61.4
+5 V
9.44
47.2
+3.3 V
5.03
16.6
-12 V
+5 VSB
0.32
2.39
3.8
11.95
Full Load Total
Output Power =
255 W
Output
Voltage
(Vdc)
+12 VA
+12 VB
+5 V
+3.3 V
-12 V
+5 VSB
DC Output Current
Min
Full Load
Max
DC Current DC Current DC Current
(A)
(A)
(A)
0
9.50
13.0
0
5.12
7.0
0.3
9.44
15.0
0.3
5.03
8.0
0
0.32
0.4
0
2.39
3.0
Full Load
Output Power
(W)
Notes
Peak +12 VAdc output current up to 14 A.
Peak +12 VBdc output current to be 8 A.
The maximum combined load on the +12 VAdc
and +12 VBdc outputs shall not exceed 220 W.
The maximum continuous combined load on
the +5Vdc and +3.3 Vdc outputs shall not
exceed 80 W.
Output Voltage Regulation (V) Tolerance
(%)
Min.
Typ.
Max.
+11.4
+11.4
+4.75
+3.14
-10.8
+4.75
+12
+12
+5
+3.3
-12
+5
+12.6
+12.6
+5.25
+3.47
-13.2
+5.25
±5
±5
±5
±5
±10
±5
Output Ripple
/ Noise
(mVpp)
120
120
70
50
250
100
Table 2: Target Specifications
Target specifications for other key parameters of the reference design include:
ƒ Efficiency: Minimum efficiency of 85% at 20% and at 100% of rated output power, and 88% at 50%
of rated output power as defined by the 80 PLUS requirements.
ƒ Power Factor: Power factor of 0.9 or greater at 100 % load.
ƒ Input Voltage: Universal Mains: 90 Vac to 265 Vac, frequency: 47 to 63 Hz.
ƒ Safety Features: As per the ATX12V version 2.2 power supply guidelines, this design includes
safety features such as OVP, UVP, and OCP.
6
3. Architecture Overview
The architecture selected is designed around a succession of conversion stages as illustrated in
Figure 1. The first stage is a universal input, active power factor boost stage delivering a constant
output voltage of 385 V to the second stage, the half bridge resonant LLC converter. On the
secondary side, this architecture uses a synchronous rectification scheme built around ON
Semiconductor’s NCP4302 controller in order to generate a +12 V output. Finally, the +12 V is downconverted +5 V, +3.3 V and -12 V by a DC-DC conversion stage, built around two identical DC-DC
controllers. In addition, a small integrated flyback converter delivers 12 W of standby power to another
isolated 5 V rail. All the different voltage rails are monitored by a dedicated supervisory controller.
ON Semiconductor has developed multiple power management controllers and MOSFET devices in
support of the ATX program. Web-downloadable data sheets, design tools and technical resources
are available to assist design optimization. The semiconductor components, supporting the ATX
Generation 3 platform, are the NCP1654 PFC controller, the NCP1396 half-bridge resonant LLC
controller, the NCP4302 synchronous rectification, the NCP1027 standby controller, the NCP1587 DCDC controller with synchronous rectification, and the NTD4809 single N-channel power MOSFET
driven by the NCP1587, in synchronous rectification.
3.1 Primary Side: PFC Stage
There are a variety of PFC topologies available. These include discontinuous conduction mode
(DCM), critical conduction mode (CRM) and continuous conduction mode (CCM). At this power level,
CCM is the preferred choice and the NCP1654 will implement an IEC61000-3-2 compliant, fixed
frequency, peak current mode or average current mode PFC boost converter with very few external
components.
3.2 Primary Side: Half bridge resonant LLC Converter
The heart of the half-bridge resonant LLC converter stage is the NCP1396 resonant mode controller.
Thanks to its proprietary high-voltage technology, this controller includes a bootstrapped MOSFET
driver for half-bridge applications accepting bulk voltages up to 600 V. Protections featuring various
reaction times, e.g. immediate shutdown or timer-based event, brown-out, broken optocoupler
detection etc., contribute to a safer converter design, without engendering additional circuitry
complexity. An adjustable dead-time also helps lower the shoot-through current contribution as the
switching frequency increases. More information about LLC structure can be found in the ON
Semiconductor application note AND8311/D (Understanding the LLC Structure in Resonant
Applications).
3.3 Secondary Side: Synchronous Rectification
The 12 V output generated by the half-bridge resonant LLC converter is rectified using a proprietary
synchronous rectification scheme built around two NCP4302 and two external single N-channel
MOSFETs.
7
3.4 Secondary Side: DC-DC Conversion Stage
Two identical DC-DC controllers are used to down-convert the 12 V into +5 V and +3.3 V. The DC-DC
controller is the NCP1587, a low voltage synchronous buck controller in a very small surface mount 8pin package. The NCP1587 is a low cost PWM controllers designed to operate from a 5 V or 12 V
supply. This device is capable of producing an output voltage as low as 0.8 V. The NCP1587 provides
a 1 A gate driver design and an internally set 275 kHz (NCP1587) oscillator. Other efficiency
enhancing features of the gate driver include adaptive non overlap circuitry. The NCP1587 also
incorporates an externally compensated error amplifier and a capacitor programmable soft start
function. Protection features include programmable short circuit protection and under voltage lockout.
Each DC-DC controller drives two NTD4809 (30 V, 58 A, single N-channel power MOSFET) in a
synchronous rectification scheme.
The -12 V is generated from the +5 V using a small discrete-based converter.
3.5 Secondary Side: Monitoring and Supervisory Stage
The four dc outputs +5 V, +3.3 V, +12 VA and +12 VB are monitored by a dedicated monitoring
controller which also provides over-current protection, over-voltage protection, under-voltage
protection and generates the Power Good logic signal.
3.6 Standby Power
The NCP1027 integrates a fixed frequency current mode controller and a 700 volt MOSFET. The
NCP1027 is an ideal part to implement a flyback topology delivering 15 W to an isolated 5 V output.
At light loads the IC will operate in skip cycle mode, thereby reducing its switching losses and
delivering high efficiency throughout the load range.
8
4. Performance Results
Measurements are done at three loading conditions, the load being expressed as a % of the rated
output power, i.e. at 20%, 50% and at 100% of rated output power.
Measurements are also done at four AC line voltages, at 100 Vac, 115 Vac, 230 Vac and 240 Vac, at
50 Hz, 60 Hz and 63 Hz.
All measurements are taken at the end of the 41 cm-long (16 inches) cable.
The converter efficiency is measured according to the loading conditions detailed in Table 3:
Load as % of rated
output power
20%
50%
100%
Max.
+12VA
1.90
4.75
9.50
13.0
+12VB
1.02
2.56
5.12
7.0
Output Current (A)
+5V
+3.3V
1.89
1.01
4.72
2.52
9.44
5.03
15.0
8.0
-12V
0.06
0.16
0.32
0.4
+5VSB
0.48
1.20
2.39
3.0
Table 3: Load Matrix for Efficiency Measurements
4.1 Total Efficiency
AC Input
100 VAC / 50 HZ
115 VAC / 60 HZ
230 VAC / 50 HZ
240 VAC / 63 HZ
Total Efficiency (%)
20% Load
50% Load
100% Load
85.9%
88.3%
85.9%
86.3%
88.8%
86.8%
86.5%
90.1%
88.7%
86.5%
90.1%
88.8%
Table 4: Efficiency Results
The converter achieves over 85% efficiency with room to spare over all load conditions. All
measurements are done at the end of the power cable.
4.2 Power Factor
The power factor exceeds 0.9 over all operating conditions as shown in Table .
Power Factor
Specification
AC Input
20% Load
50% Load
100% Load
100 VAC / 50 HZ
0.96
0.983
0.987
PF > 0.90 @100%
115 VAC / 60 HZ
0.945
0.978
0.986
& 50% of rated
230 VAC / 50 HZ
0.714
0.912
0.966
output power
240 VAC / 63 HZ
0.689
0.902
0.962
Table 5: Power Factor vs Load as % of Rated Output Power
9
4.3 Standby Power
100 VAC / 50 HZ
115 VAC / 60 HZ
230 VAC / 50 HZ
Output
Current on
+5VSB (A)
0.147
0.171
0.244
Input
Power
(W)
0.36
0.31
0.55
240 VAC / 63 HZ
0.312
0.57
AC Input
Specification
< 1W
• U.S. Department of Energy, FEMP (Federal Energy
Management Program):
http://www1.eere.energy.gov/femp/procurement/index.html
• Executive Order 13221 of July 31, 2001:
http://www1.eere.energy.gov/femp/pdfs/eo13221.pdf
Table 6: Standby Power vs AC Line Voltage
4.4 Input Current
AC Input
90 VAC / 47 HZ
100 VAC / 50 HZ
115 VAC / 63 HZ
180 VAC / 50 HZ
230 VAC / 53 HZ
240 VAC / 60 HZ
264 VAC / 63 HZ
Measurement (A)
Specification
20% Load
50% Load
100% Load
0.673
1.609
3.245
0.614
1.458
2.952
0.544
1.271
2.549
90V (max 3.6A)
180V (max.1.8A)
0.363
0.799
1.573
@ 100% load
0.355
0.667
1.266
0.353
0.646
1.217
0.339
0.597
1.092
Table 7: Input Current vs Load and AC Line Voltage
4.5 Inrush Current
Parameter Description
Min.
Typ.
Initial In-rush Current
Secondary In-rush Current
Table 8: Inrush Current Specification
AC Input
90 VAC/47 HZ
120 VAC/63 HZ
220 VAC/50 HZ
264 VAC/63 HZ
Max.
55
35
Units
A (Peak)
A (Peak)
Output
Measurement (A)
Specification
Load
100% Initial In-rush Current
9.9
Load
Secondary In-rush Current
8.0
100% Initial In-rush Current
17.9
Initial In-rush Current < 55 A
Load
Secondary In-rush Current
16.2
100% Initial In-rush Current
25.4
Secondary In-rush Current < 35 A
Load
Secondary In-rush Current
24.5
100% Initial In-rush Current
34.1
Load
Secondary In-rush Current
33.3
Table 9: Inrush Current vs AC Line Voltage
10
4.6 Output Transient Response (Dynamic Loading)
Output Transient starting Load T1 / T2 (0.1 A/µsec), T1 / T2 (1 ms)
DC Output
+12 VA
+12 VB
+5 V
+3.3 V
-12 V
+5 VSB
Load (A)
Voltage Max. (V)
Min.
Load Step
Max.
Overshoot
Undershoot
0.5
6.5
6.5
0.6
0.6
0.5
3.5
3.5
0.6
0.6
0.3
5
10
0.25
0.25
0.3
2.66
5.34
0.17
0.17
0
0.17
0.33
0.6
0.6
0
1.33
2.67
0.25
0.25
Table 10: Output Transient Response (Dynamic Loading)
4.7 Overshoot at Turn-On/Turn-Off
DC Output
+12VA
+12VB
+5V
+3.3V
-12V
+5VSB
Min. – Load
Load Step –
Specification
Step
Max.
0.34
N/A
1.2
0.38
N/A
1.2
0.21
0.23
0.5
0.15
0.17
0.33
0.18
0.20
-1.2
0.21
0.20
0.5
Table 11: Overshoot at Turn-On/Turn-Off
Measured and Calculated Data at 115V / 60HZ
DC Output
Min. – Load Step
Unit
VP-P
Load Step – Max.
+12 VA
N/A
+12 VB
N/A
11
+5 V
+3.3 V
-12 V
+5 VSB
Figure 2: Dynamic Load Test Waveforms
12
4.8 Output Ripple / Noise
The ripple voltage of each output is measured at no load and at the maximum load for each output.,
and at the four different line voltages. The output ripple is measured across 10 μF/MLC parallel 1000
μF low ESR/ESL termination capacitors. Figure 3 through 6 show the output voltage ripple
measurements. All outputs meet the voltage ripple requirements.
DC Output
No Load (A)
Full Load (A)
+12 VA
0
9.50
Output Ripple / Noise
Max (mVp-p)
120
+12 VB
0
5.12
120
+5 V
0
9.44
70
+3.3 V
0
5.03
50
-12 V
0
0.32
250
+5 VSB
0
2.39
100
Table 12: Output Ripple / Noise Specification
4.8.1 100 VAC / 50 HZ - Ripple / Noise Test Waveform
No Load
Full Load
No Load
Full Load
+12 VA
+12 VB
13
No Load
Full Load
No Load
Full Load
No Load
Full Load
No Load
Full Load
+5 V
+3.3 V
-12 V
+5 VsB
Figure 3: 100 VAC / 50 HZ - Ripple / Noise Test Waveform
14
4.8.2 115 VAC / 60 HZ - Ripple / Noise Test Waveform
No Load
Full Load
No Load
Full Load
No Load
Full Load
No Load
Full Load
+12 VA
+12 VB
+5 V
+3.3 V
15
No Load
Full Load
No Load
Full Load
-12 V
+5 VSB
Figure 4: 115 VAC / 60 HZ - Ripple / Noise Test Waveform
16
4.8.3 230 VAC / 50 HZ - Ripple / Noise Test Waveform
No Load
Full Load
No Load
Full Load
No Load
Full Load
No Load
Full Load
+12 VA
+12 VB
+5 V
+3.3 V
17
No Load
Full Load
No Load
Full Load
-12 V
+5 VSB
Figure 5: 230 VAC / 50 HZ - Ripple / Noise Test Waveform
18
4.8.3 240 VAC / 63 HZ - Ripple / Noise Test Waveform
No Load
Full Load
No Load
Full Load
No Load
Full Load
No Load
Full Load
+12 VA
+12 VB
+5 V
+3.3 V
19
No Load
Full Load
No Load
Full Load
-12 V
+5 VSB
Figure 6: 240 VAC / 63 HZ - Ripple / Noise Test Waveform
4.9 Hold-up Time
The required holdup time at 50% load is 16 ms. Holdup time is measured from the moment the AC
power is removed to when the PWR_OK signal goes low. Figure 7 shows the holdup time at 50%
load, and at 115 Vac and 230 Vac. Channel 4 is the AC power and Channel 1 is the PWR_OK signal.
AC Input
115 VAC / 60 HZ
230 VAC / 50 HZ
Dropout Loading
Measurement
Condition
(msec)
50% Load
22
50% Load
23
Table 13: Hold-up Time Specification
Specification
> 16 ms
20
115 VAC 60HZ - 50% Load
230 VAC / 50 HZ - 50% Load
Figure 7: Hold-up Time
4.10 Timing / Housekeeping / Control
4.10.1 AC On / Off Control
AC On / Off Test
Parameter Description
Main Outputs Rise Time
2 ms < T2 < 20 ms
POK delay
100 ms < T3 < 500 ms
Power down warning
1 ms < T4
Hold-up time
T6 > 16 ms
PS_ON Timing (on)
T7 < 1000 ms
Main Outputs Rise Time
2 ms < T2 < 20 ms
Figure 8: AC On / Off Control
21
4.10.2 PS_ON On / Off Control
PS_ON On / Off Test
Parameter Description
Rise Time
2 ms < T2 < 20 ms
POK delay
100 ms < T3 < 500 ms
Power down warning
1 ms < T4
PS_ON Timing (off)
T8 < 60 ms
PS_ON Timing (on)
T9 < 350 ms
-12VDC Rise Time
0.1 ms < T10 < 20 ms
Figure 9: PS_ON On / Off Control
4.10.3 Logic Timings
Parameter
Description
Description
T1
Delay from Standby within regulation to DC outputs turn
on
5
300
T2
Standby, +3.3VDC, +5VDC,and 12VDC output rise time
2
20
T3
Delay from output voltages within regulation limits to
POK asserted at turn on
100
500
T4
Delay from POK deasserted to output voltages (3.3V,
5V, 12V, -12V) dropping out of regulation limits
1
T5
Delay from DC output deasserted to Standby out of
regulation at turn off.
5
T6
Delay from loss of AC to desertions of PWOK.
16
T7
PS_ON Timing (on)
1000
T8
PS_ON Timing (off)
60
T9
Delay from PS-ON reasserted to output turn on
350
T10
-12VDC output rise time
Min.
0.1
Max.
20
DC
Output
Measurements
Units
AC IN
PS_ON
N/A
148
N/A
+12V
+5V
+3.3V
+5Vsb
+12V
+5V
+3.3V
+12V
+5V
+3.3V
-12V
+12V
+5V
+3.3V
N/A
+12V
+5V
+3.3V
+12V
+5V
+3.3V
+12V
+5V
+3.3V
-12V
2.8
2.6
2.8
14
250
244
244
1.6
4.8
6.8
6
608
600
600
604
143
178
179
4.2
2.4
2.2
N/A
256
250
252
28.4
30
32.4
12
1.822
ms
65.6
67.2
69.2
80.8
86.8
86.8
1.239
Table 14: Logic Timings
22
4.10.4 PWR_OK
CONTROL AND LOGIC SIGNALS RIPPLE/NOISE
Measurement
Max.
Unit
35
400
mVP-P
PWR_OK
Full Load
Table 15: PWR_OK Timings
4.10.5 PS_ON
CONTROL AND LOGIC SIGNALS RIPPLE/NOISE
Measurement
Max.
Unit
30
400
mVP-P
PS_ON
Full Load
Table 16: PS_ON Timings
4.11 Output Protection
4.11.1 Output Over-Voltage Protection
DC Output
+12 VA / B
+5 V
+3.3 V
-12 V
+5 VSB
Specification
Measurements
(V)
Min. (V)
Max. (V)
13.5
15
5.6
7
6.36
3.76
4.3
4.2
-13.5
-15
5.6
7
Table 17: Output Over-Voltage Protection
4.11.2 Output Under-Voltage Protection
+12VA
+5 V
+12 VB
+3.3 V
Figure 10: 115 VAC / 60 HZ DC Output Under-Voltage Protection @ Full Load
23
4.11.3 Short Circuit Protection
+12 VA
+12 VB
+5 V
+3.3 V
+5 VSB
Figure 11: 115 VAC / 60 HZ DC Output Short circuit protection @ Full Load
24
4.11.3 Over-Current Protection
DC Output
+12 VA
+12 VB
+5 V
+3.3 V
-12 V
+5 VSB
Over Current Protection
Measurements
(A)
Min. (A)
Max. (A)
15
21 (< 240 VAC)
19.6
8.5
11.5 (< 240 VAC)
10.0
18
24
20.5
10
13
10.9
N/A
N/A
N/A
3
6
6.0
Table 18: Over-Current Protection
+12 VA
+12 VB
+5 V
+3.3 V
+5VSB
Figure 12: DC Output Short circuit protection @ Full Load
25
5. Evaluation Guidelines
Evaluation of the reference design should be attempted only by persons who are intimately familiar
with power conversion circuitry. Lethal mains referenced voltages and high dc voltages are present
within the primary section of the ATX circuitry. All testing should be done using a mains high-isolation
transformer to power the demonstration unit so that appropriate test equipment probing will not affect
or potentially damage the test equipment or the ATX circuitry. The evaluation engineer should also
avoid connecting the ground terminal of oscilloscope probes or other test probes to floating or
switching nodes (e.g. the source of the active clamp MOSFET). It is not recommended to touch heat
sinks, on which primary active components are mounted, to avoid the possibility of receiving RF burns
or shocks. High impedance, low capacitance test probes should be used where appropriate for
minimal interaction with the circuits under investigation.
As with all sensitive switchmode circuitry, the power supply under test should be switched off from the
ac mains whenever the test probes are connected and/or disconnected.
The evaluating engineer should also be aware of the idiosyncrasies of constant current type electronic
loads when powering up the ATX demonstration unit. If the loads are adjusted to be close to the ATX’s
maximum rated output power, the unit could shut down at turn on due to the instantaneous
overloading effect of the constant current loads. As a consequence, electronic loads should be set to
constant resistance mode or rheostats should be used for loads. The other alternative is to start the
supply at light to medium load and then increase the constant current electronic loads to the desired
level.
The board is designed to fit in a traditional ATX enclosure as shown in Figure .
26
Figure 13: ON Semiconductor’s 255 W Reference Design for ATX Power Supplies
27
6. Schematics
The power supply is implemented using a single sided PCB board. Added flexibility is provided by
using daughter cards for the PFC (NCP1654) circuit and the NCP1396 resonant mode controller. The
individual PCB board schematics are shown in figure 14.
28
ACL
R11
10K
R3
0.5- 1W
4
2
R12A
24K
C5
1
R52 3.6K(1%)
5
65Khz
R57
23.2K
R56
HV
R56
30K
C60
47uF/25V
18-(1206)
33C57 1uF
Q11
2SC4672
R77 33-
1 Css
R57 30K
C64
Q10
NC
R76
1.8K
R58 15K
R59 6.8K
Q12
C
D26
NC
D27
NC
R60
MMBT2907
Q13
Q14
R79
10K
150K
3 CTMR
HB 14
4 RT
NC. 13
5 BO
VCC 12
6 FB
MLOW 11
7 DT
GND 10
10K
R71 10-
R69 1K
R70
1K
Q5
D21
1N4148
8
4.7K
9
FAN Control
Q20
MMBT2222
R301
Q21
1K
IS12A
IC21 817
R250
+5Vsb
IS5
R253
1K
Q16
R252 470-
1K
-12V/0.32A
C63
103
IS12B
C209-1 224(1812)
PS_ON
R256
240-
P4-3
R251
4.7k
LM393(1/2)
C67
105
L10
C230
3uH
C200
VS33
VS5
D100
ES1D
C201 NC.
220uF/25V
P5-5
C202 100P
R262
47C250104
C252
R263
2K
C251
C203
Comp.
1K
474
563
6 FB
C220
2200uF/16V
C255
B
C256 104
TO D-D
C258
104
IS12A/B
FPBO
C257104
P5-3
7
D105
5
11
4148
R254
47-
14
13
IS12A/B
FPBO
IC17
12
8
104
10
D104
15
4148
C259
104
VS12B
OTP
9
R264
2.2K
VS5
VS33
GND
IS12B
RI
IS12A
PGO
IS33
PGI
IS5
PSONB
VCC
FPOB
104
6
D103 ES1D
C210A
220uF/25V
C210
NC.
R265
1K
C211 100P
1 BST
1K
563
6 FB
4
2 TG
D1064148
R266
10K
1uH
75K
+5V
16K
R210
5.11K
Add
2200uF/10V
+5V/+3.3V Max.80W
NC.
L8 6.8uH
IS33
B
VS33
IS33
VS33
DPAK
Q35
R215 10-
DPAK
RS33
L13
0.002
3uH
+3.3V
104
NTD4809N
4148
D107
R211
NC.
C214
NC.
+5V/9.44A
47.2W
330uF/10V C208
C207
2200uF/10V
C217
4 BG
R209
R267
1K
104
Phase 8
NCP1587
3
R268
62K
NC.
RS5
C232
NTD4809N
Comp.
1
C216
C206
Q34
R21410-
IC19
R208 C212
16
C213
104
C261
2
PS223
C260
10/50V
GND
GND
VS12A
VS5
RS5-1
NC.
RS5
NTD4809N
4148 DPAK
D113
R205
NC.
C205
NC.
C253104
TM1
T10K
OPT.
IS5 IS5
10t
N2
L7 6.8uH
Q33
NCP1587
R204
5.11K
C254
104
VS5
DPAK
D112 4148
R21310-
L11
Be core
R203
27K
104
1.5uH
C142
330uF/25V
D101
SR24E
Phase 8
4 BG
18K
Q32
NTD4809N
2 TG
C209
224(1812)
C143
220uF/25V
L9
R212 10-
IC18
1 BST
R202
NC.
C204
104
P5-6
P4-2
Q17
MMBT2222
IS12V
IS12A/B
VS12B VS12BVS12A VS12A
IS12B
P4-1
P4-1
IS33
R255
470-
C
R216
R73
1.1K
IS33
IS5
C262
100/25V
GND
MMBT2222
IC4
AZ431
SOT23
-
AZ431
D22
7.5B
P5-2
IC5
R88100LM393(1/2)
C66
105
IC3
FAN
12V
A
10K
IS12A
10K
1K
C65
104
R89
IC5
1
2
2.54
D121
+5Vsb
PGI
R86
CON3
Dlyadj 5
6.2B
5VSB
817
+
C62 R74
3.3K
683
D23
+5Vsb
R87 22K
D120
6.2B
R302
3.6B
10K
+12V
R303
15TM2
T204K
4.7K(1%)
GND 6
D25
PGO
R269 330-
D29
R83
6.8K(1%)
D24
MMBT2907
R67
R66
5.1K
+5Vsb
499K(1%)
R145
C134
1N4148 1N4148
R72
IC20
VCC1
R85
470K
GATE 7
D102 SR24E
11
4148
223
AZ431
817
PGO
R80
NC
R84
2 TRIG
4 REF
R261 47-
D28
HV+
12
B
R144
C141 18K(1%)
IC16
R300
10K
SF 9
SO16
R64
1.1K(1%)
HV+
R82
499K(1%)
R143 68K
104
1 SYNC/CS VCC8
2SA1797
10
R81
R140
10K
IC15
MVPP 15
8 FF
8.2K(1%)
R62 R63
10K
C59
222
6
R260 47-
NC
MBR60L45CTG
C131
R13110-(2W) 561
C61 104
R259 47-
R78
NC
4.7uF/50V
PFC OK
Jump
15
R61
2K
C58
3,14
VCC1
VCC1
1K
VBOOT 16
2 FMAX
10uF/25V
10-
B
R142
NCP4302
R65
R258 200-
R75
NC
7
B
22-
1N4148
IC23
R68
D
7.5B
D73
3 CATH
IC2 NCP1396A
jump
CTL1
10TO220
80A55V
2.2-
J9
D77
R149
10R138
Q31
12K
D20
R148
1K
7.5B
R137 1N4148
R141
C55
C54 2.2uF
220nF
C145
1n/50V
0.8uH
80A55V
4148
6
16
5
R55
1K
D5
D78
GND
L9
Vcc 5
4
10-(1206)
C56
47uF/25V
(EE35) F
D72
TO220
D71
T1/P3
2T
RS12B-1
0.002
3 Gnd
6
3.3K
Vcc 5
7
3
C52
0.1uF
10K
2
NCP1654
1nF
R55
47K
82.5K
0.47uF
8
R257100-
C50
C53
1
R135
Q30
8,9
R53
IC1
R54
10,11
220P
UF 1A600V
R51
3.3M
MBR60L45CTG
C4-1
D4
0.1-3Ws
R3-1
nc.
T1/P2
F
3 Gnd
CY5
R12 5,6
TO220
Q4
STP12NM50
R147
1K
0.002
C140
A
A
22-
PPTC(NSMD100)
TO220
220uF/450V
R9
0-(1%)
R146
IC20
AZ431
R5
10K
1n/50V
R206
SPP15N60C3
474
R134
6.2K
C146
Peak
8A
+12VB
C144
D110
1N4744
C6
C136 C137 C138 C139
C130561
10-(2W)
D70
E
T1(1/3)
SSS8050(TO92)
C1
474
CY4
472
R130
E
+12VA
RS12B
2200uF/16V
CY3
472
12,13,14
Ls=80uH
Lm=620uH
C2
Peak 14A
VS12B
L6 0.8uH
2200uF/16V
AC IN 85-264V
CY2
472
Dlyadj 5
NCP4302
10K
VS12A
0.002
2200uF/16V
CY1
472
CORE
RH16*17*9
GND WIRE 2t
4 REF
0.002
RS12A-1
RS12A
C132
GND 6
PS_ON
AC INLET
AC IN
R8
1.8M(1%)
Q1
3 CATH
EE35
IS12A/B
GATE 7
2200uF/16V
2
3
4
1
R10
TO220
2 TRIG
2200uF/16V
3.3M
3
2
1
D
D3
R7
1.8M(1%)
A
T1
T1/P1
0.1*50 33t
1,2
104
1 SYNC/CS VCC8
220uF/16V
R6
2
2.2-
0.1*80 2T
TO220
3
1uF
3A1000V
0.1*50t 680uH
120uH
4
LQA08TC600
D2
L2
L3
IC14 10K
R132
Q3
STP12NM50
HV+
STP80NF55
STP80NF55
R1
R133
R13 10- 2W
223/630V
C4
MOV
471K
3.96
CX2
0.47
1M(1/4W)
N
BD1
10A600V
1
CX3
0.33
LF3
0.8*25 3mH
333/630V
F1 5A/250V
L
CON1
2
1
CX1
LF1
0.8*25t 3mH
N.C.
24K
ACN
SW1
0-1 Switch
N.C.
D1
STTH310(UF5407G)
To +5Vsb system
C218
C215
+3.3V/5.03A
16.6W
C219
2200uF/10V
2200uF/10V
2200uF/10V
GND
DC-DC Stage (CTL2)
P5-1
HV-B+
HV-B+
EE25
ACL
10-(2W)C110 102
VCC1
1N4006
ACN
P5-4
T2
D122
D48
D51
D123
ACN
C105
220uF/25V
R99
2.2M
1N4006
VCC1
R105
0-
C100
IC10
22uF400V
R100
2.2M
1 VCC
R101
27K
L=0.9mH
GND 8
100-
S1
5t
R106
R102
78.7K
C102
104
C108
2200uF/10V
C109
1000uF/10V
D54
1N4734A 1W
5.32-5.88V
A
GND
LL4148
P2
19t
R110100-
IC12
R108
R150
1K C107
10K(1%)
Drain 5
684
IC11
NCP1027
IC12
817(1/2)
DR6*8
D49
2 Ramp Comp.
OPP 7
3 Brown-Out
4 FB
C101
103
+5Vsb/2.39A
D52 MBR20L45CT
3.3K(1206)
C104
100uF/35V
L5
R111
D50
P1
UF4007 55t
R103
C103
10uF/25V
A
P6KE200
ES1D
817(1/2)
ACL
CY6
AZ431
R109
2008.12.10
ON SEMICONDUCTOR.
10K(1%)
Title
222
Size
A1
D70,D71,C133,C135,R4,R134,R135,R139
Figure 14: Schematics
Date:
File:
POWER SUPPLY ATX 255W >85%
Number
Revision
ON -Semi ATX255W
11-Dec-2008
D:\WORK\layout\MAINSTAY_F.K.ddb
Sheet of
Drawn By:
V8
D
7. Parts List
The bill of materials (BOM) for the design is provided in this section. To reflect the schematics shown
in the previous section, the BOM have also been broken into different sections and provided in
separate tables – Table 19 through 22.
It should be noted that a number of components used during the development cycle were based on
availability. As a result, further cost reductions and better inventory management can be achieved by
component standardization, i.e. the unique part numbers can be SIGNIFICANTLY reduced by
standardization and re-use of component values and case sizes. This will result in a lower cost BOM
and better inventory management.
QTY
SYMBOL
DESCRIPTION
VENDOR
VENDOR P/N
MAIN BOARD (PFC Stage, Synchronous Rectification Output Stage)
1
HS1
HEAT SINK 93*60*4 AL4.0t
1
BD1
DIO.BRI 10A 600V / TS10P05G
Taizhi
1
D2
DIO.NR LQA08TC600 8A 600V TO-220AC
1
Q1
FET.NCH SPP15N60C3 TO220
INFINEON
2
Q3, Q4
FET.NCH STP12NM50 TO-220
ST
1
SCREW(BD1)
SCREW PAN-HEAD M3*10
LONGFEI
4
SCREW(D2, Q1, Q3, Q4)
SCREW PAN-HEAD M3*6
LONGFEI
4
SL(D2, Q1, Q3, Q4)
SLTO-220 13*19*0.3mm
JUNHO
4
B(D2, Q1, Q3, Q4)
BUSHING TO-220
JUNHO
1
HS2
HEAT SINK 93*60*4 AL4.0t
2
Q30, Q31
STP80NF55-06 80A55V TO220
ST
1
D52,
MBR20L45CT 20A 45V TO-220
ON
2
D70, D71
MBR60L45CTG 60A 45V TO-220
ON
5
SCREW(D52, Q32, Q31,
Q70, Q71)
SCREW PAN-HEAD M3*6
5
SL(Q30, Q31, D70, D71,
D52)
SLTO-220 13*19*0.3mm
JUNHO
BUSHING TO-220
JUNHO
PANJIT
QSPEED
Taizhi
LONGFEI
1
B(Q30, Q31, D70, D71,
D52)
R3
RES.WW. 0.1R 3WS NKNP
Synton-Tech
1
R13
RES.MO. 10- 2W
Synton-Tech
3
R130, R131, R111
RES.CR. 10- 2WS
Synton-Tech
1
D48
P6KE200A DO-15
PANJIT
1
D50
UF4007 DO-41
PANJIT
1
D1
STTH310 3A 1000V / UF5407G
DII
1
C109
CAP.ELE 1000uF 10V 10*16KY
SU'SCON
1
R1
RES.CR. 1M 1/4W
3
RS12A, RS12A-1, RS12B
COPPER 0.002-
1
F1
MST 5A/250V
2
LF1.LF3
0.8*25t L=3mH+30% L=2.5mm
MEIHUA
1
L2
POT3319 0.1Φ*50t*61t L=0.68uH
MEIHUA
1
L3
T80-26+UL L=120uH±20%
MEIHUA
1
L5
DR6*8 L=3.6uH
MEIHUA
2
L6, L9
R8*20+UL L=0.8uH 2.4Φ*5.5t
5
CONQUER
J.X.E.
(ASC-2203VGH)25T
J-YH-R8*20-789
29
1
T1
YC3501 L=0.63mH Ls=80uH
MEIHUA
1
T2
EE25
MEIHUA
1
MOV
TVR10471KSY
1
IC10
NCP1027P065G DIP-8
4
IC23, IC12, IC20, IC21
PHOTO PC817B DIP-4P
1
D54
1N4734A 1W 5.32-5.88V
2
D122, D123
1N4006
1
C4-1
CAP.PEI 0.022uF 630V
1
C4
CAP.PEI 0.033uF 630V
PAC
2
C1, C6
CAP.MEF 0.47uF 400V P=10
UTX
1
CX3
CAP.MPP 0.33uF 275vac p=15
UTX
1
CX2
CAP.MPP 0.47uf 275V HQX P=15
1
C100
CAP.ELE 22uF 450V 8*11
1
C55
CAP.ELE 2.2uF 50V 5*11
1
C2
CAP.ELE 220uf 450V
NDB
1
C56
CAP.ELE 47uF 25V 5*11
NDB
1
C105
CAP.ELE 220uF 25V 6.3*11
NDB
1
C103
CAP.ELE 10uF 50V 5*11
NDB
1
C104
CAP.ELE 100uF 35V 6*11
NDB
5
C136, C137, C138, C139,
C140
CAP.ELE 2200uF 16V 10*25 KZE
NDB
1
C108
CAP.ELE 2200uF 10V 10*16
NDB
1
C110
CAP.CER 1000PF 1KV Y5P P=5
SEC
2
C130, C131
CAP.CER 560PF 1KV Y5P
SEC
1
C146
CAP.ELE 220uF 16V 6.3*11
2
CY3, CY4
CAP.CER 4700PF Y2
SEC
1
CY6
CAP.CER 2200PF Y1
SEC
3
J4, J5, J6
JUMP 0.8Φ P=12.5mm
3
J7, J19, J22
JUMP 0.8Φ P=20mm
8
J1, J2, J3, J8, J11, J15,
J18, J24
JUMP 0.8Φ P=10mm
1
J23
JUMP 0.8Φ P=5mm
1
MB CONNECT
MB CONNECT 24-PORT
EVERBIZ
1
CPU CONNECT
CPU CONNECT 4-PORT(2*2)
EVERBIZ
3
P3, P4, P5
SATA+SATA CONNECT
EVERBIZ
2
P6, P7
SATA CONNECT
EVERBIZ
2
P8, P9
FDD CONNECT 4-PORT
EVERBIZ
2
HS3, HS4
HEAT SINK 28*38*5 CU1.2t
Taizhi
1
CON1
WAFER 3.96(3-1)PIN 180°
SUNDA
8
J10, J12, J13, J14, J16, R9,
J20, R105
RES.SMD 0- 5% 0805
1
J9
RES.SMD 33- 5% 0805
1
J21
RES.SMD 0- 5% 1206
1
R3-1
RES.SMD 0.5- 1% 2512
5
R5, R10, R11, R133, R140
RES.SMD 10K 5% 0805
2
R7, R8
RES.SMD 1.8M 5% 0805
2
R12, R12A
RES.SMD 24K 5% 0805
TKS
ON
SHARP
R75PI2330JEMEJ
UTX
SU'SCON
2Y5P102K102C56E
30
1
R54
RES.SMD 47K 1% 0805
1
R55
RES.SMD 82.5K 1% 0805
1
R56
RES.SMD 12K 5% 0805
1
R57
RES.SMD 23.2K 5% 0805
2
R51, R6
RES.SMD 3.3M 5% 0805
1
R52
RES.SMD 3.6K 1% 0805
2
R81, R82
RES.SMD 499K 1% 0805
1
R83
RES.SMD 6.8K 1% 0805
2
R99, R100
RES.SMD 2.2M 5% 0805
1
R101
RES.SMD 27K 5% 0805
1
R102
RES.SMD 78.7K 1% 0805
1
R103
RES.SMD 3.3K 5% 1206
6
R142, R147, R148, R250,
R253, R150
RES.SMD 1K 5% 0805
2
R108, R109
RES.SMD 10K 1% 0805
1
R110
RES.SMD 100- 5% 0805
2
R132, R141
RES.SMD 2.2- 5% 0805
1
R134
RES.SMD 6.2K 5% 0805
1
R135
RES.SMD 3.3K 5% 0805
2
R137, R138
RES.SMD 10- 5% 0805
1
R53
RES.SMD 10- 5% 1206
1
R143
RES.SMD 68K 5% 0805
1
R144
RES.SMD 18K 1% 0805
1
R145
RES.SMD 4.7K 1% 0805
2
R146, R149
RES.SMD 22- 5% 0805
1
R251
RES.SMD 4.7K 5% 0805
1
R252
RES.SMD 470- 5% 0805
1
R269
RES.SMD 330- 5% 0805
1
C5
CAP.MON 220P 50V 0805 X7R
1
C50
CAP.MON 0.47uF 50V X7R 0805
2
C101, C102
CAP.MON 0.01uF 50V X7R 0805
2
C107, C54
CAP.MON 0.22uF 50V X7R 0805
3
C53, C144, C145
CAP.MON 1000PF 50V X7R 0805
3
C134, C132, C52
CAP.MON 0.1uF 50V X7R 0805
1
C141
CAP.MON 0.022uF 50V X7R 0805
1
D51
ES1D 1A 200V SMA
4
D5, D72, D73, D49
DIO.NR LL4148
2
D77, D78
DIO.ZEN RLZ7.5B
2
Q16, Q17
MMBT2222 SOT23
1
IC1
NCP1654A 65Khz SO-8
ON
2
IC11, IC16
TL431
ON
2
IC14, IC15
NCP4302 SO-8
ON
1
PCB
CEM-1 1oz 1.6t 145*108.5 NO.SPB011V5
TSC
TSC
ROHM
Table 19: Main Board (PFC Stage, Synchronous Rectification Output Stage)
31
QTY
SYMBOL
DESCRIPTION
VENDOR
VENDOR P/N
DC-DC Converter Stage, Supervisory Stage (referred to as CTL2 in schematics of figure 14)
1
C220
CAP.ELE 2200uF 16V 10*25
1
L11
BEAD RH035100ST-A8
NDB
1
RS33
COPPER 0.002-
1
C208
CAP.ELE PSC 680uF 10V 10*11.5
NDB
5
C206, C207, C215, C218,
C219
CAP.ELE 2200uF 16V 10*25
NDB
1
C260
CAP.ELE 10uF 50V 5*11 KY
NDB
1
C142
CAP.ELE 330uF 25V 8*15 KY
NDB
1
C143, C200, C200A
CAP.ELE 220uF 25V KY 6.3*11
NDB
1
C209
CAP.PEI 0.47uF 100V P=10
欣統
1
C262
CAP.ELE 100uF 25V 6.3*11
NDB
1
D110
1N4744
1
Q21
S8050L-C EBC TO92
1
L7
HKH080 L=6.8uH
1
L8
HKH080 L=6.8uH
MEIHUA
1
L9
DR6*8 L=3.6uH
MEIHUA
2
L10, L13
R6*20+UL L=3.0uH±20% 1.2Φ*11.5t
MEIHUA
1
RS5
R8*20+UL L=1uH±20%
1
TM1
T10K
TKS
TTC05103KSY
1
TM2
T204K
TKS
TTC05204KSY
1
HS7
HEAT SINK 25.5*12.5 Cu1.2t
2
HS8, HS9
HEAT SINK 40.5*12.5 Cu1.2t
1
CON3
WAFER P=2.5*2 90°
SUNDA
1
P4(CTL3-PCB)
Pin Header 3pin 90° P=2.54mm
SUNDA
1
P5(CTL3-PCB)
Pin Header 6pin 90° P=2.54mm
1
PPTC
Fuse 1A 1206
3
R266, R300, R302
RES.SMD 10K 5% 0805
1
R203
RES.SMD 27K 1% 0805
2
R204, R210
RES.SMD 5.11K 1% 0805
4
R212, R214, R213, R215
RES.SMD 10- 5% 0805
1
R206
RES.SMD 75K 5% 1206
1
R216
RES.SMD 18K 5% 1206
1
R209
RES.SMD 16K 1% 0805
5
R254, R259, R260, R261,
R262
RES.SMD 47- 5% 0805
1
R255
RES.SMD 470- 1% 0805
1
R256
RES.SMD 240- 1% 0805
1
R257
RES.SMD 100- 1% 0805
1
R258
RES.SMD 200- 1% 0805
1
R263
RES.SMD 2K 5% 0805
1
R264
RES.SMD 2.2K 5% 0805
5
R265, R267, R301, R202,
R208
RES.SMD 1K 5% 0805
1
R268
RES.SMD 62K 1% 0805
1
R303
RES.SMD 15- 5% 0805
2
C209, C209-1
CAP.MON 0.22uF 50V X7R 1812
14
C204, C213, C216, C217,
C250, C252, C253, C254,
C255, C256, C257, C258,
C259, C261
CAP.MON 0.1uF 50V X7R 0805
2
C202, C211
CAP.MON 100P 50V X7R 0805
2
C203, C212
CAP.MON 0.056uF 50V X7R 0805
Tzai Yuan
UTC
HKH-080CE/034
R6*20-0003
Taizhi
Taizhi
SUNDA
CONQUER
nSMD100
32
1
C251
CAP.MON 0.47uF 16V X7R 0805
2
D100, D103
ES1D 1A 200V SMA
2
D101, D102
DIO.SB SR24 2A 40V SMA
6
D104, D105, D112, D113,
D106, D107
DIO.ZEN LL4148
2
D120, D121
DIO.ZEN RLZ6.2B
1
Q20
MMBT2222 SOT23
4
Q32, Q33, Q34, Q35
NTD4809N-D 58A 30V DPAK
ON
1
IC17
PS223 SOP-16
SITI
2
IC18, IC19
NCP1587 SO-8
ON
1
IC20
TL431
ON
1
PCB
FR4 1oz 1.6t 62*83.5 NO.PB011V5-CTL3
TSC
PANJIT
TSC
ROHM
Table 20: DC-DC Converter Stage, Supervisory Stage (referred to as CTL2 in schematics of
figure 14)
33
P/N
QTY
1
1
1
1
1
1
1
4
2
1
1
1
1
1
2
SYMBOL
DESCRIPTION
VENDOR
HB Resonant LLC-Stage (referred to as CTL1 in schematics of figure 14 )
C58
CAP.ELE 4.7uF 50V KMG 5*11
NDB
C60
CAP.ELE 47/25V KMG 5*11
NDB
C64
CAP.ELE. 10uF 25V
NDB
P2 (CTL2-PCB)
Pin Header 3pin 90° P=2.54mm
SUNDA
P3 (CTL2-PCB)
Pin Header 13pin 90° P=2.54mm
SUNDA
HS
25*16*8
PCB HOLD
RCC-5
KANGYANG
R55, R69, R70, R84
RES.SMD 1K 5% 0805
R56, R57
RES.SMD 30K 5% 0805
R58
RES.SMD 15K 5% 0805
R59
RES.SMD 6.8K 5% 0805
R60
RES.SMD 8.2K 1% 0805
R61
RES.SMD 150K 5% 0805
R62
RES.SMD 2K 5% 0805
R64, R73
RES.SMD 1.1K 1% 0805
6
R63, R67, R72, R79, R80,
R86
RES.SMD 10K 5% 0805
1
1
2
1
1
1
1
1
1
1
1
2
1
1
3
1
4
1
1
2
1
1
1
2
1
1
R65
R66
R68, R71
R74
R76
R77
R88
R85
R87
R89
C59
C61, C65
C62
C63
C66, C67, C57
D20
D21, D24, D25, D29
D22
D23
Q5, Q12
Q11
Q14
IC2
IC3, IC4
IC5
PCB
RES.SMD 18- 5% 1206
RES.SMD 5.1K 5% 0805
RES.SMD 10- 5% 0805
RES.SMD 3.3K 5% 0805
RES.SMD 1.8K 5% 0805
RES.SMD 33- 5% 0805
RES.SMD 100- 5% 0805
RES.SMD 470K 5% 0805
RES.SMD 22K 5% 0805
RES.SMD 4.7K 5% 0805
CAP.MON 2200PF 50V X7R 0805
CAP.MON 0.1uF 50V X7R 0805
CAP.MON 0.068uF 50V X7R 0805
CAP.MON 0.01uF 50V X7R 0805
CAP.MON 1uF 25V X7R 0805
UF 1A600V / US1J
DIO.ZEN. LL4148
DIO.ZEN. RLZ7.5B
DIO.ZEN. RLZ3.6B
MMBT2907
2SC4672
2SA1797
NCP1396A SO-16
TL431
LM393 SO-8
FR4 1oz 1.6t 44*56 NO.SPB011V4-CTL2
PANJIT
TSC
ROHM
ROHM
PANJIT
ROHM
ROHM
ON
ON
ON
VENDOR P/N
LM393D
Table 21: HB Resonant LLC-Stage (referred to as CTL1 in schematics of figure 14)
34
QTY
1
1
1
1
1
1
1
1
2
1
1
1
1
1
2
4
1
4
4
1
1
1
SYMBOL
SW1
SW-INLET
SW-INLET
SW-INLET
INLET(G)-GND
CORE(INLET-GND)
DTOD-BOARD
FAN
CY1, CY2
CX1
AC INLET
CASE
CASE
MYLAR
SCREW(AC INLET)
SCREW(CASE)
SCREW(INLET-GND))
SCREW(S1~S4)
SCREW(FAN)
SCREW(GND)
DESCRIPTION
Mechanical and Miscellaneous Items
0-1 4P 10A Look SW
UL1015#18 L=115mm
UL1015#16 L=60mm White
UL1015#16 L=60mm Black
UL1015#18 L=125mm
RH16*9*17
80*80*25mm 12V
CAP.CER 4700PF Y2
CAP.MPP 1uF 275VAC HQX P=22.5
10A/15A 250V
CASE 150.2*140*84mm
CASE 140*148.2*85.5mm
MYLAR FILM 165*110*0.35mm
SCREW F3*10 ISO(BLACK)
SCREW F3*6 ISO(BLACK)
SCREW F3*5 ISO(BLACK)
SCREW MAIN BOARD M3*4 ISO
SCREW I5*10 TAP (BLACK)
SCREW K/NUT 8#32T
FAN GUARD 80*80mm COLOR-GOLD
SANP BUSHING NB-27A
VENDOR
SWEETA
CHARNG MIN
CHARNG MIN
CHARNG MIN
CHARNG MIN
SUNON
SEC
UTX
SWEETA
VENDOR P/N
SS21-BBIWG-R
SC-9-1
JUNHO
LONGFEI
LONGFEI
LONGFEI
LONGFEI
LONGFEI
LONGFEI
PRO-CROWN
KANGYANG
Table 22: Mechanical and Miscellaneous Items
35
8. Resources/Contact Information
Data sheets, applications information and samples for the ON Semiconductor components are
available at www.onsemi.com. Links to the datasheets of the main components used in this design are
included in the Appendix.
Authors of this document are: Edward Weng, Patrick Wang, Roman Stuler, and Laurent Jenck.
9. Appendix
Link to ON Semiconductor’s web site:
ƒ ON Semiconductor Home Page
Industry information links:
ƒ ENERGY STAR
ƒ 80 PLUS Efficiency Requirements
ƒ Climate Savers Computing Initiative
ƒ IEC61000-3-2 Requirements
ƒ ATX 12 V Form Factor
ƒ European Union (EU) Energy Star Page
Additional collateral from ON Semiconductor:
ƒ NCP1654 Continuous conduction mode PFC
controller
ƒ NCP1396 Resonant mode controller with high
voltage drivers
ƒ NCP4302 Synchronous rectification controller
ƒ NCP1587 Low voltage synchronous buck
controller
ƒ NCP1027 High voltage integrated switcher
ƒ NTD4809 Single N-Channel MOSFET 30 V, 58 A
ƒ MBR20L45 20 A, 45 V dual schottky rectifier
36