EiceDRIVER ™ 2EDN752x / 2EDN852x Dual Channel 5A, High-Speed, Low-Side Gate Driver With High Negative Input Voltage Capability and Advanced Reverse Current Robustness EiceDRIVER™ Fast Dual Channel Low-Side Gate Driver Data Sheet Revision 2.1, 2016-01-19 Power Management and Multimarket EiceDRIVER™ 2EDN752x / 2EDN852x Revision History , Revision 2.1, 2016-01-19 Page/ Item Subjects (major changes since previous revision) Responsible Date updated from version 2.0 6 Table 1-1: better structure, no change on content level Tobias Gerber 2015/08/06 17 Table 5-5 / Table 5-6: changed headline for better structure, no change on content level Tobias Gerber 2015/08/06 4-7, 13-14 Restructure text, no parameter change Tobias Gerber 2015/08/27 6 New structured device list Tobias Gerber 2015/12/03 28 - 31 Figures rearrangment, footprints, package Tobias Gerber 2015/12/09 6, 31 Update of Packages: PG-WSON-8 and Figure 8-4: PG-TSSOP-8 outline Tobias Gerber 2016/01/14 15 Table 5-1: Relax conditions for Reverse Current Peak Tobias Gerber 2016/01/18 4, 6 New Package figure for PG-WSON-8 Tobias Gerber 2016/01/18 6-14 Typos and formating, no parameter change Tobias Gerber 2016/01/18 Data Sheet 2 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Fast Dual Channel 5 A Low-Side Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 1.1 1.2 1.3 Product Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Undervoltage Lockout Versions 7 Logic Versions 7 Package Versions 7 2 Pin Configuration and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 4.1 4.2 4.3 4.4 4.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Introduction 13 Supply Voltage 13 Input Configurations 13 Driver Outputs 13 Undervoltage Lockout (UVLO) 14 5 5.1 5.2 5.3 5.4 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Absolute Maximum Ratings 15 Thermal Characteristics 15 Operating Range 16 Electrical Characteristics 17 6 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7 Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 8 8.1 8.2 8.3 Outline Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 PG-DSO-8-60 28 PG-TSSOP-8-1 29 PG-WSON-8-1 31 Data Sheet 3 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Fast Dual Channel 5 A Low-Side Gate Driver Fast, precise, strong and compatible • Highly efficient SMPS enabled by 5 ns fast slew rates and 19 ns propagation delay precision for fast MOSFET and GaN switching • 1 ns channel-to-channel propagation delay accuracy enables safe use of two channels in parallel Two independent 5 A channels enable numerous deployment options Industry standard packages and pinout ease system-design upgrades • • PG-DSO-8 The new Reference in Ruggedness • 4.2 V and 8 V UVLO (Under Voltage Lock Out) options ensure instant MOSFET protection under abnormal conditions • -10 V control and enable input robustness delivers crucial safety margin when driving pulse-transformers or driving MOSFETs in through hole packaging 5 A reverse current robustness eliminates the need for output protection circuitry. • Typical Applications • Server SMPS • TeleCom SMPS • DC-to-DC Converter • Bricks • Power Tools • Industrial SMPS • Motor Control • Solar SMPS PG-WSON-8 PG-TSSOP-8 Example Topologies • Single and interleaved PFC • LLC, ZVS with pulse transformer • Synchronous Rectification Data Sheet 4 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Description The 2EDN752x/2EDN852x is an advanced dual-channel driver. It is suited to drive logic and normal level MOSFETs and supports OptiMOSTM, CoolMOSTM, Standard Level MOSFETs, Superjunction MOSFETs, as well as IGBTs and GaN Power devices. The control and enable inputs are LV-TTL compatible (CMOS 3.3 V) with an input voltage range from -5 V to +20 V. -10 V input pin robustness protects the driver against latch-up or electrical overstress which can be induced by parasitic ground inductances. This greatly enhances system stability. 4.2 V and 8 V UVLO (Under Voltage Lock Out) options ensure instant MOSFET and GaN protection under abnormal conditions. Under such circumstances, this UVLO mechanism provides crucial independence from whether and when other supervisors circuitries detect abnormal conditions. Each of the two outputs is able to sink and source 5 A currents utilizing a true rail-to-rail stage. This ensures very low on resistance of 0.7 Ω up to the positive and 0.55 Ω down to the negative rail respectively. Very tight channel to channel delay matching, typ. 1 ns, permits parallel use of two channels, leading to a source and sink capability of 10 A. Industry leading reverse current robustness eliminates the need for Schottky diodes at the outputs and reduces the bill-of-material. From Controller The pinout of the 2EDN family is compatible with the industry standard. Two different control input options, non-inverted and inverted, offer high flexibility. Three package variants, DSO 8-pin, TSSOP 8-pin, WSON 8-pin, allow optimization of PCB board space usage and thermal characteristics. VDD 2EDN752x / 2EDN852x 1 ENA ENB 88 2 INA OUTA 7 33 GND VDD 66 44 INB Load1 Load2 M1 Rg1 Rg2 M2 OUTB 55 CVDD Data Sheet 5 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Product Versions 1 Product Versions The 2EDN752x / 2EDN852x are available in 2 different logic, 2 different undervoltage lockout and 3 package versions. Table 1-1 Package Product Versions Type. UVLO Control Input Part Number IC Topside Marking Code 4.2V direct 2EDN7524F inverted 2EDN7523F direct 2EDN8524F inverted 2ED87523F 2N7524AF EiceDRIV XXHYYWW 2N7523AF EiceDRIV XXHYYWW 2N8524AF EiceDRIV XXHYYWW 2N8523AF EiceDRIV XXHYYWW direct 2EDN7524R inverted 2EDN7523R direct 2EDN8524R inverted 2ED87523R direct 2EDN7524G inverted 2EDN7523G PG-DSO-8 8V PG-TSSOP-8 4.2V 8V 2N7524 AR_XXX HYYWW 2N7523 AR_XXX HYYWW 2N8524 AR_XXX HYYWW 2N8523 AR_XXX HYYWW PG-WSON-8 4.2V Data Sheet 6 2N7524 AR_XXX HYYWW 2N7523 AR_XXX HYYWW Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Product Versions 1.1 Undervoltage Lockout Versions The two Undervoltage Lockout versions are indicated by the variable x in the product version 2EDNy52x: • y=7: lower voltage for logic level MOSFETs (4.2 V) • y=8: higher voltage for standard and superjunction MOSFETs (8.0 V) Please refer to the functional description section for more details in Chapter 4 Undervoltage Lockout (UVLO). 1.2 Logic Versions The 2 logic versions are indicated by the variable x in the product version 2EDNy52x: • x=3: inverting • x=4: non-inverting The logic relations between inputs, enable pins and outputs are given in Table 1-2 for the inverting and noninverting version 2EDNx523 and 2EDNx524. The state of the driving output is defined by the state of the respective input, if the enable inputs ENA and ENB are high (or left open). A logic “low” at an enable input or an undervoltage lockout event, due to low voltage at VDD, causes the respective output to be low too, regardless of the input signal. Table 1-2 Logic Table Inputs Output Inverting 1) Output non-inverting OUTA OUTB OUTA OUTB active L L L L x inactive L L L L L x inactive H L L L L H x inactive L L H L L H x L inactive L H L L L H x H inactive L L L H H H L L inactive H H L L H H H L inactive L H H L H H L H inactive H L L H H H H H inactive L L H H ENA ENB INA INB UVLO x x x x L L x H L H 1) Inactive means that VDD is above UVLO threshold voltage and release logic to control output stage. Active means that UVLO disable active the output stages. 1.3 Package Versions The logic and UVLO versions are available in 3 different packages. • • • a standard PG-DSO-8 (designated by “F”) a leadless PG-WSON-8 (designated by “G”) a small PG-TSSOP-8 (designated by “R”) Drawings can be viewed in Chapter 8 Outline Dimensions. Data Sheet 7 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Pin Configuration and Description 2 Pin Configuration and Description The pin configuration for the inverting and standard input version of 2EDN7524F and 2EDN7523F in the PG-DSO-8 package is shown in Figure 2-1. 1 ENA 2 INA 3 GND 4 INB ENB 8 OUTA 7 VDD 6 OUTB 5 Figure 2-1 Pin Configuration PG-DSO-8, Top View Table 2-1 Pin Configuration 2EDN7524F and 2EDN7523F in the PG-DSO-8 Package Pin Symbol Description 1 ENA Enable input channel A Logic input; if ENA is high or left open, OUTA is controlled by INA; ENA low causes OUTA low 2 INA Input signal channel A Logic input, controlling OUTA (inverting or non-inverting) 3 GND Ground 4 INB Input signal channel B Logic input, controlling OUTB (inverting or non-inverting) 5 OUTB Driver output channel B Low-impedance output with source and sink capability 6 VDD Positive supply voltage Operating range 4.5 V to 20 V 7 OUTA Driver output channel A Low-impedance output with source and sink capability 8 ENB Enable input channel B Logic Input; if ENB is high or left open, OUTB is controlled by INB; ENB low causes OUTB low Data Sheet 8 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Pin Configuration and Description The pin configuration for standard input version of 2EDN7524R, 2EDN8524R, 2EDN7523R and 2EDN8523R in the PG-TSSOP-8 package is shown in Figure 2-2. 1 ENA 2 INA 3 GND 4 INB Heat Sink ENB 8 OUTA 7 VDD 6 OUTB 5 Figure 2-2 Pin Configuration PG-TSSOP-8, Top View Table 2-2 Pin Configuration 2EDN7524R, 2EDN8524R, 2EDN7523R and 2EDN8523R in the PG-TSSOP-8 Package Pin Symbol Description 1 ENA Enable input channel A Logic input; if ENA is high or left open, OUTA is controlled by INA; ENA low causes OUTA low 2 INA Input signal channel A Logic input, controlling OUTA (non-inverting) 3 GND Ground 4 INB Input signal channel B Logic input, controlling OUTB (non-inverting) 5 OUTB Driver output channel B Low-impedance output with source and sink capability 6 VDD Positive supply voltage Operating range 4.5 V to 20 V 7 OUTA Driver output channel A Low-impedance output with source and sink capability 8 ENB Enable input channel B Logic Input; if ENB is high or left open, OUTB is controlled by INB; ENB low causes OUTB low Heat sink of PG-TSSOP-8 packages has to be connected to GND pin. Data Sheet 9 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Pin Configuration and Description The pin configuration for standard input version of 2EDN7524G and 2EDN7523G. In the PG-WSON-8 package is shown in Figure 2-3. ENA 1 INA 2 GND INB 8 ENB 7 OUTA 3 6 VDD 4 5 OUTB Heat Sink Figure 2-3 Pin Configuration PG-WSON-8, Top View Table 2-3 Pin Configuration 2EDN7524G and 2EDN7523G in the PG-WSON-8 Package Pin Symbol Description 1 ENA Enable input channel A Logic input; if ENA is high or left open, OUTA is controlled by INA; ENA low causes OUTA low 2 INA Input signal channel A Logic input, controlling OUTA (non-inverting) 3 GND Ground 4 INB Input signal channel B Logic input, controlling OUTB (non-inverting) 5 OUTB Driver output channel B Low-impedance output with source and sink capability 6 VDD Positive supply voltage Operating range 4.5 V to 20 V 7 OUTA Driver output channel A Low-impedance output with source and sink capability 8 ENB Enable input channel B Logic Input; if ENB is high or left open, OUTB is controlled by INB; ENB low causes OUTB low Heat sink of PG-WSON-8 packages has to be connected to GND pin. Data Sheet 10 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Block Diagram 3 Block Diagram A simplified functional block diagram for the non-inverted version is given in Figure 3-1 VDD VDD 6 UVLO VDD 400k ENA 1 Logic A INA 7 OUTA 5 OUTB 2 100k GND GND VDD VDD 400k ENB 8 Logic B INB 4 100k GND GND 3 GND Figure 3-1 Block Diagram, standard input, pull-up/pull-down resistor configuration Data Sheet 11 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Block Diagram A simplified functional block diagram for the inverted version is given in Figure 3-2. VDD VDD 6 UVLO VDD 400k ENA 1 VDD Logic A 7 OUTA 5 OUTB 400k INA 2 GND VDD VDD VDD 400k 400k ENB 8 Logic B INB 4 GND GND 3 GND Figure 3-2 Block Diagram, inverting input, pull-up/pull-down resistor configuration Data Sheet 12 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Functional Description 4 Functional Description 4.1 Introduction The 2EDN752x / 2EDN852x is a fast dual-channel driver for low-side switches. Two true rail-to-rail output stages with very low output impedance and high current capability are chosen to ensure highest flexibility and cover a high variety of applications. The focus on robustness at the input and output side additionally gives this device a safety margin in critical abnormal situations. An extended negative voltage range protects input pins against ground shifts. No current flows over the ESD structure in the IC during a negative input level. All outputs are robust against reverse current. The interaction with the power MOSFET, even reverse reflected power will be handled by the strong internal output stage. All inputs are compatible with LV-TTL signal levels. The threshold voltages with a typical hysteresis of 1.1 V are kept constant over the supply voltage range. Since the 2EDN752x / 2EDN852x aims particularly at fast-switching applications, signal delays and rise/fall times have been minimized. Special effort has been made towards minimizing delay differences between the 2 channels to very low values of typically 1 ns. 4.2 Supply Voltage The maximum supply voltage is 20 V. This high voltage can be valuable in order to exploit the full current capability of 2EDN752x / 2EDN852x when driving very large MOSFETs. The minimum operating supply voltage is set by the undervoltage lockout function to a typical default value of 4.2 V or of 8 V. This lockout function protects power MOSFETs from running into linear mode with subsequent high power dissipation. 4.3 Input Configurations As described in Chapter 1, 2EDN752x / 2EDN852x is available in 2 different configurations with respect to the logic configuration of the 4 input pins (input plus enable). The enable inputs are internally pulled up to a logic high voltage, i.e. the driver is enabled with these pins left open. The direct PWM inputs are internally pulled down to a logic low voltage. This prevents a switch-on event during power up and a not driven input condition. Version with inverted PWM input have an internal pull up resistor to prevent unwanted switch-on. All inputs are compatible with LV-TTL levels and provide a hysteresis of 1.1 V typ. This hysteresis is independent of the supply voltage. All input pins have a negative extended voltage range. This prevents cross current over single wires during GND shifts between signal source (controller) and driver input. 4.4 Driver Outputs The two rail-to-rail output stages realized with complementary MOS transistors are able to provide a typical 5 A of sourcing and sinking current. This driver output stage has a shoot through protection and current limiting behavior. After a switching event, current limitation is raised up to achieve the typical current peak for an excellent fast reaction time of the following power MOS transistor. Data Sheet 13 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Functional Description The output impedance is very low with a typical value below 0.7 Ω for the sourcing p-channel MOS and 0.5 Ω for the sinking n-channel MOS transistor. The use of a p-channel sourcing transistor is crucial for achieving true rail-to-rail behaviour and avoiding a source follower’s voltage drop. Gate Drive Outputs held active low in case of floating inputs ENx, INx or during startup or power down once UVLO is not exceeded. Under any situation, startup, UVLO or shutdown, outputs are held under defined conditions. 4.5 Undervoltage Lockout (UVLO) The Undervoltage Lockout function ensures that the output can be switched to its high level only if the supply voltage exceeds the UVLO threshold voltage. Thus it can be guaranteed, that the switch transistor is not switched on if the driving voltage is too low to completely switch it on, thereby avoiding excessive power dissipation. The UVLO level is set to a typical value of 4.2 V / 8 V (with hysteresis). UVLO of 4.2 V is normally used for logic level based MOSFETs. For higher level, like standard and high voltage superjunction MOSFETS, an UVLO voltage of typical 8 V is available. Data Sheet 14 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Characteristics 5 Characteristics The absolute maximum ratings are listed in Table 5-1. Stresses beyond these values may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 5.1 Absolute Maximum Ratings Table 5-1 Absolute Maximum Ratings Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Positive supply voltage VVDD -0.3 22 V Voltage at pins INA, INB, ENA, ENB VIN -10 22 V Voltage at pins OUTA, OUTB VOUT -0.3 VVDD+0.3 V Note1) Reverse current peak at pins OUTA, OUTB ISNK_rev ISRC_rev -5 5 Apk < 500ns Junction temperature TJ -40 150 °C Storage temperature TS -55 150 °C ESD capability VESD 1.5 kV Charged Device Mode (CDM) 2) ESD capability VESD 2.5 kV Human Body Model (HBM) 3) Unit Note or Test Condition 1) Voltage spikes resulting from reverse current peaks are allowed. 2) According to JESD22-C101 3) According to JESD22-A114 5.2 Thermal Characteristics Table 5-2 Thermal Characteristics Parameter Symbol Values Min. Typ. Max. Thermal resistance junctionambient 1) RthJA25 125 K/W PG-DSO-8, Tamb=25°C Thermal resistance junctioncase (top) 2) RthJC25 66 K/W PG-DSO-8, Tamb=25°C Thermal resistance junctionboard 3) RthJB25 62 K/W PG-DSO-8, Tamb=25°C Characterization parameter junction-top 4) ΨthJC25 16 K/W PG-DSO-8, Tamb=25°C Characterization parameter junction-board 5) ΨthJB25 55 K/W PG-DSO-8, Tamb=25°C Data Sheet 15 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Characteristics Table 5-2 Thermal Characteristics Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Thermal resistance junctionambient 1) RthJA25 64 K/W PG-TSSOP-8, Tamb=25°C Thermal resistance junctioncase (top) 2) RthJP25 56 K/W PG-TSSOP-8, Tamb=25°C Thermal resistance junctionboard 3) RthJB25 55 K/W PG-TSSOP-8, Tamb=25°C Characterization parameter junction-top 4) ΨthJC25 9 K/W PG-TSSOP-8, Tamb=25°C Characterization parameter junction-board 5) ΨthJB25 13 K/W PG-TSSOP-8, Tamb=25°C Thermal resistance junctionambient 1) RthJA25 61 K/W PG-WSON-8, Tamb=25°C Thermal resistance junctioncase (top) 2) RthJP25 54 K/W PG-WSON-8, Tamb=25°C Thermal resistance junctionboard 3) RthJB25 52 K/W PG-WSON-8, Tamb=25°C Characterization parameter junction-top 4) ΨthJC25 8 K/W PG-WSON-8, Tamb=25°C Characterization parameter junction-board 5) ΨthJB25 11 K/W PG-WSON-8, Tamb=25°C 1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDECstandard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a. 2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88. 3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8. 4) The characterization parameter junction-top, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7). 5) The characterization parameter junction-board, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7). 5.3 Operating Range Table 5-3 Operating Range Parameter Symbol Values Min. Supply voltage Data Sheet VVDD Typ. 4.5 Note or Test Condition V Min. defined by UVLO Max. 20 16 Unit Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Characteristics Table 5-3 Operating Range Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Logic input voltage VIN -5 20 V Junction temperature TJ -40 150 °C 1) 1) Continuous operation above 125 °C may reduce life time. 5.4 Electrical Characteristics Unless otherwise noted, min./max. values of characteristics are the lower and upper limits respectively. They are valid within the full operating range. The supply voltage is VVDD= 12 V. Typical values are given at TJ=25°C. Table 5-4 Power Supply Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition VDD quiescent current IVDDqu1 0.5 0.7 1.2 mA OUT = high, VVDD= 12 V VDD quiescent current IVDDqu2 0.3 0.48 0.7 mA OUT = low, VVDD= 12 V Unit Note or Test Condition Table 5-5 Undervoltage Lockout for Logic Level MOSFET Parameter Symbol Values Min. Typ. Max. Undervoltage Lockout (UVLO) UVLOon turn on threshold 3.9 4.2 4.5 V Undervoltage Lockout (UVLO) UVLOoff turn off threshold 3.6 3.9 4.2 V UVLO threshold hysteresis Table 5-6 0.3 UVLOhys V Undervoltage Lockout for Standard and Superjunction MOSFET Version Parameter Symbol Values Unit Min. Typ. Max. Undervoltage Lockout (UVLO) UVLOon turn on threshold 7.4 8.0 8.6 V Undervoltage Lockout (UVLO) UVLOoff turn off threshold 6.5 7.0 7.5 V UVLO threshold hysteresis — 1.0 — V Data Sheet UVLOhys 17 Note or Test Condition Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Characteristics Table 5-7 Logic Inputs INA, INB, ENA, ENB Parameter Symbol Values Unit Min. Typ. Max. Input voltage threshold for transition LH VINH 1.9 2.1 2.3 V Input voltage threshold for transition HL VINL 0.8 1.0 1.2 V Input pull up resistor1) RIN H 400 kΩ RIN L 100 kΩ 2) Input pull down resistor Note or Test Condition 1) Inputs with initial high logic level 2) Inputs with initial low logic level Table 5-8 Static Output Caracteristics (see Figure 6-2) Parameter Symbol High Level (Sourcing) Output Resistance Ron_SRC High Level (Sourcing) Output Current ISRC_Peak Low Level (Sinking) Output Resistance Ron_SNK High Level (Sinking) Output Current ISNK_peak Values Unit Note or Test Condition ISRC = 50mA Min. Typ. Max. 0.35 0.7 1.2 Ω 5.0 1) A 0.55 1.0 Ω -5.0 2) A 0.28 ISNK = 50mA 1) Active limited by design at approx. 6.5Apk, parameter is not subject to production test - verified by design / characterization, max. power dissipation must be observed 2) Active limited by design at approx. -6.5Apk, parameter is not subject to production test - verified by design / characterization, max. power dissipation must be observed Data Sheet 18 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Characteristics Table 5-9 Dynamic Characteristics (see Figure 6-1, Figure 6-2, Figure 6-3 and Figure 6-4) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Input/Enable to output propagation delay TPDON 15 19 25 ns CLOAD= 1.8 nF, VVDD= 12 V Input/Enable to output propagation delay TPDOFF 15 19 25 ns CLOAD= 1.8 nF, VVDD= 12 V 1 4 ns 5.3 101) ns CLOAD= 1.8 nF, VVDD= 12 V 1) ns CLOAD= 1.8 nF, VVDD= 12 V ns CLOAD= 1.8 nF, VVDD= 12 V Input/Enable to output delta tPD propagation delay mismatch between the two channels on the same IC Rise Time TRISE — Fall Time TFAll — 4.5 10 Minimum input pulse width that changes output state TPW — 10 20 1) Parameter verified by design, not 100% tested in production. Data Sheet 19 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Timing Diagrams 6 Timing Diagrams Figure 6-1 shows the definition of rise, fall and delay times for the inputs of the non-inverting version (with Enable pin high or open). ENx (high) VIN H VINL VIN H VINL INx 90% OUT 10% TPDON TRIS E TPDOF F TFAL L Figure 6-1 Propagation delay, rise and fall time, non-inverted Figure 6-2 shows the definition of rise, fall and delay times for the inputs of the inverting version (with enable pins high or open). ENx (high) VINH VIN L INx VINH VINL 90% OUT 10% TPDON TRIS E TPDOF F TFAL L Figure 6-2 Propagation delay, rise and fall Time, inverted Figure 6-3 illustrates the undervoltage lockout function. UVLOon UVLOoff VDD OUT Figure 6-3 UVLO behaviour, input ENx and INx drives OUTx normally high Data Sheet 20 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Timing Diagrams Figure 6-4 illustrates the minimum input pulse width that changes output state. ENx (high) VIN H VINL VIN H INx VINL TPW 90% OUTx Figure 6-4 TPW, minimum input pulse width that changes output state Data Sheet 21 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Typical Characteristics 7 Typical Characteristics UVLO ON/OFF vs TEMPERATURE 4.5 UVLO HYSTERESIS vs TEMPERATURE 0.6 on value off value 4.3 VDD delta [V] VDD [V] 0.4 4.1 0.2 3.9 Inx, ENx high Indication Outx Inx, ENx high Indication Outx 0 3.7 -50 0 50 100 T junction [°C] -50 150 0 50 100 T junction [°C] 150 Figure 7-1 Undervoltage lockout 2ED7x (4.2V) UVLO ON/OFF vs TEMPERATURE 8.8 UVLO HYSTERESIS vs TEMPERATURE on value 1.1 off value 8.4 VDD delta [V] VDD [V] 8 7.6 7.2 0.9 0.7 6.8 Inx, ENx high Indication Outx Inx, ENx high Indication Outx 6.4 0.5 -50 0 50 100 T junction [°C] 150 -50 0 50 100 T junction [°C] 150 Figure 7-2 Undervoltage lockout 2ED8x (8V) Data Sheet 22 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Typical Characteristics INPUT THRESHOLD INx to OUTx vs TEMPERATURE INx HYSTERESIS vs TEMPERATURE 1.2 typ ON threshold 2.7 typ OFF threshold 2.3 VINx delta [V] VINx [V] 1.1 1.9 1.5 1 1.1 VDD=12V VDD=12V 0.9 0.7 -50 0 50 100 T junction [°C] -50 150 0 50 100 T junction [°C] 150 Figure 7-3 Input (INx) characteristic INPUT THRESHOLD ENx to OUTx vs TEMPERATURE ENx HYSTERESIS vs TEMPERATURE 1.2 typ ON threshold 2.7 typ OFF threshold 2.3 VENx delta [V] VENx [V] 1.1 1.9 1.5 1 1.1 VDD=12V VDD=12V 0.9 0.7 -50 0 50 100 T junction [°C] -50 150 0 50 100 T junction [°C] 150 Figure 7-4 Input (ENx) characteristic Data Sheet 23 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Typical Characteristics VINx to OUTx PROPAGATION DELAY vs TEMPERATURE 25 VINx to OUTx PROPAGATION DELAY vs TEMPERATURE 25 typ turn-off typ turn-off typ turn-on typ turn-on 22.5 TPD [ns] TPD [ns] 22.5 20 17.5 20 17.5 VDD=12V Input 5V VDD=12V Input 3.3V 15 15 -50 0 50 100 T junction [°C] 150 -50 0 50 100 T junction [°C] 150 Figure 7-5 Propagation delay (INx) on different input logic levels (see Figure 6-1) VENx to OUTx PROPAGATION DELAY vs TEMPERATURE 25 VENx to OUTx PROPAGATION DELAY vs TEMPERATURE 25 typ turn-off typ turn-on typ turn-on 22.5 TPD [ns] 22.5 TPD [ns] typ turn-off 20 17.5 20 17.5 VDD=12V Enable 5V VDD=12V Enable 3.3V 15 15 -50 0 50 100 T junction [°C] 150 -50 0 50 100 T junction [°C] 150 Figure 7-6 Propagation delay (ENx) on different input logic levels (see Figure 6-1) Data Sheet 24 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Typical Characteristics OUTx RISE/FALL TIME 10% - 90% vs TEMPERATURE 6.5 typ turn-on 6 typ turn-off Time [ns] 5.5 5 4.5 VDD=12V OUTx with 1.8nF load 4 3.5 -50 0 50 100 T junction [°C] 150 Figure 7-7 Rise / fall times with load on output (see Figure 6-1) Data Sheet 25 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Typical Characteristics CURRENT CONSUMPTION vs OPERATING SUPPLY VDD CURRENT CONSUMPTION vs TEMPERATURE 0.80 OUTx High OUTx Low 0.65 IDD [mA] IDD [mA] 0.8 0.6 0.4 0.50 OUTx High 0.35 Tj=25°C ENx floating (VDD) OUTx Low 0.2 0.20 0 10 VDD [V] -50 20 0 50 100 T junction [°C] 150 CURRENT CONSUMPTION vs FREQUENCY '50 Tamb 25°C Input 50%@3.3V Device self-heating Load 1.8nF serial '40 I DD [mA] VDD=12V ENx NC VDD 4,5V '30 VDD 12V VDD 20V '20 '10 '0 0 250 500 750 Frequency [kHz] 1000 Figure 7-8 Power consumption related to temperature, supply voltage and frequency Data Sheet 26 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Typical Characteristics REVERSE CURRENT @OUTx with OUTx HIGH vs REVERSE VOLTAGE REVERSE CURRENT @OUTx with OUTx LOW vs REVERSE VOLTAGE -1.5 7.5 Test Conditions: Tj = 25°C, 1µs positive Pulse fsw = 1kHz -3.0 2.5 W 10 W IOUT [A] IOUT [A] 6.0 Test Conditions: Tj = 25°C, 1µs negative Pulse fsw = 1kHz 4.5 7.5 W 3.0 5W -4.5 5W 7.5 W -6.0 10 W 2.5 W 1.5 0.0 -7.5 0.8 1.0 1.3 1.5 VOUT [V] 1.8 -2.3 2.0 -2.0 -1.8 -1.5 VOUT [V] -1.3 -1.0 Figure 7-9 Output OUTx with reverse current and resulting power dissipation Data Sheet 27 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Outline Dimensions 8 Outline Dimensions Notes 1. For further information on package types, recommendation for board assembly, please go to: http://www.infineon.com/cms/en/product/technology/packages/. 8.1 PG-DSO-8-60 Figure 8-1 PG-DSO-8 outline Figure 8-2 PG-DSO-8 footprint Data Sheet 28 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Outline Dimensions Figure 8-3 PG-DSO-8 packaging 8.2 PG-TSSOP-8-1 Figure 8-4 PG-TSSOP-8 outline Data Sheet 29 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Outline Dimensions Figure 8-5 PG-TSSOP-8 footprint Figure 8-6 PG-TSSOP-8 packaging Data Sheet 30 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Outline Dimensions 8.3 PG-WSON-8-1 Figure 8-7 PG-WSON-8 outline Figure 8-8 PG-WSON-8 footprint Data Sheet 31 Revision 2.1, 2016-01-19 EiceDRIVER™ 2EDN752x / 2EDN852x Outline Dimensions Figure 8-9 PG-WSON-8 packaging Data Sheet 32 Revision 2.1, 2016-01-19 Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I2RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, myd™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 www.infineon.com Edition 2016-01-19 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: [email protected] Document reference Doc_Number Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.