A pp lica t ion Note , V 1.0 , Ju ly 20 0 4 TDA52xx Incr e asing th e Se nsitivit y of t he TD A5 2xx Re ceiver s W i re l e s s C o n t r o l Co mpo ne nts N e v e r s t o p t h i n k i n g . Edition 2004-07-01 Published by Infineon Technologies AG, Am Campeon 1-12, D-85579 Neubiberg, Germany © Infineon Technologies AG 2004. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or the Infineon Technologies Companies and our Infineon Technologies Representatives worldwide (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. A pp lica t ion Note , V 1.0 , Ju ly 20 0 4 TDA52xx Incr e asing th e Se nsitivit y of t he TD A5 2xx Re ceiver s W i re l e s s C o n t r o l Co mpo ne nts N e v e r s t o p t h i n k i n g . TDA52xx Revision History: 2004-07-01 Previous Version: none Page V 1.0 Subjects (major changes since last revision) We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] TDA52xx Table of Contents 1 1.1 1.2 1.3 Page Increasing the Sensitivity of the TDA52xx Receivers . . . . . . . . . . . . . . 7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Sensitivity with and without External Amplifier . . . . . . . . . . . . . . . . . . . . . . . 8 Low-Cost, Widebande, Low-Current, UHF Feedback Low Noise Amplifier 10 Application Note 5 V 1.0, 2004-07-01 TDA52xx Increasing the Sensitivity of the TDA52xx Receivers 1 Increasing the Sensitivity of the TDA52xx Receivers 1.1 Introduction The sensitivity of a receiver mainly depends on the matching networks on the low noise amplifier (LNA) input and output. On the one hand the LNA can be matched to maximum gain (“simultaneous conjugate match”) or to minimum noise figure (NF), for instance. On the other hand the matching network can be optimised for the best selectivity or for the lowest losses (see also App. Note). The efficiency of the matching network is ⎛ Q ⎞ ⎝ U 2 η = ⎜⎜1 − L ⎟⎟ Q ⎠ QL ...loaded Q QU ...unloaded Q So it can be easily seen, that the higher the selectivity (the higher the loaded Q) of the matching network the higher the losses or the lower the efficiency of the network. Most of the applications, especially automotive applications, require a certain selectivity of the matching network or even a SAW-Filter in the front of the receive chain. Therefore a compromise is realised in the design of the INFINEON evaluation boards, resulting in filter losses of about 3dB. In addition the evaluation boards are rather designed for maximum gain than for minimum noise figure. To achieve a higher sensitivity either the input matching network of the LNA can be optimised towards minimum noise figure and to smaller losses (wider BW), or an external amplifier with a smaller minimum NF can be used for an additional enhancement of the sensitivity (see Table 1.3). Increasing the sensitivity, as described above, yields smaller selectivity and (using an external amplifier additional to) smaller large signal stability. Application Note 7 V 1.0, 2004-07-01 TDA52xx Increasing the Sensitivity of the TDA52xx Receivers 1.2 Sensitivity with and without External Amplifier According to the Friis-Formula NFsys = NF1 + NFn − 1 NF2 − 1 NF3 − 1 + + ... + G1 G1 ⋅ G2 G1 ⋅ G2 ⋅ G3 ⋅ ... ⋅ Gn −1 ⎛ ⎞ NF2 − 1 NF3 − 1 NFn − 1 ⎟ NFsys dB =10 ⋅ log⎜⎜ NF1 + + + ... + G1 G1 ⋅ G2 G1 ⋅ G2 ⋅ G3 ⋅ ... ⋅ Gn −1 ⎟⎠ ⎝ the use of an external amplifier (LNA) as described in chapter “3. Low-Cost, Wideband, Low-Current, UHF Feedback Low Noise Amplifier” with an almost lossless input matching network (0,2dB) and a matching to a NF of only 1,4dB, yields an enhanced sensitivity as shown in the table below (see also the calculation example below). Table 1 Enhancement of the sensitivity by using external LNA (cont’d) Board and Frequency Sensitivity Infineon Evalboard [dBm] with external LNA [dBm] TDA5211 315MHz -113,1 -116,9 TDA5210 434MHz -110,1 -116,5 TDA5210 868MHz -110,5 -115 TDA5212 915MHz -110 -114,5 Values were measured on INFINEON evalboards in the laboratory. Example for a 315MHz application: Without external LNA: LNA matching network: NF M. L. = 2,6dB = 1,8197 Gain M. L. = -2,6dB = 0,5495 LNA: NF LNA = 3dB = 1,9953 Gain LNA = 18,5dB = 70,795 Mixer: NF Mix = 10dB = 10 Gain Mix = 15,5dB = 35,481 Limiter: NF Limiter = 10dB = 10 These values are according to a typical Infineon evalboard. Application Note 8 V 1.0, 2004-07-01 TDA52xx Increasing the Sensitivity of the TDA52xx Receivers NFsys = 1,8197 + 1,9953 − 1 10 − 1 10 − 1 + + 0,5495 0,5495 ⋅ 70,8 0,5495 ⋅ 70,8 ⋅ 35,5 NFsys = 1,8197 + 1,8111 + 0,23134 + 0,00652 = 3,86864 NFsys dB = 10 ⋅ log(3,86864 ) = 5,88 With external LNA: External matching network: NF ext. M. = 0,2dB = 1,047 Gain ext. M. = -0,2dB = 0,955 External LNA: NF ext. LNA = 1,6dB = 1,445 Gain ext. M. = 14,8dB = 30,2 LNA Matching network: NF L.M. = 2,6dB = 1,8197 Gain L.M. = -2,6dB = 0,5495 LNA: NF LNA = 3dB = 1,9953 Gain LNA = 18,5dB = 70,795 Mixer: NF Mix = 10dB = 10 Gain Mix = 15,5dB = 35,481 Limiter: NF Limiter = 10dB = 10 1,445 − 1 1,8197 − 1 1,9953 − 1 + + + 0,955 0,955 ⋅ 30,2 0,955 ⋅ 30,2 ⋅ 0,5495 10 − 1 10 − 1 + + 0,955 ⋅ 30,2 ⋅ 0,5495 ⋅ 70,8 0,955 ⋅ 30,2 ⋅ 0,5495 ⋅ 70,8 ⋅ 35,5 NFsys = 1,047 + NFsys = 1,047 + 0,46643 + 0,02842 + 0,0628 + 0,00802 + 0,000226 = 1,61303 NFsys dB =10 ⋅ log(1,61303) = 2,08 The calculation indicates a 3,8dB lower NF of the application using the external amplifier than the application without the external amplifier. This is exactly the same value as the measurement shown in the Table 1. Note: As explained above a lower loaded Q yields lower selectivity but higher efficiency and therefore a higher sensitivity. For a multiple stage amplifier chain, however, a matching for minimum noise (of the first stage) yields minimum noise figure. Application Note 9 V 1.0, 2004-07-01 TDA52xx Increasing the Sensitivity of the TDA52xx Receivers However this brings along lower gain than at simultaneous conjugate match and therefore a higher influence of the NF of the following stage(s) is to be expected. Accordingly the minimum NF of the system is not reached exactly at the minimum NF. Changing the matching of an amplifier with a relatively high gain to minimum NF, the reduction of the NF of the system is only slightly smaller than the reduction of the NF of the first stage (see the Friis-Formula) 1.3 Low-Cost, Widebande, Low-Current, UHF Feedback Low Noise Amplifier For detailed information please see documents below. Application Note 10 V 1.0, 2004-07-01 LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA May 7, 2003 A Low-Cost, Wideband, Low-Current UHF Feedback Low Noise Amplifier using the BFP540F Transistor in Ultra-Small TSFP-4 Package. Preliminary Results, Revision A. Overview: • The BFP540F is investigated for use as a low-current, wideband feedback LNA to explore feasibility as an external LNA for boosting sensitivity / range of Infineon Technologies’ Remote Keyless Entry ICs in the TDA52x0 / TDA52x1 family. • Design Goals: Gain > 15 dB, Noise Figure < 2.0 dB, Input / Output Return Loss 10 dB or better from 300 to 928 MHz, current < 4 mA. Another goal: to provide one external LNA solution that is usable over the 315 – 900 MHz frequency range, for improving sensitivity / range of the Infineon Technologies Remote Keyless Entry (RKE) receiver products TDA52x0 / TDA52x1 in a variety of applications. Note this LNA should improve range of TDA52xx by a factor of approximately two. Note M. Thomas has verified in the lab a 5 – 6 dB improvement in sensitivity with a similar external LNA and TDA5212 receiver IC. • Potential target markets with established customer base for TDA52xx RKE products requiring improved sensitivity / improved range (e.g. requiring external LNAs) include • High volume NAFTA automotive market for remote keyless entry systems (RKE) at 315 MHz • Security market at 345 MHz (e.g. alarm systems controlled with radio links) • Garage door opener market, 390 MHz range • European automotive RKE market at 434 MHz • Various 900 MHz ISM Band Applications in the 902-928 NAFTA ISM Band. • Printed Circuit Board is PCB 540F-041503 Rev A. Standard FR4 material is used in a simple, low-cost two-layer 0.062 inch thick PC board design. No chip coils are required for this LNA design, further reducing cost. (Only resistors and capacitors are required). • Low-cost, standard SMT passive components are used throughout, “0402” case size. Please refer to schematic and Bill Of Material. The LNA is unconditionally stable from 5 MHz to 6 GHz. Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 1 / 17 Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA • Total PCB area used for the single LNA stage is approximately 50 mm2. including the BFP540F transistor, is 10. Total Parts count, Achieved ≅ 15 dB gain, 1.5 to 1.6 dB Noise Figure from 300 – 900 MHz, on 5.0V supply, drawing 3.5mA. Note noise figure result does NOT “back out” FR4 PCB losses – if the PCB loss at LNA input were extracted, Noise Figure result would be approximately 0.1 to 0.2 dB lower. • PCB Cross – Section Diagram: PCB CROSS SECTION SHOWING "FINISHED" PCB THICKNESS. NOTE THIS IS A SIMPLE 2-LAYER PC BOARD. TOP LAYER 0.062 inch / 1.57 mm SPECIFICATION FOR TOTAL "FINISHED" PCB THICKNESS INCLUDING PLATING AND SOLDERMASK: 0.062 + 0.005 / - 0.005 INCH) BOTTOM LAYER (GROUND PLANE) Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 2 / 17 Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Summary of LNA Data : (T = 25 C). Parameter Frequency Range DC Current Network analyzer source power = -30 dBm Result Comments 250 – 950 MHz 315, 345, 390, 434 and 900 MHz ISM bands covered 3.5 mA DC Voltage, Vcc 5.0 V 5.0 Volts standard in automotive applications Collector-Emitter Voltage VCE 3.3 V BFP540F VCEMAX = 4.5 V Gain 14.8 dB @ 315 MHz 14.7 dB @ 345 MHz 14.5 dB @ 434 MHz 13.4 dB @ 915 MHz Gain target is G > 15 dB. Possible to increase gain slightly via re-tuning (future work). 1.6 dB @ 315 MHz 1.6 dB @ 345 MHz 1.6 dB @ 434 MHz 1.5 dB @ 915 MHz See noise figure plots and tabular data, pages 6 and 7. Noise Figure (These values do NOT extract PCB losses, etc. resulting from FR4 board and passives used on PCB – these results are at input SMA connector) Input P1dB rd Input 3 Order Intercept -22.6 dBm @ 345 MHz See input power sweep vs. gain plot, pg. 11 To Be Determined Input Return Loss 10.0 dB @ 315 MHz 10.0 dB @ 345 MHz 9.9 dB @ 434 MHz 9.7 dB @ 915 MHz Good broadband match. Output Return Loss 15.7 dB @ 315 MHz 15.6 dB @ 345 MHz 15.2 dB @ 434 MHz 13.0 dB @ 915 MHz Good broadband match. Reverse Isolation 21.2 dB @ 315 MHz 21.2 dB @ 345 MHz 21.3 dB @ 434 MHz 21.7 dB @ 915 MHz Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 3 / 17 Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Bill Of Material, Broadband BFP540F UHF Feedback LNA: REFERENCE DESIGNATOR VALUE MANUFACTURER CASE SIZE FUNCTION C1 C2 390 pF 390 pF VARIOUS VARIOUS 0402 0402 C3 C4 C5 390pF 0.1 uF 390 pF VARIOUS VARIOUS VARIOUS 0402 0402 0402 R1 R2 R3 120K 560 ohms 300 ohms VARIOUS VARIOUS VARIOUS 0402 0402 0402 R4 180 ohms VARIOUS 0402 Q1 - INFINEON TECHNOLOGIES SOT343 J1, J3 J3 - JOHNSON 142-0701-841 AMP 5 PIN HEADER MTA-100 SERIES 640456-5 (STANDARD PIN PLATING) OR 641215-5 (GOLD PLATED PINS) - RF INPUT / OUTPUT CONNECTORS DC CONNECTOR - PINS 1, 5 = GROUND PIN 3 = VCC PINS 2,4 = NO CONNECTION Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 4 / 17 DC BLOCKING, INPUT DC BLOCK FOR FEEDBACK NETWORK OUTPUT DC BLOCK DECOUPLING, LOW FREQUENCY DECOUPLING DC BIAS FOR BASE OF Q1 FEEDBACK RESISTOR FOR LNA BRING DC TO COLLECTOR; HIGH RESISTOR VALUE DOES NOT “LOAD” LNA OUTPUT PROVIDES SOME NEGATIVE FEEDBACK FOR DC BIAS / DC OPERATING POINT TO COMPENSATE FOR VARIATIONS IN TRANSISTOR DC CURRENT GAIN, TEMPERATURE VARIATIONS, ETC. ALSO DROPS 5 VOLTS DOWN TO 4.4 VOLTS (BELOW MAXIMUM COLLECTOR-EMITTER VOLTAGE FOR BFP540F) BFP540F B6HFe TRANSISTOR 30 GHz fT Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Schematic Diagram for UHF LNA: (Note low parts count and simple design. No chip inductors are required.) V cc = 5.0V J3 DC Connector PCB = 540F- 041503 Rev A PC Board Material = Standard FR4 Two Layer, 0.062 inch spacing I = 3.5 mA R4 180 ohms (0402) C4 0.1uF (0402 ) R1 120K (0402) R2 560 ohms (0403) C5 390pF (0402) C2 390pF (0403) R3 300 ohms (0402) J1 J2 RF OUTPUT RF INPUT C1 390pF (0402) Q1 BFP540F Transistor C3 390pF (0402) Note: black rectangles are 50 ohm traces or "tracks" on the Printed Circuit Board - these marks are NOT Surface-Mount Components. Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 5 / 17 Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Noise Figure, Plot. Center of Plot (x-axis) is 550 MHz. Rohde & Schwarz FSEK3 08 May 2003 Noise Figure EUT Name: Manufacturer: Operating Conditions: Operator Name: Test Specification: Comment: BFP540F Low Current Broadband UHF Feedback LNA Infineon Technologies V=5.0 V, Vce=3.3V, I=3.5mA, T = 25 C G. Wevers / M. Thomas 315, 390, 434 & 915 MHz On BFP540F PCB 540F-041503 Rev A 7 May 2003 Analyzer RF Att: Ref Lvl: 0.00 dB -43.00 dBm RBW : VBW : 1 MHz 100 Hz Range: 40.00 dB Ref Lvl auto: ON Measurement 2nd stage corr: ON Mode: Direct ENR: HP346A.ENR Noise Figure /dB 2.00 1.90 1.80 1.70 1.60 1.50 1.40 1.30 1.20 1.10 1.00 150 MHz 80 MHz / DIV Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 6 / 17 950 MHz Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA = LNA NOISE FIGURE = From Rohde & Schwarz FSEK3 + FSEB30 System Preamplifier = MITEQ SMC-02 Frequency Nf 150 MHz 175 MHz 200 MHz 225 MHz 250 MHz 275 MHz 300 MHz 325 MHz 350 MHz 375 MHz 400 MHz 425 MHz 450 MHz 475 MHz 500 MHz 525 MHz 550 MHz 575 MHz 600 MHz 625 MHz 650 MHz 675 MHz 700 MHz 725 MHz 750 MHz 775 MHz 800 MHz 825 MHz 850 MHz 875 MHz 900 MHz 925 MHz 950 MHz 1.46 dB 1.43 dB 1.43 dB 1.50 dB 1.52 dB 1.57 dB 1.56 dB 1.56 dB 1.57 dB 1.60 dB 1.61 dB 1.57 dB 1.60 dB 1.57 dB 1.59 dB 1.59 dB 1.58 dB 1.58 dB 1.55 dB 1.56 dB 1.54 dB 1.54 dB 1.52 dB 1.52 dB 1.49 dB 1.50 dB 1.47 dB 1.48 dB 1.49 dB 1.50 dB 1.48 dB 1.48 dB 1.48 dB Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 7 / 17 Temp 116 K 113.4 K 113 K 119.6 K 121.8 K 126 K 125.2 K 125.7 K 126.5 K 129.2 K 129.8 K 126.2 K 129.4 K 126.5 K 128.3 K 128.5 K 127.1 K 127.7 K 124.3 K 125 K 123.5 K 123.9 K 121.6 K 121.2 K 118.9 K 120.1 K 116.4 K 117.8 K 118.2 K 119.7 K 117.9 K 117.8 K 117.7 K Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Scanned Image of PC Board Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 8 / 17 Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Scanned Image of PC Board, Close-In Shot: Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 9 / 17 Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Stabilty Factor “K” and Stabilty Measure “B1”. Note that if K > 1 and B1 > 0, the amplifier is unconditionally stable. Measured LNA s-parameters were taken on a Network Analyzer & then imported into GENESYS simulation package, which calculates and plots K and B1. Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 10 / 17 Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Power Sweep at 345 MHz (CW) Source Power (Input) Swept from –35 to -10 dBm Input P1dB ≅ -22.6 dBm CH1 S 21 log MAG 1 dB/ REF 15 dB 8 May 2003 00:50:00 2_: 13.85 dB -22.6 dBm PRm 1_: 14.845 dB -35.0 dBm Cor Smo 1 START -35.0 dBm 2 CW 345.000 000 MHz Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 11 / 17 STOP -10.0 dBm Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Input Return Loss, Log Mag, Wide Sweep (5 MHz – 6 GHz) CH1 S 11 log MAG 5 dB/ REF 0 dB 8 May 2003 00:20:45 1_:-10.042 dB 315.000 000 MHz PRm 2_:-10.009 dB 345 MHz Cor 3_:-9.9004 dB 434 MHz Del 4_:-9.6675 dB 915 MHz 1 23 START 4 5.000 000 MHz STOP 6 000.000 000 MHz Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 12 / 17 Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Input Return Loss, Smith Chart, Wide Sweep (5 MHz – 6 GHz) Reference plane = PCB Input SMA Connector CH1 S 11 1 U FS 8 May 2003 00:21:01 -34.441 14.67 pF 1_: 67.137 315.000 000 MHz PRm 2_: 63.676 -34.979 345 MHz Cor 3_: 54.633 -35.043 434 MHz Del 4_: 30.522 -18.863 915 MHz 1 4 START 3 5.000 000 MHz STOP 6 000.000 000 MHz Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 2 13 / 17 Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Forward Gain, Wide Sweep (5 MHz – 6 GHz) CH1 S 21 log MAG 5 dB/ REF 0 dB 8 May 2003 00:21:16 1_: 14.772 dB 315.000 000 MHz PRm Cor 2_: 14.7 dB 345 MHz 1 3_: 14.548 dB 434 MHz Del 23 4_: 13.352 dB 915 MHz 4 START 5.000 000 MHz STOP 6 000.000 000 MHz Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 14 / 17 Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Reverse Isolation, Wide Sweep (5 MHz – 6 GHz) CH1 S 12 log MAG 5 dB/ REF 0 dB 8 May 2003 00:21:21 1_:-21.199 dB 315.000 000 MHz PRm 2_:-21.211 dB 345 MHz Cor 3_:-21.279 dB 434 MHz Del 4_:-21.721 dB 915 MHz 1 23 START 4 5.000 000 MHz STOP 6 000.000 000 MHz Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 15 / 17 Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Output Return Loss, Log Mag, Wide Sweep (5 MHz – 6 GHz) CH1 S 22 log MAG 5 dB/ REF 0 dB 8 May 2003 00:21:32 1_:-15.728 dB 315.000 000 MHz PRm 2_:-15.597 dB 345 MHz Cor 3_:-15.18 dB 434 MHz Del 4_:-13.056 dB 915 MHz 1 4 23 START 5.000 000 MHz STOP 6 000.000 000 MHz Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 16 / 17 Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] LWR # SD 00026 LNA P Silicon Discretes – BFP540F Broadband UHF Feedback LNA Output Return Loss, Smith Chart, Wide Sweep (5 MHz – 6 GHz) Reference Plane = PCB Output SMA Connector CH1 S 22 1 U FS 8 May 2003 00:21:39 -8.5898 58.82 pF 1_: 67.227 315.000 000 MHz PRm 2_: 66.973 -9.5273 345 MHz Cor 3_: 66.195 -12.379 434 MHz Del 4_: 51.393 -23.057 915 MHz 1 2 3 4 START 5.000 000 MHz STOP 6 000.000 000 MHz Infineon Technologies, Inc. Business Operation RF, Applications Engineering 1365 South Calistoga Ave. Meridian, ID 83642-6479 USA 17 / 17 Gerard Wevers TEL: 208.898.0823 FAX: 208.898.0826 email: [email protected] Results of Temperature Test, BFP540F Low Current Broadband UHF Broadband LNA Application (per forthcoming applications note AN084) July 1, 2003 G. Wevers PCB = S/N 039 Temperature °C -40 +25 +85 Frequency MHz 315 345 434 915 dB[S11]2 13.6 13.6 13.3 14.2 dB[S21]2 16.3 16.3 16.1 14.9 dB[S12]2 21.6 21.7 21.9 21.8 dB[S22]2 18.6 18.7 17.4 15.1 315 345 434 915 10.8 10.8 10.8 11.4 15.2 15.2 15.0 13.9 21.0 21.1 21.3 21.3 15.0 15.1 14.7 13.7 315 345 434 915 9.7 9.6 9.3 9.2 14.2 14.2 14.0 12.8 20.6 20.7 20.9 21.1 14.1 14.1 13.1 11.6 Gain change @ 315 MHz, cold to hot = -2.1 dB => slope = -0.017 dB / °C Current change, cold to hot = 0.12 mA => slope = 0.001 mA / °C Refer to plots on following pages => Current mA 3.43 3.52 3.55 COLD (-40 C) Input Return Loss, Log Mag CH1 S 11 log MAG 5 dB/ REF 0 dB 1 Jul 2003 10:22:49 1_:-13.555 dB 315.000 000 MHz 2_:-13.554 dB 345 MHz Cor 3_:-13.272 dB 434 MHz Del Avg 10 Smo 4_:-14.211 dB 915 MHz 1 2 START 5.000 000 MHz 3 4 STOP 1 000.000 000 MHz COLD (-40 C) Input Return Loss, Smith Chart (Reference Plane = SMA Input RF Connector on PC Board) CH1 S 11 1 U FS 1 Jul 2003 10:23:08 -20.469 24.684 pF 1_: 62.717 315.000 000 MHz 2_: 60.383 -21.201 345 MHz Cor 3_: 55.318 -22.787 434 MHz Del Avg 10 Smo 4_: 37.225 -11.771 915 MHz 1 4 START 5.000 000 MHz 3 2 STOP 1 000.000 000 MHz COLD (-40 C) Forward Gain CH1 S 21 log MAG 5 dB/ REF 0 dB 1 Jul 2003 10:24:04 1_: 16.314 dB 315.000 000 MHz 2_: 16.299 dB 345 MHz Cor 3_: 16.114 dB 434 MHz Del Avg 10 Smo 4_: 14.892 dB 915 MHz 1 2 START 5.000 000 MHz 3 4 STOP 1 000.000 000 MHz COLD (-40 C) Reverse Isolation CH1 S 12 log MAG 5 dB/ REF 0 dB 1 Jul 2003 10:25:25 1_:-21.58 dB 315.000 000 MHz 2_:-21.669 dB 345 MHz Cor 3_:-21.875 dB 434 MHz Del Avg 10 Smo 4_:-21.824 dB 915 MHz 1 2 START 5.000 000 MHz 4 3 STOP 1 000.000 000 MHz COLD (-40 C) Output Return Loss, Log Mag CH1 S 22 log MAG 5 dB/ REF 0 dB 1 Jul 2003 10:26:31 1_:-18.632 dB 315.000 000 MHz 2_:-18.682 dB 345 MHz Cor 3_:-17.355 dB 434 MHz Del Avg 10 Smo 4_:-15.07 dB 915 MHz 1 4 2 START 5.000 000 MHz 3 STOP 1 000.000 000 MHz COLD (-40 C) Output Return Loss, Smith Chart (Reference Plane = SMA Output RF Connector on PC Board) CH1 S 22 1 U FS 1 Jul 2003 10:26:44 -3.8086 132.66 pF 1_: 62.545 315.000 000 MHz 2_: 62.359 -4.168 345 MHz Cor 3_: 64.027 -6.6836 434 MHz Del Avg 10 Smo 4_: 54.941 -18.197 915 MHz 1 23 4 START 5.000 000 MHz STOP 1 000.000 000 MHz ROOM Temperature (+25 C) Input Return Loss, Log Mag CH1 S 11 log MAG 5 dB/ REF 0 dB 1 Jul 2003 08:35:03 1_:-10.807 dB 315.000 000 MHz 2_:-10.84 dB 345 MHz Cor 3_:-10.796 dB 434 MHz Del 4_:-11.413 dB 915 MHz Smo 1 2 START 5.000 000 MHz 3 4 STOP 1 000.000 000 MHz ROOM Temperature (+25 C) Input Return Loss, Smith Chart (Reference Plane = SMA Input RF Connector on PC Board) CH1 S 11 1 U FS 1_: 70.672 1 Jul 2003 08:39:33 -29.238 17.281 pF 315.000 000 MHz 2_: 67.406 -30.184 345 MHz Cor 3_: 59.668 -31.549 434 MHz Del Avg 10 Smo 4_: 34.779 -18.447 915 MHz 1 4 START 5.000 000 MHz 3 2 STOP 1 000.000 000 MHz ROOM Temperature (+25 C) Forward Gain CH1 S 21 log MAG 5 dB/ REF 0 dB 1 Jul 2003 17:03:12 1_: 15.179 dB 315.000 000 MHz 3_: 14.998 dB 434 MHz Del Avg 10 Smo START 2_: 15.176 dB 345 MHz 1 Cor 2 5.000 000 MHz 3 4_: 13.865 dB 4 915 MHz STOP 1 000.000 000 MHz ROOM Temperature (+25 C) Reverse Isolation CH1 S 12 log MAG 5 dB/ REF 0 dB 1 Jul 2003 08:41:41 1_:-21.037 dB 315.000 000 MHz 2_:-21.109 dB 345 MHz Cor 3_:-21.256 dB 434 MHz Del Avg 10 Smo 4_:-21.275 dB 915 MHz 1 2 START 5.000 000 MHz 3 4 STOP 1 000.000 000 MHz ROOM Temperature (+25 C) Output Return Loss, Log Mag CH1 S 22 log MAG 5 dB/ REF 0 dB 1 Jul 2003 08:42:36 1_:-15.038 dB 315.000 000 MHz 2_:-15.079 dB 345 MHz Cor 3_:-14.704 dB 434 MHz Del Avg 10 Smo 4_:-13.658 dB 915 MHz 1 2 START 5.000 000 MHz 4 3 STOP 1 000.000 000 MHz ROOM Temperature (+25 C) Output Return Loss, Smith Chart (Reference Plane = SMA Output RF Connector on PC Board) CH1 S 22 1 U FS 1 Jul 2003 08:42:59 -10.887 46.41 pF 1_: 67.867 315.000 000 MHz 2_: 67.09 -11.504 345 MHz Cor 3_: 66.191 -14.129 434 MHz Del Avg 10 Smo 4_: 50.807 -21.441 915 MHz 1 2 3 4 START 5.000 000 MHz STOP 1 000.000 000 MHz HOT (+85 C) Input Return Loss, Log Mag CH1 S 11 log MAG 5 dB/ REF 0 dB 1 Jul 2003 11:10:02 1_:-9.6725 dB 315.000 000 MHz 2_:-9.601 dB 345 MHz Cor 3_:-9.2743 dB 434 MHz Del Avg 10 Smo 4_:-9.2411 dB 915 MHz 1 2 START 5.000 000 MHz 4 3 STOP 1 000.000 000 MHz HOT (+85 C) Input Return Loss, Smith Chart (Reference Plane = SMA Input RF Connector on PC Board) CH1 S 11 1 U FS 1 Jul 2003 11:10:32 -34.496 14.647 pF 1_: 74.84 315.000 000 MHz 2_: 72.156 -35.82 345 MHz Cor 3_: 64.992 -38.949 434 MHz Del Avg 10 Smo 4_: 35.936 -28.066 915 MHz 1 2 3 4 START 5.000 000 MHz STOP 1 000.000 000 MHz HOT (+85 C) Forward Gain CH1 S 21 log MAG 5 dB/ REF 0 dB 1 Jul 2003 11:11:40 1_: 14.202 dB 315.000 000 MHz Cor Del Avg 10 Smo 2_: 14.193 dB 345 MHz SCALE 5 dB/div 3_: 13.976 dB 434 MHz 4_: 12.843 dB 915 MHz 1 2 START 5.000 000 MHz 3 4 STOP 1 000.000 000 MHz HOT (+85 C) Reverse Isolation CH1 S 12 log MAG 5 dB/ REF 0 dB 1 Jul 2003 11:12:18 1_:-20.646 dB 315.000 000 MHz 2_:-20.699 dB 345 MHz Cor 3_:-20.936 dB 434 MHz Del Avg 10 Smo 4_:-21.066 dB 915 MHz 1 2 START 5.000 000 MHz 3 4 STOP 1 000.000 000 MHz HOT (+85 C) Output Return Loss, Log Mag CH1 S 22 log MAG 5 dB/ REF 0 dB 1 Jul 2003 11:13:46 1_:-14.149 dB 315.000 000 MHz 2_:-14.051 dB 345 MHz Cor 3_:-13.094 dB 434 MHz Del Avg 10 Smo 4_:-11.649 dB 915 MHz 1 4 2 START 5.000 000 MHz 3 STOP 1 000.000 000 MHz HOT (+85 C) Output Return Loss, Smith Chart (Reference Plane = SMA Output RF Connector on PC Board) CH1 S 22 1 U FS 1 Jul 2003 11:13:57 -11.055 45.705 pF 1_: 71.043 315.000 000 MHz 2_: 70.137 -12.879 345 MHz Cor 3_: 70.969 -17.109 434 MHz Del Avg 10 Smo 4_: 56.332 -28.189 915 MHz 1 2 3 4 START 5.000 000 MHz STOP 1 000.000 000 MHz w w w . i n f i n e o n . c o m Published by Infineon Technologies AG