[AK4618] AK4618 192kHz 24-bit 6ch/12ch Audio CODEC with Microphone Interface GENERAL DESCRIPTION The AK4618 is a single chip audio CODEC that includes 6-channel ADC and 12-channel DAC. The 6-channel ADC supports differential/single-ended analog inputs. The high performance 12-channel DAC integrates full-range digital volume control and achieves 106dB dynamic range. A car audio system can be easily designed with an audio DSP and the AK4618. The AK4618 is housed in a space saving 48-pin LQFP package. FEATURES 6ch ADC - Sampling Frequency: 8KHz~48KHz - ADC S/N: 98dB, S/ (N+D): 87dB - I/F format: MSB justified, I2S or TDM 12ch DAC - Sampling Frequency: 8KHz~192KHz - DAC S/N: 106dB, S/ (N+D): 92dB - I/F format: MSB justified, LSB justified (16bit, 24bit), I2S or TDM - Channel Independent Digital Attenuator (Linear 256 steps) Microphone Interface - Single-ended/Differential Input Select - Programmable Gain (+33dB ~ +15dB and 0dB, 3dB step) - Low Noise Microphone Bias Master / Slave mode Master clock - Slave mode: 256fs, 384fs or 512fs (Normal Speed Mode: fs=8kHz 48kHz) 256fs (Double Speed Mode: fs=64kHz 96kHz) 128fs (Quad Speed Mode: fs=128kHz 192kHz) - Master mode: 256fs, 384fs or 512fs (Normal Speed Mode: fs=8kHz 48kHz) 256fs (Double Speed Mode: fs=64kHz 96kHz) 128fs (Quad Speed Mode: fs=128kHz 192kHz) μP I/F: I2C Power supply - Analog Power Supply: 3.0V ~ 3.6V (typ.3.3V) - Digital I/O Power Supply: 3.0V ~ 3.6V (typ.3.3V) Operating temperature range: -40C ~ 105C Package: 48pin LQFP 015000617-E-00 2015/01 -1- [AK4618] ■ Block Diagram MICBIAS MIC Power Supply IN1/IN1P IN1N IN2/IN2P IN2N Audio I/F ADC HPF ADC HPF ADC HPF ADC HPF SDOUT1 SDOUT2 ADC HPF SDOUT3 ADC HPF PDN IN3/IN3P IN3N IN4/IN4P IN4N IN5/IN5P IN5N IN6/IN6P IN6N LOUT1 LPF SCF SCF DAC DATT ROUT1 LPF SCF DAC DATT LOUT2 LPF SCF DAC DATT ROUT2 LOUT3 LPF LPF SCF SCF DAC DAC DATT DATT ROUT3 LPF SCF DAC DATT LOUT4 LPF SCF DAC DATT ROUT4 LPF SCF DAC DATT LOUT5 LPF SCF SCF DAC DATT ROUT5 LPF SCF DAC DATT LOUT6 LPF SCF DAC DATT ROUT6 LPF SCF DAC DATT SDTO1 SDTO2 SDTO3 MCLK MCLK LRCK BICK LRCK BICK SDIN1 SDTI1 SDIN2 SDTI2 SDIN3 SDTI3 SDIN4 SDTI4 SDIN5 SDTI5 SDIN6 SDTI6 Reg REGO uP I/F (I2C) SCL SDA VCOM AVDD1 VSS1 AVDD2 VSS2 TVDD VSS3 Figure 1. Block Diagram 015000617-E-00 2015/01 -2- [AK4618] ■ Ordering Guide AK4618VQ AKD4618 40 +105C 48pin LQFP (0.5mm pitch) Evaluation Board for AK4618 LOUT1 ROUT1 LOUT2 ROUT2 LOUT3 ROUT3 LOUT4 ROUT4 LOUT5 ROUT5 LOUT6 ROUT6 36 35 34 33 32 31 30 29 28 27 26 25 ■ Pin Layout AVDD2 37 24 IN6/IN6P VSS2 38 23 IN6N TVDD 39 22 IN5/IN5P VSS3 40 21 IN5N REGO 41 20 VCOM SDTO1 42 19 VSS1 SDTO2 43 18 AVDD1 17 MICBIAS AK4618VQ Top View 10 11 12 IN1/IN1P IN2N IN2/IN2P 9 IN1N IN3N 8 13 PDN 48 7 BICK SCL SDTI1 IN3/IN3P 6 14 SDTI2 47 5 MCLK SDTI3 IN4N 4 15 SDTI4 46 3 SCL SDTI5 IN4/IN4P 2 16 SDTI6/TDMI 45 1 44 LRCK SDTO3 11 SDA ■ Handling of Unused Pin The unused I/O pins should be processed appropriately as below. Classification Pin Name IN1/IN1P, IN1N, IN2/IN2P, IN2N, IN3/IN3P, IN3N, IN4/IN4P, IN4N, IN5/IN5P, IN5N, IN6/IN6P, IN6N Analog MICBIAS LOUT1-6, ROUT1-6 SDTI1-6 Digital SDTO1-3 015000617-E-00 Setting Open Open Open Connect to VSS3 Open 2015/01 -3- [AK4618] PIN/FUNCTION No. 1 Pin Name LRCK SDTI6 2 TDMI I/O I/O I I 3 4 5 6 7 SDTI5 SDTI4 SDTI3 SDTI2 SDTI1 I I I I I 8 PDN I 9 IN1N I IN1 I IN1P I IN2N I IN2 I IN2P I IN3N I IN3 I IN3P I IN4N I IN4 I IN4P I 17 18 19 MICBIAS AVDD1 VSS1 O - 20 VCOM O 21 IN5N I IN5 I IN5P I IN6N I IN6 I IN6P I ROUT6 LOUT6 O O 10 11 12 13 14 15 16 22 23 24 25 26 Function Input Channel Clock Pin (TDM1-0 bits = “00”) Audio Serial Data Input 6 Pin (TDM1-0 bits = “01” or “10”) TDM Data Input Pin Audio Serial Data Input 5 Pin Audio Serial Data Input 4 Pin Audio Serial Data Input 3 Pin Audio Serial Data Input 2 Pin Audio Serial Data Input 1 Pin Power-Down & Reset Pin When “L”, the AK4618 is powered-down and the control registers are reset to default state. (MDIE1 bit = “1”) Differential Analog Negative input 1 pin (MDIE1 bit = “0”) Single-ended Analog Input 1 pin (MDIE1 bit = “1”) Differential Analog Positive input 1 pin (MDIE2 bit = “1”) Differential Analog Negative input 2 pin (MDIE2 bit = “0”) Single-ended Analog Input 2 pin (MDIE2 bit = “1”) Differential Analog Positive input 2 pin (MDIE3 bit = “1”) Differential Analog Negative input 1 pin (MDIE3 bit = “0”) Single-ended Analog Input 1 pin (MDIE3 bit = “1”) Differential Analog Positive input 1 pin (MDIE4 bit = “1”) Differential Analog Negative input 2 pin (MDIE4 bit = “0”) Single-ended Analog Input 2 pin (MDIE4 bit = “1”) Differential Analog Positive input 2 pin Microphone bias pin. Analog Power Supply Pin, 3.0V3.6V Ground Pin, 0V Common Voltage Output Pin, AVDD1x1/2 Large external capacitor around 1µF is used to reduce power-supply noise. (MDIE5 bit = “1”) Differential Analog Negative input 1 pin (MDIE5 bit = “0”) Single-ended Analog Input 1 pin (MDIE5 bit = “1”) Differential Analog Positive input 1 pin (MDIE6 bit = “1”) Differential Analog Negative input 2 pin (MDIE6 bit = “0”) Single-ended Analog Input 2 pin (MDIE6 bit = “1”) Differential Analog Positive input 2 pin Rch Analog Output 6 Pin Lch Analog Output 6 Pin 015000617-E-00 2015/01 -4- [AK4618] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 ROUT5 LOUT5 ROUT4 LOUT4 ROUT3 LOUT3 ROUT2 LOUT2 ROUT1 LOUT1 AVDD2 VSS2 TVDD VSS3 O O O O O O O O O O - Rch Analog Output 5 Pin Lch Analog Output 5 Pin Rch Analog Output 4 Pin Lch Analog Output 4 Pin Rch Analog Output 3 Pin Lch Analog Output 3 Pin Rch Analog Output 2 Pin Lch Analog Output 2 Pin Rch Analog Output 1 Pin Lch Analog Output 1 Pin Analog Power Supply Pin, 3.0V3.6V Ground Pin, 0V Digital Power Supply Pin, 3.0V3.6V Ground Pin, 0V Regulator Output Pin 41 REGO O This pin should be connected to ground with 1.0uF. 42 SDTO1 O Audio Serial Data Output Pin1 43 SDTO2 O Audio Serial Data Output Pin2 44 SDTO3 O Audio Serial Data Output Pin3 45 SDA I/O Control Data Input Pin in I2C Bus Serial control mode 46 SCL I Control Data Clock Pin in I2C Bus serial control mode 47 MCLK I External Master Clock Input Pin 48 BICK I/O Audio Serial Data Clock Pin Note 1. All digital input pins must not be allowed to float. 015000617-E-00 2015/01 -5- [AK4618] ABSOLUTE MAXIMUM RATINGS (VSS1 ~ 3 = 0V; Note 2) Parameter Symbol Min. Max. Power Supplies Analog1 AVDD1 -0.3 6.0 Analog2 AVDD2 -0.3 6.0 Digital1 TVDD -0.3 6.0 Input Current (any pins except for supplies) IIN 10 Analog Input Voltage VINA -0.3 AVDD1+0.3 Digital Input Voltage (MCLK, LRCK, BICK, SDTI1-6/TDMI, SCL, SDA, PDN pins) VIND -0.3 TVDD+0.3 Ambient Temperature (power applied)(Note 3) Ta -40 105 Storage Temperature Tstg -65 150 Note 2. All voltages with respect to ground. VSS1 ~ 3 must be connected to the same analog ground plane. Note 3. In case that PCB wiring density is 100%. Unit V V V mA V V C C WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. RECOMMENDED OPERATING CONDITIONS (VSS1 ~ 3 = 0V; Note 2) Parameter Symbol Min. Typ. Max. Unit Power Supplies Analog AVDD1, AVDD2 3.0 3.3 3.6 V (Note 4) Digital TVDD 3.0 3.3 3.6 V Difference AVDD1, AVDD2 – TVDD -0.1 0 +0.1 V Note 4. The power up sequence between AVDD1, AVDD2 and TVDD is not critical. Each power supplies should be powered up during the PDN pin = “L”. The PDN pin should be “H” after all power supplies are powered up. All power supplies should be powered on, only a part of these power supplies cannot be powered off. (Power off means power supplies equal to ground or power supplies are floating.) Do not turn off only the AK4618 under the condition that a surrounding device is powered on and the I2C bus is in use. AVDD1 and AVDD2 must be connected with the same power supply. WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet. 015000617-E-00 2015/01 -6- [AK4618] ANALOG CHARACTERISTICS (Ta=25ºC; AVDD1, AVDD2=TVDD=3.3V, VSS1 ~ 3 =0V, BICK=64fs; Signal frequency 1kHz; Measurement frequency = 20Hz~20kHz @fs=48kHz, 20Hz~40kHz at fs=96kHz, 20Hz~40kHz at fs=192kHz; Unless otherwise specified.) Parameter MIC AMP Input Resistance Gain Min. Max. 40 MGAIN[2:0]bits=0h MGAIN[2:0]bits=1h MGAIN[2:0]bits=2h MGAIN[2:0]bits=3h MGAIN[2:0]bits=4h MGAIN[2:0]bits=5h MGAIN[2:0]bits=6h MGAIN[2:0]bits=7h MIC BIAS Bias Output Voltage Load current = 0mA Load current = 6mA 2.40 2.40 DR (-60dBFS with A-weighted) (A-weighted) MGAIN[2:0]bits=3h(+21dB) MGAIN[2:0]bits=0h(0dB) MGAIN[2:0]bits=3h(+21dB) MGAIN[2:0]bits=0h(0dB) MGAIN[2:0]bits=3h(+21dB) 0.4 30 24 77 88 88 Interchannel Isolation Interchannel Gain Mismatch Gain Drift Input Voltage Single-ended (AIN=0.81x AVDD1) Differential (AIN=±0.81x AVDD1) Power Supply Rejection Ratio (Note 5) DAC Analog Output Characteristics Resolution S/(N+D) (0dBFS) fs=48kHz BW=20kHz 82 fs=96kHz BW=40kHz fs=192kHz BW=40kHz DR (-60dBFS with A-weighted) 100 S/N (A-weighted) 100 Interchannel Isolation Interchannel Gain Mismatch (Note 6) Gain Drift Output Voltage AOUT=0.86x AVDD2 2.54 Load Resistance (AC Load) 5 Load Capacitance Power Supply Rejection (Note 5) Note 5. PSRR is applied to AVDD1, AVDD2 and TVDD with 1kHz, 50mVpp. Note 6. Channel gain mismatch between all output channels (LOUT1-6, ROUT1-6). 015000617-E-00 87 80 98 85 98 85 110 0 20 2.67 ±2.67 60 0.5 24 92 90 90 106 106 100 0 20 2.83 0.7 3.12 30 60 Unit k dB dB dB dB dB dB dB dB 0 15 18 21 24 27 30 33 Load Resistance Load Capacitance ADC Analog Input Characteristics(Differential inputs) Resolution MGAIN[2:0]bits=0h(0dB) S/(N+D) (-1dBFS) S/N Typ. V V k pF Bits dB dB dB dB dB dB dB dB ppm/C Vpp Vpp dB Bits dB dB dB dB dB dB dB ppm/C Vpp k pF dB 2015/01 -7- [AK4618] Parameter Min. Typ. Power Supplies Power Supply Current Normal Operation (PDN pin = “H”) AVDD1+AVDD2 fs=48kHz 55 AVDD1+AVDD2 fs=96kHz, 192kHz 40 TVDD fs=48kHz 8 TVDD fs=96kHz 7 TVDD fs=192kHz 10 Power-down mode (PDN pin = “L”) (Note 7) AVDD1+AVDD2+TVDD 10 Note 7. In the power-down mode, all digital input pins including clock pins are held VSS3. 015000617-E-00 Max. Unit 77 12 mA mA mA mA mA 200 µA 2015/01 -8- [AK4618] FILTER CHARACTERISTICS (fs=48kHz) (Ta= -40 +105C; AVDD1, AVDD2= TVDD=3.0 3.6V) Parameter Symbol ADC Digital Filter (Decimation LPF): Sharp roll-off mode (SD_AD bit = “0”) Passband (Note 8) ±0.16dB PB 0.28dB 3.0dB Min. Typ. Max. Unit 0 - 18.8 kHz 20.0 22.8 0 15.5 - kHz kHz kHz dB 1/fs 1/fs 20.0 22.8 5.5 18.8 2.4 - kHz kHz kHz 1/fs 1/fs 3.7 10.9 24.0 - Hz Hz Hz Stopband (Note 8) SB 28.4 Stopband Attenuation SA 71 Group Delay Distortion 0 ~ 20.0kHz GD Group Delay (Note 10) GD ADC Digital Filter (Decimation LPF): Short delay Sharp roll-off mode (SD_AD bit = “1”) Passband (Note 8) ±0.16dB PB 0 0.28dB 3.0dB Stopband (Note 8) SB 28.4 Stopband Attenuation SA 72 Group Delay Distortion 0 ~ 20.0kHz GD Group Delay (Note 10) GD ADC Digital Filter (HPF): Frequency Response FR 3.0dB (Note 8) 0.5dB 0.1dB 015000617-E-00 2015/01 -9- [AK4618] FILTER CHARACTERISTICS (fs=48kHz) (Ta= -40 +105C; AVDD1, AVDD2= TVDD=3.0 3.6V) Parameter Symbol DAC Digital Filter (LPF): Sharp roll-off mode (DEM=OFF; SD_DA bit=“0” ; SLOW bit=“0”) ±0.06dB PB Passband (Note 8) 6.0dB Stopband SB Passband Ripple PR Stopband Attenuation SA Group Delay Distortion 0 ~ 20.0kHz GD Group Delay (Note 10) GD DAC Digital Filter + Analog Filter: Frequency Response 0 ~ 20.0kHz (Note 11) FR DAC Digital Filter (LPF): Slow roll-off mode (DEM=OFF; SD_DA bit=“0” ; SLOW bit=“1”) Passband (Note 9) ±0.06dB 6.0dB PB Stopband SB Passband Ripple PR Stopband Attenuation SA Group Delay Distortion 0 ~ 20.0kHz GD Group Delay (Note 10) GD DAC Digital Filter + Analog Filter: Frequency Response 0 ~ 20.0kHz (Note 11) FR DAC Digital Filter (LPF): Short delay Sharp roll-off mode (DEM=OFF; SD_DA bit=“1”; SLOW bit=“0”) ±0.06dB Passband (Note 8) PB 6.0dB Stopband SB Passband Ripple PR Stopband Attenuation SA Group Delay Distortion 0 ~ 20.0kHz GD Group Delay (Note 10) GD DAC Digital Filter + Analog Filter: Frequency Response 0 ~ 20.0kHz (Note 11) FR DAC Digital Filter (LPF): Short delay Slow roll-off mode (DEM=OFF; SD_DA bit=“1” ; SLOW bit=“1”) ±0.06dB Passband (Note 9) PB 6.0dB Stopband SB Passband Ripple PR Stopband Attenuation SA Group Delay Distortion 0 ~ 20.0kHz GD Group Delay (Note 10) GD DAC Digital Filter + Analog Filter: Frequency Response 0 ~ 20.0kHz (Note 11) FR 015000617-E-00 Min. Typ. Max. Unit 0 26.2 -0.06 52 - 24.0 0 19.3 21.8 +0.06 - kHz kHz kHz dB dB 1/fs 1/fs - -0.1 - dB 22.5 9.8 - kHz kHz 0 40.1 -4.0 50 0 26.2 -0.06 52 - 0 6.8 kHz dB dB 1/fs 1/fs -4.0 dB +0.06 24.0 6.2 21.8 +0.06 1.7 - -0.1 0 40.1 -4.0 50 - 22.5 - - kHz kHz kHz dB dB 1/fs 1/fs dB 5.8 9.8 +0.06 0.5 - kHz kHz kHz dB dB 1/fs 1/fs -4.0 - dB 2015/01 - 10 - [AK4618] FILTER CHARACTERISTICS (fs=96kHz) (Ta= -40 +105C; AVDD1, AVDD2= TVDD=3.0 3.6V) Parameter Symbol DAC Digital Filter (LPF): Sharp roll-off mode (DEM=OFF; SD_DA bit=“0” ; SLOW bit=“0”) ±0.06dB PB Passband (Note 8) 6.0dB Stopband SB Passband Ripple PR Stopband Attenuation SA Group Delay Distortion 0 ~ 40.0kHz GD Group Delay (Note 10) GD DAC Digital Filter + Analog Filter: Frequency Response 0 ~ 40.0kHz (Note 11) FR DAC Digital Filter (LPF): Slow roll-off mode (DEM=OFF; SD_DA bit=“0” ; SLOW bit=“1”) Passband (Note 9) ±0.06dB 6.0dB PB Stopband SB Passband Ripple PR Stopband Attenuation SA Group Delay Distortion 0 ~ 40.0kHz GD Group Delay (Note 10) GD DAC Digital Filter + Analog Filter: Frequency Response 0 ~ 40.0kHz (Note 11) FR DAC Digital Filter (LPF): Short delay Sharp roll-off mode (DEM=OFF; SD_DA bit=“1”; SLOW bit=“0”) ±0.06dB Passband (Note 8) PB 6.0dB Stopband SB Passband Ripple PR Stopband Attenuation SA Group Delay Distortion 0 ~ 40.0kHz GD Group Delay (Note 10) GD DAC Digital Filter + Analog Filter: Frequency Response 0 ~ 40.0kHz (Note 11) FR DAC Digital Filter (LPF): Short delay Slow roll-off mode (DEM=OFF; SD_DA bit=“1” ; SLOW bit=“1”) ±0.06dB Passband (Note 9) PB 6.0dB Stopband SB Passband Ripple PR Stopband Attenuation SA Group Delay Distortion 0 ~ 40.0kHz GD Group Delay (Note 10) GD DAC Digital Filter + Analog Filter: Frequency Response 0 ~ 40.0kHz (Note 11) FR 015000617-E-00 Min. Typ. Max. Unit 0 52.4 -0.06 52 - 48.0 0 19.3 43.6 +0.06 - kHz kHz kHz dB dB 1/fs 1/fs - -0.3 - dB 45.0 19.6 - kHz kHz 0 80.2 -4.0 50 0 52.4 -0.06 52 - 0 6.8 kHz dB dB 1/fs 1/fs -4.2 dB +0.06 48.0 6.2 43.6 +0.06 1.7 - -0.3 0 80.2 -4.0 50 - 45.0 - - kHz kHz kHz dB dB 1/fs 1/fs dB 5.8 19.6 +0.06 0.5 - kHz kHz kHz dB dB 1/fs 1/fs -4.2 - dB 2015/01 - 11 - [AK4618] FILTER CHARACTERISTICS (fs=192kHz) (Ta= -40 +105C; AVDD1, AVDD2= TVDD=3.0 3.6V) Parameter Symbol Min. Typ. Max. DAC Digital Filter (LPF): Sharp roll-off mode (DEM=OFF; SD_DA bit=“0” ; SLOW bit=“0”) ±0.06dB PB 0 87.2 Passband (Note 8) 96.0 6.0dB Stopband SB 104.8 Passband Ripple PR -0.06 +0.06 Stopband Attenuation SA 52 Group Delay Distortion 0 ~ 80.0kHz 0 GD Group Delay (Note 10) GD 19.3 DAC Digital Filter + Analog Filter: Frequency Response 0 ~ 80.0kHz (Note 11) FR -1.0 DAC Digital Filter (LPF): Slow roll-off mode (DEM=OFF; SD_DA bit=“0” ; SLOW bit=“1”) Passband (Note 9) ±0.06dB 6.0dB 0 160.4 -4.0 50 PB 90.0 39.2 - Unit kHz kHz kHz dB dB 1/fs 1/fs dB kHz kHz Stopband SB kHz Passband Ripple PR dB +0.06 Stopband Attenuation SA dB Group Delay Distortion 0 ~ 80.0kHz 0 1/fs GD Group Delay (Note 10) GD 6.8 1/fs DAC Digital Filter + Analog Filter: Frequency Response 0 ~ 80.0kHz (Note 11) FR -5.0 dB DAC Digital Filter (LPF): Short delay Sharp roll-off mode (DEM=OFF; SD_DA bit=“1”; SLOW bit=“0”) ±0.06dB Passband (Note 8) PB 0 87.2 kHz 96.0 kHz 6.0dB Stopband SB 104.8 kHz Passband Ripple PR dB -0.06 +0.06 Stopband Attenuation SA 52 dB Group Delay Distortion 0 ~ 80.0kHz 1.7 1/fs GD Group Delay (Note 10) GD 6.2 1/fs DAC Digital Filter + Analog Filter: Frequency Response 0 ~ 80.0kHz (Note 11) FR -1.0 dB DAC Digital Filter (LPF): Short delay Slow roll-off mode (DEM=OFF; SD_DA bit=“1” ; SLOW bit=“1”) ±0.06dB Passband (Note 9) PB 0 39.2 kHz 90.0 kHz 6.0dB Stopband SB 160.4 kHz Passband Ripple PR dB -4.0 +0.06 Stopband Attenuation SA 50 dB Group Delay Distortion 0 ~ 80.0kHz 0.5 1/fs GD Group Delay (Note 10) GD 5.8 1/fs DAC Digital Filter + Analog Filter: Frequency Response 0 ~ 80.0kHz (Note 11) FR -5.0 dB Note 8. The passband and stopband frequencies scale with fs (sampling frequency). For example, ADC: Passband (0.1dB) = 0.375 x fs, DAC: Passband (0.06dB) = 0.454 x fs (@ fs=48kHz). Note 9. The passband and stopband frequencies scale with fs (sampling frequency). For example, DAC: Passband (0.06dB) = 0.204 x fs (@ fs=48kHz). Note 10. The calculated delay time is resulting from digital filtering. For the ADC, this time is from the input of an analog signal to the setting of 24bit data for both channels to the ADC output register. For the DAC, this time is from setting the 24 bit data both channels at the input register to the output of an analog signal. Note 11. The reference frequency is 1kHz. 015000617-E-00 2015/01 - 12 - [AK4618] DC CHARACTERISTICS (Ta=-40C+105C; AVDD1, AVDD2= TVDD=3.0 3.6V) Parameter Symbol High-Level Input Voltage VIH (MCLK, LRCK, BICK, SDTI1-6/TDMI, SCL, SDA, PDN pins) Low-Level Input Voltage VIL (MCLK, LRCK, BICK, SDTI1-6/TDMI, SCL, SDA, PDN pins) High-Level Output Voltage (LRCK, BICK, SDTO1-3 pins: Iout=-100µA) VOH Low-Level Output Voltage (LRCK, BICK, SDTO1-3 pins: Iout= 100µA) VOL (SDA pin: Iout= 3mA) VOL Input Leakage Current Iin 015000617-E-00 Min. 70% TVDD Typ. - Max. - Unit V - - 30% TVDD V TVDD-0.5 - - V - - 0.5 0.4 10 V V µA 2015/01 - 13 - [AK4618] SWITCHING CHARACTERISTICS (Ta=-40+105C; AVDD1, AVDD2= TVDD=3.0 3.6V; CL=20pF; unless otherwise specified) Parameter Symbol Min. Typ. Master Clock Timing External Clock 256fsn: fCLK 2.048 Pulse Width Low tCLKL 32 Pulse Width High tCLKH 32 384fsn: fCLK 3.072 Pulse Width Low tCLKL 22 Pulse Width High tCLKH 22 512fsn: fCLK 4.096 Pulse Width Low tCLKL 16 Pulse Width High tCLKH 16 256fsd, 128fsq: fCLK 16.384 Pulse Width Low tCLKL 16 Pulse Width High tCLKH 16 LRCK Timing (Slave mode) Stereo mode (TDM1-0 bits = “00”) Normal Speed Mode fsn 8 Double Speed Mode fsd 64 Quad Speed Mode fsq 128 Duty Cycle Duty 45 TDM512 mode (Note 12) (TDM1-0 bits = “01”) LRCK frequency fsn 8 “H” time tLRH 1/512fs “L” time tLRL 1/512fs TDM256 mode (Note 13) (TDM1-0 bits = “10”) LRCK frequency fsn 8 fsd 64 “H” time tLRH 1/256fs “L” time tLRL 1/256fs TDM128 mode (Note 14) (TDM1-0 bits = “11”) LRCK frequency fsq 128 “H” time tLRH 1/128fs “L” time tLRL 1/128fs LRCK Timing (Master Mode) Stereo mode (TDM1-0 bits = “00”) Normal Speed Mode fsn 8 Double Speed Mode fsd 64 Quad Speed Mode fsq 128 Duty Cycle Duty 50 TDM512 mode (Note 12) (TDM1-0 bits = “01”) LRCK frequency fsn 8 “H” time (Note 15) tLRH 1/16fs TDM256 mode (Note 13) (TDM1-0 bits = “10”) LRCK frequency fsn 8 fsd 64 “H” time (Note 15) tLRH 1/8fs 015000617-E-00 Max. Unit 12.288 MHz ns ns MHz ns ns MHz ns ns MHz ns ns 18.432 24.576 24.576 48 96 192 55 kHz kHz kHz % 48 kHz ns ns 48 96 kHz kHz ns ns 192 kHz ns ns 48 96 192 - kHz kHz kHz % 48 kHz ns 48 96 kHz kHz ns 2015/01 - 14 - [AK4618] TDM128 mode (Note 14) (TDM1-0 bits = “11”) LRCK frequency fsq 128 192 kHz “H” time (Note 15) tLRH 1/4fs ns Note 12. Please use for Normal Speed mode. Master clock should be input the 512fs in Master mode. Note 13. Please use for Normal Speed mode, Double Speed mode. Master clock should be input the 256fs or 512fs in Master mode. Note 14. Please use for Quad Speed mode. Master clock should be input the 128fs in Master mode. Note 15. If the format is I2S, it is “L” time. Parameter Audio Interface Timing (Slave mode) Stereo mode (TDM1-0 bits = “00”) for Normal Speed mode BICK Period BICK Pulse Width Low Pulse Width High LRCK Edge to BICK “” (Note 16) BICK “” to LRCK Edge (Note 16) LRCK to SDTO(MSB) (Except I2S mode) BICK “” to SDTO SDTI Hold Time SDTI Setup Time Stereo mode (TDM1-0 bits = “00”) for Double and Quad Speed mode BICK Period BICK Pulse Width Low Pulse Width High LRCK Edge to BICK “” (Note 16) BICK “” to LRCK Edge (Note 16) SDTI Hold Time SDTI Setup Time TDM512 mode (TDM1-0 bits = “01”) (Note 12) BICK Period BICK Pulse Width Low Pulse Width High LRCK Edge to BICK “” (Note 16) BICK “” to LRCK Edge (Note 16) SDTO Setup time BICK “” SDTO Hold time BICK “” SDTI/TDMI Hold Time SDTI/TDMI Setup Time TDM256 mode (TDM1-0 bits = “10”) (Note 13) BICK Period BICK Pulse Width Low Pulse Width High LRCK Edge to BICK “” (Note 16) BICK “” to LRCK Edge (Note 16) SDTO Setup time BICK “” SDTO Hold time BICK “” SDTI/TDMI Hold Time SDTI/TDMI Setup Time Symbol 015000617-E-00 Min. Typ. Max. Unit tBCK tBCKL tBCKH tLRB tBLR tLRS tBSD tSDH tSDS 324 130 130 20 20 50 50 ns ns ns ns ns ns ns ns ns tBCK tBCKL tBCKH tLRB tBLR tSDH tSDS 81 33 33 23 23 10 10 ns ns ns ns ns ns ns tBCK tBCKL tBCKH tLRB tBLR tBSS tBSH tSDH tSDS 40 16 16 10 10 6 5 5 6 ns ns ns ns ns ns ns ns ns ns tBCK tBCKL tBCKH tLRB tBLR tBSS tBSH tSDH tSDS 40 16 16 10 10 6 5 5 6 ns ns ns ns ns ns ns ns ns ns 80 80 2015/01 - 15 - [AK4618] TDM128 mode (TDM1-0 bits = “11”) (Note 14) BICK Period BICK Pulse Width Low Pulse Width High LRCK Edge to BICK “” (Note 16) BICK “” to LRCK Edge (Note 16) SDTI Hold Time SDTI Setup Time tBCK tBCKL tBCKH tLRB tBLR tSDH tSDS Parameter Symbol Audio Interface Timing (Master mode) Stereo mode (TDM1-0 bits = “00”) for Normal Speed mode BICK Frequency fBCK BICK Duty dBCK BICK “” to LRCK tMBLR tBSD BICK “” to SDTO tSDH SDTI Hold Time tSDS SDTI Setup Time Stereo mode (TDM1-0 bits = “00”) for Double and Quad Speed mode BICK Frequency fBCK BICK Duty (Note 17) dBCK SDTI Hold Time tSDH SDTI Setup Time tSDS TDM512 mode (TDM1-0 bits = “01”) (Note 12) BICK Frequency fBCK BICK Duty (Note 17) dBCK BICK “” to LRCK tMBLR tBSS SDTO Setup time BICK “” tBSH SDTO Hold time BICK “” tSDH SDTI/TDMI Hold Time tSDS SDTI/TDMI Setup Time TDM256 mode (TDM1-0 bits = “10”) (Note 13) BICK Frequency fBCK BICK Duty (Note 17) dBCK BICK “” to LRCK tMBLR tBSS SDTO Setup time BICK “” tBSH SDTO Hold time BICK “” tSDH SDTI/TDMI Hold Time tSDS SDTI/TDMI Setup Time TDM128 mode (TDM1-0 bits = “11”) (Note 14) BICK Frequency fBCK BICK Duty (Note 17) dBCK tMBLR BICK “” to LRCK tSDH SDTI Hold Time tSDS SDTI Setup Time Note 16. BICK rising edge must not occur at the same time as LRCK edge. Note 17. The case that duty of MCLK is 50%. 015000617-E-00 40 16 16 10 10 10 10 ns ns ns ns ns ns ns Min. Typ. Max. Unit 80 80 50 50 64fs 50 - 80 80 - Hz % ns ns ns ns 10 10 64fs 50 - - Hz % ns ns -10 6 5 5 6 512fs 50 10 - Hz % ns ns ns ns ns 10 6 5 5 6 256fs 50 - 10 -- Hz % ns ns ns ns ns 10 10 10 128fs 50 - 10 - Hz % ns ns ns - 2015/01 - 16 - [AK4618] Parameter Control Interface Timing (I2C Bus mode): SCL Clock Frequency Bus Free Time Between Transmissions Start Condition Hold Time (prior to first clock pulse) Clock Low Time Clock High Time Setup Time for Repeated Start Condition SDA Hold Time from SCL Falling (Note 18) SDA Setup Time from SCL Rising Rise Time of Both SDA and SCL Lines Fall Time of Both SDA and SCL Lines Setup Time for Stop Condition Pulse Width of Spike Noise Suppressed by Input Filter Capacitive load on bus Power-down & Reset Timing PDN Pulse Width (Note 19) PDN “” to SDTO valid (Note 20) Symbol Min. fSCL tBUF tHD:STA tLOW tHIGH tSU:STA tHD:DAT tSU:DAT tR tF tSU:STO tSP Cb 1.3 0.6 1.3 0.6 0.6 0 0.1 0.6 0 - tPD tPDV 150 Typ. Max. Unit 400 1.0 0.3 50 400 kHz s s s s s s s s s s ns pF ns 32768/MCLK 1/fs +1059/fs Note 18. Data must be held for sufficient time to bridge the 300 ns transition time of SCL. Note 19. The AK4618 can be reset by setting the PDN pin to “L” upon power-up. The PDN pin must held “L” for more than 150ns for a certain reset. The AK4618 is not reset by the “L” pulse less than 30ns. Note 20. These cycles are the numbers of MCLK and LRCK rising from the PDN pin rising. Note 21. I2C-bus is a trademark of NXP B.V. 015000617-E-00 2015/01 - 17 - [AK4618] ■ Timing Diagram 1/fCLK VIH MCLK VIL tCLKH tCLKL 1/fsn, 1/fsd, 1/fsq VIH LRCK VIL tdLRKH tdLRKL Duty = tdLRKH (or tdLRKL) x fs x 100 tBCK VIH BICK VIL tBCKH tBCKL Figure 2. Clock Timing (TDM1-0 bits = “00” & Slave mode) 1/fCLK VIH MCLK VIL tCLKH tCLKL 1/fs VIH LRCK VIL tLRH tLRL tBCK VIH BICK VIL tBCKH tBCKL Figure 3. Clock Timing (Except TDM1-0 bits = “00” & Slave mode) 015000617-E-00 2015/01 - 18 - [AK4618] 1/fCLK VIH MCLK VIL tCLKH tCLKL 1/fs LRCK 50%TVDD tdLRKH tdLRKL dLRK = tdLRKH (or tdLRKL) x fs x 100 1/fBCK 50%TVDD BICK tdBCKH tdBCKL dBCK = tdBCKH (or tdBCKL) x fs x 100 Figure 4. Clock Timing (TDM1-0 bits = “00” & Master mode) 1/fCLK VIH MCLK VIL tCLKH tCLKL 1/fs LRCK 50%TVDD tLRH 1/fBCK 50%TVDD BICK tdBCKH tdBCKL dBCK = tdBCKH (or tdBCKL) x fs x 100 Figure 5. Clock Timing (Except TDM1-0 bits = “00” & Master mode) 015000617-E-00 2015/01 - 19 - [AK4618] VIH LRCK VIL tBLR tLRB VIH BICK VIL tLRS tBSD SDTO 50%TVDD tSDS tSDH VIH SDTI VIL Figure 6. Audio Interface Timing (TDM1-0 bits = “00” & Slave mode) VIH LRCK VIL tBLR tLRB VIH BICK VIL tBSH tBSS SDTO 50%TVDD tSDS tSDH VIH SDTI VIL Figure 7. Audio Interface Timing (Except TDM1-0 bits = “00” & Slave mode) 015000617-E-00 2015/01 - 20 - [AK4618] LRCK 50%TVDD tMBLR 50%TVDD BICK tBSD 50%TVDD SDTO tSDS tSDH VIH SDTI VIL Figure 8. Audio Interface Timing (TDM1-0 bits = “00” & Master mode) LRCK 50%TVDD tMBLR 50%TVDD BICK tBSS tBSH 50%TVDD SDTO tSDS tSDH VIH SDTI VIL Figure 9. Audio Interface Timing (Except TDM1-0 bits = “00” & Master mode) 015000617-E-00 2015/01 - 21 - [AK4618] VIH SDA VIL tLOW tBUF tR tHIGH tF tSP VIH SCL VIL tHD:STA Stop tHD:DAT tSU:DAT tSU:STA tSU:STO Start Stop Start Figure 10. I2C Bus mode Timing tPD VIH PDN VIL tPDV SDTO 50%TVDD Figure 11. Power-down & Reset Timing 015000617-E-00 2015/01 - 22 - [AK4618] OPERATION OVERVIEW ■ System Clock The external clocks which are required to operate the AK4618 in slave mode are MCLK, LRCK and BICK. MCLK should be synchronized with LRCK but the phase is not critical. There are two methods to set MCLK frequency. In Manual Setting Mode (ACKS bit= “0”: Default), the sampling speed is set by DFS0, DFS1 (Table 1). The frequency of MCLK at each sampling speed is set automatically. (Table 3, Table 4, Table 5). In Auto Setting Mode (ACKS bit= “1”), as MCLK frequency is detected automatically (Table 6) and the internal master clock attains the appropriate frequency (Table 7), so it is not necessary to set DFS. In master mode, only MCLK is required. Master Clock Input Frequency should be set with the CKS1-0 bits, and the sampling speed should be set by the DFS1-0 bits. The frequencies and the duties of the clocks (LRCK, BICK) are not stabile immediately after setting CKS1-0 bits and DFS1-0 bits up. After exiting reset at power-up in slave mode, the AK4618 is in power-down mode until MCLK and LRCK are input. If the clock is stopped, click noise occurs when restarting the clock. Mute the digital output externally if the click noise influences system applications. Note: ADC is automatically powered-down in Doble Speed Mode and Quad Speed Mode. DFS1 0 0 1 1 DFS0 0 1 0 1 Sampling Speed Mode (fs) (default) Normal Speed Mode 8kHz~48kHz Double Speed Mode 64kHz~96kHz Quad Speed Mode 128kHz~192kHz N/A (N/A: Not available) Table 1. Sampling Speed (Manual Setting Mode) CKS1 CKS0 0 0 1 1 0 1 0 1 Normal Speed Mode 256fs 384fs 512fs 512fs Double Speed Mode 256fs 256fs 256fs 256fs Quad Speed Mode 128fs 128fs 128fs 128fs (default) Table 2. Master Clock Input Frequency Select (Master Mode) Note: In Normal Speed Mode, TDM mode (TDM1-0 bits =”01) can be used when CKS1 bit = “1”. LRCK fs 32.0kHz 44.1kHz 48.0kHz 256fs 8.1920 11.2896 12.2880 MCLK (MHz) 384fs 12.2880 16.9344 18.4320 512fs 16.3840 22.5792 24.5760 BICK (MHz) 64fs 2.0480 2.8224 3.0720 Table 3. System Clock Example (Normal Speed Mode @Manual Setting Mode) 015000617-E-00 2015/01 - 23 - [AK4618] LRCK fs 88.2kHz 96.0kHz MCLK (MHz) 256fs 22.5792 24.5760 BICK (MHz) 64fs 5.6448 6.1440 Table 4. System Clock Example (Double Speed Mode @Manual Setting Mode) LRCK fs 176.4kHz 192.0kHz MCLK (MHz) 128fs 22.5792 24.5760 BICK (MHz) 64fs 11.2896 12.2880 Table 5. System Clock Example (Quad Speed Mode @Manual Setting Mode) MCLK 512fs 256fs 128fs Sampling Speed Mode Normal Speed Mode Double Speed Mode Quad Speed Mode Table 6. Sampling Speed (Auto Setting Mode) LRCK fs 32.0kHz 44.1kHz 48.0kHz 88.2kHz 96.0kHz 176.4kHz 192.0kHz 128fs 22.5792 24.5760 MCLK (MHz) 256fs 22.5792 24.5760 - 512fs 16.3840 22.5792 24.5760 - Sampling Speed Mode Normal Speed Mode Double Speed Mode Quad Speed Mode Table 7. System Clock Example (Auto Setting Mode) 015000617-E-00 2015/01 - 24 - [AK4618] ■ De-emphasis Filter The AK4618 has a digital de-emphasis filter (tc=50/15µs) by an IIR filter. The de-emphasis filter supports only Normal Speed Mode. This filter corresponds to three sampling frequencies (32kHz, 44.1kHz, 48kHz). De-emphasis of each DAC can be set individually by registers, DAC1(SDTI1), DAC2(SDTI2), DAC3(SDTI3), DAC4(SDTI4), DAC5(SDTI5), DAC6(SDTI6). Mode Sampling Speed Mode 0 1 2 3 Normal Speed Mode Normal Speed Mode Normal Speed Mode Normal Speed Mode DEM11 (DEM61-21) 0 0 1 1 DEM10 (DEM60-20) 0 1 0 1 DEM 44.1kHz OFF 48kHz 32kHz (default) Table 8. De-emphasis Control ■ Digital High Pass Filter The ADC has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF is 3.7Hz at fs=48kHz and scales with the sampling rate (fs). ■ Master Mode and Slave Mode Master Mode and Slave Mode are selected by setting the MS bit. LRCK and BICK pins are outputs in Master Mode (MS bit= “1”) LRCK and BICK pins are inputs in Slave Mode (MS bit= “0”) The BICK and LRCK pins are in Hi-z state before an internal power up and MS bit = "1". When a problem is occurred by this, pulldown BICK and LRCK pins by external resistance(ex. 100kohm). PDN L H MS bit 0 1 0 1 LRCK pin Input Hi-z Input Output BICK pin Input Hi-z Input Output Table 9. LRCK and BICK pins 015000617-E-00 2015/01 - 25 - [AK4618] ■ Audio Serial Interface Format (1) Stereo Mode When TDM1-0 bits = “00”, ten modes can be selected by the DIF2-0 bits as shown in Table 10. In all modes the serial data is MSB-first, 2’s compliment format. The data SDTO is clocked out on the falling edge of BICK and the SDTI1-6 is latched on the rising edge of BICK. Mode3/4/8/9/13/14/18/19/23/24/28/29/33/34/38/39 in SDTI input formats can be used for 16-20bit data by zeroing the unused LSBs. Mode M/S TDM1 TDM0 DIF2 DIF1 DIF0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 1 0 3 0 0 0 0 1 1 4 0 0 0 1 0 0 SDTO1-3 SDTI1-6 24bit, Left justified (*) 24bit, Left justified 24bit, Left justified 24bit, Left justified 16bit, Right justified 20bit, Right justified 24bit, Right justified 24bit, Left justified 24bit, I2S 24bit, I2S LRCK I/O H/L I H/L I H/L I H/L I L/H I BICK I/O 32fs I 64fs 48fs I 64fs 48fs I 64fs 48fs I 64fs 48fs I 64fs (default) 24bit, Left 16bit, Right H/L O 64fs O justified justified 24bit, Left 20bit, Right 6 1 0 0 0 0 1 H/L O 64fs O justified justified 24bit, Left 24bit, Right 7 1 0 0 0 1 0 H/L O 64fs O justified justified 24bit, Left 24bit, Left 8 1 0 0 0 1 1 H/L O 64fs O justified justified 2 2 9 1 0 0 1 0 0 24bit, I S 24bit, I S L/H O 64fs O Table 10. Audio Data Formats (Stereo mode) (*)When the BICK is less than 48fs, the output data length from SDTO is limited to the clock number of BICK in the half LRCK period. 5 1 0 0 0 0 0 015000617-E-00 2015/01 - 26 - [AK4618] (2) TDM Mode The audio serial interface format is set in TDM mode by the TDM1-0 bits = “01”. Five modes can be selected by the DIF2-0 bits as shown in Table 11. In all modes the serial data is MSB-first, 2’s compliment format. The SDTO is clocked out on the rising edge of BICK and the SDTI1/2/3 are latched on the rising edge of BICK. TDM512 mode can be set by TDM1-0 bits as show in Table 11. In the TDM512 mode (fs = 48kHz), the serial data of all ADC (six channels) is output to the SDTO1 pin, SDTO2/3 pin = “L”. And the serial data of all DAC (twelve channels) is input to the SDTI1 pin. The input data to SDTI2-6 pins are ignored and the SDTI6 pin is used as the TDMI pin in TDM cascade Mode(Figure 32). BICK should be fixed to 512fs. “H” time and “L” time of LRCK should be 1/512fs at least. TDM256 mode can be set by TDM1-0 bits as show in Table 12. In the TDM256 mode (fs =48, 96kHz), the serial data of all ADC (six channels) is output to the SDTO1 pin, SDTO2/3 pin = “L”. And the serial data of DAC (eight channels; L1, R1, L2, R2, L3, R3, L4, R4) is input to the SDTI1 pin. Other four data (L5, R5, L6, R6) are input to the SDTI2 pin. The input data to SDTI3-6 pins are ignored and the SDTI6 pin is used as the TDMI pin in TDM cascade Mode(Figure 32). BICK should be fixed to 256fs. “H” time and “L” time of LRCK should be 1/256fs at least. TDM128 mode can be set by TDM1-0 bits as show in Table 13. TDM128 mode can be set by TDM1-0 bits as show in Table 13. In TDM128 mode (fs=192kHz), SDTO1/2/3 pin = “L”. And the serial data of DAC (four channels; L1, R1, L2, R2) is input to the SDTI1 pin and the serial data of DAC (four channels; L3, R3, L4, R4) is input to the SDTI2 pin, the serial data of DAC (four channels; L5, R5, L6, R6) is input to the SDTI3 pin. The input data to SDTI4-6 pins are ignored. BICK should be fixed to 128fs. “H” time and “L” time of LRCK should be 1/128fs at least. Mode M/S TDM1 TDM0 10 0 0 1 11 0 0 1 12 0 0 1 13 0 0 1 14 0 0 1 15 1 0 1 16 1 0 1 17 1 0 1 18 1 0 1 19 1 0 1 DIF2 DIF1 DIF0 SDTO1 SDTI1 24bit, Left 16bit, Right 0 0 0 justified justified 24bit, Left 20bit, Right 0 0 1 justified justified 24bit, Left 24bit, Right 0 1 0 justified justified 24bit, Left 24bit, Left 0 1 1 justified justified 1 0 0 24bit, I2S 24bit, I2S 24bit, Left 16bit, Right 0 0 0 justified justified 24bit, Left 20bit, Right 0 0 1 justified justified 24bit, Left 24bit, Right 0 1 0 justified justified 24bit, Left 24bit, Left 0 1 1 justified justified 2 1 0 0 24bit, I S 24bit, I2S Table 11. Audio Data Formats (TDM512 mode) 015000617-E-00 LRCK I/O BICK I/O I 512fs I I 512fs I I 512fs I I 512fs I I 512fs I O 512fs O O 512fs O O 512fs O O 512fs O O 512fs O 2015/01 - 27 - [AK4618] Mode M/S TDM1 TDM0 20 0 1 0 21 0 1 0 22 0 1 0 23 0 1 0 24 0 1 0 25 1 1 0 26 1 1 0 27 1 1 0 28 1 1 0 29 1 1 0 Mode M/S TDM1 TDM0 DIF2 DIF1 DIF0 SDTO1 SDTI1-2 24bit, Left 16bit, Right justified justified 24bit, Left 20bit, Right 0 0 1 justified justified 24bit, Left 24bit, Right 0 1 0 justified justified 24bit, Left 24bit, Left 0 1 1 justified justified 2 1 0 0 24bit, I S 24bit, I2S 24bit, Left 16bit, Right 0 0 0 justified justified 24bit, Left 20bit, Right 0 0 1 justified justified 24bit, Left 24bit, Right 0 1 0 justified justified 24bit, Left 24bit, Left 0 1 1 justified justified 1 0 0 24bit, I2S 24bit, I2S Table 12. Audio Data Formats (TDM256 mode) 0 DIF2 0 DIF1 0 DIF0 SDTO1-3 30 0 1 1 0 0 0 L 31 0 1 1 0 0 1 L 32 0 1 1 0 1 0 L 33 0 1 1 0 1 1 L 34 0 1 1 1 0 0 L 35 1 1 1 0 0 0 L 36 1 1 1 0 0 1 L 37 1 1 1 0 1 0 L 38 1 1 1 0 1 1 L 39 1 1 1 1 0 0 L SDTI1-3 16bit, Right justified 20bit, Right justified 24bit, Right justified 24bit, Left justified 24bit, I2S 16bit, Right justified 20bit, Right justified 24bit, Right justified 24bit, Left justified 24bit, I2S LRCK I/O BICK I/O I 256fs I I 256fs I I 256fs I I 256fs I I 256fs I O 256fs O O 256fs O O 256fs O O 256fs O O 256fs O LRCK I/O BICK I/O I 128fs I I 128fs I I 128fs I I 128fs I I 128fs I O 128fs O O 128fs O O 128fs O O 128fs O O 128fs O Table 13. Audio Data Formats (TDM128 mode) 015000617-E-00 2015/01 - 28 - [AK4618] LRCK 0 1 2 16 17 18 24 25 31 0 1 2 16 17 18 24 25 31 0 1 BICK(64fs) SDTO(o) 23 22 SDTI(i) 8 7 Don’t Care 6 0 15 14 8 23 22 7 1 8 7 Don’t Care 0 6 0 15 14 SDTO-23:MSB, 0:LSB; SDTI-15:MSB, 0:LSB Lch Data 23 8 7 1 0 Rch Data Figure 12. Mode 0/5 Timing (Stereo Mode) LRCK 0 1 2 12 13 14 24 25 31 0 1 2 12 13 14 24 25 31 0 1 BICK(64fs) SDTO(o) 23 22 SDTI(i) 12 11 10 0 19 18 8 Don’t Care 23 22 7 1 12 11 10 Don’t Care 0 0 19 18 SDTO-23:MSB, 0:LSB; SDTI-19:MSB, 0:LSB Lch Data 23 8 7 1 0 Rch Data Figure 13. Mode 1/6 Timing (Stereo Mode) LRCK 0 1 2 8 9 10 24 25 31 0 1 2 8 9 10 24 25 31 0 1 BICK(64fs) SDTO(o) 23 22 SDTI(i) 16 15 14 Don’t Care 0 23 22 23:MSB, 0:LSB 23 22 8 7 1 16 15 14 Don’t Care 0 0 23 22 Lch Data 23 8 7 1 0 Rch Data Figure 14. Mode 2/7 Timing (Stereo Mode) LRCK 0 1 2 21 22 23 24 28 29 30 31 0 1 2 22 23 24 28 29 30 31 0 1 BICK(64fs) SDTO(o) SDTI(i) 23 22 2 1 0 23 22 2 1 0 23:MSB, 0:LSB Don’t Care 23 22 2 1 0 23 22 2 1 0 Lch Data 23 Don’t Care 23 Rch Data Figure 15. Mode 3/8 Timing (Stereo Mode) 015000617-E-00 2015/01 - 29 - [AK4618] LRCK 0 1 2 3 22 23 24 25 29 30 31 0 1 2 3 22 23 24 25 29 30 31 0 1 BICK(64fs) SDTO(o) SDTI(i) 23 22 2 1 0 23 22 2 1 0 23:MSB, 0:LSB Don’t Care 23 22 2 1 0 23 22 2 1 0 Lch Data Don’t Care Rch Data Figure 16. Mode 4/9 Timing (Stereo Mode) 512BICK LRCK(Mode15) LRCK(Mode10) BICK(512fs) * SDTO1(o) 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK SDTI1(i) 15 14 0 15 14 0 15 14 R1 L1 15 14 0 0 15 14 R2 L2 0 15 14 0 15 14 R3 L3 15 14 0 15 14 0 R4 L4 0 15 14 0 15 14 R5 L5 15 14 0 0 15 R6 L6 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK TDMI(i) * 23 22 0 23 22 0 23 22 0 23 22 23 22 0 0 23 22 0 23 22 0 23 22 23 22 0 0 23 22 0 23 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK (*: Optional) Figure 17. Mode 10/15 Timing (TDM512 Mode) 512BICK LRCK(Mode16) LRCK(Mode11) BICK(512fs) * SDTO1(o) 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 23 22 0 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK SDTI1(i) 19 18 0 L1 19 18 0 R1 19 18 0 L2 19 18 0 R2 19 18 0 19 18 0 R3 L3 19 18 0 19 18 0 R4 L4 19 18 0 19 18 0 R5 L5 19 18 L6 0 19 18 0 19 R6 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK TDMI(i) * 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK (*: Optional) Figure 18. Mode 11/16 Timing (TDM512 Mode) 015000617-E-00 2015/01 - 30 - [AK4618] 512BICK LRCK(Mode17) LRCK(Mode12) BICK(512fs) SDTO1(o) * 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 23 22 0 0 23 22 0 23 22 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK SDTI1(i) 23 22 0 23 22 0 23 22 R1 L1 23 22 0 0 23 22 R2 L2 0 23 22 0 23 22 R3 L3 23 22 0 23 22 0 R4 L4 0 23 22 0 23 22 R5 L5 23 22 0 0 23 R6 L6 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK TDMI(i) * 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK (*: Optional) Figure 19. Mode 12/17 Timing (TDM512 Mode) 512BICK LRCK(Mode18) LRCK(Mode13) BICK(512fs) * SDTO1(o) 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 23 22 0 0 23 22 0 23 22 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK SDTI1(i) 23 22 0 23 22 0 23 22 R1 L1 0 23 22 0 23 22 R2 L2 0 23 22 0 23 22 R3 L3 0 23 22 0 23 22 R4 L4 0 23 22 0 23 22 R5 L5 0 23 22 0 23 22 R6 L6 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK TDMI(i) * 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK (*: Optional) Figure 20. Mode 13/18 Timing (TDM512 Mode) 512BICK LRCK(Mode19) LRCK(Mode14) BICK(512fs) SDTO1(o) * 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK SDTI1(i) 23 0 L1 23 0 R1 23 0 L2 23 0 23 R2 0 L3 23 0 23 R3 0 L4 23 0 R4 23 0 L5 23 0 R5 23 0 L6 23 0 23 R6 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK TDMI(i) * 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK (*: Optional) Figure 21. Mode 14/19 Timing (TDM512 Mode) 015000617-E-00 2015/01 - 31 - [AK4618] 256 BICK LRCK (Mode25) LRCK (Mode20) BICK(256fs) * SDTO1(o) 23 0 TDMI (i) * 0 23 0 23 0 23 0 23 0 23 0 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 0 15 14 0 15 14 0 15 14 0 15 14 0 15 14 0 15 14 0 15 14 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 15 14 23 23 Data 1 4 SDTI2(i) 0 32 BICK 15 14 SDTI1(i) 23 0 15 14 0 15 14 0 15 14 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 23 0 19 0 Data 7 Data 8 32 BICK 32 BICK 15 0 L5 0 23 23 (*: Optional) Figure 22. Mode 20/25 Timing (TDM256 Mode) 256 BICK LRCK (Mode26) LRCK (Mode21) BICK(256fs) * SDTO1 (o) 23 23 0 23 0 23 0 23 0 23 0 23 0 23 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 0 19 18 0 19 18 0 19 18 0 19 18 0 19 18 0 19 18 0 19 18 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 19 18 SDTI2(i) 23 32 BICK 19 18 SDTI1(i) TDMI (i) * 0 0 19 18 0 19 18 0 19 18 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 0 23 Data 7 Data 8 32 BICK 0 19 0 0 32 BICK 23 19 23 (*: Optional) Figure 23. Mode 21/26 Timing (TDM256 Mode) 015000617-E-00 2015/01 - 32 - [AK4618] 256 BICK LRCK (Mode27) LRCK (Mode22) BICK(256fs) SDTO1 (o) * 23 22 0 23 0 23 0 23 0 23 0 23 0 23 0 23 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 22 SDTI2(i) 23 22 32 BICK 23 22 SDTI1(i) TDMI (i) * 0 0 23 22 0 23 22 0 23 22 0 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 23 0 23 23 23 0 23 Data 7 Data 8 32 BICK 32 BICK (*: Optional) Figure 24. Mode 22/27 Timing (TDM256 Mode) 256 BICK LRCK (Mode28) LRCK (Mode23) BICK(256fs) * SDTO1 (o) SDTI1(i) SDTI2(i) TDMI (i) * 23 0 0 23 0 23 0 23 0 23 0 23 0 23 0 23 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 22 23 23 0 23 22 0 23 22 0 23 22 0 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 0 23 0 Data 7 Data 8 32 BICK 32 BICK 23 22 23 22 23 (*: Optional) Figure 25. Mode 23/28 Timing (TDM256 Mode) 015000617-E-00 2015/01 - 33 - [AK4618] 256 BICK LRCK (Mode29) LRCK (Mode24) BICK(256fs) * SDTO1 (o) SDTI1(i) SDTI2(i) TDMI (i) * 23 0 23 0 23 0 23 0 23 0 23 23 0 0 23 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 0 23 0 23 0 23 23 L5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 0 23 23 0 R5 23 23 0 Data 7 Data 8 32 BICK 32 BICK 23 (*: Optional) Figure 26. Mode 24/29 Timing (TDM256 Mode) 128 BICK LRCK (Mode35) LRCK (Mode30) BICK(128fs) SDTI1(i) SDTI2(i) SDTI3(i) 15 14 0 0 15 14 15 14 0 15 14 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 15 14 0 15 14 0 15 14 0 15 14 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 0 15 14 0 15 14 15 14 0 15 14 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 0 15 0 15 0 15 Figure 27. Mode 30/35 Timing (TDM128 Mode) 015000617-E-00 2015/01 - 34 - [AK4618] 128 BICK LRCK (Mode36) LRCK (Mode31) BICK(128fs) SDTI1(i) SDTI2(i) SDTI3(i) 19 18 0 0 19 18 19 18 0 19 18 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 19 18 0 19 18 0 19 18 0 19 18 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 0 19 18 0 19 18 19 18 0 19 18 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 0 19 0 19 0 19 0 23 0 23 0 23 Figure 28. Mode 31/36 Timing (TDM128 Mode) 128 BICK LRCK (Mode37) LRCK (Mode32) BICK(128fs) SDTI1(i) SDTI2(i) SDTI3(i) 23 22 0 0 23 22 23 22 0 23 22 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 0 23 22 0 23 22 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 0 23 22 0 23 22 23 22 0 23 22 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK Figure 29. Mode 32/37 Timing (TDM128 Mode) 015000617-E-00 2015/01 - 35 - [AK4618] 128 BICK LRCK (Mode38) LRCK (Mode33) BICK(128fs) SDTI1(i) SDTI2(i) SDTI3(i) 23 22 0 0 23 22 23 22 0 L1 R1 L2 32 BICK 32 BICK 32 BICK 0 23 22 0 23 22 23 22 0 23 22 R2 32 BICK 23 22 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 0 23 22 0 23 22 23 22 0 23 22 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 0 23 22 0 23 22 0 23 22 0 23 0 23 0 23 Figure 30. Mode 33/38 Timing (TDM128 Mode) 128 BICK LRCK (Mode39) LRCK (Mode34) BICK(128fs) SDTI1(i) SDTI2(i) SDTI3(i) 23 0 23 0 0 23 23 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 0 23 0 23 0 23 23 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 0 23 0 23 0 23 23 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK Figure 31. Mode 34/39 Timing (TDM128 Mode) 015000617-E-00 2015/01 - 36 - [AK4618] ■ TDM Cascade Mode The AK4618 can be connected with other ADCs or CODECs in cascades in TDM mode. In Figure 32, the SDTO pin of ADC or CODEC is connected with the TDMI pin of the AK4618. TDMI data is added after the 6channel ADC data of SDTO1.It is possible to output 8channel TDM data from the SDTO1 pin of the AK4618 as shown in Figure 22 ~ Figure 26 in TDM256 mode, and it is possible to output 16channel TDM data as shown Figure 17 ~ Figure 21 in TDM512 mode. ADC or CODEC 256fs or 512fs MCLK 48kHz LRCK 256fs or 512fs BICK SDTO AK4618 MCLK TDMI LRCK BICK SDTO1 8ch or 16ch TDM Figure 32. Cascade TDM Connection Diagram 015000617-E-00 2015/01 - 37 - [AK4618] ■ Digital Attenuator AK4618 has a channel-independent digital attenuator (256 levels, 0.5dB steps). Attenuation level of each DAC1-6 can be set by DAATL1/R1 7-0 bits, DAATL2/R2 7-0 bit, DAATL3/R3 7-0 bit, DAATL4/R4 7-0 bit, DAATL5/R5 7-0 bit, DAATL6/R6 7-0 bit, respectively (Table 14). DAATL1/R1 7-0bits DAATL2/R2 7-0 bits DAATL3/R3 7-0 bits Attenuation Level DAATL4/R4 7-0 bits DAATL5/R5 7-0 bits DAATL6/R6 7-0 bits 00H +0dB (default) 01H -0.5dB 02H -1.0dB : : 7DH -62.5dB 7EH -63.0dB 7FH -63.5dB : : FEH -127.0dB FFH MUTE (-∞) Table 14. Attenuation level of DAC Digital Attenuator Transition time between set values of DAATL1/R1 7-0, DAATL2/R2 7-0, DAATL3/R3 7-0, DAATL4/R4 7-0, DAATL5/R5 7-0, DAATL6/R6 7-0 bits can be selected by the DAATS1-0 bits (Table 15). Transition between set values is the soft transition in Mode1/2/3 eliminating switching noise in the transition. Mode 0 1 2 3 DAATS1 0 0 1 1 DAATS0 0 1 0 1 ATT speed 4080/fs 2040/fs 510/fs 255/fs (default) Table 15. Transition Time between Set Values of DAATL1/R1 7-0, DAATL2/R2 7-0, DAATL3/R3 7-0, DAATL4/R4 7-0, DAATL5/R5 7-0, DAATL6/R6 7-0 bits The transition between set values is a soft transition of 4080 levels in mode 0. It takes 4080/fs (85ms@fs=48kHz) from 00H to FFH. If the PDN pin goes to “L”, DAATL1/R1 7-0, DAATL2/R2 7-0, DAATL3/R3 7-0, DAATL4/R4 7-0, DAATL5/R5 7-0, DAATL6/R6 7-0 bits are initialized to 00H. These bits are also set to 00H respectively when RSTN bit = “0”, and fade to their current value when RSTN bit returns to “1”. 015000617-E-00 2015/01 - 38 - [AK4618] ■ MIC Gain Amplifier The AK4618 has a gain amplifier which supports both single-ended and differential inputs. When MDIE 6-1bit is set to “1”, differential inputs are supported by the IN6-1P IN6-1N, pins and the maximum input voltage is dependent on AVDD1. If the AVDD= 3.3V, the maximum input voltage for single-ended input is 2.67Vpp and ±2.67Vpp for differential inputs. The typical input impedance is 60k (typ). MGAIN1 2-0, MGAIN2 2-0, MGAIN3 2-0, MGAIN4 2-0, MGAIN5 2-0, MGAIN6 2-0 bits control the input gain of the microphone amplifier (Table 16). A pop nose may occur if the input gain is changed during an operation. Mode 0 1 2 3 4 5 6 7 MGAIN12 MGAIN22 MGAIN32 MGAIN42 MGAIN52 MGAIN62 0 0 0 0 1 1 1 1 MGAIN11 MGAIN10 MGAIN21 MGAIN20 MGAIN31 MGAIN30 MGAIN41 MGAIN40 MGAIN51 MGAIN50 MGAIN61 MGAIN60 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 Table 16. MIC Input Gain (typ.) 015000617-E-00 Input Gain 0dB 15dB 18dB 21dB 24dB 27dB 30dB 33dB (default) 2015/01 - 39 - [AK4618] ■ MIC Bias The AK4618 integrates power supply for microphone. When PMMB bit = “1”, the MICBIAS pin supplies power for the microphone. This output voltage is typically 2.40V and the load resistance is minimum 0.3 k. (Figure 33, Figure 34) Maximum interchannel isolation of microphone inputs is 70dB. The isolation depends on MICBIAS common impedance. The microphone impedance and the microphone bias resistance is 2k ohm and MIC-Amp input voltage is ±500mVpp (500mVpp). At this time, internal MICBIAS common impedance is 600m ohms or less, and external MICBIAS common impedance should be 200m ohms or less. PMMB bit 0 1 MICBIAS pin Hi-Z Output Table 17. MICBIAS pin (default) AK4618 MICBIAS pin PMMB bit 2k MIC-Amp Microphone IN6-1 pin IN6-1 pin 2k Figure 33. MIC Input Block Circuit (differential input) AK4618 PMMB bit MICBIAS pin MIC-Amp Microphone IN6-1 pin Figure 34. MIC Input Block Circuit (single-ended input) 015000617-E-00 2015/01 - 40 - [AK4618] ■ Soft Mute Operation Soft mute operation is performed in the digital domain. When the SMUTEN bit is set “0”, the output signal is attenuated to - in the cycle set by ATS bits (Table 15) from the current ATT level. When the SMUTEN bit is returned to “0”, the mute is cancelled and the output attenuation gradually changes to the ATT level in the cycle set by ATS bits. If the soft mute is cancelled before attenuating to - after starting the operation, attenuation is discontinued and it is returned to ATT level by the same cycle. Soft mute is effective for changing the signal source without stopping the signal transmission. SMUTEN bit ATT Level (1) (2) (4) Attenuation - GD (3) GD AOUT Notes: (1) The time for input data attenuation to - (Table 15). For example, this time is 4080LRCK cycles (4080/fs) at ATT_DATA=00H. ATT transition of the soft-mute is from 00H to FFH (2) The time for input data recovery to ATT level (Table 15). For example, this time is 4080LRCK cycles (4080/fs) at ATT-DATA=FFH. ATT transition of soft-mute is from FFH to 00H. (3) The analog output corresponding to the digital input has group delay, GD. (4) If the soft mute is cancelled before attenuating to -, the attenuation is discontinued and returned to ATT level by the same cycle. Figure 35. Soft Mute ■ System Reset The AK4618 should be reset once by bringing the PDN pin = “L” upon power-up. The AK4618 is powered up and the internal timing starts clocking by MCLK or LRCK “” after exiting the power down state of reference voltage (such as VCOM) by the PDN pin. The AK4618 is in power-down mode until MCLK and LRCK, BICK are input. 015000617-E-00 2015/01 - 41 - [AK4618] ■ Power-Down All ADCs and DACs of the AK4618 are placed in power-down mode by bringing the PDN pin “L” which resets both digital filters at the same time. The PDN pin “L” also resets the control registers to their default values. In power-down mode, the SDTO goes to “L”, and the analog outputs go to Hi-Z. This reset should always be executed after power-up. For the ADC, an analog initialization cycle (1056/fs) starts 3~4/fs after exiting power-down mode. The output data, SDTO is available after 1059~1060 cycles of the LRCK clock. For the DAC, an analog initialization cycle (516/fs) starts 3~4/fs after exiting power-down mode. The analog outputs go to Hi-Z during the initialization. Figure 36 shows the power-down and power-up sequences. AVDD1/AVD D2/DVDD (11) PDN VCOM 150ns REGO 3~4/fs Internal PDN (9) (10) 1056/fs ADC Internal State (1) Init Cycle Normal Operation Power-down Normal Operation Power-down 516/fs (2) DAC Internal State Init Cycle GD (3) GD ADC In (Analog) ADC Out (Digital) “0”data DAC In (Digital) “0”data (6) (4) “0”data “0”data GD(3) DAC Out (Analog) (5) (7) GD (7) (7) Clock In Don’t care Don’t care MCLK,LRCK,BICK External Mute Mute ON Mute ON (8) Notes: (1) The analog part of ADC is initialized after exiting internal power-down state. When start-up the AK4618, ADC input voltage should be operating common voltage. It is necessary to wait for the charge up time of HPF which consists of analog inputs. When the external capacitor is 1uF and the input impedance is 60kΩ(typ), τ = 0.06 sec. (2) The analog part of DAC is initialized after exiting internal power-down state. (3) Digital output corresponds to analog input and analog output corresponds to digital input have group delay (GD). (4) ADC output is “0” data at power-down state. (5) The analog outputs go to Hi-Z in power-down mode. (6) Click noise occurs at the end of initialization of the analog part. Mute the digital output externally if the click noise influences system applications. (7) Click noise occurs at the falling edge of PDN and at 519~520/fs after exiting internal power-down state. (8) Mute the analog output externally if the click noise (7) influences system applications. (9) There is a delay, 3~4/fs from internal power up to the start of initial cycle. (10) The PDN pin must be “L” when power up the AK4618 and set to “H” after all poweres are supplied. (11) The internal power-down state is released when MCLK counter rise.Do not write to the registers for 32768/MCLK(2.67ms@MCLK=12.288MHz, until internal power down is released after the PDN pin = “H”. Figure 36. Pin power-down/Pin power-up sequence example 015000617-E-00 2015/01 - 42 - [AK4618] All ADCs and all DACs can be powered-down individually through the PMADC bits and PMDAC bits. DAC1-6 can be power-down individually by PMDA6-1 bits. In this case, the internal register values are not initialized. When PMADC bit = “0”, SDTO goes to “L”. When PMDAC bit = “0”, the analog outputs go to Hi-Z. As some click noise occurs, the analog output should be muted externally if the click noise influences system applications. Figure 37 shows the power-down and power-up sequences. 4~5/fs (9) 3~4/fs (10) PMADC/PMDAC bit ADC Internal State (1) Normal Operation Power-down Init Cycle 516/fs DAC Internal State Normal Operation Power-down Normal Operation (2) Init Cycle Normal Operation GD (3) GD ADC In (Analog) ADC Out (Digital) “0”data DAC In (Digital) “0”data GD Clock In GD (5) (7) Don’t care MCLK,LRCK,BICK External Mute (6) (3) (7) DAC Out (Analog) (4) (8) Mute ON Notes: (1) The analog section of ADC is initialized after exiting power-down state. (2) The analog section of DAC is initialized after exiting power-down state. (3) Digital output corresponding to the analog inputs and analog outputs corresponding to the digital inputs have group delay (GD). (4) ADC output is “0” data at power-down state. (5) DAC output is Hi-Z in power-down state. (6) Click noise occurs at the end of initialization of the analog part. Mute the digital output externally if the click noise influences system application. (7) Click noise occurs at 45/fs after PMDAC bit becomes “0”, and occurs at 519520/fs after PMDAC bit becomes “1”. (8) Mute the analog output externally if the click noise (7) influences system application. (9) There is a delay, 4~5/fs from PMDAC bit becomes “0” to the applicable ADC power-down. There is a delay, 4~5/fs from PMDAC bit becomes “0” to the applicable DAC power-down. (10) There is a delay, 3~4/fs from PMADC and PMDAC bits become “1” to the start of initial cycle. Figure 37. Bit power-down/Bit power-up sequence example 015000617-E-00 2015/01 - 43 - [AK4618] ■ Reset Function When RSTN bit= “0”, the analog and digital part of ADC and DACs are powered-down, but the internal register are not initialized. The analog outputs go to Hi-Z, the SDTO pin goes to “L”. As some click noise occurs, the analog output should be muted externally if the click noise influences system application. Figure 38 shows the power-up sequence. RSTN bit 4~5/fs (8) 3~4/fs (9) Internal RSTN bit (1) ADC Internal State Normal Operation DAC Internal State Normal Operation Power-down Normal Operation Init Cycle (2) Digital Block Power-down Init Cycle Normal Operation GD (3) GD ADC In (Analog) ADC Out (Digital) (4) “0”data DAC In (Digital) (5) “0”data (3) GD DAC Out (Analog) Clock In MCLK,LRCK,BICK GD (7) (7) (6) (7) Don’t care Notes: (1) The analog section of the ADC is initialized after exiting reset state. The initializing cycle is 1056fs. When start-up the AK4618, ADC input voltage should be operating common voltage. (2) The analog section of DAC is initialized after exiting exiting reset state. (3) Digital output corresponding to the analog inputs, and analog outputs corresponding to the digital inputs have group delay (GD). (4) ADC output is “0” data at power-down state. (5) Click noise occurs when the initializing cycle is finished. Mute the digital output externally if the click noise influences system application. (6) The analog outputs go to Hi-Z when RSTN bit becomes “0”. (7) Click noise occurs at 45/fs after RSTN bit becomes “0”, and it occurs at 34/fs after RSTN bit becomes “1”. (8) There is a delay, 4~5/fs from RSTN bit “0” to the internal RSTN bit “0”. (9) There is a delay, 3~4/fs from RSTN bit “1” to the start of initial cycle. Figure 38. Reset Sequence Example 015000617-E-00 2015/01 - 44 - [AK4618] ■ DAC Partial Power-Down Function All of the DACs can be powered-down individually by PMDA6-1 bits. The analog section and the digital section of the DAC are placed in power-down mode when the PMDA6-1 bits = “0”. The analog output of the powered-down channels, which are set by PMDA6-1 bits, go to Hi-Z. Some click noise occurs in both set-up and release of power-down. Mute the analog output externally or set PMDA6-1 bits when PMDAC bit = “0” or RSTN bit = “0”, if click noise aversely affects system performance. Figure 39 shows the sequence of the power-down and the power-up by PMDA6-1 bits. PMDA6-1 bit 4~5/fs (4) Power Down Channel DAC Digital Internal State Normal Operation 2~3/fs (5) Power-down 2~3/fs (5) 4~5/fs (4) Power-down Normal Operation 516/fs (6) DAC Analog Internal State Normal Operation Power-down DAC In (Digital) Normal Operation 516/fs (6) Normal Operation Power-down Init Cycle Init Cycle Normal Operation “0”data (1) GD GD (3) (2) DAC Out (Analog) (3) (3) (2) (3) Normal Operation Channel DAC In (Digital) “0”data GD GD DAC Out (Analog) Notes: (1) Analog outputs corresponding to the digital inputs have group delay (GD). (2) Analog output of the DAC is powered down by PMDA6-1 = “0” and goes to Hi-Z. (3) Click noise occurs in 45/fs after PMDA6-1 bits are set to “0”, and it occurs in 518519/fs after PMDA6-1 bits are set to “1”. (4) The DACs will be powered-down 4~5fs after PMDA6-1 bits = “0” (5) The initialization stars 2~3fs after PMDA6-1 bits are set to “1”. (6) The analog parts of DACs are initialized after exiting power down mode. Figure 39. DAC Partial Power-down Example 015000617-E-00 2015/01 - 45 - [AK4618] ■ Serial Control Interface I2C-bus Control Mode The AK4618 supports the fast-mode I2C-bus (max: 400kHz). 1. WRITE Operations Figure 40 shows the data transfer sequence of the I2C-bus mode. All commands are preceded by a START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 46). After the START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W). The most significant seven bits of the slave address are fixed as “0010000” (Figure 41). If the slave address matches that of the AK4618, the AK4618 generates an acknowledge and the operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 47). R/W bit = “1” indicates that the read operation is to be executed. “0” indicates that the write operation is to be executed. The second byte consists of the control register address of the AK4618. The format is MSB first, and those most significant 3-bits are fixed to zeros (Figure 42). The data after the second byte contains control data. The format is MSB first, 8bits (Figure 43). The AK4618 generates an acknowledge after each byte is received. Data transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH defines STOP condition (Figure 46). The AK4618 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4618 generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the internal 6-bit address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds 16H prior to generating a stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW (Figure 48) except for the START and STOP conditions. S T A R T SDA S T O P R/W="0" Slave S Address Sub Address(n) Data(n) A C K A C K Data(n+1) A C K Data(n+x) A C K A C K P A C K Figure 40. Data Transfer Sequence at the I2C-Bus Mode 0 0 1 0 0 0 0 R/W A2 A1 A0 D2 D1 D0 Figure 41. The First Byte 0 0 0 A4 A3 Figure 42. The Second Byte D7 D6 D5 D4 D3 Figure 43. Byte Structure after the second byte 015000617-E-00 2015/01 - 46 - [AK4618] 2. READ Operations Set the R/W bit = “1” for the READ operation of the AK4618. After transmission of data, the master can read the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word. After receiving each data packet the internal 6-bit address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds 16H prior to generating stop condition, the address counter will “roll over” to 00H and the data of 16H will be read out. The AK4618 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ. 2-1. CURRENT ADDRESS READ The AK4618 contains an internal address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) was to address “n”, the next CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with R/W bit “1”, the AK4618 generates an acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4618 ceases transmission. S T A R T SDA S T O P R/W="1" Slave S Address Data(n) Data(n+1) Data(n+2) MA AC SK T E R A C K MA AC SK T E R Data(n+x) MA AC SK T E R MA AC SK T E R P MN AA SC T EK R Figure 44. CURRENT ADDRESS READ 2-2. RANDOM ADDRESS READ The random read operation allows the master to access any memory location at random. Prior to issuing a slave address with the R/W bit =“1”, the master must execute a “dummy” write operation first. The master issues a start request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master immediately reissues the start request and the slave address with the R/W bit =“1”. The AK4618 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4618 ceases transmission. S T A R T SDA S T A R T R/W="0" Slave S Address Sub Address(n) A C K Slave S Address A C K S T O P R/W="1" Data(n) A C K Data(n+1) MA AC S K T E R Data(n+x) MA AC S T K E R MA AC S T K E R P MN A A S T C E K R Figure 45. RANDOM ADDRESS READ 015000617-E-00 2015/01 - 47 - [AK4618] SDA SCL S P start condition stop condition Figure 46. START and STOP Conditions DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER 2 1 8 9 S clock pulse for acknowledgement START CONDITION Figure 47. Acknowledge on the I2C-Bus SDA SCL data line stable; data valid change of data allowed Figure 48. Bit Transfer on the I2C-Bus 015000617-E-00 2015/01 - 48 - [AK4618] ■ Register Map Add 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H Register Name Power Management 1 Power Management 2 System Clock Filter setting1 Filter setting2 Audio Interface Format Soft Mute DAC1L Volume DAC1R Volume DAC2L Volume DAC2R Volume DAC3L Volume DAC3R Volume DAC4L Volume DAC4R Volume DAC5L Volume DAC5R Volume DAC6L Volume DAC6R Volume Input Control Microphone Gain Microphone Gain Microphone Gain D7 MS 0 D6 PMMB 0 D5 PMADC PMDA6 D4 PMDAC PMDA5 D3 PMADC56 PMDA4 0 D2 PMADC34 PMDA3 0 D1 PMADC12 PMDA2 0 D0 RSTN PMDA1 ACKS CKS1 DEM41 SLOW CKS0 DEM40 SD_DA DFS1 DEM31 0 DFS0 DEM30 SD_AD DEM21 DEM61 DEM20 DEM60 DEM11 DEM51 DEM10 DEM50 0 0 0 0 TDM1 DAATS1 TDM0 DAATS0 0 0 DIF2 0 DIF1 0 DIF0 SMUTEN DAATL17 DAATR17 DAATL27 DAATR27 DAATL37 DAATR37 DAATL47 DAATR47 DAATL57 DAATR67 DAATL67 DAATR67 DAATL16 DAATR16 DAATL26 DAATR26 DAATL36 DAATR36 DAATL46 DAATR56 DAATL56 DAATR66 DAATL66 DAATR66 DAATL15 DAATR15 DAATL25 DAATR25 DAATL35 DAATR35 DAATL45 DAATR45 DAATL55 DAATR55 DAATL65 DAATR65 DAATL14 DAATR14 DAATL24 DAATR24 DAATL34 DAATR34 DAATL44 DAATR44 DAATL54 DAATR54 DAATL64 DAATR64 DAATL13 DAATR13 DAATL23 DAATR23 DAATL33 DAATR33 DAATL43 DAATR43 DAATL53 DAATR53 DAATL63 DAATR63 DAATL12 DAATR12 DAATL22 DAATR22 DAATL32 DAATR32 DAATL42 DAATR42 DAATL52 DAATR52 DAATL62 DAATR62 DAATL11 DAATR11 DAATL21 DAATR21 DAATL31 DAATR31 DAATL41 DAATR41 DAATL51 DAATR51 DAATL61 DAATR61 DAATL10 DAATR10 DAATL20 DAATR20 DAATL30 DAATR30 DAATL40 DAATR40 DAATL50 DAATR50 DAATL60 DAATR60 0 0 0 0 0 0 0 0 DIE6 MGAIN22 MGAIN42 MGAIN62 DIE5 MGAIN21 MGAIN41 MGAIN61 DIE4 MGAIN20 MGAIN40 MGAIN60 DIE3 MGAIN12 MGAIN32 MGAIN52 DIE2 MGAIN11 MGAIN31 MGAIN51 DIE1 MGAIN10 MGAIN30 MGAIN50 Note: For addresses from 14H to 1FH, data must not be written. The bits defined as 0 must contain a “0” value. When the PDN pin goes to “L”, the registers are initialized to their default values. When RSTN bit goes to “0”, the internal timing is reset, but registers are not initialized to their default values. 015000617-E-00 2015/01 - 49 - [AK4618] ■ Register Definitions Addr 00H Register Name Power Management 1 R/W Default D7 D6 D5 D4 D3 D2 D1 D0 MS PMMB PMADC PMDAC PMAD56 PMAD34 PMAD12 RSTN RD 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 RSTN: Internal timing reset 0: Reset. 1: Normal operation (default) PMAD12/34/56: Power management of ADC1-6 (0: Power-down, 1: Normal operation) PMAD12: Power management control of ADC1 and ADC2 PMAD34: Power management control of ADC3 and ADC4 PMAD56: Power management control of ADC5 and ADC6 PMDAC: Power management of DAC1-6 0: All DAC’s Power-down. PMDA1-6 bits are invalid. 1: Normal operation. (default) PMDA1-6 bits are valid. PMADC: Power management of mono-stereo 0: All ADC’s Power-down. 1: Normal operation. (default) PMMB: Power management of microphone bias 0: Power-down 1: Normal operation (default) MS : Master Mode Select 0: Slave Mode (default) 1: Master Mode Addr 01H Register Name Power Management 3 R/W Default D7 0 RD 0 D6 0 RD 0 D5 D4 D3 D2 D1 D0 PMDA6 PMDA5 PMDA4 PMDA3 PMDA2 PMDA1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 D2 0 RD 0 D1 0 RD 0 D0 ACKS R/W 0 PMDA6-1: Power management of DAC1-6 (0: Power-down, 1: Normal operation) PMDA1: Power management control of DAC1 PMDA2: Power management control of DAC2 PMDA3: Power management control of DAC3 PMDA4: Power management control of DAC4 PMDA5: Power management control of DAC5 PMDA6: Power management control of DAC6 Addr 02H Register Name System Clock R/W Default D7 CKS1 R/W 1 D6 CKS0 R/W 0 D5 DFS1 R/W 0 D4 DFS0 R/W 0 D3 0 RD 0 ACKS: Master Clock Frequency Auto Setting Mode Enable 0: Disable, Manual Setting Mode 1: Enable, Auto Setting Mode Master clock frequency is detected automatically at ACKS bit “1”. In this case, the setting of DFS are ignored. When this bit is “0”, DFS0, 1 set the sampling speed mode. 015000617-E-00 2015/01 - 50 - [AK4618] DFS1-0: Sampling speed mode (Table 1) The setting of DFS is ignored at ACKS bit =“1”. CKS1-0: Master Clock Input Frequency Select (Table 2) Addr 03H Register Name Filter setting1 R/W Default D7 DEM41 R/W 0 D6 DEM40 R/W 1 D5 DEM31 R/W 0 D4 DEM30 R/W 1 D3 DEM21 R/W 0 D2 DEM20 R/W 1 D1 DEM11 R/W 0 D0 DEM10 R/W 1 D1 DEM51 R/W 0 D0 DEM50 R/W 1 DEM11-10: De-emphasis response control for DAC1 data on SDTI1 (Table 8) Initial: “01”, OFF DEM21-20: De-emphasis response control for DAC2 data on SDTI2 (Table 8) Initial: “01”, OFF DEM31-30: De-emphasis response control for DAC3 data on SDTI3 (Table 8) Initial: “01”, OFF DEM41-40: De-emphasis response control for DAC4 data on SDTI4 (Table 8) Initial: “01”, OFF Addr 04H Register Name Filter setting2 R/W Default D7 SLOW R/W 0 D6 SD_DA R/W 1 D5 0 RD 0 D4 SD_AD R/W 1 D3 DEM61 R/W 0 D2 DEM60 R/W 1 DEM51-50: De-emphasis response control for DAC5 data on SDTI5 (Table 8) Initial: “01”, OFF DEM61-60: De-emphasis response control for DAC6 data on SDTI6 (Table 8) Initial: “01”, OFF SD_AD: Digital filter Setting for ADC 0: Sharp roll off filter 1: Short delay Sharp roll off filter (default) SD_DA: Digital filter Setting for DAC 0: Sharp roll off filter or Slow roll off filter 1: Short delay Sharp roll off filter or Short delay Slow roll off filter (default) SLOW: Slow Roll-off Filter Enable for DAC 0: Sharp Roll-off Filter (default) 1: Slow Roll-off Filter SD_DA bit 0 0 1 1 SLOW bit Mode 0 Sharp roll-off filter 1 Slow roll-off filter 0 Short delay Sharp roll-off filter 1 Short delay Slow roll-off filter Table 18 Digital Filter setting for DAC 015000617-E-00 (default) 2015/01 - 51 - [AK4618] Addr 05H Register Name Audio Interface Format R/W Default D7 0 RD 0 D6 0 RD 0 D5 TDM1 R/W 0 D4 TDM0 R/W 0 D3 0 RD 0 D2 DIF2 R/W 1 D1 DIF1 R/W 0 D0 DIF0 R/W 0 DIF2-0: Audio Data Interface Modes (Table 10, Table 11, Table 12, Table 13) Initial: “100”, mode 4 TDM1-0: TDM Format Select (Table 10, Table 11, Table 12, Table 13) Mode 0 1 2 3 Addr 06H TDM1 TDM0 0 0 0 1 1 0 1 1 Register Name Soft Mute R/W Default D7 0 RD 0 SDTI 1-6 1 1-2 1-3 D6 0 RD 0 Sampling Speed Stereo mode (Normal, Double, Quad Speed Mode) TDM512 mode (Normal Speed Mode) TDM256 mode (Normal, Double Speed Mode) TDM128 mode (Quad Speed Mode) D5 DAATS1 R/W 0 D4 DAATS0 R/W 0 D3 0 RD 0 D2 0 RD 0 D1 0 RD 0 D0 SMUTEN R/W 1 SMUTEN: Soft Mute Enable 0: Mute 1: Unmute (default) DAATS1-0: DAC Digital attenuator transition time setting (Table 15) Initial: “00”, mode 0 Add 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H Register Name DAC1L Volume DAC1R Volume DAC2L Volume DAC2R Volume DAC3L Volume DAC3R Volume DAC4L Volume DAC4R Volume DAC5L Volume DAC5R Volume DAC6L Volume DAC6R Volume R/W Default D7 D6 D5 D4 D3 D2 D1 D0 DAATL17 DAATR17 DAATL27 DAATR27 DAATL37 DAATR37 DAATL47 DAATR47 DAATL57 DAATR67 DAATL67 DAATR67 DAATL16 DAATR16 DAATL26 DAATR26 DAATL36 DAATR36 DAATL46 DAATR56 DAATL56 DAATR66 DAATL66 DAATR66 DAATL15 DAATR15 DAATL25 DAATR25 DAATL35 DAATR35 DAATL45 DAATR45 DAATL55 DAATR55 DAATL65 DAATR65 DAATL14 DAATR14 DAATL24 DAATR24 DAATL34 DAATR34 DAATL44 DAATR44 DAATL54 DAATR54 DAATL64 DAATR64 DAATL13 DAATR13 DAATL23 DAATR23 DAATL33 DAATR33 DAATL43 DAATR43 DAATL53 DAATR53 DAATL63 DAATR63 DAATL12 DAATR12 DAATL22 DAATR22 DAATL32 DAATR32 DAATL42 DAATR42 DAATL52 DAATR52 DAATL62 DAATR62 DAATL11 DAATR11 DAATL21 DAATR21 DAATL31 DAATR31 DAATL41 DAATR41 DAATL51 DAATR51 DAATL61 DAATR61 DAATL10 DAATR10 DAATL20 DAATR20 DAATL30 DAATR30 DAATL40 DAATR40 DAATL50 DAATR50 DAATL60 DAATR60 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 DAATL1/R1 7-0, DAATL2/R2 7-0, DAATL3/R3 7-0, DAATL4/R4 7-0, DAATL5/R5 7-0, DAATL6/R6 7-0: Attenuation Level (Table 14) 015000617-E-00 2015/01 - 52 - [AK4618] Addr 13H Register Name Input Control R/W Default D7 D6 D5 D4 D3 D2 D1 D0 0 RD 0 0 RD 0 DIE6 R/W 0 DIE5 R/W 0 DIE4 R/W 0 DIE3 R/W 0 DIE2 R/W 0 DIE1 R/W 0 DIE6-1: Single-ended/Differential Input Select 0: Single-ended input to the IN1-6 pins. Leave the IN1-6N pins open. (default) 1: Differential input (IN1-6P and IN1-6N pins) Addr 14H 15H 16H Register Name Microphone Gain Microphone Gain Microphone Gain R/W Default D7 0 0 0 RD 0 D6 0 0 0 RD 0 D5 D4 D3 D2 D1 D0 MGAIN22 MGAIN42 MGAIN62 MGAIN21 MGAIN41 MGAIN61 MGAIN20 MGAIN40 MGAIN60 MGAIN12 MGAIN32 MGAIN52 MGAIN11 MGAIN31 MGAIN51 MGAIN10 MGAIN30 MGAIN50 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 MGAIN6-1 2-0: Microphone-Amp Gain Control (Table 16) MGAIN6-1 2-0: “000” (0dB) (default) 015000617-E-00 2015/01 - 53 - [AK4618] SYSTEM DESIGN Figure 49 shows the system connection diagram. An evaluation board is available which demonstrates application circuits, the optimum layout, power supply arrangements and measurement results. Differential Input Mode (DIE6-1 bits = “111111”) + 3.3V Digital 1u + 0.1u 0.1u 1u LOUT6 26 37 AVDD2 ROUT6 25 ROUT5 27 LOUT5 28 LOUT4 30 ROUT4 29 ROUT3 31 LOUT3 32 LOUT2 34 ROUT2 33 1u ROUT1 35 3.3V Analog LOUT1 36 *1 *2 IN6/IN6P 24 38 VSS2 IN6N 23 39 TVDD IN5/IN5P 22 40 VSS3 IN5N 21 VCOM 20 41 REGO AK4618 42 SDTO1 1u VSS1 19 43 SDTO2 AVDD1 18 44 SDTO3 MICBIAS 17 45 SDA IN4/IN4P 16 46 SCL 0.1u + 1u 3.3V Analog IN4N 15 SDTI4 SDTI3 SDTI2 SDTI1 PDN IN1N 4 5 6 7 8 9 12 IN2/IN2P SDTI5 3 11 IN2N SDTI6/TDMI 2 48 BICK 10 IN1/IN1P LRCK IN3/IN3P 14 1 47 MCLK IN3N 13 *2 *2 µP DSP Digital Ground Analog Ground Figure 49. Typical Connection Diagram1 *1: Refer to Figure 52 *2: Refer to Figure 50, Figure 51 015000617-E-00 2015/01 - 54 - [AK4618] 1. Grounding and Power Supply Decoupling The AK4618 requires careful attention to power supply and grounding arrangements. AVDD1, AVDD2 and TVDD are usually supplied from analog supply in system. VSS1 ~ 3 of the AK4618 must be connected to analog ground plane. System analog ground and digital ground should be wired separately and connected together as close as possible to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4618 as possible, with the small value ceramic capacitor being the nearest. 2. Voltage Reference VCOM is a signal ground of this chip and output the voltage AVDD1x1/2. A ceramic capacitor 1µF attached to the VCOM pin eliminates the effects of high frequency noise. This capacitor should be as close to the pin as possible. No load current may be drawn from the VCOM pin. All signals, especially clocks, should be kept away from the VCOM pin in order to avoid unwanted coupling into the AK4618. 3. Analog Inputs The AK4618 supports single-ended and differential analog input. The single-ended input signal range scales with the supply voltage and nominally 0.81xAVDD1 Vpp (typ). The differential input signal range between IN+ and IN scales with the supply voltage and nominally ±0.81xAVDD1 Vpp (typ). The power supply voltage range of the AK4618 is from VSS2 to AVDD1. The ADC output data format is 2’s complement. The internal HPF removes the DC offset. The AK4618 samples the analog inputs at 64fs (@ fs=48kHz). The digital filter removes noise above the stop band except for multiples of the sampling frequency of analog inputs. The AK4618 includes an anti-aliasing filter (RC filter) to attenuate a noise around the sampling frequency of analog inputs. 4. Analog Outputs The single-ended output signal range is nominally 0.86 x AVDD2 Vpp centered around the VCOM voltage. The DAC input data format is 2’s complement. The output voltage is a positive full scale for 7FFFFFH(@24bit) and a negative full scale for 800000H(@24bit). The ideal output is VCOM voltage for 000000H(@24bit). The internal analog filters remove most of the noise generated by the delta-sigma modulator of DAC beyond the audio passband, in single-ended input mode. There are no internal analog filters for differential output mode, therefore this noise should be removed by the external analog filters. The DAC outputs have DC offsets of a few millivolts to VCOM voltage. 015000617-E-00 2015/01 - 55 - [AK4618] 5. External Analog Inputs Circuit Analog In 2.67Vpp INP 1 AK4618 Analog In 2.67Vpp INN Figure 50. Input Buffer Circuit Example 1 (AC coupled differential input) (IN1-6P/IN1-6N pins) Analog In 2.67Vpp IN AK4618 Figure 51. Input Buffer Circuit Example 2 (AC coupled single-ended input) (IN1-6 pins) 015000617-E-00 2015/01 - 56 - [AK4618] 6. External Analog Outputs Circuit AK4618 AOUT Analog Out C=1F R=100k 2.83Vpp (typ) Figure 52. External Circuit Example (LOUT1-6, ROUT1-6 pins) Note: The cut-offfrequency (fc) of HPF is determined by following equation. fc= 1/(2 × π × R × C) [Hz] Where the C is the external AC coupling capacitor and the R is load resistance. When C = 1μF and R = 100kΩ, then fs = 1.6Hz. 015000617-E-00 2015/01 - 57 - [AK4618] PACKAGE 48-pin LQFP(Unit: mm) 1.70Max 9.0 0.13 0.13 7.0 36 1.40 0.05 24 48 13 7.0 37 1 9.0 25 12 0.09 0.20 0.5 0.22 0.08 0.10 M 0° 10° S 0.10 S 0.30 ~ 0.75 ■ Package & Lead frame material Package molding compound: Lead frame material: Lead frame surface treatment: Epoxy resin, Halogen (Br, Cl) free Cu Solder (Pb free) plate 015000617-E-00 2015/01 - 58 - [AK4618] MARKING AK4618VQ XXXXXXX 1 1) Pin #1 indication 2) Date Code: XXXXXXX(7 digits) 3) Marking Code: AK4618VQ REVISION HISTORY Date (Y/M/D) 15/01/23 Revision 00 Reason First Edition Page Contents 015000617-E-00 2015/01 - 59 - [AK4618] IMPORTANT NOTICE 0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products. 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS. 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing. 3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations. 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM. 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM. 015000617-E-00 2015/01 - 60 -