AK4617VQ

[AK4617]
AK4617
192kHz 24-bit 2ch/12ch Audio CODEC
1. General Description
The AK4617 is a single chip audio CODEC that includes 2-channel ADC and 12-channel DAC. The stereo
ADC supports differential/single-ended analog inputs. The high performance 12-channel DAC integrates
full-range digital volume control and achieves 106dB dynamic range. A car audio system can be easily
designed with an audio DSP and the AK4617. The AK4617 is housed in a space saving 48-pin LQFP package.
2. Features
2ch ADC
- Sampling Frequency: 8kHz~48kHz
- ADC S/N: 97dB, S/ (N+D): 87dB
- I/F format: MSB justified, I2S or TDM
12ch DAC
- Sampling Frequency: 8kHz~192kHz
- DAC S/N: 106dB, S/ (N+D): 85dB
- I/F format: MSB justified, LSB justified (16bit, 24bit), I2S or TDM
Channel Independent Digital Attenuator (Linear 256 steps)
Master / Slave mode
Master clock
- Slave mode: 256fs, 384fs or 512fs
(Normal Speed Mode: fs=8kHz  48kHz)
256fs
(Double Speed Mode: fs=64kHz  96kHz)
128fs
(Quad Speed Mode: fs=128kHz  192kHz)
- Master mode: 256fs, 384fs or 512fs (Normal Speed Mode: fs=8kHz  48kHz)
256fs
(Double Speed Mode: fs=64kHz  96kHz)
128fs
(Quad Speed Mode: fs=128kHz  192kHz)
μP I/F: I2C or 3-wire
Power supply
- Analog Power Supply: 3.0V ~ 3.6V (typ.3.3V)
- Digital I/O Power Supply: 3.0V ~ 3.6V (typ.3.3V)
Operating temperature range: -40C ~ 105C
Package: 48pin LQFP
MS1582-E-00
2013/11
-1-
[AK4617]
3. Table of Contents
1. General Description ................................................................................................................................... - 1 2. Features ..................................................................................................................................................... - 1 3. Table of Contents ...................................................................................................................................... - 2 4. Block Diagram and Functions ................................................................................................................... - 3 ■ Block Diagram ....................................................................................................................................... - 3 ■ Ordering Guide ...................................................................................................................................... - 4 ■ Pin Layout .............................................................................................................................................. - 4 ■ Handling of Unused Pin ......................................................................................................................... - 4 5. Pin Configurations and Functions ............................................................................................................. - 5 6. Absolute Maximum Ratings ...................................................................................................................... - 7 7. Recommended Operating Conditions ........................................................................................................ - 7 8. Analog Characteristics............................................................................................................................... - 8 9. ADC Filter Characteristics (fs=48kHz) ..................................................................................................... - 9 10. DAC Filter Characteristics (fs=48kHz) ................................................................................................. - 10 11. DAC Filter Characteristics (fs=96kHz) ................................................................................................. - 11 12. DAC Filter Characteristics (fs=192kHz) ............................................................................................... - 12 13. DC Characteristics ................................................................................................................................. - 13 14. Switching Characteristics ...................................................................................................................... - 14 ■ Timing Diagram ................................................................................................................................... - 19 15. Functional Descriptions ......................................................................................................................... - 26 ■ System Clock ....................................................................................................................................... - 26 ■ De-emphasis Filter ............................................................................................................................... - 28 ■ Digital High Pass Filter ........................................................................................................................ - 28 ■ Master Mode and Slave Mode ............................................................................................................. - 28 ■ Audio Serial Interface Format .............................................................................................................. - 29 ■ TDM Cascade Mode ............................................................................................................................ - 40 ■ Digital Attenuator ................................................................................................................................ - 41 ■ Soft Mute Operation ............................................................................................................................. - 42 ■ System Reset ........................................................................................................................................ - 42 ■ Power-Down ........................................................................................................................................ - 43 ■ Reset Function...................................................................................................................................... - 45 ■ DAC Partial Power-Down Function .................................................................................................... - 46 ■ Parallel Mode ....................................................................................................................................... - 47 ■ Serial Control Interface ........................................................................................................................ - 47 ■ Register Map ........................................................................................................................................ - 51 ■ Register Definitions ............................................................................................................................. - 52 16. Recommended External Circuits ........................................................................................................... - 56 ■ Grounding and Power Supply Decoupling........................................................................................... - 59 ■ Voltage Reference ................................................................................................................................ - 59 ■ Analog Inputs ....................................................................................................................................... - 59 ■ Analog Outputs .................................................................................................................................... - 59 ■ External Analog Inputs Circuit ............................................................................................................ - 60 ■ External Analog Outputs Circuit .......................................................................................................... - 61 17. Package .................................................................................................................................................. - 62 ■ Package & Lead frame material ........................................................................................................... - 62 ■ Marking ................................................................................................................................................ - 63 18. Revision History .................................................................................................................................... - 63 IMPORTANT NOTICE .............................................................................................................................. - 64 -
MS1582-E-00
2013/11
-2-
[AK4617]
4. Block Diagram and Functions
■ Block Diagram
Audio
I/F
PDN
IN1/IN1P
IN1N
IN2/IN2P
ADC
HPF
IN2N
ADC
HPF
SDOUT
LOUT1
LPF
SCF
SCF
DAC
DATT
ROUT1
LPF
SCF
DAC
DATT
LOUT2
LPF
SCF
DAC
DATT
ROUT2
LOUT3
LPF
SCF
DAC
DATT
LPF
SCF
DAC
DATT
ROUT3
LPF
SCF
DAC
DATT
LOUT4
LPF
SCF
DAC
DATT
ROUT4
LPF
SCF
DAC
DATT
SDTO
MCLK
MCLK
LRCK
BICK
LRCK
BICK
SDIN1
SDTI1
SDIN2
SDTI2
SDIN3
SDTI3
SDIN4
SDTI4
SDIN5
SDTI5
SDIN6
SDTI6
Reg
LOUT5
LPF
SCF
SCF
DAC
DATT
ROUT5
LPF
SCF
DAC
DATT
LOUT6
LPF
SCF
DAC
DATT
ROUT6
LPF
SCF
DAC
DATT
uP I/F
(I2C/SPI)
REGO
CSN/PS
SCL/SCLK/MS
SDA/CDTI/DIF
SPI
CAD1/TDM0
VCOM
AVDD1 VSS1 AVDD2 VSS2
TVDD VSS3
Figure 1. Block Diagram
MS1582-E-00
2013/11
-3-
[AK4617]
■ Ordering Guide
AK4617VQ
AKD4617
40  +105C 48pin LQFP (0.5mm pitch)
Evaluation Board for AK4617
LOUT1
ROUT1
LOUT2
ROUT2
LOUT3
ROUT3
LOUT4
ROUT4
LOUT5
ROUT5
LOUT6
ROUT6
36
35
34
33
32
31
30
29
28
27
26
25
■ Pin Layout
AVDD2
37
24
NC
VSS3
38
23
NC
SPI
39
22
NC
CAD1/TDM0
40
21
NC
CSN/PS
41
20
VCOM
CDTI/SDA/DIF
42
19
VSS2
CCLK/SCL/MS
43
18
AVDD1
17
NC
AK4617VQ
Top View
11
SMUTEN
12
10
TST2
PDN
9
IN1N
SDTO
13
8
48
TVDD
SDTI2
7
IN1/IN1P
VSS1
14
6
47
REGO
SDTI3
5
IN2N
TST1
15
4
46
BICK
SDTI4
3
IN2/IN2P
MCLK
16
2
45
LRCK
SDTI5
1
44
SDTI1
SDTI6/TDMI
■ Handling of Unused Pin
The unused I/O pins should be processed appropriately as below.
Classification
Pin Name
IN1/IN1P, IN1N, IN2/IN2P, IN2N
Analog
LOUT1-6, ROUT1-6
SDTI1-6
Digital
SDTO
MS1582-E-00
Setting
Open
Open
Connect to VSS1
Open
2013/11
-4-
[AK4617]
5. Pin Configurations and Functions
No.
5
Pin Name
SDTI1
LRCK
MCLK
BICK
TST1
6
REGO
O
7
8
9
10
VSS1
TVDD
SDTO
TST2
O
O
11
SMUTEN
I
12
PDN
I
13
IN1N
I
IN1
I
IN1P
I
IN2N
I
IN2
I
IN2P
I
17
18
19
NC
AVDD1
VSS2
-
20
VCOM
O
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
NC
NC
NC
NC
ROUT6
LOUT6
ROUT5
LOUT5
ROUT4
LOUT4
ROUT3
LOUT3
ROUT2
LOUT2
ROUT1
O
O
O
O
O
O
O
O
O
O
O
1
2
3
4
I/O
I
I/O
I
I/O
I
14
15
16
Function
Audio Serial Data Input 1 Pin
Input Channel Clock Pin
External Master Clock Input Pin
Audio Serial Data Clock Pin
This pin must be connected to ground.
Regulator Output Pin
This pin should be connected to ground with 1.0uF.
Ground Pin, 0V
Digital Power Supply Pin, 3.0V3.6V
Audio Serial Data Output Pin
This pin must be open.
All Analog Outputs Soft Mute Pin
L: Mute
H: Normal Operation
Power-Down & Reset Pin
When “L”, the AK4617 is powered-down and the control registers are reset to
default state.
(MDIE1 bit = “1”)
Differential Analog Negative input 1 pin
(MDIE1 bit = “0”)
Single-ended Analog Input 1 pin
(MDIE1 bit = “1”)
Differential Analog Positive input 1 pin
(MDIE2 bit = “1”)
Differential Analog Negative input 2 pin
(MDIE2 bit = “0”)
Single-ended Analog Input 2 pin
(MDIE2 bit = “1”)
Differential Analog Positive input 2 pin
This pin must be open.
Analog Power Supply Pin, 3.0V3.6V
Ground Pin, 0V
Common Voltage Output Pin, AVDD1x1/2
Large external capacitor around 1µF is used to reduce power-supply noise.
This pin must be open.
This pin must be open.
This pin must be open.
This pin must be open.
Rch Analog Output 6 Pin
Lch Analog Output 6 Pin
Rch Analog Output 5 Pin
Lch Analog Output 5 Pin
Rch Analog Output 4 Pin
Lch Analog Output 4 Pin
Rch Analog Output 3 Pin
Lch Analog Output 3 Pin
Rch Analog Output 2 Pin
Lch Analog Output 2 Pin
Rch Analog Output 1 Pin
MS1582-E-00
2013/11
-5-
[AK4617]
36
37
38
LOUT1
AVDD2
VSS3
O
-
Lch Analog Output 1 Pin
Analog Power Supply Pin, 3.0V3.6V
Ground Pin, 0V
Control Mode Select Pin
39 SPI
I
“L”: I2C Bus or Parallel control mode, “H”: 3-wire serial control mode
I (SPI pin = “H”)
CAD1
(SPI pin = “L”, PS pin= “L”)
Chip Address Pin in serial control mode
40
I (SPI pin = “L”, PS pin= “H”)
TDM0
TDM I/F Format Mode 0 Pin in parallel control mode
“L”: Normal mode, “H”: TDM mode
I (SPI pin = “H”)
CSN
Chip Select Pin in 3-wire serial control mode
41
I (SPI pin = “L”)
PS
Control Mode Select Pin
“L”: I2C Bus serial control mode, “H”: Parallel control mode
I (SPI pin = “H”)
CDTI
Control Data Input Pin in 3-wire serial control mode
I/O (SPI pin = “L”, PS pin= “L”)
SDA
42
Control Data Input Pin in I2C Bus Serial control mode
I (SPI pin = “L”, PS pin= “H”)
DIF
Audio Data Interface Format Pin in parallel control mode
“L”:24bit, Left justified, “H”: 24bit, I2S
I (SPI pin = “H”)
CCLK
Control Data Clock Pin in 3-wire serial control mode
I (SPI pin = “L”, PS pin= “L”)
SCL
43
Control Data Clock Pin in I2C Bus serial control mode
I (SPI pin = “L”, PS pin= “H”)
MS
Master Mode Select Pin
“L”: Slave Mode “H”: Master Mode
I (TDM1-0 bit = “00”)
SDTI6
Audio Serial Data Input 6 Pin/
44
I (TDM1-0 bit = “01” or “10”)
TDMI
TDM Data Input Pin
45 SDTI5
I Audio Serial Data Input 5 Pin
46 SDTI4
I Audio Serial Data Input 4 Pin
47 SDTI3
I Audio Serial Data Input 3 Pin
48 SDTI2
I Audio Serial Data Input 2 Pin
Note 1. All digital input pins must not be allowed to float.
MS1582-E-00
2013/11
-6-
[AK4617]
6. Absolute Maximum Ratings
(VSS1 ~ 3 = 0V; Note 2)
Parameter
Symbol
min
max
Unit
Power Supplies Analog1
AVDD1,
-0.3
6.0
V
Analog2
AVDD2
-0.3
6.0
V
Digital1
TVDD
-0.3
6.0
V
Input Current (any pins except for supplies)
IIN
mA
10
Analog Input Voltage
VINA
-0.3
AVDD1+0.3
V
Digital Input Voltage
(SDTI1-6, SPI, CSN/PS, CCLK/ SCL/MS,
VIND
-0.3
TVDD+0.3
V
CDTI/SDA/DIF, CAD1/TDM0, PDN pins)
Ambient Temperature (power applied)(Note 3)
Ta
-40
105
C
Storage Temperature
Tstg
-65
150
C
Note 2. All voltages with respect to ground. VSS1 ~ 3 must be connected to the same analog ground plane.
Note 3. In case that PCB wiring density is 100%.
WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
7. Recommended Operating Conditions
(VSS1 ~ 3 = 0V; Note 2)
Parameter
Symbol
min
typ
max
Unit
Power
Analog
AVDD1, AVDD2
3.0
3.3
3.6
V
Supplies
Digital
TVDD
3.0
3.3
3.6
V
(Note 4) Difference
AVDD1, AVDD2 – TVDD -0.1
0
+0.1
V
Note 4. The power up sequence between AVDD1, AVDD2 and TVDD is not critical. Each power supplies
should be powered up during the PDN pin = “L”. The PDN pin should be “H” after all power supplies
are powered up. All power supplies should be powered on, only a part of these power supplies cannot
be powered off. (Power off means power supplies equal to ground or power supplies are floating.) Do
not turn off only the AK4617 under the condition that a surrounding device is powered on and the I2C
bus is in use. AVDD1 and AVDD2 must be connected with the same power supply.
WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet.
MS1582-E-00
2013/11
-7-
[AK4617]
8. Analog Characteristics
(Ta=25ºC; AVDD1, AVDD2=TVDD=3.3V, VSS1 ~ 3 =0V, BICK=64fs; Signal frequency 1kHz;
Measurement frequency = 20Hz~20kHz @fs=48kHz, 20Hz~40kHz at fs=96kHz, 20Hz~40kHz at fs=192kHz;
Unless otherwise specified.)
Parameter
min
typ
max
Unit
ADC Analog Input Characteristics(Single-ended inputs)
Resolution
24
bit
S/(N+D)
(-1dBFS)
77
87
dB
DR (-60dBFS with A-weighted)
87
97
dB
S/N
(A-weighted)
87
97
dB
Interchannel Isolation
110
dB
Interchannel Gain Mismatch
0
0.5
dB
Gain Drift
20
ppm/C
Input Voltage
Single-ended (AIN=0.81x AVDD1)
2.40
2.67
2.94
Vpp
Power Supply Rejection
(Note 5)
60
dB
DAC Analog Output Characteristics (Single-ended outputs)
Resolution
24
bit
S/(N+D)
(0dBFS) fs=48kHz
BW=20kHz
85
95
dB
fs=96kHz
BW=40kHz
93
fs=192kHz
BW=40kHz
93
DR
(-60dBFS with A-weighted)
100
106
dB
S/N
(A-weighted)
100
106
dB
Interchannel Isolation
100
dB
Interchannel Gain Mismatch (Note 6)
0
0.7
dB
Gain Drift
20
ppm/C
Output Voltage
AOUT=0.76 x AVDD2
2.25
2.51
2.77
Vpp
Load Resistance
(AC Load)
5
k
Load Capacitance
30
pF
Power Supply Rejection (Note 5)
60
dB
Note 5. PSR is applied to AVDD1, AVDD2 and TVDD with 1kHz, 50mVpp.
Note 6. Channel gain mismatch between all output channels (LOUT1-6, ROUT1-6).
Parameter
min
typ
max
Power Supplies
Power Supply Current
Normal Operation (PDN pin = “H”)
AVDD1+AVDD2
fs=48kHz
45
59
AVDD1+AVDD2
fs=96kHz, 192kHz
40
TVDD
fs=48kHz
6
8
TVDD
fs=96kHz
7
TVDD
fs=192kHz
9
Power-down mode
(PDN pin = “L”) (Note 7)
AVDD1+AVDD2+TVDD
10
200
Note 7. In the power-down mode, all digital input pins including clock pins are held VSS1.
Unit
MS1582-E-00
2013/11
-8-
mA
mA
mA
mA
mA
µA
[AK4617]
9. ADC Filter Characteristics (fs=48kHz)
(Ta= -40  +105C; AVDD1, AVDD2= TVDD=3.0 3.6V)
Parameter
Symbol
min
typ
ADC Digital Filter (Decimation LPF): SHARP ROLL-OFF(SD_AD bit=“0”)
Passband (Note 8)
±0.16dB
PB
0
-
max
Unit
18.8
kHz
0.28dB
3.0dB
20.0
kHz
22.8
kHz
Stopband(Note 8)
SB
28.4
kHz
Stopband Attenuation
SA
71
dB
Group Delay Distortion 0 ~ 20.0kHz
0
1/fs
GD
Group Delay (Note 10)
GD
15.5
1/fs
ADC Digital Filter (Decimation LPF): SHORT DELAY SHARP ROLL-OFF FILTER(SD_AD
bit=“1”)
Passband (Note 8)
±0.16dB
PB
0
18.8
kHz
20.0
kHz
0.28dB
22.8
kHz
3.0dB
Stopband (Note 8)
SB
28.4
Stopband Attenuation
SA
72
Group Delay Distortion 0 ~ 20.0kHz
2.4
1/fs
GD
Group Delay (Note 10)
GD
5.5
1/fs
ADC Digital Filter (HPF):
Frequency Response
FR
3.7
Hz
3.0dB
(Note 8)
10.9
Hz
0.5dB
24.0
Hz
0.1dB
MS1582-E-00
2013/11
-9-
[AK4617]
10. DAC Filter Characteristics (fs=48kHz)
(Ta= -40  +105C; AVDD1, AVDD2= TVDD=3.0 3.6V)
Parameter
Symbol
min
typ
max
Unit
DAC Digital Filter (LPF): SHARP ROLL-OFF(DEM=OFF; SD_DA bit=“0” ; SLOW bit=“0”)
±0.06dB
PB
0
21.8
kHz
Passband
(Note 8)
24.0
kHz
6.0dB
Stopband
SB
26.2
kHz
Passband Ripple
(Note 12)
PR
dB
-0.06
+0.06
Stopband Attenuation
SA
52
dB
Group Delay Distortion 0 ~ 20.0kHz
0
1/fs
GD
Group Delay
(Note 10)
GD
21.4
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response 0 ~ 20.0kHz (Note 11)
FR
-0.1
dB
DAC Digital Filter (LPF): SLOW ROLL-OFF(DEM=OFF; SD_DA bit=“0” ; SLOW bit=“1”)
±0.06dB
0
9.8
Passband
(Note 9)
PB
kHz
kHz
6.0dB
22.5
Stopband
SB
kHz
40.1
Passband Ripple
(Note 12)
PR
dB
-0.06
+0.06
Stopband Attenuation
SA
dB
50
Group Delay Distortion 0 ~ 20.0kHz
0
1/fs
GD
Group Delay
(Note 10)
GD
9.0
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response 0 ~ 20.0kHz (Note 11)
FR
-4.0
dB
DAC Digital Filter (LPF): SHORT DELAY SHARP ROLL-OFF
(DEM=OFF; SD_DA bit=“1”; SLOW bit=“0”)
±0.06dB
Passband
(Note 8)
PB
0
21.8
kHz
24.0
kHz
6.0dB
Stopband
SB
26.2
kHz
Passband Ripple
(Note 12)
PR
dB
-0.06
+0.06
Stopband Attenuation
SA
52
dB
Group Delay Distortion 0 ~ 20.0kHz
1.7
1/fs
GD
Group Delay
(Note 10)
GD
8.3
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response 0 ~ 20.0kHz (Note 11)
FR
-0.1
dB
DAC Digital Filter (LPF): SHORT DELAY SLOW ROLL-OFF FILTER
(DEM=OFF; SD_DA bit=“1”; SLOW bit=“1”)
±0.06dB
Passband
(Note 9)
PB
0
9.8
kHz
22.5
kHz
6.0dB
Stopband
SB
40.1
kHz
Passband Ripple
(Note 12)
PR
dB
-0.06
+0.06
Stopband Attenuation
SA
50
dB
Group Delay Distortion 0~20.0kHz
0.5
1/fs
GD
Group Delay
(Note 10)
GD
7.8
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response 0 ~ 20.0kHz (Note 11)
FR
-4.0
dB
MS1582-E-00
2013/11
- 10 -
[AK4617]
11. DAC Filter Characteristics (fs=96kHz)
(Ta= -40  +105C; AVDD1, AVDD2= TVDD=3.0 3.6V)
Parameter
Symbol
min
typ
max
Unit
DAC Digital Filter (LPF): SHARP ROLL-OFF(DEM=OFF; SD_DA bit=“0” ; SLOW bit=“0”)
±0.06dB
PB
0
43.6
kHz
Passband
(Note 8)
48.0
kHz
6.0dB
Stopband
SB
52.4
kHz
Passband Ripple
(Note 12)
PR
dB
-0.06
+0.06
Stopband Attenuation
SA
52
dB
Group Delay Distortion 0 ~ 40.0kHz
0
1/fs
GD
Group Delay
(Note 10)
GD
21.4
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response 0 ~ 40.0kHz (Note 11)
FR
-0.3
dB
DAC Digital Filter (LPF): SLOW ROLL-OFF(DEM=OFF; SD_DA bit=“0” ; SLOW bit=“1”)
0
19.6
Passband
(Note 9) ±0.06dB
PB
kHz
kHz
6.0dB
45.0
Stopband
SB
kHz
80.2
Passband Ripple
(Note 12)
PR
dB
-0.06
+0.06
Stopband Attenuation
SA
dB
50
Group Delay Distortion 0 ~ 40.0kHz
0
1/fs
GD
Group Delay
(Note 10)
GD
9.0
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response 0 ~ 40.0kHz (Note 11)
FR
-4.2
dB
DAC Digital Filter (LPF): SHORT DELAY SHARP ROLL-OFF
(DEM=OFF; SD_DA bit=“1”; SLOW bit=“0”)
Passband
(Note 8) ±0.06dB
PB
0
43.6
kHz
48.0
kHz
6.0dB
Stopband
SB
52.4
kHz
Passband Ripple
(Note 12)
PR
dB
-0.06
+0.06
Stopband Attenuation
SA
52
dB
Group Delay Distortion 0 ~ 40.0kHz
1.7
1/fs
GD
Group Delay
(Note 10)
GD
8.3
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response 0 ~ 40.0kHz (Note 11)
FR
-0.3
dB
DAC Digital Filter (LPF): SHORT DELAY SLOW ROLL-OFF FILTER
(DEM=OFF; SD_DA bit=“1” ; SLOW bit=“1”)
Passband
(Note 9) ±0.06dB
PB
0
19.6
kHz
45.0
kHz
6.0dB
Stopband
SB
80.2
kHz
Passband Ripple
(Note 12)
PR
dB
-0.06
+0.06
Stopband Attenuation
SA
50
dB
Group Delay Distortion 0 ~ 40.0kHz
0.5
1/fs
GD
Group Delay
(Note 10)
GD
7.8
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response 0 ~ 40.0kHz (Note 11)
FR
-4.2
dB
MS1582-E-00
2013/11
- 11 -
[AK4617]
12. DAC Filter Characteristics (fs=192kHz)
(Ta= -40  +105C; AVDD1, AVDD2= TVDD=3.0 3.6V)
Parameter
Symbol
min
typ
max
Unit
DAC Digital Filter (LPF): SHARP ROLL-OFF(DEM=OFF; SD_DA bit=“0” ; SLOW bit=“0”)
±0.06dB
PB
0
87.2
kHz
Passband
(Note 8)
96.0
kHz
6.0dB
Stopband
SB
104.8
kHz
Passband Ripple
(Note 12)
PR
dB
-0.06
+0.06
Stopband Attenuation
SA
52
dB
Group Delay Distortion 0 ~ 80.0kHz
0
1/fs
GD
Group Delay
(Note 10)
GD
21.4
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response 0 ~ 80.0kHz (Note 11)
FR
-1.0
dB
DAC Digital Filter (LPF): SLOW ROLL-OFF(DEM=OFF; SD_DA bit=“0” ; SLOW bit=“1”)
0
39.2
Passband
(Note 9) ±0.06dB
PB
kHz
kHz
6.0dB
90.0
Stopband
SB
kHz
160.4
Passband Ripple
(Note 12)
PR
dB
-0.06
+0.06
Stopband Attenuation
SA
dB
50
Group Delay Distortion 0 ~ 80.0kHz
0
1/fs
GD
Group Delay
(Note 10)
GD
9.0
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response 0 ~ 80.0kHz (Note 11)
FR
-5.0
dB
DAC Digital Filter (LPF): SHORT DELAY SHARP ROLL-OFF
(DEM=OFF; SD_DA bit=“1”; SLOW bit=“0”)
Passband
(Note 8) ±0.06dB
PB
0
87.2
kHz
96.0
kHz
6.0dB
Stopband
SB
104.8
kHz
Passband Ripple
(Note 12)
PR
dB
-0.06
+0.06
Stopband Attenuation
SA
52
dB
Group Delay Distortion 0 ~ 80.0kHz
1.7
1/fs
GD
Group Delay
(Note 10)
GD
8.3
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response 0 ~ 80.0kHz (Note 11)
FR
-1.0
dB
DAC Digital Filter (LPF): SHORT DELAY SLOW ROLL-OFF FILTER
(DEM=OFF; SD_DA bit=“1” ; SLOW bit=“1”)
Passband
(Note 9) ±0.06dB
PB
0
39.2
kHz
90.0
kHz
6.0dB
Stopband
SB
160.4
kHz
Passband Ripple
(Note 12)
PR
dB
-0.06
+0.06
Stopband Attenuation
SA
50
dB
Group Delay Distortion 0 ~ 80.0kHz
0.5
1/fs
GD
Group Delay
(Note 10)
GD
7.8
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response 0 ~ 80.0kHz (Note 11)
FR
-5.0
dB
Note 8. The passband and stopband frequencies scale with fs (sampling frequency). For example, ADC:
Passband (0.1dB) = 0.375 x fs, DAC: Passband (0.06dB) = 0.454 x fs.
Note 9. The passband and stopband frequencies scale with fs (sampling frequency). For example, DAC:
Passband (0.06dB) = 0.204 x fs.
MS1582-E-00
2013/11
- 12 -
[AK4617]
Note 10. The calculated delay time is resulting from digital filtering. For the ADC, this time is from the input
of an analog signal to the setting of 24bit data for both channels to the ADC output register. For the
DAC, this time is from setting the 24 bit data both channels at the input register to the output of an
analog signal.
Note 11. The reference frequency is 1kHz.
Note 12. It is the gain amplitude in passband.
13. DC Characteristics
(Ta=-40+105C; AVDD1, AVDD2= TVDD=3.0 3.6V)
Parameter
Symbol
min
High-Level Input Voltage
VIH
70% TVDD
(MCLK, LRCK, BICK,
SDTI1-6/TDMI, SPI, CSN/PS,
CCLK/SCL/MS, CDTI/SDA/DIF,
VIL
CAD1/TDM0, PDN pins)
Low-Level Input Voltage
(MCLK, LRCK, BICK,
SDTI1-6/TDMI, SPI, CSN/PS,
CCLK/SCL/MS, CDTI/SDA/DIF,
CAD1/TDM0, PDN pins)
High-Level Output Voltage
(LRCK, BICK, SDTO pins: Iout=-100µA)
VOH
TVDD-0.5
Low-Level Output Voltage
(LRCK, BICK, SDTO pins: Iout= 100µA)
VOL
(SDA pin:
Iout= 3mA)
VOL
Input Leakage Current
Iin
-
MS1582-E-00
typ
-
max
-
Unit
V
-
30% TVDD
V
-
-
V
-
0.5
0.4
10
V
V
µA
2013/11
- 13 -
[AK4617]
14. Switching Characteristics
(Ta=-40+105C; AVDD1, AVDD2= TVDD=3.0 3.6V; CL=20pF; unless otherwise specified)
Parameter
Symbol
min
typ
max
Master Clock Timing
External Clock
256fsn:
fCLK
2.048
12.288
Pulse Width Low
tCLKL
32
Pulse Width High
tCLKH
32
384fsn:
fCLK
3.072
18.432
Pulse Width Low
tCLKL
22
Pulse Width High
tCLKH
22
512fsn:
fCLK
4.096
24.576
Pulse Width Low
tCLKL
16
Pulse Width High
tCLKH
16
256fsd, 128fsq:
fCLK
16.384
24.576
Pulse Width Low
tCLKL
16
Pulse Width High
tCLKH
16
LRCK Timing (Slave mode)
Stereo mode
(Figure 2)
(TDM1-0 bit = “00”)
Normal Speed Mode
fsn
8
48
Double Speed Mode
fsd
64
96
Quad Speed Mode
fsq
128
192
Duty Cycle
Duty
45
55
TDM512 mode
(Figure 3),(Note 13)
(TDM1-0 bit = “01”)
LRCK frequency
fsn
8
48
“H” time
tLRH
1/512fs
“L” time
tLRL
1/512fs
TDM256 mode
(Figure 3),(Note 14)
(TDM1-0 bit = “10”)
LRCK frequency
fsn
8
48
fsd
64
96
“H” time
tLRH
1/256fs
“L” time
tLRL
1/256fs
TDM128 mode
(Figure 3),(Note 15)
(TDM1-0 bit = “11”)
LRCK frequency
fsq
128
192
“H” time
tLRH
1/128fs
“L” time
tLRL
1/128fs
MS1582-E-00
Unit
MHz
ns
ns
MHz
ns
ns
MHz
ns
ns
MHz
ns
ns
kHz
kHz
kHz
%
kHz
ns
ns
kHz
kHz
ns
ns
kHz
ns
ns
2013/11
- 14 -
[AK4617]
LRCK Timing (Master Mode)
Stereo mode
(Figure 4)
(TDM1-0 bit = “00”)
Normal Speed Mode
Double Speed Mode
Quad Speed Mode
Duty Cycle
TDM512 mode
(Figure 5),(Note 13)
(TDM1-0 bit = “01”)
LRCK frequency
“H” time
(Note 16)
TDM256 mode
(Figure 5),(Note 14)
(TDM1-0 bit = “10”)
LRCK frequency
fsn
fsd
fsq
Duty
8
64
128
-
fsn
tLRH
8
fsn
fsd
tLRH
8
64
50
48
96
192
-
kHz
kHz
kHz
%
48
kHz
ns
48
96
kHz
kHz
ns
1/16fs
“H” time
(Note 16)
1/8fs
TDM128 mode
(Figure 5),(Note 15)
(TDM1-0 bit = “11”)
LRCK frequency
fsq
128
192
kHz
“H” time
(Note 16)
tLRH
1/4fs
ns
Note 13. Please use for Normal Speed mode. Master clock should be input the 512fs in Master mode.
Note 14. Please use for Normal Speed mode, Double Speed mode. Master clock should be input the 256fs or
512fs in Master mode.
Note 15. Please use for Quad Speed mode. Master clock should be input the 128fs in Master mode.
Note 16. If the format is I2S, it is “L” time.
MS1582-E-00
2013/11
- 15 -
[AK4617]
Parameter
Audio Interface Timing (Slave mode)
Stereo mode (TDM1-0 bit = “00”) for
Normal Speed mode (Figure 2, Figure 6)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “”
(Note 17)
BICK “” to LRCK Edge
(Note 17)
LRCK to SDTO(MSB) (Except I2S mode)
BICK “” to SDTO
SDTI Hold Time
SDTI Setup Time
Stereo mode (TDM1-0 bit = “00”) for
Double and Quad Speed mode (Figure 2, Figure 6)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “”
(Note 17)
BICK “” to LRCK Edge
(Note 17)
SDTI Hold Time
SDTI Setup Time
TDM512 mode (TDM1-0 bit = “01”)
(Note 13) (Figure 3, Figure 7)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “”
(Note 17)
BICK “” to LRCK Edge
(Note 17)
SDTO Setup time BICK “”
SDTO Hold time BICK “”
SDTI Hold Time
SDTI Setup Time
TDM256 mode (TDM1-0 bit = “10”)
(Note 14) (Figure 3, Figure 7)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “”
(Note 17)
BICK “” to LRCK Edge
(Note 17)
SDTO Setup time BICK “”
SDTO Hold time BICK “”
SDTI Hold Time
SDTI Setup Time
TDM128 mode (TDM1-0 bit = “11”)
(Note 15) (Figure 3, Figure 7)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “”
(Note 17)
BICK “” to LRCK Edge
(Note 17)
SDTI Hold Time
SDTI Setup Time
MS1582-E-00
Symbol
min
typ
max
tBCK
tBCKL
tBCKH
tLRB
tBLR
tLRS
tBSD
tSDH
tSDS
324
130
130
20
20
50
50
ns
ns
ns
ns
ns
ns
ns
ns
ns
tBCK
tBCKL
tBCKH
tLRB
tBLR
tSDH
tSDS
81
33
33
23
23
10
10
ns
ns
ns
ns
ns
ns
ns
tBCK
tBCKL
tBCKH
tLRB
tBLR
tBSS
tBSH
tSDH
tSDS
40
16
16
10
10
6
5
10
10
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
tBCK
tBCKL
tBCKH
tLRB
tBLR
tBSS
tBSH
tSDH
tSDS
40
16
16
10
10
6
5
10
10
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
tBCK
tBCKL
tBCKH
tLRB
tBLR
tSDH
tSDS
40
16
16
10
10
10
10
ns
ns
ns
ns
ns
ns
ns
80
80
Unit
2013/11
- 16 -
[AK4617]
Parameter
Symbol
min
Audio Interface Timing (Master mode)
Stereo mode (TDM1-0 bit = “00”) for
Normal Speed mode (Figure 4, Figure 8)
BICK Frequency
fBCK
BICK Duty
dBCK
tMBLR
BICK “” to LRCK
80
tBSD
BICK “” to SDTO
80
tSDH
SDTI Hold Time
50
tSDS
SDTI Setup Time
50
Stereo mode (TDM1-0 bit = “00”) for
Double and Quad Speed mode (Figure 4, Figure 8)
BICK Frequency
fBCK
BICK Duty
(Table 17)
dBCK
SDTI Hold Time
tSDH
10
SDTI Setup Time
tSDS
10
TDM512 mode (TDM1-0 bit = “01”)
(Note 13) (Figure 5, Figure 9)
BICK Frequency
fBCK
BICK Duty
(Table 17)
dBCK
BICK “” to LRCK
tMBLR
-10
tBSS
6
SDTO Setup time BICK “”
tBSH
5
SDTO Hold time BICK “”
tSDH
5
SDTI Hold Time
tSDS
6
SDTI Setup Time
TDM256 mode (TDM1-0 bit = “10”)
(Note 14) (Figure 5, Figure 9)
BICK Frequency
fBCK
BICK Duty
(Table 17)
dBCK
BICK “” to LRCK
tMBLR
10
tBSS
SDTO Setup time BICK “”
6
tBSH
5
SDTO Hold time BICK “”
tSDH
5
SDTI Hold Time
tSDS
6
SDTI Setup Time
TDM128 mode (TDM1-0 bit = “11”)
(Note 15) (Figure 5, Figure 9)
BICK Frequency
fBCK
BICK Duty
(Table 17)
dBCK
tMBLR
BICK “” to LRCK
10
tSDH
SDTI Hold Time
10
tSDS
SDTI Setup Time
10
Note 17. BICK rising edge must not occur at the same time as LRCK edge.
Note 18. In the case that the duty of MCLK is 50%.
MS1582-E-00
typ
max
Unit
64fs
50
-
80
80
-
Hz
%
ns
ns
ns
ns
64fs
50
-
-
Hz
%
ns
ns
512fs
50
10
-
Hz
%
ns
ns
ns
ns
ns
256fs
50
-
10
--
Hz
%
ns
ns
ns
ns
ns
128fs
50
-
10
-
Hz
%
ns
ns
ns
-
2013/11
- 17 -
[AK4617]
Parameter
Control Interface Timing (3-wire Serial mode):
CCLK Period
CCLK Pulse Width Low
Pulse Width High
CDTI Setup Time
CDTI Hold Time
CSN “H” Time
CSN “” to CCLK “”
CCLK “” to CSN “”
Control Interface Timing (I2C Bus mode):
SCL Clock Frequency
Bus Free Time Between Transmissions
Start Condition Hold Time (prior to first clock pulse)
Clock Low Time
Clock High Time
Setup Time for Repeated Start Condition
SDA Hold Time from SCL Falling (Note 19)
SDA Setup Time from SCL Rising
Rise Time of Both SDA and SCL Lines
Fall Time of Both SDA and SCL Lines
Setup Time for Stop Condition
Pulse Width of Spike Noise Suppressed by Input Filter
Capacitive load on bus
Power-down & Reset Timing
PDN Pulse Width
(Note 20)
PDN “” to SDTO valid
(Note 21)
Symbol
min
tCCK
tCCKL
tCCKH
tCDS
tCDH
tCSW
tCSS
tCSH
200
80
80
40
40
150
50
50
fSCL
tBUF
tHD:STA
tLOW
tHIGH
tSU:STA
tHD:DAT
tSU:DAT
tR
tF
tSU:STO
tSP
Cb
1.3
0.6
1.3
0.6
0.6
0
0.1
0.6
0
-
tPD
tPDV
150
typ
max
Unit
ns
ns
ns
ns
ns
ns
ns
ns
400
1.0
0.3
50
400
kHz
s
s
s
s
s
s
s
s
s
ns
pF
ns
32768/MCLK
s
+1059/fs
Note 19. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.
Note 20. The AK4617 can be reset by setting the PDN pin to “L” upon power-up. The PDN pin must held “L”
for more than 150ns for a certain reset. The AK4617 is not reset by the “L” pulse less than 30ns.
Note 21. These cycles are the numbers of MCLK and LRCK rising from the PDN pin rising.
Note 22. I2C is a trademark of NXP B.V.
MS1582-E-00
2013/11
- 18 -
[AK4617]
■ Timing Diagram
1/fCLK
VIH
MCLK
VIL
tCLKH
tCLKL
1/fsn, 1/fsd, 1/fsq
VIH
LRCK
VIL
tdLRKH
tdLRKL
Duty
= tdLRKH (or tdLRKL) x fs x 100
tBCK
VIH
BICK
VIL
tBCKH
tBCKL
Figure 2. Clock Timing (TDM1-0 bit = “00” & Slave mode)
1/fCLK
VIH
MCLK
VIL
tCLKH
tCLKL
1/fs
VIH
LRCK
VIL
tLRH
tLRL
tBCK
VIH
BICK
VIL
tBCKH
tBCKL
Figure 3. Clock Timing (Except TDM1-0 bit = “00” & Slave mode)
MS1582-E-00
2013/11
- 19 -
[AK4617]
1/fCLK
VIH
MCLK
VIL
tCLKH
tCLKL
1/fs
LRCK
50%TVDD
tdLRKH
tdLRKL
dLRK
= tdLRKH (or tdLRKL) x fs x 100
1/fBCK
50%TVDD
BICK
tdBCKH
tdBCKL
dBCK
= tdBCKH (or tdBCKL) x fs x 100
Figure 4. Clock Timing (TDM1-0 bit = “00” & Master mode)
1/fCLK
VIH
MCLK
VIL
tCLKH
tCLKL
1/fs
LRCK
50%TVDD
tLRH
1/fBCK
50%TVDD
BICK
tdBCKH
tdBCKL
dBCK
= tdBCKH (or tdBCKL) x fs x 100
Figure 5. Clock Timing (Except TDM1-0 bit = “00” & Master mode)
MS1582-E-00
2013/11
- 20 -
[AK4617]
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tLRS
tBSD
SDTO
50%TVDD
tSDS
tSDH
VIH
SDTI
VIL
Figure 6. Audio Interface Timing (TDM1-0 bit = “00” & Slave mode)
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tBSS
tBSH
SDTO
50%TVDD
tSDS
tSDH
VIH
SDTI
VIL
Figure 7. Audio Interface Timing (Except TDM1-0 bit = “00” & Slave mode)
MS1582-E-00
2013/11
- 21 -
[AK4617]
LRCK
50%TVDD
tMBLR
50%TVDD
BICK
tBSD
50%TVDD
SDTO
tSDS
tSDH
VIH
SDTI
VIL
Figure 8. Audio Interface Timing (TDM1-0 bit = “00” & Master mode)
LRCK
50%TVDD
tMBLR
50%TVDD
BICK
tBSS
tBSH
50%TVDD
SDTO
tSDS
tSDH
VIH
SDTI
VIL
Figure 9. Audio Interface Timing (Except TDM1-0 bit = “00” & Master mode)
MS1582-E-00
2013/11
- 22 -
[AK4617]
VIH
CSN
VIL
tCSH
tCSS
tCCKL
tCCKH
VIH
CCLK
VIL
tCDS
tCDH
VIH
CDTI
C1
C0
R/W
VIL
Figure 10. WRITE Command Input Timing (3-wire Serial mode)
tCSW
VIH
CSN
VIL
tCSH
tCSS
VIH
CCLK
VIL
VIH
CDTI
D2
D1
D0
VIL
Figure 11. WRITE Data Input Timing (3-wire Serial mode)
MS1582-E-00
2013/11
- 23 -
[AK4617]
VIH
CSN
VIL
VIH
CCLK
VIL
VIH
CDTI
A1
A0
VIL
Figure 12. Read Data Output Timing1(3-wire Serial mode)
tCSW
VIH
CSN
VIL
tCSH
tCSS
VIH
CCLK
VIL
VIH
CDTI
VIL
Figure 13. Read Data Output Timing2(3-wire Serial mode)
MS1582-E-00
2013/11
- 24 -
[AK4617]
VIH
SDA
VIL
tLOW
tBUF
tR
tHIGH
tF
tSP
VIH
SCL
VIL
tHD:STA
Stop
tHD:DAT
tSU:DAT
tSU:STA
tSU:STO
Start
Stop
Start
Figure 14. I2C Bus mode Timing
tPD
VIH
PDN
VIL
tPDV
SDTO
50%TVDD
Figure 15. Power-down & Reset Timing
MS1582-E-00
2013/11
- 25 -
[AK4617]
15. Functional Descriptions
■ System Clock
The external clocks which are required to operate the AK4617 in slave mode are MCLK, LRCK and BICK.
MCLK should be synchronized with LRCK but the phase is not critical. There are two methods to set MCLK
frequency. In Manual Setting Mode (ACKS bit= “0”: Default), the sampling speed is set by DFS0, DFS1
(Table 1). The frequency of MCLK at each sampling speed is set automatically. (Table 3, Table 4, Table 5). In
Auto Setting Mode (ACKS bit= “1”), as MCLK frequency is detected automatically (Table 6) and the internal
master clock attains the appropriate frequency (Table 7), so it is not necessary to set DFS.
In master mode, only MCLK is required. Master Clock Input Frequency should be set with the CKS1-0 bit, and
the sampling speed should be set by the DFS1-0 bit. The frequencies and the duties of the clocks (LRCK,
BICK) are not stabile immediately after setting CKS1-0 bit and DFS1-0 bit up.
After exiting reset at power-up in slave mode, the AK4617 is in power-down mode until MCLK and LRCK are
input.
If the clock is stopped, click noise occurs when restarting the clock. Mute the digital output externally.
Note: ADC is automatically powered-down in Double Speed Mode and Quad Speed Mode.
DFS1
0
0
1
1
DFS0
0
1
0
1
Sampling Speed Mode (fs)
(default)
Normal Speed Mode
8kHz~48kHz
Double Speed Mode
64kHz~96kHz
Quad Speed Mode
128kHz~192kHz
N/A
(N/A: Not available)
Table 1. Sampling Speed (Manual Setting Mode)
CKS1
CKS0
0
0
1
1
0
1
0
1
Normal Speed
Mode
256fs
384fs
512fs
512fs
Double Speed
Mode
256fs
256fs
256fs
256fs
Quad Speed
Mode
128fs
128fs
128fs
128fs
(default)
Table 2. Master Clock Input Frequency Select (Master Mode)
Note: In Normal Speed Mode, TDM mode (TDM1-0 bit =”01) can be used when CKS1 bit = “1”.
LRCK
fs
32.0kHz
44.1kHz
48.0kHz
256fs
8.1920
11.2896
12.2880
MCLK (MHz)
384fs
12.2880
16.9344
18.4320
512fs
16.3840
22.5792
24.5760
BICK (MHz)
64fs
2.0480
2.8224
3.0720
Table 3. System Clock Example (Normal Speed Mode @Manual Setting Mode)
MS1582-E-00
2013/11
- 26 -
[AK4617]
LRCK
fs
88.2kHz
96.0kHz
MCLK (MHz)
256fs
22.5792
24.5760
BICK (MHz)
64fs
5.6448
6.1440
Table 4. System Clock Example (Double Speed Mode @Manual Setting Mode)
LRCK
fs
176.4kHz
192.0kHz
MCLK (MHz)
128fs
22.5792
24.5760
BICK (MHz)
64fs
11.2896
12.2880
Table 5. System Clock Example (Quad Speed Mode @Manual Setting Mode)
MCLK
512fs
256fs
128fs
Sampling Speed Mode
Normal Speed Mode
Double Speed Mode
Quad Speed Mode
Table 6. Sampling Speed (Auto Setting Mode)
LRCK
fs
32.0kHz
44.1kHz
48.0kHz
88.2kHz
96.0kHz
176.4kHz
192.0kHz
128fs
22.5792
24.5760
MCLK (MHz)
256fs
512fs
16.3840
22.5792
24.5760
22.5792
24.5760
-
Sampling
Speed Mode
Normal
Speed Mode
Double Speed
Mode
Quad Speed
Mode
Table 7. System Clock Example (Auto Setting Mode)
MS1582-E-00
2013/11
- 27 -
[AK4617]
■ De-emphasis Filter
The AK4617 has a digital de-emphasis filter (tc=50/15µs) by an IIR filter. The de-emphasis filter supports
only Normal Speed Mode. This filter corresponds to three sampling frequencies (32kHz, 44.1kHz, 48kHz).
De-emphasis of each DAC can be set individually by registers, DAC1(SDTI1), DAC2(SDTI2),
DAC3(SDTI3), DAC4(SDTI4), DAC5(SDTI5), DAC6(SDTI6).
Mode
Sampling Speed Mode
0
1
2
3
Normal Speed Mode
Normal Speed Mode
Normal Speed Mode
Normal Speed Mode
DEM11
(DEM61-21)
0
0
1
1
DEM10
(DEM60-20)
0
1
0
1
DEM
44.1kHz
OFF
48kHz
32kHz
(default)
Table 8. De-emphasis control
■ Digital High Pass Filter
The ADC has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF is 3.7Hz at
fs=48kHz and scales with the sampling rate (fs).
■ Master Mode and Slave Mode
Master Mode and Slave Mode are selected by setting the MS pin in Parallel control mode. (Master Mode= “H”,
Slave Mode= “L”)
LRCK and BICK pins are outputs in Master Mode (MS pin= “H”)
LRCK and BICK pins are inputs in Slave Mode (MS pin= “L”)
In the serial control mode, BICK and LRCK pins are Hi-z before an internal power up and MS bit = “1”.
In the parallel control mode, BICK and LRCK pins are Hi-z before an internal power up.
When a problem is occurred by this, pull down BICK and LRCK pins by external resistance (ex. 100kohm).
PDN
L
H
MS pin
L
H
L
H
LRCK pin
Input
Hi-z
Input
Output
BICK pin
Input
Hi-z
Input
Output
Table 9. LRCK and BICK pins
MS1582-E-00
2013/11
- 28 -
[AK4617]
■ Audio Serial Interface Format
(1) Stereo Mode
When TDM1-0 bit = “00”, ten modes can be selected by the DIF2-0 bit as shown in Table 10. In all modes the
serial data is MSB-first, 2’s compliment format. The data SDTO is clocked out on the falling edge of BICK and
the SDTI1-6 is latched on the rising edge of BICK.
Mode3/4/8/9/13/14/18/19/23/24/28/29/33/34/38/39 in SDTI input formats can be used for 16-20bit data by
zeroing the unused LSBs.
Mode M/S
TDM1
TDM0
DIF2
DIF1
DIF0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
2
0
0
0
0
1
0
3
0
0
0
0
1
1
4
0
0
0
1
0
0
5
1
0
0
0
0
0
6
1
0
0
0
0
1
7
1
0
0
0
1
0
8
1
0
0
0
1
1
9
1
0
0
1
0
0
SDTO
SDTI1-6
24bit, Left
justified (*)
24bit, Left
justified
24bit, Left
justified
24bit, Left
justified
16bit, Right
justified
20bit, Right
justified
24bit, Right
justified
24bit, Left
justified
24bit, I2S
24bit, I2S
24bit, Left
justified
24bit, Left
justified
24bit, Left
justified
24bit, Left
justified
24bit, I2S
16bit, Right
justified
20bit, Right
justified
24bit, Right
justified
24bit, Left
justified
24bit, I2S
LRCK
I/O
BICK
I/O
32fs
I
64fs
48fs
I
64fs
48fs
I
64fs
48fs
I
64fs
48fs
I
64fs
H/L
I
H/L
I
H/L
I
H/L
I
L/H
I
H/L
O
64fs
O
H/L
O
64fs
O
H/L
O
64fs
O
H/L
O
64fs
O
L/H
O
64fs
O
(default)
Table 10. Audio data formats (Stereo mode)
(*)When the BICK is less than 48fs, the output data length from SDTO is limited to the clock number of BICK
in the half LRCK period.
MS1582-E-00
2013/11
- 29 -
[AK4617]
(2) TDM Mode
The audio serial interface format is set in TDM mode by the TDM1-0 bit = “01”. Five modes can be selected by
the DIF2-0 bit as shown in Table 11. In all modes the serial data is MSB-first, 2’s compliment format. The
SDTO is clocked out on the rising edge of BICK and the SDTI1/2/3 are latched on the rising edge of BICK. In
the TDM512 mode (fs = 48kHz), the serial data of all ADC (four channels) is output to the SDTO pin. And the
serial data of all DAC (twelve channels) is input to the SDTI1 pin. The input data to SDTI2-6 pins are ignored
and the SDTI6 pin is used as the TDMI pin. BICK should be fixed to 512fs. “H” time and “L” time of LRCK
should be 1/512fs at least.
TDM256 mode can be set by TDM1-0 bit as show in Table 12. In the TDM256 mode (fs =48, 96kHz), SDTO
pin = “L” @96kHz. And the serial data of DAC (eight channels; L1, R1, L2, R2, L3, R3, L4, R4) is input to the
SDTI1 pin. Other four data (L5, R5, L6, R6) are input to the SDTI2 pin. The input data to SDTI3-6 pins are
ignored and the SDTI6 pin is used as the TDMI pin. BICK should be fixed to 256fs. “H” time and “L” time of
LRCK should be 1/256fs at least. TDM128 mode can be set by TDM1-0 bit as show in Table 13.
In TDM128 mode (fs=192kHz), SDTO pin = “L”. And the serial data of DAC (four channels; L1, R1, L2, R2)
is input to the SDTI1 pin and the serial data of DAC (four channels; L3, R3, L4, R4) is input to the SDTI2 pin,
the serial data of DAC (four channels; L5, R5, L6, R6) is input to the SDTI3 pin. The input data to SDTI4-6
pins are ignored. BICK should be fixed to 128fs. “H” time and “L” time of LRCK should be 1/128fs at least.
Mode
M/S
TDM
1
TDM0
10
0
0
1
11
0
0
1
12
0
0
1
13
0
0
1
14
0
0
1
15
1
0
1
16
1
0
1
17
1
0
1
18
1
0
1
19
1
0
1
DIF2
DIF1
DIF0
SDTO
SDTI1
24bit, Left 16bit, Right
justified
justified
24bit, Left 20bit, Right
0
0
1
justified
justified
24bit, Left 24bit, Right
0
1
0
justified
justified
24bit, Left
24bit, Left
0
1
1
justified
justified
1
0
0
24bit, I2S
24bit, I2S
24bit, Left 16bit, Right
0
0
0
justified
justified
24bit, Left 20bit, Right
0
0
1
justified
justified
24bit, Left 24bit, Right
0
1
0
justified
justified
24bit, Left
24bit, Left
0
1
1
justified
justified
2
1
0
0
24bit, I S
24bit, I2S
Table 11. Audio data formats (TDM512 mode)
0
0
0
MS1582-E-00
LRCK
I/O
BICK
I/O

I
512fs
I

I
512fs
I

I
512fs
I

I
512fs
I

I
512fs
I

O
512fs
O

O
512fs
O

O
512fs
O

O
512fs
O

O
512fs
O
2013/11
- 30 -
[AK4617]
Mode
M/S
TDM1
TDM0
20
0
1
0
21
0
1
0
22
0
1
0
23
0
1
0
24
0
1
0
25
1
1
0
26
1
1
0
27
1
1
0
28
1
1
0
29
1
1
0
Mode
M/S TDM1
TDM0
DIF2
DIF1
DIF0
SDTO
SDTI1-2
24bit, Left 16bit, Right
justified
justified
24bit, Left 20bit, Right
0
0
1
justified
justified
24bit, Left 24bit, Right
0
1
0
justified
justified
24bit, Left 24bit, Left
0
1
1
justified
justified
1
0
0
24bit, I2S
24bit, I2S
24bit, Left 16bit, Right
0
0
0
justified
justified
24bit, Left 20bit, Right
0
0
1
justified
justified
24bit, Left 24bit, Right
0
1
0
justified
justified
24bit, Left 24bit, Left
0
1
1
justified
justified
2
1
0
0
24bit, I S
24bit, I2S
Table 12. Audio data formats (TDM256 mode)
0
DIF2
0
DIF1
0
DIF0
SDTO
30
0
1
1
0
0
0
L
31
0
1
1
0
0
1
L
32
0
1
1
0
1
0
L
33
0
1
1
0
1
1
L
34
0
1
1
1
0
0
L
35
1
1
1
0
0
0
L
36
1
1
1
0
0
1
L
37
1
1
1
0
1
0
L
38
1
1
1
0
1
1
L
39
1
1
1
1
0
0
L
SDTI1-3
16bit, Right
justified
20bit, Right
justified
24bit, Right
justified
24bit, Left
justified
24bit, I2S
16bit, Right
justified
20bit, Right
justified
24bit, Right
justified
24bit, Left
justified
24bit, I2S
LRCK
I/O
BICK
I/O

I
256fs
I

I
256fs
I

I
256fs
I

I
256fs
I

I
256fs
I

O
256fs
O

O
256fs
O

O
256fs
O

O
256fs
O

O
256fs
O
LRCK
I/O
BICK
I/O

I
128fs
I

I
128fs
I

I
128fs
I

I
128fs
I

I
128fs
I

O
128fs
O

O
128fs
O

O
128fs
O

O
128fs
O

O
128fs
O
Table 13. Audio data formats (TDM128 mode)
MS1582-E-00
2013/11
- 31 -
[AK4617]
LRCK
0
1
2
16
17
18
24
25
31
0
1
2
16
17
18
24
25
31
0
1
BICK(64fs)
SDTO(o)
23 22
SDTI(i)
8
7
Don’t Care
6
0
15 14
8
23 22
7
1
8
7
Don’t Care
0
6
0
15 14
SDTO-23:MSB, 0:LSB; SDTI-15:MSB, 0:LSB
Lch Data
23
8
7
1
0
Rch Data
Figure 16. Mode 0/5 Timing (Stereo Mode)
LRCK
0
1
2
12
13
14
24
25
31
0
1
2
12
13
14
24
25
31
0
1
BICK(64fs)
SDTO(o)
23 22
SDTI(i)
12 11 10
0
19 18
8
Don’t Care
23 22
7
1
12
11 10
Don’t Care
0
0
19 18
SDTO-23:MSB, 0:LSB; SDTI-19:MSB, 0:LSB
Lch Data
23
8
7
1
0
Rch Data
Figure 17. Mode 1/6 Timing (Stereo Mode)
LRCK
0
1
2
8
9
10
24
25
31
0
1
2
8
9
10
24
25
31
0
1
BICK(64fs)
SDTO(o)
23 22
SDTI(i)
16 15 14
Don’t Care
0
23 22
23:MSB, 0:LSB
23 22
8
7
1
16 15 14
Don’t Care
0
0
23 22
Lch Data
23
8
7
1
0
Rch Data
Figure 18. Mode 2/7 Timing (Stereo Mode)
LRCK
0
1
2
21
22
23
24
28
29
30
31
0
1
2
22
23
24
28
29
30
31
0
1
BICK(64fs)
SDTO(o)
23 22
2
1
0
SDTI(i)
23 22
2
1
0
23:MSB, 0:LSB
Don’t Care
Lch Data
23 22
2
1
0
23 22
2
1
0
23
Don’t Care
23
Rch Data
Figure 19. Mode 3/8 Timing (Stereo Mode)
MS1582-E-00
2013/11
- 32 -
[AK4617]
LRCK
0
1
2
3
22
23
24
25
29
30
31
0
1
2
3
22
23
24
25
29
30
31
0
1
BICK(64fs)
SDTO(o)
SDTI(i)
23 22
2
1
0
23 22
2
1
0
23:MSB, 0:LSB
Don’t Care
23 22
2
1
0
23 22
2
1
0
Lch Data
Don’t Care
Rch Data
Figure 20. Mode 4/9 Timing (Stereo Mode)
512BICK
LRCK(Mode15)
LRCK(Mode10)
BICK(512fs)
*
SDTO(o)
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
SDTI1(i)
15 14
0
15 14
0
15 14
R1
L1
15 14
0
0
15 14
R2
L2
0
15 14
0
15 14
R3
L3
15 14
0
15 14
0
R4
L4
0
15 14
0
15 14
R5
L5
15 14
0
0
15
R6
L6
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
TDMI(i)
*
23 22
0
23 22
0
23 22
0
23 22
23 22
0
0
23 22
0
23 22
0
23 22
23 22
0
0
23 22
0
23 22
0
23 22
23 22
0
0
23 22
0
23
Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
(*: Optional)
Figure 21. Mode 10/15 Timing (TDM512 Mode)
512BICK
LRCK(Mode16)
LRCK(Mode11)
BICK(512fs)
*
SDTO(o)
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
23 22
0
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
SDTI1(i)
19 18
0
L1
19 18
0
R1
19 18
0
L2
19 18
0
R2
19 18
0
19 18
0
R3
L3
19 18
0
19 18
0
R4
L4
19 18
0
19 18
0
R5
L5
19 18
0
19 18
0
19
R6
L6
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
TDMI(i)
*
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23
Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
(*: Optional)
Figure 22. Mode 11/16 Timing (TDM512 Mode)
MS1582-E-00
2013/11
- 33 -
[AK4617]
512BICK
LRCK(Mode17)
LRCK(Mode12)
BICK(512fs)
*
SDTO(o)
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
23 22
0
0
23 22
0
23 22
Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
SDTI1(i)
23 22
0
23 22
0
23 22
R1
L1
23 22
0
0
23 22
R2
L2
0
23 22
0
23 22
R3
L3
23 22
0
23 22
0
R4
L4
0
23 22
0
23 22
R5
L5
23 22
0
0
23
R6
L6
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
*
TDMI(i)
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23
Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
(*: Optional)
Figure 23. Mode 12/17 Timing (TDM512 Mode)
512BICK
LRCK(Mode18)
LRCK(Mode13)
BICK(512fs)
*
SDTO(o)
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
23 22
0
0
23 22
0
23 22
Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
SDTI1(i)
23 22
0
23 22
0
23 22
R1
L1
0
23 22
0
23 22
R2
L2
0
23 22
0
23 22
R3
L3
0
23 22
0
23 22
R4
L4
0
23 22
0
23 22
R5
L5
0
23 22
0
23 22
R6
L6
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
*
TDMI(i)
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
23
0
Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
(*: Optional)
Figure 24. Mode 13/18 Timing (TDM512 Mode)
512BICK
LRCK(Mode19)
LRCK(Mode14)
BICK(512fs)
*
SDTO(o)
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
SDTI1(i)
23
0
L1
23
0
R1
23
0
L2
23
0
23
R2
0
L3
23
0
23
R3
0
L4
23
0
R4
23
0
L5
23
0
23
R5
0
23
0
23
R6
L6
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
TDMI(i)
*
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
(*: Optional)
Figure 25. Mode 14/19 Timing (TDM512 Mode)
MS1582-E-00
2013/11
- 34 -
[AK4617]
256 BICK
LRCK (Mode25)
LRCK (Mode20)
BICK(256fs)
*
SDTO(o)
23
0
23
TDMI (i) *
23
0
23
0
23
0
23
0
23
0
Data 2
Data 3
Data 4
Data 5
Data 6
Data 7
Data 8
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
0
15 14
0
15 14
0
15 14
0
15 14
0
15 14
0
15 14
0
15 14
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
15 14
23
0
Data 1
4
SDTI2(i)
23
32 BICK
15 14
SDTI1(i)
0
0
15 14
0
15 14
0
15 14
L5
R5
L6
R6
32 BICK
32 BICK
32 BICK
23
0
23
0
23
0
15
0
32 BICK
0
23
0
19
23
0
23
0
Data 3
Data 4
Data 5
Data 6
Data 7
Data 8
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23
(*: Optional)
Figure 26. Mode 20/25 Timing (TDM256 Mode)
256 BICK
LRCK (Mode26)
LRCK (Mode21)
BICK(256fs)
*
SDTO (o)
23
23
23
23
0
23
0
23
0
23
0
23
0
23
0
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
Data 7
Data 8
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
0
19 18
0
19 18
0
19 18
0
19 18
0
19 18
0
19 18
0
19 18
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
19 18
SDTI2(i)
0
32 BICK
19 18
SDTI1(i)
TDMI (i) *
0
0
19 18
0
19 18
0
19 18
L5
R5
L6
R6
32 BICK
32 BICK
32 BICK
32 BICK
0
23
0
23
0
23
0
23
0
19
0
19
23
0
23
0
Data 3
Data 4
Data 5
Data 6
Data 7
Data 8
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23
(*: Optional)
Figure 27. Mode 21/26 Timing (TDM256 Mode)
MS1582-E-00
2013/11
- 35 -
[AK4617]
256 BICK
LRCK (Mode27)
LRCK (Mode22)
BICK(256fs)
SDTO (o)
*
23 22
0
23
0
23
0
23
0
23
23
0
0
23
0
23
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
Data 7
Data 8
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23 22
SDTI2(i)
23 22
32 BICK
23 22
SDTI1(i)
TDMI (i) *
0
0
23 22
0
23 22
0
23 22
0
L5
R5
L6
R6
32 BICK
32 BICK
32 BICK
32 BICK
23
0
23
0
23
0
23
23
0
23
23
0
23
0
23
Data 3
Data 4
Data 5
Data 6
Data 7
Data 8
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
(*: Optional)
Figure 28. Mode 22/27 Timing (TDM256 Mode)
256 BICK
LRCK (Mode28)
LRCK (Mode23)
BICK(256fs)
*
SDTO (o)
SDTI1(i)
SDTI2(i)
TDMI (i) *
23
0
0
23
0
23
0
23
0
23
0
23
0
23
0
23
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
Data 7
Data 8
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23 22
23
23
0
23 22
0
23 22
0
23 22
0
L5
R5
L6
R6
32 BICK
32 BICK
32 BICK
32 BICK
0
23
0
23
0
23
0
23 22
23 22
23
0
23
0
Data 3
Data 4
Data 5
Data 6
Data 7
Data 8
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23
(*: Optional)
Figure 29. Mode 23/28 Timing (TDM256 Mode)
MS1582-E-00
2013/11
- 36 -
[AK4617]
256 BICK
LRCK (Mode29)
LRCK (Mode24)
BICK(256fs)
*
SDTO (o)
SDTI1(i)
SDTI2(i)
TDMI (i) *
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
Data 7
Data 8
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23
0
23
0
23
0
23
23
L5
R5
L6
R6
32 BICK
32 BICK
32 BICK
0
23
0
23
0
23
0
32 BICK
23
23
23
0
23
0
23
0
Data 3
Data 4
Data 5
Data 6
Data 7
Data 8
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23
(*: Optional)
Figure 30. Mode 24/29 Timing (TDM256 Mode)
128 BICK
LRCK (Mode35)
LRCK (Mode30)
BICK(128fs)
SDTI1(i)
SDTI2(i)
SDTI3(i)
15 14
0
0
15 14
15 14
0
15 14
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
15 14
0
15 14
0
15 14
0
15 14
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
0
15 14
0
15 14
15 14
0
15 14
L5
R5
L6
R6
32 BICK
32 BICK
32 BICK
32 BICK
0
15
0
15
0
15
Figure 31. Mode 30/35 Timing (TDM128 Mode)
MS1582-E-00
2013/11
- 37 -
[AK4617]
128 BICK
LRCK (Mode36)
LRCK (Mode31)
BICK(128fs)
SDTI1(i)
SDTI2(i)
SDTI3(i)
19 18
0
0
19 18
19 18
0
19 18
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
19 18
0
19 18
0
19 18
0
19 18
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
0
19 18
0
19 18
19 18
0
19 18
L5
R5
L6
R6
32 BICK
32 BICK
32 BICK
32 BICK
0
19
0
19
0
19
0
23
0
23
0
23
Figure 32. Mode 31/36 Timing (TDM128 Mode)
128 BICK
LRCK (Mode37)
LRCK (Mode32)
BICK(128fs)
SDTI1(i)
SDTI2(i)
SDTI3(i)
23 22
0
0
23 22
23 22
0
23 22
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23 22
0
23 22
0
23 22
0
23 22
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
0
23 22
0
23 22
23 22
0
23 22
L5
R5
L6
R6
32 BICK
32 BICK
32 BICK
32 BICK
Figure 33. Mode 32/37 Timing (TDM128 Mode)
MS1582-E-00
2013/11
- 38 -
[AK4617]
128 BICK
LRCK (Mode38)
LRCK (Mode33)
BICK(128fs)
SDTI1(i)
SDTI2(i)
SDTI3(i)
23 22
0
0
23 22
23 22
0
L1
R1
L2
32 BICK
32 BICK
32 BICK
0
23 22
0
23 22
23 22
0
23 22
R2
32 BICK
23 22
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
0
23 22
0
23 22
23 22
0
23 22
L5
R5
L6
R6
32 BICK
32 BICK
32 BICK
32 BICK
0
23 22
0
23 22
0
23 22
0
23
0
23
0
23
Figure 34. Mode 33/38 Timing (TDM128 Mode)
128 BICK
LRCK (Mode39)
LRCK (Mode34)
BICK(128fs)
SDTI1(i)
SDTI2(i)
SDTI3(i)
23
0
23
0
0
23
23
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
0
23
0
23
0
23
23
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
0
23
0
23
0
23
23
L5
R5
L6
R6
32 BICK
32 BICK
32 BICK
32 BICK
Figure 35. Mode 34/39 Timing (TDM128 Mode)
MS1582-E-00
2013/11
- 39 -
[AK4617]
■ TDM Cascade Mode
The AK4617 can be connected with other ADCs or CODECs in cascades in TDM mode. In Figure 36, the
SDTO pin of ADC or CODEC is connected with the TDMI pin of the AK4617. It is possible to output
8channel TDM data from the SDTO pin of the AK4617 as shown in Figure 26 and Figure 30 in TDM256
mode, and it is possible to output 16channel TDM data in TDM 512 mode.
ADC or CODEC
256fs or 512fs
MCLK
48kHz
LRCK
256fs or 512fs
BICK
SDTO1
AK4617
MCLK
TDMI
LRCK
BICK
SDTO
8ch TDM
Figure 36. Cascade TDM Connection Diagram
MS1582-E-00
2013/11
- 40 -
[AK4617]
■ Digital Attenuator
AK4617 has a channel-independent digital attenuator (256 levels, 0.5dB steps). Attenuation level of each
DAC1-6 can be set by DAATL1/R1 7-0 bit, DAATL2/R2 7-0 bit, DAATL3/R3 7-0 bit, DAATL4/R4 7-0 bit,
DAATL5/R5 7-0 bit, DAATL6/R6 7-0 bit, respectively (Table 14).
DAATL1/R1 7-0bit
DAATL2/R2 7-0 bit
DAATL3/R3 7-0 bit
Attenuation Level
DAATL4/R4 7-0 bit
DAATL5/R5 7-0 bit
DAATL6/R6 7-0 bit
00H
+0dB
(default)
01H
-0.5dB
02H
-1.0dB
:
:
7DH
-62.5dB
7EH
-63.0dB
7FH
-63.5dB
:
:
FEH
-127.0dB
FFH
MUTE (-∞)
Table 14. Attenuation level of DAC Digital Attenuator
Transition time between set values of DAATL1/R1 7-0, DAATL2/R2 7-0, DAATL3/R3 7-0, DAATL4/R4
7-0, DAATL5/R5 7-0, DAATL6/R6 bit can be selected by the DAATS1-0 bit (Table 15). Transition between
set values is the soft transition in Mode1/2/3 eliminating switching noise in the transition.
Mode
0
1
2
3
DAATS1
0
0
1
1
DAATS0
0
1
0
1
ATT speed
4080/fs
2040/fs
510/fs
255/fs
(default)
Table 15. Transition Time between Set Values of DAATL1/R1 7-0, DAATL2/R2 7-0, DAATL3/R3 7-0,
DAATL4/R4 7-0, DAATL5/R5 7-0, DAATL6/R6 7-0 bit
The transition between set values is a soft transition of 4080 levels in mode 0. It takes 4080/fs
(85ms@fs=48kHz) from 00H to FFH. If the PDN pin goes to “L”, DAATL1/R1 7-0, DAATL2/R2 7-0,
DAATL3/R3 7-0, DAATL4/R4 7-0, DAATL5/R5 7-0, DAATL6/R6 7-0 bit are initialized to 00H. These bit
are also set to 00H respectively when RSTN bit = “0”, and fade to their current value when RSTN bit returns to
“1”.
MS1582-E-00
2013/11
- 41 -
[AK4617]
■ Soft Mute Operation
Soft mute operation is performed in the digital domain. When the SMUTEN pin is set to “L” or SMUTEN bit
is set “0”, the output signal is attenuated to - in the cycle set by ATS bit (Table 15) from the current ATT
level. When the SMUTEN bit is returned to “0”, the mute is cancelled and the output attenuation gradually
changes to the ATT level in the cycle set by ATS bit. If the soft mute is cancelled before attenuating to - after
starting the operation, attenuation is discontinued and it is returned to ATT level by the same cycle. Soft mute
is effective for changing the signal source without stopping the signal transmission.
SMUTEN pin or SMUTEN bit
ATT Level
(1)
(2)
(4)
Attenuation
-
GD
(3)
GD
AOUT
Notes:
(1) The time for input data attenuation to - (Table 15). For example, this time is 4080LRCK cycles
(4080/fs) at ATT_DATA=00H. ATT transition of the soft-mute is from 00H to FFH
(2) The time for input data recovery to ATT level (Table 15). For example, this time is 4080LRCK cycles
(4080/fs) at ATT-DATA=FFH. ATT transition of soft-mute is from FFH to 00H.
(3) The analog output corresponding to the digital input has group delay, GD.
(4) If the soft mute is cancelled before attenuating to -, the attenuation is discontinued and returned to ATT
level by the same cycle.
Figure 37. Soft Mute
■ System Reset
The AK4617 should be reset once by bringing the PDN pin = “L” upon power-up. The AK4617 is powered up
and the internal timing starts clocking by MCLK or LRCK “” after exiting the power down state of reference
voltage (such as VCOM) by the PDN pin. The AK4617 is in power-down mode until MCLK and LRCK,
BICK are input.
MS1582-E-00
2013/11
- 42 -
[AK4617]
■ Power-Down
All ADCs and DACs of the AK4617 are placed in power-down mode by bringing the PDN pin “L” which
resets both digital filters at the same time. The PDN pin “L” also resets the control registers to their default
values. In power-down mode, the SDTO goes to “L”, and the analog outputs go to Hi-Z. This reset should
always be executed after power-up. For the ADC, an analog initialization cycle (1056/fs) starts 3~4/fs after
exiting power-down mode. The output data, SDTO is available after 1059~1060 cycles of the LRCK clock.
For the DAC, an analog initialization cycle (516/fs) starts 3~4/fs after exiting power-down mode. The analog
outputs go to Hi-Z during the initialization. Figure 38 shows the power-down and power-up sequences.
AVDD1/AVD
D2/DVDD
(11)
PDN
VCOM
150ns
REGO
3~4/fs
Internal PDN
(9)
(10)
1056/fs
ADC Internal
State
(1)
Init Cycle
Normal Operation
Power-down
Normal Operation
Power-down
516/fs (2)
DAC Internal
State
Init Cycle
GD (3)
GD
ADC In
(Analog)
ADC Out
(Digital)
“0”data
DAC In
(Digital)
“0”data
(6)
(4)
“0”data
“0”data
GD(3)
DAC Out
(Analog)
(5)
(7)
GD
(7)
(7)
Clock In
Don’t care
Don’t care
MCLK,LRCK,BICK
External
Mute
Mute ON
Mute ON
(8)
Notes:
(1) The analog part of ADC is initialized after exiting internal power-down state.
When start-up the AK4617, ADC input voltage should be operating common voltage.
It is necessary to wait for the charge up time of HPF which consists of analog inputs.
When the external capacitor is 1uF and the input impedance is 60kΩ(typ), τ = 0.06 sec.
(2) The analog part of DAC is initialized after exiting internal power-down state.
(3) Digital output corresponds to analog input and analog output corresponds to digital input have group delay
(GD).
(4) ADC output is “0” data at power-down state.
(5) The analog outputs go to Hi-Z in power-down mode.
(6) Click noise occurs at the end of initialization of the analog part. Mute the digital output externally.
(7) Click noise occurs at the falling edge of PDN and at 519~520/fs after exiting internal power-down state.
(8) Mute the analog output externally.
(9) There is a delay, 3~4/fs from internal power up to the start of initial cycle.
(10) The PDN pin must be “L” when power up the AK4617 and set to “H” after all poweres are supplied.
(11) The internal power-down state is released when MCLK counter rise.Do not write to the registers for
32768/MCLK(2.67ms@MCLK=12.288MHz, until internal power down is released after the PDN pin =
“H”.
Figure 38. Pin power-down/Pin Power-up Sequence Example
MS1582-E-00
2013/11
- 43 -
[AK4617]
All ADCs and all DACs can be powered-down individually through the PMADC bit and PMDAC bit. DAC1-6
can be power-down individually by PMDA6-1 bit. In this case, the internal register values are not initialized.
When PMADC bit = “0”, SDTO goes to “L”. When PMDAC bit = “0”, the analog outputs go to Hi-Z. As some
click noise occurs, the analog output should be muted externally if the click noise influences system
applications. Figure 39 shows the power-down and power-up sequences.
4~5/fs (9)
3~4/fs (10)
PMADC/PMDAC bit
(1)
ADC Internal
State
Normal Operation
DAC Internal
State
Normal Operation
Power-down
Init Cycle
Normal Operation
516/fs (2)
Power-down
Init Cycle
Normal Operation
GD (3)
GD
ADC In
(Analog)
ADC Out
(Digital)
“0”data
DAC In
(Digital)
“0”data
GD
Clock In
GD
(5)
(7)
Don’t care
MCLK,LRCK,BICK
External
Mute
(6)
(3)
(7)
DAC Out
(Analog)
(4)
(8)
Mute ON
Notes:
(1) The analog section of ADC is initialized after exiting power-down state.
(2) The analog section of DAC is initialized after exiting power-down state.
(3) Digital output corresponding to the analog inputs and analog outputs corresponding to the digital inputs
have group delay (GD).
(4) ADC output is “0” data at power-down state.
(5) DAC output is Hi-Z in power-down state.
(6) Click noise occurs at the end of initialization of the analog part. Mute the digital output externally.
(7) Click noise occurs at 45/fs after PMDAC bit becomes “0”, and occurs at 519520/fs after PMDAC bit
becomes “1”.
(8) Mute the analog output externally.
(9) There is a delay, 4~5/fs from PMDAC bit becomes “0” to the applicable ADC power-down.
There is a delay, 4~5/fs from PMDAC bit becomes “0” to the applicable DAC power-down.
(10) There is a delay, 3~4/fs from PMADC and PMDAC bit become “1” to the start of initial cycle.
Figure 39. Bit power-down/Bit power-up sequence example
MS1582-E-00
2013/11
- 44 -
[AK4617]
■ Reset Function
When RSTN bit= “0”, the analog and digital part of ADC and DACs are powered-down, but the internal
register are not initialized. The analog outputs go to Hi-Z, the SDTO pin goes to “L”. As some click noise
occurs, the analog output should be muted externally if the click noise influences system application. Figure 40
shows the power-up sequence.
RSTN bit
4~5/fs (8)
3~4/fs (9)
Internal
RSTN bit
(1)
ADC Internal
State
Normal Operation
DAC Internal
State
Normal Operation
Power-down
Normal Operation
Init Cycle
(2)
Digital Block Power-down
Init Cycle
Normal Operation
GD (3)
GD
ADC In
(Analog)
ADC Out
(Digital)
“0”data
DAC In
(Digital)
(4)
(5)
“0”data
(3)
GD
DAC Out
(Analog)
Clock In
MCLK,LRCK,BICK
GD
(7)
(7)
(6)
(7)
Don’t care
Notes:
(1) The analog section of the ADC is initialized after exiting reset state.
The initializing cycle is 1056fs. When start-up the AK4617, ADC input voltage should be operating
common voltage.
(2) The analog section of DAC is initialized after exiting exiting reset state.
(3) Digital output corresponding to the analog inputs, and analog outputs corresponding to the digital inputs
have group delay (GD).
(4) ADC output is “0” data at power-down state.
(5) Click noise occurs when the initializing cycle is finished. Mute the digital output externally.
(6) The analog outputs go to Hi-Z when RSTN bit becomes “0”.
(7) Click noise occurs at 45/fs after RSTN bit becomes “0”, and it occurs at 34/fs after RSTN bit becomes
“1”.
(8) There is a delay, 4~5/fs from RSTN bit “0” to the internal RSTN bit “0”.
(9) There is a delay, 3~4/fs from RSTN bit “1” to the start of initial cycle.
Figure 40. Reset Sequence Example
MS1582-E-00
2013/11
- 45 -
[AK4617]
■ DAC Partial Power-Down Function
All of the DACs can be powered-down individually by PMDA6-1 bit. The analog section and the digital
section of the DAC are placed in power-down mode when the PMDA6-1 bit = “0”. The analog output of the
powered-down channels, which are set by PMDA6-1 bit, go to Hi-Z. Some click noise occurs in both set-up
and release of power-down. Mute the analog output externally or set PMDA6-1 bit when PMDAC bit = “0” or
RSTN bit = “0”. Figure 41 shows the sequence of the power-down and the power-up by PMDA6-1 bit.
PMDA6-1 bit
4~5/fs (4)
Power Down Channel
DAC Digital
Internal State
Normal Operation
2~3/fs (5)
Power-down
2~3/fs (5)
4~5/fs (4)
Power-down
Normal Operation
516/fs (6)
DAC Analog
Internal State
Normal Operation
Power-down
DAC In
(Digital)
Init Cycle
Normal Operation
516/fs (6)
Normal Operation Power-down
Init Cycle
Normal Operation
“0”data
(1)
GD
GD
(3) (2)
DAC Out
(Analog)
(3)
(3)
(2)
(3)
Normal Operation Channel
DAC In
(Digital)
“0”data
GD
GD
DAC Out
(Analog)
Notes:
(1) Analog outputs corresponding to the digital inputs have group delay (GD).
(2) Analog output of the DAC is powered down by PMDA6-1 = “0” and goes to Hi-Z.
(3) Click noise occurs in 45/fs after PMDA6-1 bit are set to “0”, and it occurs in 518519/fs after
PMDA6-1 bit are set to “1”.
(4) The DACs will be powered-down 4~5fs after PMDA6-1 bit = “0”
(5) The initialization stars 2~3fs after PMDA6-1 bit are set to “1”.
(6) The analog parts of DACs are initialized after exiting power down mode.
Figure 41. DAC Partial Power-down Example
MS1582-E-00
2013/11
- 46 -
[AK4617]
■ Parallel Mode
The AK4617 can be in parallel mode which does not use internal registers by setting the SPI pin = “L” and PS
pin= “H”. The parallel mode operation is set by the MS, TDM0, and DIF pins. The AK4617 cannot be changed
to Serial mode from parallel mode during operation.
MS pin
0
0
1
1
0
0
1
1
TDM0 pin
0
0
0
0
1
1
1
1
DIF pin
0
1
0
1
0
1
0
1
Mode
Mode3 (Table 10)
Mode4 (Table 10)
Mode8 (Table 10)
Mode9 (Table 10)
Mode13 (Table 11)
Mode14 (Table 11)
Mode18 (Table 11)
Mode19 (Table 11)
MS, TDM0, DIF2/1/0
00011
00100
10011
10100
01011
01100
11011
11100
■ Serial Control Interface
The AK4617’s functions are controlled through registers or pins. The registers may be written by two types of
control modes. The chip address is determined by the state of the CAD1 input. The PDN pin = “L” initializes
the registers to their default values. Writing “0” to the RSTN bit can initialize the internal timing circuit, but the
register data will not be initialized. *When the PDN pin = “L”, control register writings are not valid.
(1) 3-wire Serial Control Mode (SPI pin = “H”)
The internal registers may be written through the 3-wire µP interface pins (CSN, CCLK and CDTI). The
data on this interface consists of a 2-bit Chip address, Read/Write (1bit, Fixed to “1”, Write only),
Register address (MSB first, 5-bit) and Control data (MSB first, 8-bit). The chip address high bit is set by
the CAD1 pin and the lower bit is fixed to “0”. Address and data are clocked in on the rising edge of
CCLK and data is clocked out on the falling edge. For write operations, data is latched after a low-to-high
transition of CSN. The clock speed of CCLK is 5MHz(max).
* The AK4617 does not support read commands in 3wire serial control mode.
CSN
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CCLK
CDTI
C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
C1-C0: Chip Address (C1=CAD1 pin, C0= “L”)
R/W:
Read/Write (Fixed to “1”, Write only)
A4-A0: Register Address
D7-D0: Control Data
Figure 42. 3-wire Serial Control I/F Timing
MS1582-E-00
2013/11
- 47 -
[AK4617]
(2) I2C-bus Control Mode (SPI pin = “L”, PS pin =”L”)
The AK4617 supports the fast-mode I2C-bus (max: 400kHz).
1. WRITE Operations
Figure 43 shows the data transfer sequence of the I2C-bus mode. All commands are preceded by a START
condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition
(Figure 49). After the START condition, a slave address is sent. This address is 7-bit long followed by the
eighth bit that is a data direction bit (R/W). The most significant seven bit of the slave address are fixed as
“00100”. The next bit is CAD1 (device address bit). This bit identifies the specific device on the bus. The
hard-wired input pin (CAD1 pin) sets these device address bit (Figure 44). If the slave address matches that of
the AK4617, the AK4617 generates an acknowledge and the operation is executed. The master must generate
the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse
(Figure 50). R/W bit = “1” indicates that the read operation is to be executed. “0” indicates that the write
operation is to be executed.
The second byte consists of the control register address of the AK4617. The format is MSB first, and those
most significant 3-bit are fixed to zeros (Figure 45). The data after the second byte contains control data. The
format is MSB first, 8-bit (Figure 46). The AK4617 generates an acknowledge after each byte is received. Data
transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the
SDA line while SCL is HIGH defines STOP condition (Figure 49).
The AK4617 can perform more than one byte write operation per sequence. After receipt of the third byte the
AK4617 generates an acknowledge and awaits the next data. The master can transmit more than one byte
instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the
internal 6-bit address counter is incremented by one, and the next data is automatically taken into the next
address. If the address exceeds 13H prior to generating a stop condition, the address counter will “roll over” to
00H and the previous data will be overwritten.
The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of
the data line can only change when the clock signal on the SCL line is LOW (Figure 51) except for the START
and STOP conditions.
S
T
A
R
T
SDA
S
T
O
P
R/W="0"
Slave
S Address
Sub
Address(n)
A
C
K
Data(n)
A
C
K
Data(n+1)
A
C
K
Data(n+x)
A
C
K
A
C
K
P
A
C
K
Figure 43. Data Transfer Sequence at the I2C-Bus Mode
0
0
1
0
0
CAD1
0
R/W
A1
A0
D1
D0
(That CAD1 should match with CAD1 pin)
Figure 44. The First Byte
0
0
0
A4
A3
A2
Figure 45. The Second Byte
D7
D6
D5
D4
D3
D2
Figure 46. Byte Structure after the second byte
MS1582-E-00
2013/11
- 48 -
[AK4617]
2. READ Operations
Set the R/W bit = “1” for the READ operation of the AK4617. After transmission of data, the master can read
the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of
the first data word. After receiving each data packet the internal 6-bit address counter is incremented by one,
and the next data is automatically taken into the next address. If the address exceeds 0EH prior to generating
stop condition, the address counter will “roll over” to 00H and the data of 13H will be read out.
The AK4617 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS
READ.
2-1. CURRENT ADDRESS READ
The AK4617 contains an internal address counter that maintains the address of the last word accessed,
incremented by one. Therefore, if the last access (either a read or write) was to address “n”, the next
CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with
R/W bit “1”, the AK4617 generates an acknowledge, transmits 1-byte of data to the address set by the internal
address counter and increments the internal address counter by 1. If the master does not generate an
acknowledge but generates a stop condition instead, the AK4617 ceases transmission.
S
T
A
R
T
SDA
S
T
O
P
R/W="1"
Slave
S Address
Data(n)
Data(n+1)
MA
AC
SK
T
E
R
A
C
K
Data(n+2)
MA
AC
SK
T
E
R
Data(n+x)
MA
AC
SK
T
E
R
MA
AC
SK
T
E
R
P
MN
AA
SC
T
EK
R
Figure 47. CURRENT ADDRESS READ
2-2. RANDOM ADDRESS READ
The random read operation allows the master to access any memory location at random. Prior to issuing a slave
address with the R/W bit =“1”, the master must execute a “dummy” write operation first. The master issues a
start request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is
acknowledged, the master immediately reissues the start request and the slave address with the R/W bit =“1”.
The AK4617 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1.
If the master does not generate an acknowledge but generates a stop condition instead, the AK4617 ceases
transmission.
S
T
A
R
T
SDA
S
T
A
R
T
R/W="0"
Slave
S Address
Sub
Address(n)
A
C
K
Slave
S Address
A
C
K
S
T
O
P
R/W="1"
Data(n)
A
C
K
Data(n+1)
MA
AC
S K
T
E
R
Data(n+x)
MA
AC
S
T K
E
R
MA
AC
S
T K
E
R
P
MN
A A
S
T C
E K
R
Figure 48. RANDOM ADDRESS READ
MS1582-E-00
2013/11
- 49 -
[AK4617]
SDA
SCL
S
P
start condition
stop condition
Figure 49. START and STOP Conditions
DATA
OUTPUT BY
TRANSMITTER
not acknowledge
DATA
OUTPUT BY
RECEIVER
acknowledge
SCL FROM
MASTER
2
1
8
9
S
clock pulse for
acknowledgement
START
CONDITION
Figure 50. Acknowledge on the I2C-Bus
SDA
SCL
data line
stable;
data valid
change
of data
allowed
Figure 51. Bit Transfer on the I2C-Bus
MS1582-E-00
2013/11
- 50 -
[AK4617]
■ Register Map
Add
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
Register Name
Power Management 1
Power Management 2
System Clock
Filter setting1
Filter setting2
Audio Interface Format
Soft Mute
DAC1L Volume
DAC1R Volume
DAC2L Volume
DAC2R Volume
DAC3L Volume
DAC3R Volume
DAC4L Volume
DAC4R Volume
DAC5L Volume
DAC5R Volume
DAC6L Volume
DAC6R Volume
Input Selector
D7
0
0
CKS1
DEM41
SLOW
0
0
D6
0
0
CKS0
DEM40
SD_DA
0
0
D5
PMADC
PMDA6
DFS1
DEM31
0
TDM1
DAATS1
D4
PMDAC
PMDA5
DFS0
DEM30
SD_AD
TDM0
DAATS0
D3
0
PMDA4
0
DEM21
DEM61
0
0
D2
0
PMDA3
0
DEM20
DEM60
DIF2
0
D1
MS
PMDA2
0
DEM11
DEM51
DIF1
0
D0
RSTN
PMDA1
ACKS
DEM10
DEM50
DIF0
SMUTEN
DAATL17
DAATR17
DAATL27
DAATR27
DAATL37
DAATR37
DAATL47
DAATR47
DAATL57
DAATR67
DAATL67
DAATR67
DAATL16
DAATR16
DAATL26
DAATR26
DAATL36
DAATR36
DAATL46
DAATR56
DAATL56
DAATR66
DAATL66
DAATR66
DAATL15
DAATR15
DAATL25
DAATR25
DAATL35
DAATR35
DAATL45
DAATR45
DAATL55
DAATR55
DAATL65
DAATR65
DAATL14
DAATR14
DAATL24
DAATR24
DAATL34
DAATR34
DAATL44
DAATR44
DAATL54
DAATR54
DAATL64
DAATR64
DAATL13
DAATR13
DAATL23
DAATR23
DAATL33
DAATR33
DAATL43
DAATR43
DAATL53
DAATR53
DAATL63
DAATR63
DAATL12
DAATR12
DAATL22
DAATR22
DAATL32
DAATR32
DAATL42
DAATR42
DAATL52
DAATR52
DAATL62
DAATR62
DAATL11
DAATR11
DAATL21
DAATR21
DAATL31
DAATR31
DAATL41
DAATR41
DAATL51
DAATR51
DAATL61
DAATR61
DAATL10
DAATR10
DAATL20
DAATR20
DAATL30
DAATR30
DAATL40
DAATR40
DAATL50
DAATR50
DAATL60
DAATR60
0
0
0
0
0
0
DIE2
DIE1
Note: For addresses from 14H to 1FH, data must not be written. The bit defined as 0 must contain a “0” value.
When the PDN pin goes to “L”, the registers are initialized to their default values.
When RSTN bit goes to “0”, the internal timing is reset, but registers are not initialized to their default
values.
MS1582-E-00
2013/11
- 51 -
[AK4617]
■ Register Definitions
Addr
00H
Register Name
Power Management 1
R/W
Default
D7
0
RD
0
D6
0
RD
0
D5
PMADC
R/W
1
D4
PMDAC
R/W
1
D3
0
RD
0
D2
0
RD
0
D1
MS
R/W
0
D0
RSTN
R/W
1
RSTN: Internal timing reset
0: Reset.
1: Normal operation (default)
MS: Master Mode Select
0: Slave Mode (default)
1: Master Mode
PMDAC: Power management of DAC1-6
0: All DAC’s Power-down. PMDA1-6 bit are invalid.
1: Normal operation. (default) PMDA1-6 bit are valid.
PMADC: Power management of mono-stereo
0: All ADC’s Power-down.
1: Normal operation. (default)
Addr
01H
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
Power Management 3
0
RD
0
RD
PMDA6
PMDA5
PMDA4
PMDA3
PMDA2
PMDA1
0
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
D1
0
RD
0
D0
ACKS
R/W
0
R/W
Default
PMDA6-1: Power management of DAC1-6 (0: Power-down, 1: Normal operation)
PMDA1: Power management control of DAC1
PMDA2: Power management control of DAC2
PMDA3: Power management control of DAC3
PMDA4: Power management control of DAC4
PMDA5: Power management control of DAC5
PMDA6: Power management control of DAC6
Addr
02H
Register Name
System Clock
R/W
Default
D7
CKS1
R/W
1
D6
CKS0
R/W
0
D5
DFS1
R/W
0
D4
DFS0
R/W
0
D3
0
RD
0
D2
0
RD
0
ACKS: Master Clock Frequency Auto Setting Mode Enable
0: Disable, Manual Setting Mode
1: Enable, Auto Setting Mode
Master clock frequency is detected automatically at ACKS bit “1”. In this case, the setting of
DFS are ignored. When this bit is “0”, DFS0, 1 set the sampling speed mode.
DFS1-0: Sampling speed mode (Table 1)
The setting of DFS is ignored at ACKS bit =“1”.
CKS1-0: Master Clock Input Frequency Select (Table 2)
MS1582-E-00
2013/11
- 52 -
[AK4617]
Addr
03H
Register Name
Filter setting1
R/W
Default
D7
DEM41
R/W
0
D6
DEM40
R/W
1
D5
DEM31
R/W
0
D4
DEM30
R/W
1
D3
DEM21
R/W
0
D2
DEM20
R/W
1
D1
DEM11
R/W
0
D0
DEM10
R/W
1
D1
DEM51
R/W
0
D0
DEM50
R/W
1
DEM11-10: De-emphasis response control for DAC1 data on SDTI1 (Table 8)
Initial: “01”, OFF
DEM21-20: De-emphasis response control for DAC2 data on SDTI2 (Table 8)
Initial: “01”, OFF
DEM31-30: De-emphasis response control for DAC3 data on SDTI3 (Table 8)
Initial: “01”, OFF
DEM41-40: De-emphasis response control for DAC4 data on SDTI4 (Table 8)
Initial: “01”, OFF
Addr
04H
Register Name
Filter setting2
R/W
Default
D7
SLOW
R/W
0
D6
SD_DA
R/W
1
D5
0
RD
0
D4
SD_AD
R/W
1
D3
DEM61
R/W
0
D2
DEM60
R/W
1
DEM51-50: De-emphasis response control for DAC5 data on SDTI5 (Table 8)
Initial: “01”, OFF
DEM61-60: De-emphasis response control for DAC6 data on SDTI6 (Table 8)
Initial: “01”, OFF
SD_AD: Digital filter Setting for ADC
0: Sharp roll off filter
1: Short delay Sharp roll off filter (default)
SD_DA: Digital filter Setting for DAC
0: Sharp roll off filter or Slow roll off filter
1: Short delay Sharp roll off filter or Short delay Slow roll off filter (default)
SLOW: Slow Roll-off Filter Enable for DAC
0: Sharp Roll-off Filter (default)
1: Slow Roll-off Filter
SD_DA bit
0
0
1
1
SLOW bit
Mode
0
Sharp roll-off filter
1
Slow roll-off filter
0
Short delay Sharp roll-off filter
1
Short delay Slow roll-off filter
Table 16 Digital Filter setting for DAC
MS1582-E-00
(default)
2013/11
- 53 -
[AK4617]
Addr
05H
Register Name
Audio Interface Format
R/W
Default
D7
0
RD
0
D6
0
RD
0
D5
TDM1
R/W
0
D4
TDM0
R/W
0
D3
0
RD
0
D2
DIF2
R/W
1
D1
DIF1
R/W
0
D0
DIF0
R/W
0
DIF2-0: Audio Data Interface Modes (Table 10, Table 11, Table 12, Table 13)
Initial: “100”, mode 4
TDM1-0: TDM Format Select (Table 10, Table 11, Table 12, Table 13)
Mode TDM1 TDM0
0
0
0
1
0
1
2
1
0
3
1
1
Addr
06H
Register Name
Soft Mute
R/W
Default
SDTI
1-6
1
1-2
1-3
D7
0
RD
0
Sampling Speed
Stereo mode (Normal, Double, Quad Speed Mode)
TDM512 mode (Normal Speed Mode)
TDM256 mode (Normal, Double Speed Mode)
TDM128 mode (Quad Speed Mode)
D6
0
RD
0
D5
DAATS1
R/W
0
D4
DAATS0
R/W
0
D3
0
RD
0
D2
0
RD
0
D1
0
RD
0
D0
SMUTEN
R/W
1
SMUTEN: Soft Mute Enable
SMUTEN
pin
SMUTEN bit
All Analog Outputs Status
0
Mute
1
Mute
0
Mute
1
Unmute
Table 17. Soft Mute Control
L
H
(default)
(default)
DAATS1-0: DAC Digital attenuator transition time setting (Table 15)
Initial: “00”, mode 0
Add
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
Register Name
DAC1L Volume
DAC1R Volume
DAC2L Volume
DAC2R Volume
DAC3L Volume
DAC3R Volume
DAC4L Volume
DAC4R Volume
DAC5L Volume
DAC5R Volume
DAC6L Volume
DAC6R Volume
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
DAATL17
DAATR17
DAATL27
DAATR27
DAATL37
DAATR37
DAATL47
DAATR47
DAATL57
DAATR67
DAATL67
DAATR67
DAATL16
DAATR16
DAATL26
DAATR26
DAATL36
DAATR36
DAATL46
DAATR56
DAATL56
DAATR66
DAATL66
DAATR66
DAATL15
DAATR15
DAATL25
DAATR25
DAATL35
DAATR35
DAATL45
DAATR45
DAATL55
DAATR55
DAATL65
DAATR65
DAATL14
DAATR14
DAATL24
DAATR24
DAATL34
DAATR34
DAATL44
DAATR44
DAATL54
DAATR54
DAATL64
DAATR64
DAATL13
DAATR13
DAATL23
DAATR23
DAATL33
DAATR33
DAATL43
DAATR43
DAATL53
DAATR53
DAATL63
DAATR63
DAATL12
DAATR12
DAATL22
DAATR22
DAATL32
DAATR32
DAATL42
DAATR42
DAATL52
DAATR52
DAATL62
DAATR62
DAATL11
DAATR11
DAATL21
DAATR21
DAATL31
DAATR31
DAATL41
DAATR41
DAATL51
DAATR51
DAATL61
DAATR61
DAATL10
DAATR10
DAATL20
DAATR20
DAATL30
DAATR30
DAATL40
DAATR40
DAATL50
DAATR50
DAATL60
DAATR60
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
DAATL1/R1 7-0, DAATL2/R2 7-0, DAATL3/R3 7-0, DAATL4/R4 7-0, DAATL5/R5 7-0,
DAATL6/R6 7-0: Attenuation Level (Table 14)
MS1582-E-00
2013/11
- 54 -
[AK4617]
Addr
13H
Register Name
Input Selector
R/W
Default
D7
0
RD
0
D6
0
RD
0
D5
0
RD
0
D4
0
RD
0
D3
0
RD
0
D2
0
RD
0
D1
DIE2
R/W
0
D0
DIE1
R/W
0
DIE2-1: Single-ended/Differential Input Select
0: Single-ended input to the IN1/IN1P and IN2/IN2P pins. Leave the IN1N and IN2N pins
open. (default)
1: Differential Input (IN1P/IN2P and IN1N/IN2N pins)
MS1582-E-00
2013/11
- 55 -
[AK4617]
16. Recommended External Circuits
Figure 52, Figure 53 and Figure 54 show the system connection diagram. An evaluation board is available
which demonstrates application circuits, the optimum layout, power supply arrangements and measurement
results.
 3-wire Serial Control Mode (SPI pin = “H”).
 Slave Mode (MS bit = “0”).
 Single-ended Input Mode (DIE2-1 bit = “00”)
+
0.1u
LOUT6 26
ROUT6 25
LOUT5 28
ROUT5 27
LOUT4 30
ROUT4 29
LOUT3 32
ROUT3 31
ROUT2 33
1u
LOUT2 34
LOUT1 36
3.3V Analog
ROUT1 35
*1
37 AVDD2
NC 24
38 VSS3
NC 23
39 SPI
NC 22
NC 21
40 CAD1
VCOM 20
41 CSN
AK4617
42 CDTI
AVDD1 18
43 CCLK
44 SDTI6/TDMI
0.1u
1u
DSP
Digital Ground
*2
12 PDN
11 SMUTEN
10 TST2
SDTO
9
+
1u
3.3V Digital 0.1u
TVDD
VSS1
8
7
TST1
5
REGO
BICK
6
MCLK
4
IN1N 13
3
IN1/IN1P 14
48 SDTI2
LRCK
47 SDTI3
SDTI1
IN2N 15
2
IN2/IN2P 16
46 SDTI4
1
45 SDTI5
+
3.3V Analog
NC 17
1u
µP
1u
VSS2 19
Analog Ground
Figure 52. Typical Connection Diagram1 (SPI mode)
*1: Refer to Figure 57.
*2: Refer to Figure 55 and Figure 56.
MS1582-E-00
2013/11
- 56 -
[AK4617]
 3-wire Serial Control Mode (SPI pin = “L”).
 Slave Mode (MS bit = “0”).
 Single-ended Input Mode (DIE2-1 bits = “00”)
 I2C Bus serial control mode (PS pin = “L”)
+
0.1u
LOUT6 26
ROUT6 25
LOUT5 28
ROUT5 27
LOUT4 30
ROUT4 29
LOUT3 32
ROUT3 31
ROUT2 33
1u
LOUT2 34
LOUT1 36
3.3V Analog
ROUT1 35
*1
37 AVDD2
NC 24
38 VSS3
NC 23
39 SPI
NC 22
NC 21
40 CAD1
VCOM 20
41 PS
AK4617
42 SDA
AVDD1 18
43 SCL
44 SDTI6/TDMI
0.1u
+
1u
3.3V Analog
NC 17
IN2/IN2P 16
45 SDTI5
1u
DSP
Digital Ground
12 PDN
11 SMUTEN
10 TST2
SDTO
9
+
*2
3.3V Digital 0.1u
TVDD
VSS1
8
7
TST1
5
REGO
BICK
4
6
MCLK
3
IN1N 13
LRCK
48 SDTI2
SDTI1
IN1/IN1P 14
2
IN2N 15
47 SDTI3
1
46 SDTI4
1u
µP
1u
VSS2 19
Analog Ground
Figure 53. Typical Connection Diagram2 (I2C mode)
*1: Refer to Figure 57.
*2: Refer to Figure 55 and Figure 56.
MS1582-E-00
2013/11
- 57 -
[AK4617]
 3-wire Serial Control Mode (SPI pin = “L”).
 Slave Mode (MS pin = “L”).
 Single-ended Input Mode (DIE2-1 bits = “00”)
 Parallel Control Mode (PS pin = “H”)
 Normal I/F Format Mode (TDM pin = “L”)
 24-bit I2S Mode (DIF pin = “H”)
+
0.1u
LOUT6 26
ROUT6 25
LOUT5 28
ROUT5 27
LOUT4 30
ROUT4 29
LOUT3 32
ROUT3 31
ROUT2 33
1u
LOUT2 34
LOUT1 36
3.3V Analog
ROUT1 35
*1
37 AVDD2
NC 24
38 VSS3
NC 23
39 SPI
NC 22
NC 21
40 TDM0
VCOM 20
41 PS
AK4617
42 DIF
AVDD1 18
43 MS
44 SDTI6/TDMI
0.1u
1u
DSP
Digital Ground
*2
12 PDN
11 SMUTEN
10 TST2
SDTO
9
+
1u
3.3V Digital 0.1u
TVDD
VSS1
8
7
TST1
5
REGO
BICK
6
MCLK
4
IN1N 13
3
IN1/IN1P 14
48 SDTI2
LRCK
47 SDTI3
SDTI1
IN2N 15
2
IN2/IN2P 16
46 SDTI4
1
45 SDTI5
+
3.3V Analog
NC 17
1u
µP
1u
VSS2 19
Analog Ground
Figure 54. Typical Connection Diagram3 (Parallel mode)
*1: Refer to Figure 57.
*2: Refer to Figure 55 and Figure 56.
MS1582-E-00
2013/11
- 58 -
[AK4617]
■ Grounding and Power Supply Decoupling
The AK4617 requires careful attention to power supply and grounding arrangements. AVDD1, AVDD2 and
TVDD are usually supplied from analog supply in system. Alternatively if AVDD1, AVDD2 and TVDD are
supplied separately, the power up sequence is not critical. VSS1 ~ 3 of the AK4617 must be connected to
analog ground plane. System analog ground and digital ground should be wired separately and connected
together as close as possible to where the supplies are brought onto the printed circuit board. Decoupling
capacitors should be as near to the AK4617 as possible, with the small value ceramic capacitor being the
nearest.
■ Voltage Reference
VCOM is a signal ground of this chip and output the voltage AVDD1x1/2. A ceramic capacitor 1µF attached to the
VCOM pin eliminates the effects of high frequency noise. This capacitor should be as close to the pin as possible. No load
current may be drawn from the VCOM pin. All signals, especially clocks, should be kept away from the VCOM pin in
order to avoid unwanted coupling into the AK4617.
■ Analog Inputs
The Stereo ADC supports single-ended input. The single-ended input signal range scales with the supply
voltage and nominally 0.81xAVDD1 Vpp (typ). The differential input signal range between IN+ and IN
scales with the supply voltage and nominally ±0.81xAVDD1 Vpp (typ). The power supply voltage range of the
AK4617 is from VSS2 to AVDD1. The ADC output data format is 2’s complement. The internal HPF removes
the DC offset.
The AK4617 samples the analog inputs at 64fs (@ fs=48kHz). The digital filter removes noise above the stop
band except for multiples of the sampling frequency of analog inputs. The AK4617 includes an anti-aliasing
filter (RC filter) to attenuate a noise around the sampling frequency of analog inputs.
■ Analog Outputs
The single-ended output signal range is nominally 0.76 x AVDD2 Vpp centered around the VCOM voltage.
The DAC input data format is 2’s complement. The output voltage is a positive full scale for
7FFFFFH(@24bit) and a negative full scale for 800000H(@24bit). The ideal output is VCOM voltage for
000000H(@24bit). The internal analog filters remove most of the noise generated by the delta-sigma
modulator of DAC beyond the audio passband, in single-ended input mode. There are no internal analog filters
for differential output mode, therefore this noise should be removed by the external analog filters.
The DAC outputs have DC offsets of a few millivolts to VCOM voltage.
MS1582-E-00
2013/11
- 59 -
[AK4617]
■ External Analog Inputs Circuit
Analog In
2.67Vpp
INP
1
AK4617
Analog In
2.67Vpp
INN

Figure 55. Input Buffer Circuit Example 2 (AC coupled differential input)
(IN1P/IN1N, IN2P/IN2N pins)
Analog In
2.67Vpp
IN
AK4617

Figure 56. Input Buffer Circuit Example 3 (AC coupled single-ended input)
(IN1, IN2 pins)
MS1582-E-00
2013/11
- 60 -
[AK4617]
■ External Analog Outputs Circuit
AK4617
AOUT
Analog Out
C=1F
R=100k
2.51Vpp (typ)
Figure 57. External Circuit Example (LOUT1-6, ROUT1-6 pins)
Note: The cut-off frequency (fc) of HPF is determined by following equation.
fc= 1/(2 × π × R × C) [Hz]
Where the C is the external AC coupling capacitor and the R is load resistance.
When C = 1μF and R = 100kΩ, then fs = 1.6Hz.
MS1582-E-00
2013/11
- 61 -
[AK4617]
17. Package
48pin LQFP(Unit: mm)
1.70Max
9.0 0.2
0.13 0.13
7.0 0.2
36
1.40 0.05
24
48
13
7.0
37
1
9.0
25
12
0.09 0.20
0.5
0.22 0.08
0.10 M
0° 10°
S
0.10 S
0.30 ~ 0.75
■ Package & Lead frame material
Package molding compound:
Lead frame material:
Lead frame surface treatment:
Epoxy resin, Halogen (Br, Cl) free
Cu
Solder (Pb free) plate
MS1582-E-00
2013/11
- 62 -
[AK4617]
■ Marking
AK4617VQ
XXXXXXX
1
1) Pin #1 indication
2) Date Code: XXXXXXX(7 digits)
3) Marking Code: AK4617VQ
18. Revision History
Date (Y/M/D)
13/11/12
Revision
00
Reason
First Edition
Page
Contents
MS1582-E-00
2013/11
- 63 -
[AK4617]
IMPORTANT NOTICE
0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the
information contained in this document without notice. When you consider any use or application of
AKM product stipulated in this document (“Product”), please make inquiries the sales office of
AKM or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and
application examples of AKM Products. AKM neither makes warranties or representations with
respect to the accuracy or completeness of the information contained in this document nor grants any
license to any intellectual property rights or any other rights of AKM or any third party with respect
to the information in this document. You are fully responsible for use of such information contained
in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR
ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF
SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require
extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may
cause loss of human life, bodily injury, serious property damage or serious public impact, including
but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry,
medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic
signaling equipment, equipment used to control combustions or explosions, safety devices, elevators
and escalators, devices related to electric power, and equipment used in finance-related fields. Do
not use Product for the above use unless specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible
for complying with safety standards and for providing adequate designs and safeguards for your
hardware, software and systems which minimize risk and avoid situations in which a malfunction or
failure of the Product could cause loss of human life, bodily injury or damage to property, including
data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information
contained in this document for any military purposes, including without limitation, for the design,
development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or
missile technology products (mass destruction weapons). When exporting the Products or related
technology or any information contained in this document, you should comply with the applicable
export control laws and regulations and follow the procedures required by such laws and regulations.
The Products and related technology may not be used for or incorporated into any products or
systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
or regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the RoHS
compatibility of the Product. Please use the Product in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of
noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set forth
in this document shall immediately void any warranty granted by AKM for the Product and shall not
create or extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior
written consent of AKM.
MS1582-E-00
2013/11
- 64 -